JP2008100536A - Unmanned monitoring buoy for drifting material, monitoring system for drifting material and method thereof - Google Patents

Unmanned monitoring buoy for drifting material, monitoring system for drifting material and method thereof Download PDF

Info

Publication number
JP2008100536A
JP2008100536A JP2006282230A JP2006282230A JP2008100536A JP 2008100536 A JP2008100536 A JP 2008100536A JP 2006282230 A JP2006282230 A JP 2006282230A JP 2006282230 A JP2006282230 A JP 2006282230A JP 2008100536 A JP2008100536 A JP 2008100536A
Authority
JP
Japan
Prior art keywords
floating
unmanned
water
substance
buoy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006282230A
Other languages
Japanese (ja)
Other versions
JP5002760B2 (en
Inventor
Naozo Kato
直三 加藤
Hideaki Chiga
英敬 千賀
Muneo Yoshie
宗生 吉江
Isamu Fujita
勇 藤田
Hideyuki Omori
英行 大森
Hiroyuki Nakagawa
寛之 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Akishima Laboratories Mitsui Zosen Inc
National Institute of Maritime Port and Aviation Technology
Original Assignee
Osaka University NUC
Akishima Laboratories Mitsui Zosen Inc
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Akishima Laboratories Mitsui Zosen Inc, National Institute of Maritime Port and Aviation Technology filed Critical Osaka University NUC
Priority to JP2006282230A priority Critical patent/JP5002760B2/en
Publication of JP2008100536A publication Critical patent/JP2008100536A/en
Application granted granted Critical
Publication of JP5002760B2 publication Critical patent/JP5002760B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unmanned monitoring buoy for drifting materials, a monitoring system for drifting materials and a method thereof which can detect the position of the drifting materials by facilitating collection of the drifting materials such as heavy oil on the water and automatically tracking by detecting the position of the drifting materials in order to reduce the effect on the natural environment and local economy due to oil spill incident such as heavy oil, and can detect the data of hydrographical/meteorological phenomenon of the drifting water area of the drifting materials and transmit the data to the base station in real time. <P>SOLUTION: The unmanned monitoring buoy (10) for drifting materials is put in a water area having the drifting materials (Fo), and automatically repeats surfacing and downwelling in the water area. The monitoring buoy detects the existence or non-existence and the position of the drifting materials (Fo) on the water surface part when it is under the water surface. After detecting, the monitoring buoy floats toward the position of the drifting material (Fo) to be detected, and sends the position information and the data of hydrographical/meteorological phenomenon or the like when floating in the area of the drifting materials (Fo) on the water surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、海難事故等により海上に流出し、浮流又は浮遊している重油等の浮流物質の発見及び監視を行うための無人浮流物質監視用ブイ、浮流物質監視システム及び浮流物質監視方法に関する。   The present invention relates to an unmanned floating substance monitoring buoy, a floating substance monitoring system, and a floating substance monitoring method for detecting and monitoring a floating substance such as heavy oil that has flowed out to the sea due to a marine accident or the like and is floating or floating.

タンカー船の海難事故等により海上に流出した重油は、海水と混ざることによりエマルジョン化し高粘度となるため残存性が高く、沿岸に漂着した場合には、自然環境にもたらす被害が大きくなり易く、その回復には多くの時間と労力を必要とするため、周辺地域の経済にも多くの損失を与える。   Heavy oil spilled to the sea due to a tanker maritime accident, etc. becomes highly viscous because it is emulsified and becomes highly viscous when mixed with seawater.If it drifts to the coast, damage to the natural environment is likely to increase. Because recovery requires a lot of time and effort, it also causes a lot of loss for the surrounding economy.

従って、環境への被害を最小限に食い止めるためには、流出した重油が沿岸に漂着する前に、限りある重油回収機材や油防除機材を、漂着が予測される沿岸に重点的に配置して、速やかにする漂着した重油を回収する必要がある。そのためには、浮流重油(浮遊重油)が発見れると、高精度の重油漂流シミュレーションを行って漂流先を精度よく予測する必要がある。この重油漂流シミュレーションの精度を向上させるためには、重油の漂流位置および漂流海域における海象・気象データをリアルタイムで取得して反映させることが重要となる。   Therefore, in order to prevent damage to the environment to a minimum, before the spilled heavy oil drifts to the coast, limited heavy oil recovery equipment and oil control equipment are placed on the coast where the drift is expected. It is necessary to quickly collect the stranded heavy oil. To that end, when floating heavy oil (floating heavy oil) is discovered, it is necessary to perform high-precision heavy oil drift simulations to accurately predict the drifting destination. In order to improve the accuracy of this heavy oil drift simulation, it is important to acquire and reflect the marine and meteorological data in real time in the drift position of the heavy oil and the drifting water area.

このタンカー船の海難事故等により海上に流出し、浮流している重油や化学物質等の浮流物質の発見及び監視を行うための方法として、蛍光ライダー法と呼ばれる方法がある。この方法では、図11に示すように、ヘリコプター1に紫外線のレーザーレーダー(ライダー:LIDAR:Light Detection and Ranging)装置2を搭載し、流出海域を空から走査する。この走査では、ヘリコプター1上のレーザーレーダー装置2から海面に向けて紫外パルスレーザーL1を照射して、この照射により海面で発生する蛍光L2を、ヘリコプター1上のイメージ増強管とCCDカメラとで構成される超高感度カメラで、4種類の波長について画像撮影する。この撮影画像において、海水の青紫色の水ラマン光と、石油類の青緑色の蛍光とを区別することにより、海水と流出油の位置情報を得ている。ちなみに、流出油のテスト観測において、高さHが150mの時に、視野100mrad、水面の範囲の直径Rで15mで流出油を検出できるとの結果を得ている。   There is a method called a fluorescent lidar method as a method for detecting and monitoring floating substances such as heavy oil and chemicals that have flowed out of the sea due to a marine accident of a tanker ship and floating. In this method, as shown in FIG. 11, a helicopter 1 is equipped with an ultraviolet laser radar (LIDAR: Light Detection and Ranging) device 2 to scan the outflow sea area from the sky. In this scanning, the laser radar device 2 on the helicopter 1 is irradiated with an ultraviolet pulse laser L1 toward the sea surface, and the fluorescence L2 generated on the sea surface by this irradiation is composed of an image intensifier tube on the helicopter 1 and a CCD camera. Images are taken with respect to four types of wavelengths using the ultra-sensitive camera. In this captured image, the position information of the seawater and the spilled oil is obtained by distinguishing the blue-purple water Raman light of seawater from the blue-green fluorescence of petroleum. By the way, in the spilled oil test observation, when the height H is 150 m, the result is that the spilled oil can be detected with a field of view of 100 mrad and a diameter R of the range of the water surface of 15 m.

この蛍光ライダー法は、レーザ励起で蛍光を発生させるアクティブ方式であるため、昼間のみならず夜間も観測が可能で、また、蛍光スペクトルにより流出物質の識別も可能である。また、受光側としてCCDカメラをベースとするため、リアルタイムの監視が可能である。   Since this fluorescence lidar method is an active method in which fluorescence is generated by laser excitation, observation is possible not only in the daytime but also at nighttime, and the outflow substance can be identified by the fluorescence spectrum. Further, since a CCD camera is used as the light receiving side, real-time monitoring is possible.

しかしながら、この方法では、ヘリコプターの航続時間の制限から長時間の流出追跡は困難であるという問題がある。そして、現状では、これ以外の方法において浮流重油を長時間自動的に追跡して流出した重油の位置情報とその海域の海象・気象データをリアルタイムに取得することができる機器やシステムは見当たらない。   However, this method has a problem that it is difficult to follow outflow for a long time due to the limitation of the cruising time of the helicopter. At present, there are no devices or systems that can track the buoyant heavy oil automatically for a long period of time and acquire the position information of the spilled heavy oil and the sea state / weather data of the sea area in real time by other methods.

一方、一定の期間、一定の深さの深層を漂流してから、自動的に浮上して自分の一を衛星に知らせ、再び定められた深さに沈むという動作を繰り返して、浮上位置と前回の浮上位置との差から、深層の平均流速を求める自動浮上式のフロートが提案されている(例えば、非特許文献1参照。)。   On the other hand, after drifting a depth of a certain depth for a certain period of time, the aircraft automatically ascends, informs the satellite of its own one, and sinks to a predetermined depth again. An automatic levitation type float that obtains the average flow velocity of the deep layer from the difference from the levitation position is proposed (for example, see Non-Patent Document 1).

しかしながら、最初は浮流物質内にブイを投下しても、波や潮流や風等の外乱により、ブイが浮流物質の外に出てしまうことがあるので、このブイでは、水平方向に対しては自力で移動することはできないブイでは、漂流している浮遊物質に追従させることはできないという問題がある。また、プロペラなどの推進装置を使用するブイでは推進に使用する電力等のエネルギーの消費量が大きく、長期間にわたる浮遊物質への追従とデータ送信を行うことができないという問題がある。
永田豊,「中立フローとアルゴ計画」,海の百科事典、丸善株式会社,平成15年3月25日発行,p.407−409
However, even if the buoy is dropped into the floating material at first, the buoy may come out of the floating material due to disturbances such as waves, tidal currents and winds. There is a problem that buoys that cannot move on their own cannot follow drifting floating material. In addition, a buoy that uses a propulsion device such as a propeller consumes a large amount of energy such as electric power used for propulsion, and has a problem that it cannot follow a suspended substance and transmit data for a long period of time.
Yutaka Nagata, “Neutral Flow and Argo Project”, Encyclopedia of the Sea, Maruzen Co., Ltd., published on March 25, 2003, p. 407-409

本発明は、上記の問題を解決するためになされたものであり、その目的は、水上における重油等の浮流物質の回収を容易にして、重油等の流出事故による自然環境や地域経済に対する影響を低減するために、浮流物質の位置を検出して自動的に追跡して浮流物質の位置を検出すると共に、浮流物質の漂流水域の海象・気象データを検出し、これらのデータをリアルタイムで基地局に送信できる無人浮流物質監視用ブイ、浮流物質監視システム及び浮流物質監視方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to facilitate the collection of floating substances such as heavy oil on the water, and to influence the natural environment and local economy due to a spill accident of heavy oil and the like. In order to reduce this, the position of the floating material is detected and automatically tracked to detect the position of the floating material, as well as the oceanographic and meteorological data of the floating water area of the floating material, and these data are transmitted to the base station in real time. An unmanned floating material monitoring buoy, a floating material monitoring system, and a floating material monitoring method that can be transmitted to a vehicle.

上記の目的を達成するための本発明の無人浮流物質監視用ブイは、浮流物質がある水域に投入され、該水域で自動的に浮上と沈降を繰返し、水面下にある時に水面部分における浮流物質の有無及び位置を検出し、検出後、検出した浮流物質の位置に向かって浮上し、水面の浮流物質領域内に浮上している時に位置情報を基地局に送信するように構成する。   The unmanned floating substance monitoring buoy according to the present invention for achieving the above-mentioned object is introduced into a water area where the floating substance is present, and automatically floats and sinks in the water area, and when it is below the water surface, The presence / absence and position of the buoyant substance are detected, and after detection, the buoyant substance rises toward the position of the detected buoyant substance, and the position information is transmitted to the base station when buoyant in the buoyant substance area on the water surface.

この無人浮流物質監視用ブイの大きな特徴は、重油等の物質が流出した直後に、その流出物質(浮流物質:浮遊物質)がある水域に投入され、その後の流出物質の回収作業時までの長時間にわたり浮流物質の自動追跡を行う点と、浮流物質が漂流している水域の海象・気象データをリアルタイムで地上、海上あるいは空中の基地局に送信する点である。   The main feature of this unmanned floating substance monitoring buoy is that it is put into the water area where the spilled substance (buoyant substance: suspended substance) immediately after the spill of heavy oil, etc. The point is that the floating material is automatically tracked over time, and the sea state and meteorological data of the water area where the floating material is drifting are transmitted in real time to the ground, sea or air base station.

これらの2つの特徴を合わせ持つことにより、浮流物質の漂流水域における浮流物質の回収作業の効率化を図ることができる。また、リアルタイムのデータを得ることができるので、高精度の重油漂流シミュレーションが可能となり、漂着予測の精度が上がり、漂着が予想される沿岸において対応策を早期に立てることができるようになる。   By combining these two features, it is possible to improve the efficiency of the floating material recovery work in the floating water area of the floating material. In addition, since real-time data can be obtained, high-precision heavy oil drift simulation can be performed, so that the accuracy of drift prediction can be improved, and countermeasures can be taken early on the coast where drift is expected.

つまり、この構成によれば、重油等の浮流物質のセンシングと浮流物質を検知した方向への移動を自動で繰り返し行うことにより、浮流物質の自動追跡を行うことができる。そのため、海面や川面や湖面等の水面上を漂流している重油や化学物質等の浮流物質に自動的に追従しながら、その位置を無人浮流物質監視用ブイに搭載したGPS装置等により検出して、地上や船舶上や航空機上やヘリコプター上に配置された基地局に送信することができ、浮流物質の漂流位置を正確に把握できる。   That is, according to this configuration, the floating material can be automatically tracked by automatically repeating the sensing of the floating material such as heavy oil and the movement in the direction in which the floating material is detected. Therefore, while automatically following floating oils such as heavy oil and chemicals drifting on the surface of the sea, rivers, lakes, etc., the position is detected by a GPS device mounted on an unmanned floating substance monitoring buoy. Can be transmitted to a base station arranged on the ground, on a ship, on an aircraft, or on a helicopter, and the drifting position of floating material can be accurately grasped.

また、波や風や潮流等の外乱により、無人浮流物質監視用ブイが浮流物質領域内から外れた時に、浮力調整による沈降と浮上と、浮上途中における可動翼の翼角の制御等により検出した浮流物質の位置に向かって浮上して浮流物質領域内への復帰を図るので、浮流物質への追従に使用するエネルギーが小さくて済む。従って、プロペラ等の推進装置を使用して追従する場合に比べて、長時間追従することができるようになり、数日から数週間に亙って自動追従することができる。   In addition, when unmanned buoyant material monitoring buoys were removed from the buoyant material region due to disturbances such as waves, winds and tidal currents, they were detected by controlling the wing angle of movable wings during the ascent and the like by subsidence and ascent by buoyancy adjustment. Since it floats toward the position of the floating material and returns to the floating material region, the energy used to follow the floating material is small. Therefore, it is possible to follow for a long time as compared with the case of following using a propulsion device such as a propeller, and it is possible to automatically follow for several days to several weeks.

また、上記の無人浮流物質監視用ブイにおいて、海象・気象データを測定し、該測定した海象・気象データを基地局に送信するように構成する。この構成によれば、浮流物質の漂流位置に加えて、その水域における波、潮流、風、気圧等の海象・気象データも入手できるので、浮流物質の漂流シミュレーションの精度をより向上させることができる。   The unmanned floating substance monitoring buoy is configured to measure sea state / weather data and transmit the measured sea state / weather data to the base station. According to this configuration, in addition to the drifting position of the floating material, sea conditions and meteorological data such as waves, tidal currents, winds, and atmospheric pressure in that water area can be obtained, so the accuracy of floating simulation of floating material can be further improved. .

また、上記の無人浮流物質監視用ブイにおいて、前記浮上と沈降の繰り返しを、浮力調整装置により浮力を調整することにより行うと共に、浮上途中は可動翼の翼角を制御することにより、検出した浮流物質の部分に向かって浮上するように構成する。この構成によれば、移動において、無人浮流物質監視用ブイの機体内部又は外部に装備した浮力調整装置による鉛直方向の移動と、可動翼の翼角の制御を組み合わせたメカニズムを用いることにより、浮力調整は簡単な機構で僅かなエネルギーで行うことができ、しかも、機体自体にはプロペラなどの推進器を使用せずに移動するため、自動追跡で消費する電力を低く抑えることができる。そのため、重油浮流直後から20日間程度の長期間にわたり浮流物質を自動追跡しながら、浮流水域の海象・気象条件のリアルタイムデータを基地局へ送信することができる。その上、比較的単純な機構と比較的簡便な制御で自動追従できる。なお、可動翼は翼全体が回転又は揺動する構成でもよく、翼の一部のフラップ等が揺動する構成でもよい。   Further, in the above-described unmanned buoyant substance monitoring buoy, the buoyancy detected by controlling the blade angle of the movable wing during the levitation while the buoyancy adjustment device repeats the levitation and sinking and adjusts the buoyancy. It is constructed so as to rise toward the material part. According to this configuration, buoyancy can be achieved by using a mechanism that combines the vertical movement by the buoyancy adjustment device installed inside or outside the fuselage monitoring buoy and the control of the blade angle of the movable wing. The adjustment can be performed with a simple mechanism and with little energy. Moreover, since the aircraft itself moves without using a propeller such as a propeller, the power consumed by automatic tracking can be kept low. Therefore, real-time data of sea conditions and meteorological conditions in the floating water area can be transmitted to the base station while automatically tracking the floating material for a long period of about 20 days immediately after the heavy oil floating. In addition, automatic tracking is possible with a relatively simple mechanism and relatively simple control. The movable wing may have a configuration in which the entire wing rotates or swings, or may have a configuration in which some of the flaps of the wing swing.

また、上記の無人浮流物質監視用ブイで、水面下にある時の前記水面部分における浮流物質の有無及び位置の検出を、非接触式検知センサで行うように構成する。この構成によれば、沈降している時に非接触式検知センサで上方を広範囲に探索でき、しかも、次の浮上時の追従動作との連携が連続的であるため、円滑に省エネルギーで自動追従ができるようになる。   Further, the above-described unmanned floating substance monitoring buoy is configured so that the presence or absence and position of the floating substance in the water surface portion when it is below the water surface are detected by a non-contact detection sensor. According to this configuration, when sinking, the non-contact detection sensor can search for a wide range upward, and since the linkage with the follow-up operation at the next ascent is continuous, automatic follow-up is smoothly performed with energy saving. become able to.

この非接触式検知センサとしては、紫外線センサを使用でき、紫外線を上方(水面)に向けて走査し、その反射光(蛍光)をスペクトル解析することにより、水面と浮流物質との差異を検出し、無人浮流物質監視用ブイから見た浮流物質の位置(相対位置)を検出する。なお、この非接触式検知センサは紫外線センサに限らず、他の波長の光や音波等を使用するものであってもよい。要は非接触で水中にある無人浮流物質監視用ブイの上方の水面にある浮流物質を検知できればよい。   As this non-contact detection sensor, an ultraviolet sensor can be used, and the difference between the water surface and the floating material is detected by scanning the ultraviolet light upward (water surface) and analyzing the reflected light (fluorescence) spectrum. Detect the position (relative position) of the floating material as seen from the unmanned floating material monitoring buoy. The non-contact detection sensor is not limited to the ultraviolet sensor, and may use light of other wavelengths, sound waves, or the like. In short, it is only necessary to be able to detect the floating material on the surface of the water above the unmanned floating material monitoring buoy that is non-contact and in water.

更に、上記の無人浮流物質監視用ブイで、水面の浮流物質領域内に浮上しているか否かの判定を接触式検知センサで行うように構成する。この構成によれば、水面の浮流物質領域内に浮上しているか否かを判定できるので、水面の浮流物質領域内に浮上している時、即ち、重油等の浮流物質の塊中に無人浮流物質監視用ブイが存在している時は、自動追従しなくてもよく、無駄な沈降と浮上を無くすことができ、より省エネルギーとなる。   Further, the above-described unmanned floating substance monitoring buoy is configured so that the contact type detection sensor determines whether or not it is floating in the floating substance area on the water surface. According to this configuration, since it can be determined whether or not the surface floats in the floating material region on the water surface, when floating in the floating material region on the water surface, that is, in the mass of floating material such as heavy oil, When a substance monitoring buoy is present, it is not necessary to automatically follow it, and wasteful settling and floating can be eliminated, thereby further saving energy.

この接触式検知センサとしては、可動翼のトルク検出センサを使用することができ、浮上している時に、可動翼を動かしてこのトルク検出センサでそのトルクを検出し、その検出トルクの値を所定のトルク閾値と比較することにより、可動翼が水中にあるか重油等の浮流物質中にあるかを容易に判定することができる。この場合には、水(又は海水)と浮流物質(重油や化学物質等)の粘性が異なることを利用している。なお、これ以外のセンサを接触式検知センサとして使用してもよい。   As the contact detection sensor, a movable blade torque detection sensor can be used. When the aircraft is flying, the movable blade is moved, the torque is detected by the torque detection sensor, and the detected torque value is set to a predetermined value. It is possible to easily determine whether the movable blade is in water or in floating material such as heavy oil. In this case, the fact that the viscosity of water (or seawater) and floating material (heavy oil, chemical substances, etc.) is different is used. In addition, you may use sensors other than this as a contact-type detection sensor.

上記の目的を達成するための本発明の浮流物質監視システムは、上記の無人浮流物質監視用ブイを使用して構成される。この構成によれば、無人浮流物質監視用ブイと基地局の受信装置等という比較的簡便な装置及びシステムで、浮流物質の漂流位置及びその水域における海象・気象データを得ることができるようになる。   In order to achieve the above object, a floating material monitoring system of the present invention is configured using the above-described unmanned floating material monitoring buoy. According to this configuration, it is possible to obtain the drifting position of the floating material and the sea state / weather data in the water area with a relatively simple device and system such as the unmanned floating material monitoring buoy and the receiving device of the base station. .

また、上記の目的を達成するための本発明の浮流物質監視方法は、浮流物質がある水域に無人浮流物質監視用ブイを投入し、該無人浮流物質監視用ブイに浮上と沈降を繰返させて、水面下にある時に水面部分における浮流物質の有無及び位置を検出させて、検出後、検出した浮流物質の位置に向かって浮上させて、水面の浮流物質領域内に浮上している時に前記無人浮流物質監視用ブイの位置情報を基地局に送信させる方法である。   In addition, the floating substance monitoring method of the present invention for achieving the above object is to introduce an unmanned floating substance monitoring buoy into a water area where the floating substance is present, and cause the unmanned floating substance monitoring buoy to repeatedly rise and sink. The presence and position of the floating substance in the water surface portion when it is under the surface of the water is detected, and after detection, it is lifted toward the position of the detected floating substance, and is unmanned when it is floating in the floating substance region of the water surface. This is a method for transmitting position information of a floating material monitoring buoy to a base station.

また、上記の浮流物質監視方法において、前記無人浮流物質監視用ブイに海象・気象データを測定させ、該測定した海象・気象データを基地局に送信させたり、前記浮上と沈降の繰り返しを、浮力調整装置により浮力を調整することにより行わせると共に、浮上途中は可動翼の翼角を制御することにより、検出した浮流物質の部分に向かって浮上させる。   Further, in the above buoyant substance monitoring method, the unmanned buoyant substance monitoring buoy measures sea conditions / weather data, transmits the measured sea conditions / weather data to a base station, or repeats the ascent and sink of buoyancy. The buoyancy is adjusted by the adjusting device, and during the ascent, the wing angle of the movable wing is controlled to levitate toward the portion of the detected buoyant substance.

また、上記の浮流物質監視方法において、水面下にある時の前記水面部分における浮流物質の有無及び位置の検出を、非接触式検知センサで行ったり、水面の浮流物質領域内に浮上しているか否かの判定を接触式検知センサで行ったりする。   In the above floating material monitoring method, whether or not the presence and position of the floating material on the surface of the water surface when it is below the surface of the water is detected by a non-contact detection sensor or is floating in the floating material region of the water surface The determination of whether or not is made by a contact type detection sensor.

これらの浮流物質監視方法によれば、上記したような無人浮流物質監視用ブイや無人浮流物質監視システムと同様な作用効果を奏することができる。   According to these floating substance monitoring methods, the same effects as the unmanned floating substance monitoring buoy and the unmanned floating substance monitoring system described above can be obtained.

本発明の無人浮流物質監視用ブイ、浮流物質監視システム及び浮流物質監視方法によれば、漂流している浮流物質へ省エネルギーで追従して、重油等の浮流物質の位置およびその漂流水域の海象・気象データを、基地局においてリアルタイムで得られるので、浮流物質の漂流シミュレーションを高精度で行うことができる。従って、漂流先の沿岸に浮流物質回収装置を配置する等の事前の対応策を適切に行うことができるようになる。   According to the unmanned floating material monitoring buoy, the floating material monitoring system, and the floating material monitoring method of the present invention, the floating material that follows the floating material is saved with energy saving, and the position of the floating material such as heavy oil and the state of the floating water Since the meteorological data can be obtained in real time at the base station, the drifting simulation of the floating material can be performed with high accuracy. Accordingly, it is possible to appropriately take advance countermeasures such as placing a floating material recovery device on the coast of the drifting destination.

以下図面を参照して本発明に係る無人浮流物質監視用ブイ、浮流物質監視システム及び浮流物質監視方法について説明する。ここでは、浮流物質(浮遊物質、流出物質)として重油を対象にして説明するが、他の浮流物質にも本発明は適用できる。   Hereinafter, an unmanned floating substance monitoring buoy, a floating substance monitoring system, and a floating substance monitoring method according to the present invention will be described with reference to the drawings. Here, heavy oil will be described as a floating material (floating material, spilled material), but the present invention can also be applied to other floating materials.

図1に示すように、本発明の無人浮流物質監視用ブイ10は、浮流物質Foがある水域に投入され、この水域で自動的に浮上と沈降を繰返し((a)〜(f))、水面下にある時((c))に水面部分における浮流物質Foの有無及び位置を検出し((d))、検出後、検出した浮流物質Foの位置に向かって浮上し((e))、水面の浮流物質Foの領域内に浮上している時((f))に位置情報や海象・気象データ等を基地局に送信するように構成される。   As shown in FIG. 1, the unmanned floating substance monitoring buoy 10 of the present invention is put into a water area where the floating substance Fo is present, and automatically floats and sinks in this water area ((a) to (f)), When it is under the surface of the water ((c)), the presence and position of the floating material Fo in the water surface portion are detected ((d)), and after the detection, it floats toward the position of the detected floating material Fo ((e)). When the surface floats in the area of the floating material Fo on the water surface ((f)), it is configured to transmit position information, sea state / weather data, etc. to the base station.

図2〜図4に示すように、本発明の実施の形態の無人浮流物質監視用ブイ10は、円筒状の胴体11の上部に2対計4個の可動翼12を十字形状の位置に備えると共に、下部に2対計4個の固定翼13を十字形状の位置に備えて形成される。また、図5〜図8に示すように、胴体11の内部には、可動翼駆動用モータ12a、浮力調整装置14、浮流重油検出装置21、姿勢制御用センサ22、23やバッテリー15等が配設される。なお、波力発電装置を設けて、浮上状態で波に揺られている状態の時に、バッテリー15を充電するように構成すると、作動期間を著しく大きくすることができる。   As shown in FIGS. 2 to 4, the unmanned buoyant substance monitoring buoy 10 according to the embodiment of the present invention includes a total of four movable wings 12 at the upper portion of a cylindrical body 11 in a cross-shaped position. At the same time, a total of four fixed wings 13 are formed at the lower portion with a cross-shaped position. Further, as shown in FIGS. 5 to 8, the movable blade driving motor 12 a, the buoyancy adjusting device 14, the buoyant heavy oil detection device 21, the attitude control sensors 22 and 23, the battery 15, and the like are arranged inside the fuselage 11. Established. In addition, when the wave power generator is provided and the battery 15 is configured to be charged in a state where the wave power generator is swayed by the wave in the floating state, the operation period can be remarkably increased.

また、胴体11の頭部11aの内部には、浮流重油の分布範囲を検出する紫外線センサを有する浮流重油検出装置21、各種センサ21、22、23の出力信号に基づいて可動翼12と浮力調整装置14を制御するための制御部30、ブイ10の位置を検出するGPS装置(図示しない)や海象・気象のモニタリングのための流速計、波高計等の各種計測装置(図示しない)、各種データを基地局に送信するための送信装置(図示しない)等が配設される。また、頭部11aの頂部には、吊具11bを設け、無人浮流物質監視用ブイ10の回収が容易にできるように構成される。   Also, the movable blade 12 and the buoyancy adjustment are provided in the head portion 11a of the fuselage 11 based on the output signals of the buoyant heavy oil detection device 21 and the various sensors 21, 22 and 23 having an ultraviolet sensor for detecting the distribution range of the buoyant heavy oil. A control unit 30 for controlling the device 14, a GPS device (not shown) for detecting the position of the buoy 10, various measuring devices (not shown) such as a velocimeter and a wave height meter for monitoring sea conditions and weather, various data A transmitting device (not shown) or the like for transmitting the signal to the base station is provided. Further, a suspension 11b is provided on the top of the head 11a so that the unmanned floating substance monitoring buoy 10 can be easily collected.

この浮流重油検出装置21は、浮流重油Foの分布範囲を検出するための紫外線センサを有して構成され、図1に示すように、無人浮流物質監視用ブイ10が沈降して、例えば10m程度の所定の深度の時に、水面下から水面に向かって紫外線を照射して、水面の所定の範囲内を走査して、水面や浮流重油Foから反射してくる蛍光を捉えて、この蛍光の分析から水面と浮流重油Fo領域との識別を行う。   The buoyant heavy oil detection device 21 includes an ultraviolet sensor for detecting the distribution range of the buoyant heavy oil Fo. As shown in FIG. 1, the unmanned buoyant substance monitoring buoy 10 sinks, for example, about 10 m. This ultraviolet ray is irradiated from below the water surface toward the water surface at a predetermined depth, scanned within a predetermined range of the water surface, and the fluorescence reflected from the water surface and floating heavy oil Fo is captured to analyze this fluorescence. To distinguish between the water surface and the floating heavy oil Fo region.

また、姿勢制御センサとしては、各方向の加速度を検出するレートセンサ22や方位と傾斜を検出する方位・傾斜センサ23、深度計(図示しない)等がある。   As the attitude control sensor, there are a rate sensor 22 that detects acceleration in each direction, an azimuth / tilt sensor 23 that detects azimuth and inclination, a depth meter (not shown), and the like.

可動翼12は、バッテリー15を電源とする可動翼駆動用モータ12aの駆動によって回転又は揺動する。この可動翼駆動用モータ12aは一対の可動翼12を同時に駆動し、全部で2個設けられる。また、可動翼12の回転軸には回転トルクを計測するためのトルクセンサ(図示しない)が設けられ、このトルクセンサで検出された回転トルクの大小によって、無人浮流物質監視用ブイ10が重油中にあるか否かを判定する。そして、浮流重油検出装置21と姿勢制御センサ22、23等の検出結果が入力される制御部30が、浮上時に無人浮流物質監視用ブイ10が浮流重油Fo内に入るように、浮上途中で各可動翼駆動用モータ12aを制御して、2対の可動翼12の翼角を対ごとに制御する。   The movable blade 12 rotates or swings by driving a movable blade driving motor 12a that uses the battery 15 as a power source. This movable blade drive motor 12a drives a pair of movable blades 12 at the same time, and is provided with two in total. The rotating shaft of the movable blade 12 is provided with a torque sensor (not shown) for measuring rotational torque, and the unmanned floating substance monitoring buoy 10 is placed in heavy oil depending on the magnitude of the rotational torque detected by the torque sensor. It is determined whether or not. Then, the control unit 30 to which the detection results of the floating fuel oil detection device 21 and the attitude control sensors 22 and 23 and the like are input, each during the ascent so that the unmanned floating material monitoring buoy 10 enters the floating fuel oil Fo during the ascent. The movable blade driving motor 12a is controlled to control the blade angles of the two pairs of movable blades 12 for each pair.

浮力調整装置14は、浮力調整モータ14a、ピストン14b、シリンダ14c、浮力調整水出入口14d等を有して構成される。この浮力調整モータ14aの駆動により、ピストン14bを往復移動させてシリンダ14c内に出入りさせる。これにより、水をシリンダ14cから浮力調整水出入口14dを経由して送り出して浮力を増加させたり、逆に水を浮力調整水出入口14dからシリンダ14c内に取り込んで浮力を減少させたりする。なお、図5では水の入る部分をハッチング(斜線)で示している。   The buoyancy adjustment device 14 includes a buoyancy adjustment motor 14a, a piston 14b, a cylinder 14c, a buoyancy adjustment water inlet / outlet 14d, and the like. By driving the buoyancy adjustment motor 14a, the piston 14b is reciprocated to enter and exit the cylinder 14c. Thereby, water is sent out from the cylinder 14c via the buoyancy adjustment water inlet / outlet 14d to increase the buoyancy, or conversely, water is taken into the cylinder 14c from the buoyancy adjustment water inlet / outlet 14d to reduce the buoyancy. In FIG. 5, the portion where water enters is indicated by hatching (oblique lines).

また、無人浮流物質監視用ブイ10は全体としては、略浮力と重量がバランスしている状態とし、水を送り出した浮力が最大の時には、水面上に頭部11bの少なくとも一部を露出させて、頭部11aが水面上に出て基地局との間で無線通信ができることができるように、また、水を取り込んだ浮力が最小の時には沈降するように、重量調整と浮力調整装置14の容量を設定する。そして、浮力調整装置14による浮力の増減により、無人浮流物質監視用ブイ10を浮上させたり、沈降させたりする。   The unmanned buoyant substance monitoring buoy 10 as a whole is in a state where the buoyancy and the weight are substantially balanced, and when the buoyancy from which water is delivered is maximum, at least a part of the head 11b is exposed on the water surface. The weight adjustment and the capacity of the buoyancy adjustment device 14 so that the head 11a can come out on the water surface and perform wireless communication with the base station, and so that it sinks when the buoyancy that takes in water is minimum. Set. Then, the unmanned buoyant substance monitoring buoy 10 is caused to rise or sink by the increase or decrease in buoyancy by the buoyancy adjustment device 14.

そして、浮流物質監視用システムをこの無人浮流物質監視用ブイ10を使用して構成する。この場合、無人浮流物質監視用ブイ10の送信を受ける基地局は、通常は地上局として陸地に設置されるが、必要に応じて、ヘリコプターや飛行機等や船舶に設置してもよい。なお、複数の基地局で受信してもよい。また、この浮流物質監視用システムは、この無人浮流物質監視用ブイ10を浮流物質Foの漂流水域に投入するために、浮流物質Foの漂流水域を発見して、無人浮流物質監視用ブイ10を浮流物質Foの漂流水域に投入及び回収するための機器やサブシステムを備えて構成される。   The floating substance monitoring system is configured using the unmanned floating substance monitoring buoy 10. In this case, the base station that receives the transmission of the unmanned floating substance monitoring buoy 10 is normally installed on the land as a ground station, but may be installed on a helicopter, an airplane, or the like as necessary. Note that reception may be performed by a plurality of base stations. In addition, this floating substance monitoring system detects the floating area of the floating substance Fo in order to introduce the unmanned floating substance monitoring buoy 10 into the floating area of the floating substance Fo, and uses the unmanned floating substance monitoring buoy 10. It is configured with equipment and subsystems for charging and collecting the floating material Fo in the drifting water area.

次に、この無人浮流物質監視用ブイ10の制御方法及びこの無人浮流物質監視用ブイ10を用いた浮流物質監視用方法について説明する。   Next, a control method of the unmanned floating substance monitoring buoy 10 and a floating substance monitoring method using the unmanned floating substance monitoring buoy 10 will be described.

図9に示すように、重油流出事故が発生する(S1)と、その浮流重油を航空機やヘリコプターや船舶等により探索し(S2)、浮流重油が発見される(S3)と、無人浮流物質監視用ブイ10は、航空機やヘリコプターや船舶等から浮流重油Fo中又はその近傍に投入される(S4)。この投入に際して、スイッチオンとして制御部30の制御を起動し、その作動を開始する。その後は、無人浮流物質監視用ブイによる浮遊重油の監視を行い、無人浮流物質監視用ブイ10が浮流重油Foの漂流に追従して、各種データを基地局に送信する(S5)。浮流重油Foの回収等の必要な処理を終えて、この無人浮流物質監視用ブイ10のデータが不要になったら、無人浮流物質監視用ブイ10を回収し、スイッチをオフして、制御部30の制御を停止して、その作動を停止する。   As shown in FIG. 9, when a heavy oil spill accident occurs (S1), the floating heavy oil is searched by an aircraft, helicopter, ship, etc. (S2), and when floating heavy oil is found (S3), unmanned floating substance monitoring The buoy 10 is introduced into or near the floating heavy oil Fo from an aircraft, helicopter, ship, or the like (S4). At the time of this input, the control of the control unit 30 is started by turning on the switch, and its operation is started. Thereafter, the floating heavy oil is monitored by the unmanned floating substance monitoring buoy, and the unmanned floating substance monitoring buoy 10 follows the drift of the floating heavy oil Fo and transmits various data to the base station (S5). When the necessary processing such as recovery of the floating heavy oil Fo is completed and the data of the unmanned floating material monitoring buoy 10 is no longer necessary, the unmanned floating material monitoring buoy 10 is recovered, the switch is turned off, and the control unit 30 Is stopped and the operation is stopped.

そして、無人浮流物質監視用ブイによる浮遊重油の監視(S5)における、無人浮流物質監視用ブイ10の浮流重油Foの漂流への自動追従及びデータ通信は、図10に示すような制御フローに従って自動的に制御されて行われる。   Then, in the monitoring of floating heavy oil by the unmanned floating material monitoring buoy (S5), the automatic tracking and data communication of the floating heavy oil Fo of the unmanned floating material monitoring buoy 10 are automatically performed according to the control flow shown in FIG. Controlled.

無人浮流物質監視用ブイ10の制御部30のスイッチがオンされて、この図10に示す制御フローに従った制御がスタートすると、ステップS51で、可動翼12を動かして、この時のトルクをトルクセンサで検出する(図1の(a))。次のステップS52で、無人浮流物質監視用ブイ10が浮流重油中にあるか否かを、可動翼12を動かした時に検出したトルクの大きさから判定する。この検出トルクの大きさが所定のトルク閾値よりも大きい場合には浮流重油Fo中にあると判定し、小さい場合には水中(海水中)にあると判定する。この無人浮流物質監視用ブイ10は、投入時に浮流重油Foから外れる場合や、浮流重油Fo中にあっても波、風、潮流などの外乱により浮流重油Foから外れる場合があるので、この判定を行う。   When the switch of the control unit 30 of the unmanned floating substance monitoring buoy 10 is turned on and the control according to the control flow shown in FIG. 10 is started, the movable blade 12 is moved in step S51, and the torque at this time is torqued. It detects with a sensor ((a) of FIG. 1). In the next step S52, it is determined from the magnitude of the torque detected when the movable blade 12 is moved whether or not the unmanned floating substance monitoring buoy 10 is in the floating heavy oil. When the magnitude of the detected torque is greater than a predetermined torque threshold, it is determined that the floating heavy oil Fo is present, and when it is smaller, it is determined that the detected torque is underwater (in seawater). This unmanned buoyant substance monitoring buoy 10 may be removed from the buoyant heavy oil Fo when it is thrown in, or may be removed from the buoyant heavy oil Fo due to disturbances such as waves, winds and tidal currents even in the buoyant heavy oil Fo. Do.

このステップS52の判定結果が浮流重油Fo中であるとの判定であれば、ステップS56に行き、このステップS52の判定結果が浮流重油Fo中では無いとの判定である場合には、ステップS53に行き、浮力調整装置14を制御して浮力調整シリンダ14aを動かして、浮力調節水出入口より水を入れて浮力を小さくし、沈降深度を深度計で計測しながら、予め設定した所定の深度(例えば10m)まで沈降する(図1の(b))。この所定の深度に到達したら(図1の(c))、次のステップS54で、浮流重油検出装置21の紫外線センサによって、上方の水面を走査して、無人浮流物質監視用ブイ10から見た水面の浮流重油Foの位置(相対位置)を検出する(図1の(d))。   If it is determined that the determination result in step S52 is in the floating fuel oil Fo, the process goes to step S56. If the determination result in step S52 is not in the floating fuel oil Fo, the process proceeds to step S53. Go to control the buoyancy adjustment device 14 and move the buoyancy adjustment cylinder 14a to reduce the buoyancy by adding water from the buoyancy adjustment water inlet / outlet and measure the settling depth with a depth meter (for example, To 10 m) ((b) of FIG. 1). When the predetermined depth is reached ((c) of FIG. 1), the upper surface of the water is scanned by the ultraviolet sensor of the floating heavy oil detection device 21 and viewed from the unmanned floating substance monitoring buoy 10 in the next step S54. The position (relative position) of the floating heavy oil Fo on the water surface is detected ((d) in FIG. 1).

この浮流重油検出装置21による水面の浮流重油Foの位置の検出が終了したら、次のステップS55で、浮力調整装置14を制御して浮力調整ピストン14bを動かして、浮力調節水出入口14dより水を出して浮力を大きくして浮上する(図1の(e))。この浮上に際しては、無人浮流物質監視用ブイ10が検出した浮流重油Foの位置に向かって浮上するように制御部30は、浮流重油検出装置21と姿勢制御センサ22、23等の検出結果を利用しながら可動翼12を制御する。   When the detection of the position of the buoyant heavy oil Fo on the water surface by the buoyant heavy oil detection device 21 is completed, in the next step S55, the buoyancy adjusting device 14 is controlled to move the buoyancy adjusting piston 14b, and water is supplied from the buoyancy adjusted water inlet / outlet 14d. Then, the buoyancy is increased and the buoyancy is increased ((e) in FIG. 1). At the time of the ascent, the control unit 30 uses the detection results of the buoyancy heavy oil detection device 21, the attitude control sensors 22, 23, etc. so as to rise toward the position of the buoyancy heavy oil Fo detected by the unmanned buoyant substance monitoring buoy 10. While controlling the movable blade 12.

水面に到達する(図1の(f))と、ステップS51に戻り、可動翼12を動かして、この時のトルクをトルクセンサで検出する。次のステップS52で、無人浮流物質監視用ブイ10が浮流重油中にあるか否かを、可動翼12を動かした時に検出したトルクの大きさから判定する。つまり、無人浮流物質監視用ブイ10が浮流重油Fo中に浮上したことを確認する。この判定結果が浮流重油Fo中でない場合には、再度、ステップS53に行って沈降し、無人浮流物質監視用ブイ10が浮流重油Fo中に浮上するまで、予めセットされた所定の回数に達するまで、ステップS51〜ステップS55を繰りかえす。   When the water surface is reached ((f) in FIG. 1), the process returns to step S51, the movable blade 12 is moved, and the torque at this time is detected by the torque sensor. In the next step S52, it is determined from the magnitude of the torque detected when the movable blade 12 is moved whether or not the unmanned floating substance monitoring buoy 10 is in the floating heavy oil. That is, it is confirmed that the unmanned floating substance monitoring buoy 10 has floated in the floating heavy oil Fo. If the determination result is not in the floating fuel oil Fo, the process goes to step S53 again to settle, until the unmanned floating material monitoring buoy 10 rises in the floating fuel oil Fo until a predetermined number of times is reached. Steps S51 to S55 are repeated.

ステップS56では、GPS装置により、無人浮流物質監視用ブイ10の位置を検出し、また、海象・気象のモニタリングのための各種計測装置により海象・気象データを測定する。次のステップS57で、これらの位置と海象・気象データを基地局に送信する。その後、次のステップS58で、所定の時間経過するまで待機し、その後、ステップS51に戻る。この待機中は浮流重油Fo中に浮上しているので、波に揺られている状態にあるので、波力発電装置(図示していない)によりバッテリー15を充電するように構成してもよい。   In step S56, the position of the unmanned floating substance monitoring buoy 10 is detected by the GPS device, and the sea state / weather data is measured by various measuring devices for sea state / weather monitoring. In the next step S57, these positions and sea state / weather data are transmitted to the base station. Thereafter, in the next step S58, the process waits until a predetermined time elapses, and then returns to step S51. During this standby, since it floats in the floating heavy oil Fo, it is in a state of being shaken by waves, so that the battery 15 may be charged by a wave power generator (not shown).

このステップS51〜ステップS58を、無人浮流物質監視用ブイ10が回収されるまで繰り返し、浮流物質監視用ブイ10の回収とスイッチのオフ(図9のS8)による作動停止により、この自動制御を終了する。   Steps S51 to S58 are repeated until the unmanned floating substance monitoring buoy 10 is collected, and the automatic control is terminated by stopping the operation by collecting the floating substance monitoring buoy 10 and turning off the switch (S8 in FIG. 9). To do.

上記の無人浮流物質監視用ブイ10、浮流物質監視用システム、及び、浮流物質監視用方法によれば、紫外線による浮流重油Foのセンシングと浮流重油Foを検知した方向への移動を自動で行うことにより、浮流重油Foの自動追跡を行うことができる。   According to the above-described unmanned floating substance monitoring buoy 10, the floating substance monitoring system, and the floating substance monitoring method, the sensing of the floating heavy oil Fo by ultraviolet rays and the movement in the direction in which the floating heavy oil Fo is detected are automatically performed. Thus, the automatic tracking of the floating heavy oil Fo can be performed.

また、移動においては、無人浮流物質監視用ブイ10の機体内部に装備した浮力調整装置14による鉛直方向移動と可動翼12、12の翼角の制御を組み合わせたメカニズムを用いているので、機体自体にプロペラなどの推進器を使用して移動する装置に比べて、自動追跡で消費する電力を低く抑えることができる。そのため、重油浮流直後から20日間程度の長期間にわたり、浮流重油の位置及び浮流水域の海象・気象条件のリアルタイムデータを基地局で得ることができる。   Further, in the movement, since the mechanism which combines the vertical movement by the buoyancy adjusting device 14 installed in the airframe of the unmanned buoyant substance monitoring buoy 10 and the control of the blade angle of the movable blades 12 and 12 is used, the airframe itself Compared to devices that move using propellers such as propellers, the power consumed by automatic tracking can be kept low. For this reason, the base station can obtain real-time data on the position of the floating heavy oil and the sea conditions and meteorological conditions of the floating water for a long period of about 20 days immediately after the heavy oil floating.

本発明に係る実施の形態の無人浮流物質監視用ブイの構成を示す側断面図である。It is side sectional drawing which shows the structure of the unmanned floating substance monitoring buoy of embodiment which concerns on this invention. 本発明に係る実施の形態の無人浮流物質監視用ブイの構成を示す側面図である。It is a side view which shows the structure of the unmanned floating substance monitoring buoy of embodiment which concerns on this invention. 図2の無人浮流物質監視用ブイの平面図である。FIG. 3 is a plan view of the unmanned floating substance monitoring buoy of FIG. 2. 図2の無人浮流物質監視用ブイの底面図である。FIG. 3 is a bottom view of the unmanned floating substance monitoring buoy of FIG. 2. 図2の無人浮流物質監視用ブイの構成を示す側断面図である。It is a sectional side view which shows the structure of the unmanned floating substance monitoring buoy of FIG. 図5の無人浮流物質監視用ブイのA−A矢視図である。It is an AA arrow directional view of the unmanned floating substance monitoring buoy of FIG. 図5の無人浮流物質監視用ブイのB−B矢視図である。FIG. 6 is a BB arrow view of the unmanned floating substance monitoring buoy of FIG. 5. 図5の無人浮流物質監視用ブイのC−C矢視図である。It is CC arrow line view of the unmanned floating substance monitoring buoy of FIG. 無人浮流物質監視用ブイの使用方法のフローの一例を示す図である。It is a figure which shows an example of the flow of the usage method of the buoy for unmanned floating substance monitoring. 無人浮流物質監視用ブイの制御のフローの一例を示す図である。It is a figure which shows an example of the control flow of the unmanned floating substance monitoring buoy. 蛍光ライダー法を説明するための図である。It is a figure for demonstrating the fluorescence lidar method.

符号の説明Explanation of symbols

10 無人浮流物質監視用ブイ
11 胴体
12 可動翼
13 固定翼
14 浮力調整装置
15 バッテリー
21 浮流重油検出装置
22 レートセンサ(姿勢制御用センサ)
23 方位・傾斜センサ(姿勢制御用センサ)
30 制御部(制御回路)
Fo 浮流重油(浮流物質)
DESCRIPTION OF SYMBOLS 10 Unmanned buoyant substance monitoring buoy 11 Body 12 Movable wing 13 Fixed wing 14 Buoyancy adjustment device 15 Battery 21 Buoyant heavy oil detection device 22 Rate sensor (Attitude control sensor)
23 Direction / Inclination Sensor (Attitude Control Sensor)
30 Control unit (control circuit)
Fo Floating heavy oil (floating material)

Claims (11)

浮流物質がある水域に投入され、該水域で自動的に浮上と沈降を繰返し、水面下にある時に水面部分における浮流物質の有無及び位置を検出し、検出後、検出した浮流物質の位置に向かって浮上し、水面の浮流物質領域内に浮上している時に位置情報を基地局に送信する無人浮流物質監視用ブイ。   The floating substance is thrown into a certain water area, and it automatically floats and sinks in the water area.When it is below the surface of the water, it detects the presence and position of the floating substance on the surface of the water. An unmanned buoyant material monitoring buoy that transmits position information to the base station when it floats and floats in the buoyant material region of the water surface. 海象・気象データを測定し、該測定した海象・気象データを基地局に送信する請求項1記載の無人浮流物質監視用ブイ。   The unmanned floating substance monitoring buoy according to claim 1, wherein the sea state / weather data is measured and the measured sea state / weather data is transmitted to the base station. 前記浮上と沈降の繰り返しを、浮力調整装置により浮力を調整することにより行うと共に、浮上途中は可動翼の翼角を制御することにより、検出した浮流物質の部分に向かって浮上するように構成した請求項1又は2記載の無人浮流物質監視用ブイ。   The levitation and settling are repeated by adjusting the buoyancy with a buoyancy adjustment device, and the wing angle of the movable wing is controlled during the levitation to rise toward the portion of the detected buoyant substance. A buoy for unmanned floating material monitoring according to claim 1 or 2. 水面下にある時の前記水面部分における浮流物質の有無及び位置の検出を、非接触式検知センサで行う請求項1、2又は3記載の無人浮流物質監視用ブイ。   The buoy for unmanned floating substance monitoring according to claim 1, 2 or 3, wherein the presence or absence and position of the floating substance in the water surface portion when it is under the water surface are detected by a non-contact detection sensor. 水面の浮流物質領域内に浮上しているか否かの判定を接触式検知センサで行う請求項1、2、3又は4記載の無人浮流物質監視用ブイ。   The unmanned floating substance monitoring buoy according to claim 1, 2, 3, or 4, wherein the contact type detection sensor determines whether or not the ship floats in the floating substance area on the water surface. 請求項1、2、3、4、5又は6記載の無人浮流物質監視用ブイを使用する浮流物質監視システム。   A floating material monitoring system using the unmanned floating material monitoring buoy according to claim 1, 2, 3, 4, 5 or 6. 浮流物質がある水域に無人浮流物質監視用ブイを投入し、該無人浮流物質監視用ブイに浮上と沈降を繰返させて、水面下にある時に水面部分における浮流物質の有無及び位置を検出させて、検出後、検出した浮流物質の位置に向かって浮上させて、水面の浮流物質領域内に浮上している時に前記無人浮流物質監視用ブイの位置情報を基地局に送信させる浮流物質監視方法。   An unmanned floating material monitoring buoy is introduced into the water area where the floating material is present, and the unmanned floating material monitoring buoy is repeatedly raised and settled to detect the presence and position of the floating material on the surface of the water when it is below the surface of the water. And a floating material monitoring method for transmitting the position information of the unmanned floating material monitoring buoy to the base station when the floating material is levitated toward the position of the detected floating material after the detection and floating in the floating material region on the water surface. 前記無人浮流物質監視用ブイに海象・気象データを測定させ、該測定した海象・気象データを基地局に送信させる請求項7記載の浮流物質監視方法。   8. The floating substance monitoring method according to claim 7, wherein said unmanned floating substance monitoring buoy measures sea condition / weather data and transmits the measured sea condition / weather data to a base station. 前記浮上と沈降の繰り返しを、浮力調整装置により浮力を調整することにより行わせると共に、浮上途中は可動翼の翼角を制御することにより、検出した浮流物質の部分に向かって浮上させる請求項7又は8記載の無人浮流物質監視用方法。   8. The levitation and settling are repeated by adjusting buoyancy with a buoyancy adjusting device, and during the ascent, the wing angle of the movable wing is controlled to levitate toward the detected buoyant substance portion. Or the method for monitoring unmanned buoyant substances according to 8. 水面下にある時の前記水面部分における浮流物質の有無及び位置の検出を、非接触式検知センサで行う請求項7、8又は9記載の無人浮流物質監視用ブイ。   The unmanned floating substance monitoring buoy according to claim 7, 8 or 9, wherein the presence / absence and position of the floating substance in the water surface portion under the water surface is detected by a non-contact detection sensor. 水面の浮流物質領域内に浮上しているか否かの判定を接触式検知センサで行う請求項7、8、9又は10記載の無人浮流物質監視用ブイ。   11. The unmanned floating material monitoring buoy according to claim 7, 8, 9 or 10, wherein the contact type detection sensor determines whether or not the surface floats in a floating material region on the water surface.
JP2006282230A 2006-10-17 2006-10-17 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method Expired - Fee Related JP5002760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282230A JP5002760B2 (en) 2006-10-17 2006-10-17 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282230A JP5002760B2 (en) 2006-10-17 2006-10-17 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method

Publications (2)

Publication Number Publication Date
JP2008100536A true JP2008100536A (en) 2008-05-01
JP5002760B2 JP5002760B2 (en) 2012-08-15

Family

ID=39435207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282230A Expired - Fee Related JP5002760B2 (en) 2006-10-17 2006-10-17 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method

Country Status (1)

Country Link
JP (1) JP5002760B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221922A (en) * 2009-03-25 2010-10-07 Institute Of National Colleges Of Technology Japan Constant water depth control mechanism and constant water depth floating body including the same
WO2011021552A1 (en) * 2009-08-20 2011-02-24 国立大学法人大阪大学 Unmanned drifting substance monitoring buoy, drifting substance monitoring system, and drifting substance monitoring method
JP2011195027A (en) * 2010-03-19 2011-10-06 Ihi Corp Floating and sinking body
JP2012030637A (en) * 2010-07-29 2012-02-16 M Hikari Energy Kaihatsu Kenkyusho:Kk Method of sinking and surfacing heavy load underwater
KR101223551B1 (en) * 2012-01-12 2013-01-17 한국해양과학기술원 Underwater measurement device for vertical profiling of water column
US20130108369A1 (en) * 2010-07-13 2013-05-02 Wulf Splittstoeßer Safeguarding arrangement for collecting a fluid escaping into a body of water
JP2017521579A (en) * 2014-05-19 2017-08-03 ノーチラス ミネラルズ シンガポール ピーティーイー リミテッド Submarine transportation system
JP2019064402A (en) * 2017-09-29 2019-04-25 東亜建設工業株式会社 Monitoring system for ship navigation
JP2019156078A (en) * 2018-03-09 2019-09-19 有限会社金鹿哲学承継塾 Autonomous navigation-type ocean buoy and marine information system using the same
KR102029018B1 (en) * 2019-02-18 2019-10-07 이수성 Apparatus for collecting marine waste
WO2020121597A1 (en) * 2019-08-19 2020-06-18 有限会社金鹿哲学承継塾 Self-navigating marine buoy and marine information system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260871A (en) * 1984-06-08 1985-12-24 Mitsui Eng & Shipbuild Co Ltd Automatic ice thickness measuring method
JPH07226984A (en) * 1994-02-14 1995-08-22 Nec Corp Method for searching flowing oil
JPH1118615A (en) * 1997-07-07 1999-01-26 Jatco Corp Marine movable body and management system for marine movable body
JP2001116829A (en) * 1999-10-20 2001-04-27 Ishikawajima Harima Heavy Ind Co Ltd Method of holding position and azimuth for underwater acoustic tester
JP2003127974A (en) * 2001-10-26 2003-05-08 Tsurumi Seiki:Kk Ocean data measuring float device
JP2006090750A (en) * 2004-09-21 2006-04-06 Tokyo Electric Power Co Inc:The Optical oil detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60260871A (en) * 1984-06-08 1985-12-24 Mitsui Eng & Shipbuild Co Ltd Automatic ice thickness measuring method
JPH07226984A (en) * 1994-02-14 1995-08-22 Nec Corp Method for searching flowing oil
JPH1118615A (en) * 1997-07-07 1999-01-26 Jatco Corp Marine movable body and management system for marine movable body
JP2001116829A (en) * 1999-10-20 2001-04-27 Ishikawajima Harima Heavy Ind Co Ltd Method of holding position and azimuth for underwater acoustic tester
JP2003127974A (en) * 2001-10-26 2003-05-08 Tsurumi Seiki:Kk Ocean data measuring float device
JP2006090750A (en) * 2004-09-21 2006-04-06 Tokyo Electric Power Co Inc:The Optical oil detector

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221922A (en) * 2009-03-25 2010-10-07 Institute Of National Colleges Of Technology Japan Constant water depth control mechanism and constant water depth floating body including the same
US8983780B2 (en) 2009-08-20 2015-03-17 Osaka University Unmanned drifting substance monitoring buoy, drifting substance monitoring system, and drifting substance monitoring method
WO2011021552A1 (en) * 2009-08-20 2011-02-24 国立大学法人大阪大学 Unmanned drifting substance monitoring buoy, drifting substance monitoring system, and drifting substance monitoring method
JP5534248B2 (en) * 2009-08-20 2014-06-25 国立大学法人大阪大学 Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method
JP2011195027A (en) * 2010-03-19 2011-10-06 Ihi Corp Floating and sinking body
US9328471B2 (en) * 2010-07-13 2016-05-03 Wulf Splittstoeßer Safeguarding arrangement for collecting a fluid escaping into a body of water
US20130108369A1 (en) * 2010-07-13 2013-05-02 Wulf Splittstoeßer Safeguarding arrangement for collecting a fluid escaping into a body of water
JP2012030637A (en) * 2010-07-29 2012-02-16 M Hikari Energy Kaihatsu Kenkyusho:Kk Method of sinking and surfacing heavy load underwater
KR101223551B1 (en) * 2012-01-12 2013-01-17 한국해양과학기술원 Underwater measurement device for vertical profiling of water column
JP2017521579A (en) * 2014-05-19 2017-08-03 ノーチラス ミネラルズ シンガポール ピーティーイー リミテッド Submarine transportation system
JP2019064402A (en) * 2017-09-29 2019-04-25 東亜建設工業株式会社 Monitoring system for ship navigation
JP2019156078A (en) * 2018-03-09 2019-09-19 有限会社金鹿哲学承継塾 Autonomous navigation-type ocean buoy and marine information system using the same
KR102029018B1 (en) * 2019-02-18 2019-10-07 이수성 Apparatus for collecting marine waste
WO2020121597A1 (en) * 2019-08-19 2020-06-18 有限会社金鹿哲学承継塾 Self-navigating marine buoy and marine information system

Also Published As

Publication number Publication date
JP5002760B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5002760B2 (en) Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method
JP5534248B2 (en) Unmanned floating material monitoring buoy, floating material monitoring system and floating material monitoring method
JP6527570B2 (en) Unmanned aerial vehicle, control system and method thereof
US10921809B2 (en) Autonomous sailing vessel
CN109178305B (en) Hydrologic monitoring amphibious unmanned aerial vehicle and hydrologic monitoring method
EP1644755B1 (en) Wind speed measurement apparatus and method
CN109932210B (en) Device based on unmanned aerial vehicle water environment is automatic to be sampled
Dowdeswell et al. Autonomous underwater vehicles (AUVs) and investigations of the ice–ocean interface in Antarctic and Arctic waters
US20140203184A1 (en) Fluid medium sensor system and method
KR101946542B1 (en) Unmanned vehicle for underwater survey
CN105129063A (en) Wind-energy and luminous energy complementation water surface robot
CN105197180A (en) Small multifunctional solar twin-hull unmanned ship
KR20200104436A (en) System for colleting marine waste
Codiga A marine autonomous surface craft for long-duration, spatially explicit, multidisciplinary water column sampling in coastal and estuarine systems
CA3183722A1 (en) Autonomous seagoing power replenishment watercraft
JP2008281423A (en) System and method for detecting drifting material
CN115903056B (en) Rail water-air amphibious unmanned aircraft passive autonomous detection system and method
US11442190B2 (en) Autonomous marine survey nodes
CN114739482B (en) Intelligence hydraulic engineering bathymetric survey device
Senga et al. Development of a new spilled oil tracking autonomous buoy
CN204937448U (en) A kind of wind light mutual complementing water surface robot
EP3772663B1 (en) A system for detecting plastics, macro-plastics, micro-plastics and nano-plastics in a maritime, estuary or river environment
Pellenz et al. Robbie: a fully autonomous robot for robocuprescue
Choyekh et al. Development of spilled oil and gas tracking and monitoring autonomous buoy system and its application to marine disaster prevention
Corredor et al. Platforms for coastal ocean observing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5002760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees