JP2008100327A - Film punching method and punched film - Google Patents

Film punching method and punched film Download PDF

Info

Publication number
JP2008100327A
JP2008100327A JP2006286104A JP2006286104A JP2008100327A JP 2008100327 A JP2008100327 A JP 2008100327A JP 2006286104 A JP2006286104 A JP 2006286104A JP 2006286104 A JP2006286104 A JP 2006286104A JP 2008100327 A JP2008100327 A JP 2008100327A
Authority
JP
Japan
Prior art keywords
film
elongation
perforated
stress
perforating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286104A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kataoka
片岡浩靖
Hayato Agata
隼人 縣
Shigeaki Suminoue
角之上重昭
Makoto Ichiyanagi
誠 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panac Co Ltd
Original Assignee
Panac Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panac Co Ltd filed Critical Panac Co Ltd
Priority to JP2006286104A priority Critical patent/JP2008100327A/en
Publication of JP2008100327A publication Critical patent/JP2008100327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film punching method for punching a film to be punched having a small initial tensile stress (at the time of 1%-elongation) so as to have pores of predetermined shapes continuously without distortion. <P>SOLUTION: According to the film punching method, a laminated film is obtained by laminating a carrier film on the film to be punched via a water-easily-soluble adhesive layer, to reinforce the film so as to have a breaking stress of 80 N/15 mm width or more, a breaking elongation of 155% or less, and the initial tensile stress (at the time of 1%-elongation) of 8 N/15 mm width or more. Then the laminated film thus reinforced is punched, and thereafter the carrier film layer is separated and removed. Herein the separation and removal is preferably carried out by water submersion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はフィルムの穿孔方法および穿孔フィルムに関するものであり、さらに詳しくは、穿孔用フィルムの初期引っ張り応力が小さい場合であっても、穿孔位置のずれがなく、工程が安定する穿孔方法、その穿孔方法に供する積層フィルム及び穿孔フィルムに関する。 The present invention relates to a method for perforating a film and a perforated film, and more specifically, even when the initial tensile stress of the perforated film is small, the perforation position is not shifted and the perforating method is stable. The present invention relates to a laminated film and a perforated film used in the method.

一般にプラスチックフィルムの多くは透明であり、耐水性、耐溶媒性であり、空気や液体の透過は遮断されるため種々の包装材料や構造材料として重宝である。しかしながら、用途によっては、耐水性や耐溶剤性は必要であるが通液性、通気性が必要な場合があり、例えば、農業用のハウス用フィルムや燃料電池内部で使用されるセパレーターフィルム、イオン交換膜などの基材・芯材などの用途には、耐水性や耐溶剤性のプラスチックフィルムに適度の穿孔を施した穿孔フィルムとして使用されている。 In general, most of plastic films are transparent, water and solvent resistant, and block the permeation of air and liquid, so they are useful as various packaging materials and structural materials. However, depending on the application, water resistance and solvent resistance may be required, but liquid permeability and air permeability may be required. For example, agricultural house films, separator films used inside fuel cells, ions For applications such as base materials and core materials such as exchange membranes, it is used as a perforated film obtained by appropriately perforating a water-resistant or solvent-resistant plastic film.

上記の典型的な穿孔されたフィルム(以下、穿孔フィルムと略記する)の中で、ハウス用フィルムの場合は一般に安価なポリエチレンやポリプロピレンフィルムが使用され、厚さが厚くて構造上の強度が大きく、また穿孔精度は必ずしも高いものが求められないため、穿孔方法としては、例えば、必要な孔径が実質的に均等に形成されるものであれば実用に供し得るもので、穿孔手段を例示すれば所定間隔を以って所要の通気孔を突刺形成する形成針が植設された植針ロール上を、予め選択された透明の合成樹脂フィルムを走行させながら加圧穿孔させる方法や、所定間隔を以って加熱された熔穴形成ピンが植設された熔穴ピン植設ロールに接触させて熔穴形成させる方法等大量生産方式を適用することが出来る旨開示されている。(特許文献1)   Among the above-mentioned typical perforated films (hereinafter abbreviated as perforated films), in the case of house films, generally inexpensive polyethylene and polypropylene films are used, and the thickness is large and the structural strength is large. In addition, since a high drilling accuracy is not always required, the drilling method can be practically used, for example, as long as the required hole diameter is formed substantially evenly. A method in which pressure is perforated while running a transparent synthetic resin film selected in advance on a needle roll on which a forming needle for piercing a required air hole is formed with a predetermined interval, and a predetermined interval is set. Accordingly, it is disclosed that a mass production method such as a method of forming a hole by bringing it into contact with a holed pin installation roll in which a heated hole forming pin is implanted can be applied. (Patent Document 1)

また、前記の燃料電池内部で使用されるセパレーターフィルム、芯材などの場合は穿孔の位置、形状が燃料電池の特性に大きく影響を与えるが、さらに電池としての性能を極限まで向上させるためにセパレーターフィルム等の厚さも可能な限り薄いものが求められる。典型的な例としては、フィルムとしては例えば厚さ10〜20μmの薄いPPSフィルムなどに直径0.1〜0.5mmという微細な孔が全面にぎっしり穿孔される。このような場合、フィルムに多量の孔を穿孔する方法としては、例えば、レーザー式、ドリル式、凹凸金型刃使用のプレス式などの方法が知られているが、フィルムに孔形状を精度良く穿孔する方法としては、通常、断面が孔の形状である細い丸棒状凸型刃を穿孔位置に配列させた凸刃と穿孔用フィルムの背面に置かれる丸孔状凹型刃とを組み合わせた凹凸金型刃を使用したプレス式が好適に適用されるが、かかる複雑で高精度の凹凸金型刃の製作には時間とコストがかかるため、実用的には穿孔する孔が一つ又は少数の凹凸金型刃を有するプレス機を使用し刃位置を移動しつつ所定の配列の穿孔を行う場合もある。   In the case of the separator film and core material used inside the fuel cell, the position and shape of the perforations greatly affect the characteristics of the fuel cell. In order to further improve the performance as a battery, the separator A film or the like that is as thin as possible is required. As a typical example, fine holes having a diameter of 0.1 to 0.5 mm are tightly perforated on the entire surface of a thin PPS film having a thickness of 10 to 20 μm, for example. In such a case, as a method for perforating a large number of holes in a film, for example, a laser method, a drill method, a press method using a concavo-convex mold blade, and the like are known. As a method for perforating, a concavo-convex gold, which is a combination of a convex blade in which thin round bar-shaped convex blades having a cross-section in the shape of a hole are arranged at a perforation position and a round hole-shaped concave blade placed on the back of the perforating film, is used. Although a press type using a mold blade is suitably applied, it takes time and cost to manufacture such a complicated and highly accurate concavo-convex mold blade. A press machine having a die blade may be used to perform drilling in a predetermined arrangement while moving the blade position.

その場合、穿孔用フィルムの厚さが薄く、従って初期引っ張り応力が小さい場合、取り扱い時には引っ張りじわが生じ易く、穿孔装置に通して巻きロールから巻き出しつつ連続的に穿孔しようとするとき穿孔用フィルムに掛かるテンションにより引き伸ばされフィルム面が波打ったり、逆にこれを避けるために弱い張力で通紙すると穿孔用フィルムが幅方向に揺動する。特に、凹凸1対の金型刃を使用して金型刃位置をフィルムの幅方向、長さ方向に移動させて指定位置に穿孔するような場合、かかる薄い穿孔用フィルムが上記のように波打ったり幅方向に揺動するため、穿孔位置が所定の位置にならず、まったく商品価値が無いものになってしまうのみならず、各穿孔サイクルの中で凸型刃を押し下げて穿孔しその後に凸型刃を引き上げる際、薄いプラスチックフィルムが凸型刃に引っぱられて共に浮き上がりして上下動し、穿孔操作がスムーズに継続できないという問題が生じ易い。かかる挙動を避ける方法として、薄いプラスチックフィルムの裏面にキャリアフィルムなどを積層して厚さや引っ張り応力を補強することによりこの薄さによる欠点を穿孔時のみカバーし、穿孔後は剥離する方法が想起される。   In that case, when the film for punching is thin and therefore the initial tensile stress is small, pulling wrinkles are likely to occur at the time of handling. When the sheet is stretched by the tension applied to the film and the film surface is waved, or the sheet is passed with a weak tension to avoid this, the perforating film swings in the width direction. In particular, when a pair of concave and convex mold blades is used to move the mold blade position in the width direction and the length direction of the film and perforate to a specified position, such a thin perforated film is waved as described above. Because it hits and swings in the width direction, the drilling position does not become a predetermined position and it has no commercial value at all. When pulling up the convex blade, a thin plastic film is pulled by the convex blade and lifts up and moves up and down, so that the perforation operation cannot be continued smoothly. As a method of avoiding such behavior, a method of concealing defects due to this thinness only at the time of drilling by laminating a carrier film etc. on the back of a thin plastic film to reinforce the thickness and tensile stress, and a method of peeling after drilling is conceived. The

上記のキャリアフィルムは粘着剤層を介して穿孔用フィルムの裏面に貼り付けてこれを補強するものである。この場合、穿孔後にキャリアフィルムを剥離除去する際に穿孔用フィルムが薄いため、剥離時の引っ張り応力により引っ張りじわが生じ易い。この点については、穿孔用フィルムの厚さによっては、キャリアフィルムの粘着剤層の剥離強度(剥離する際の軽さ)を低く調節することによりある程度は避けることが出来る。 The carrier film is attached to the back surface of the perforating film via an adhesive layer to reinforce it. In this case, when the carrier film is peeled and removed after the perforation, the perforation film is thin, and therefore, wrinkles are easily generated due to the tensile stress at the time of peeling. This can be avoided to some extent by adjusting the peel strength (lightness at the time of peeling) of the pressure-sensitive adhesive layer of the carrier film to a low level depending on the thickness of the perforated film.

しかしながら、上記のキャリアフィルムの粘着剤が穿孔時に孔の内側にはみ出したり、穿孔後の剥離の際に穿孔フィルムの裏面に糊残りとして一部ではあるが残留しがちであるが、かかる粘着剤としては、一般にアクリル系、ウレタン系、シリコーン系などの粘着剤であり、例えば、精密機器としての燃料電池の内部に不純物として残存することになる。上記の粘着剤は、通常非水溶性であり水系溶媒では溶解除去できず、水溶性のものであっても水系溶媒に容易には溶解せず、熱水条件で溶解するか又は長時間浸漬する必要があり、実用的ではなかった。
特開平10−210870号公報
However, the adhesive of the carrier film tends to protrude inside the hole during perforation or part of the adhesive residue on the back surface of the perforated film when peeled after perforation. Is generally an adhesive such as acrylic, urethane, or silicone, and remains, for example, as an impurity in a fuel cell as a precision instrument. The above-mentioned pressure-sensitive adhesive is usually water-insoluble and cannot be dissolved and removed with an aqueous solvent, and even if it is water-soluble, it is not easily dissolved in an aqueous solvent and is dissolved under hot water conditions or immersed for a long time. It was necessary and not practical.
Japanese Patent Laid-Open No. 10-210870

本発明者らは、上記の観点から、穿孔用フィルムとキャリアフィルムとの積層用接着剤として、剥離時に特に穿孔用フィルムに引っ張り応力が掛からない易水溶性の接着剤層を使用し、穿孔後、この穿孔された積層フィルムを水に浸漬して穿孔フィルムを容易に単離する方法に想到した。しかしながら、上記のキャリアフィルムとして汎用の例えば厚さ38mmのポリエステルフィルムを使用した場合、キャリアフィルムが穿孔時に完全に切断できずに糸曳きして積層フィルムが穿孔装置の上下動する凸刃に引っ張られて揺動するためフィルムの穿孔位置が安定せず、時には既に穿孔された孔と連続し、結果的に切断に至るという問題点があることが分かった。特に、穿孔径が1mm以下、厳しくは500μm以下の微細で、孔と孔の間の間隔が短い場合は、この影響が大きい。     From the above point of view, the present inventors use a water-soluble adhesive layer that does not apply tensile stress to the perforating film as a laminating adhesive between the perforating film and the carrier film. The inventors have come up with a method for easily isolating the perforated film by immersing the perforated laminated film in water. However, when a general-purpose polyester film having a thickness of 38 mm, for example, is used as the carrier film, the carrier film cannot be completely cut during perforation, and the laminated film is pulled by the convex blade that moves up and down of the perforation apparatus. It has been found that there is a problem that the film perforation position is not stable due to the rocking motion, and is sometimes continuous with the already perforated holes, resulting in cutting. In particular, this effect is significant when the perforation diameter is 1 mm or less, strictly 500 μm or less and the distance between the holes is short.

本発明は、上記の難点を解決し、穿孔用フィルムに穿孔する際、そのフィルムの厚さが薄い場合など初期引っ張り応力が小さい場合であっても、穿孔位置のずれがなく、工程が安定する穿孔方法及びその穿孔方法に供する積層フィルムを提供する。 The present invention solves the above-mentioned difficulties, and when perforating a perforated film, even if the initial tensile stress is small, such as when the film is thin, the perforation position is not displaced and the process is stable. A perforating method and a laminated film for use in the perforating method are provided.

本発明の第一の要旨は、初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムを工程に通紙した状態で連続的に穿孔する際、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が8N/15mm幅以上となるように補強した積層フィルムの状態で穿孔した後、キャリアフィルム層を剥離除去することを特徴とする初期引っ張り(1%伸長時)応力が小さいフィルムの穿孔方法。
にある。
The first gist of the present invention is that when a perforated film having a small initial tensile (at 1% elongation) stress is continuously perforated in a state where the film is passed through the process, a carrier film is interposed via a water-soluble adhesive layer. After perforating in the state of a laminated film reinforced so that the breaking stress is 80 N / 15 mm width or more, the breaking elongation is 155% or less, and the initial tensile (at 1% elongation) stress is 8 N / 15 mm width or more. A method for perforating a film having a small initial tensile (at the time of 1% elongation) characterized by peeling and removing the carrier film layer.
It is in.

そして、本発明の第二の要旨は、初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムに、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が8N/15mm幅以上となるように補強した積層フィルム。
にある。
The second gist of the present invention is that a carrier film is laminated on a perforating film having a small initial tensile (at 1% elongation) stress through an easily water-soluble adhesive layer, and the breaking stress is 80 N / 15 mm width. As described above, the laminated film reinforced so that the breaking elongation is 155% or less and the initial tensile (at 1% elongation) stress is 8 N / 15 mm width or more.
It is in.

そして、本発明の第三の要旨は、初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムに連続工程において微細穿孔を配列して穿孔する際、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が8N/15mm幅以上となるように補強した積層フィルムの状態で穿孔した後、キャリアフィルム層を剥離除去することにより得られる穿孔フィルムにある。 And the third gist of the present invention is that when the micro-perforations are arranged and perforated in the continuous process on the perforating film having a small initial tensile (at 1% elongation) stress, the carrier is interposed via the easily water-soluble adhesive layer. The film was laminated and punched in the state of a laminated film reinforced so that the breaking stress was 80 N / 15 mm width or more, the breaking elongation was 155% or less, and the initial tensile (at 1% elongation) stress was 8 N / 15 mm width or more. Later, it is in a perforated film obtained by peeling off the carrier film layer.

本発明は、初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムを工程に通紙した状態で連続的に穿孔する際、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が8N/15mm幅以上となるように補強した積層フィルムの状態で穿孔することにより、穿孔位置が安定して継続でき、しかも穿孔後水系溶媒に浸漬・洗浄することにより穿孔形状に歪みが無い穿孔フィルムを得ることが出来る。   In the present invention, when a perforated film having a low initial tensile stress (when stretched by 1%) is continuously perforated in a state where the paper is passed through the process, the carrier film is laminated via a water-soluble adhesive layer to break. By punching in the state of a laminated film reinforced so that the stress is 80 N / 15 mm width or more, the breaking elongation is 155% or less, and the initial tensile (at 1% elongation) stress is 8 N / 15 mm width or more, the drilling position is A perforated film that can be stably continued and is free from distortion in the perforated shape can be obtained by immersion and washing in an aqueous solvent after perforation.

本発明の穿孔方法は、穿孔用フィルムにキャリアフィルムを積層して補強した積層フィルムの状態で穿孔する。 In the perforating method of the present invention, perforation is performed in the state of a laminated film obtained by laminating a carrier film on a perforating film.

上記の穿孔用フィルムの素材としては、後述の穿孔方法により穿孔することが出来るものであれば特に制限されるものではなく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;6−ナイロン、6−6ナイロン、6−12ナイロンなどのポリアミド系樹脂;ポリウレタン系樹脂;ポリアクリル系樹脂;フッ素系樹脂;シリコーン系樹脂;ポリイミド系樹脂;ポリフェニレン系樹脂:ゴム系樹脂;塩化ビニール系樹脂;その他の樹脂またはこれらの樹脂のブレンドにより製造された通常プラスチックフィルムとして使用されるものはいずれも適用でき、さらに、紙、セロハンなど一般に耐水性が劣るとされる素材であっても水系溶媒浸漬に耐える程度の耐水化処理を施したものも含まれる。 The material for the above-mentioned perforating film is not particularly limited as long as it can be perforated by a perforation method described later. For example, polyolefin resin such as polyethylene and polypropylene; polyethylene terephthalate, polybutylene terephthalate, Polyester resins such as polyethylene naphthalate; Polyamide resins such as 6-nylon, 6-6 nylon and 6-12 nylon; Polyurethane resins; Polyacrylic resins; Fluorine resins; Silicone resins; Polyimide resins; Resin: Rubber resin; Vinyl chloride resin; Other resins or those usually used as plastic films produced by blending these resins can be applied, and paper, cellophane, etc. are generally inferior in water resistance. Tosa That also include those subjected to water-resistant treatment of the extent of withstanding the aqueous solvent immersion even material.

上記の穿孔用フィルムの厚さ自体は特に制限されるものではないが、通常厚さが薄い場合で、後述の穿孔工程において引っ張りジワや波打ちが生じるような初期引っ張り(1%伸長時)応力が小さい、例えば8N/15mm幅以下、さらに顕著な例として4N/15mm幅以下のようなフィルム、さらに穿孔後に切断などが生じるような、例えば破断
応力が80N/15mm幅以下のフィルム、特に穿孔面積密度が高い場合では100N/15mm幅以下である破断強度が小さいフィルムの場合に、顕著な効果がある。かかる厚さとしては、穿孔用フィルムを構成する素材により異なるが、おおむね40μm以下であり、さらに30μm以下であり、素材によっては20μm以下の場合もありうる。
Although the thickness of the perforating film itself is not particularly limited, an initial tensile stress (at the time of 1% elongation) that usually causes wrinkles or undulations in the perforating process described later is used when the thickness is thin. Small, for example, 8N / 15mm width or less, and more prominent examples are 4N / 15mm width or less, and breakage that may occur after perforation, for example
There is a remarkable effect in the case of a film having a stress of 80 N / 15 mm width or less, particularly a film having a low breaking strength of 100 N / 15 mm width or less when the perforated area density is high. The thickness varies depending on the material constituting the perforated film, but is generally 40 μm or less, further 30 μm or less, and may be 20 μm or less depending on the material.

前記のキャリアフィルムは上記の穿孔用フィルムを補強するために積層されるフィルムであり、後述の易水溶性接着剤を介して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が
8N/15mm幅以上となるように補強するものであり、特に穿孔が密に行われる場合には破断応力が100N/15mm幅未満、破断伸度が155%以上の穿孔用フィルムを連続的且つ密に穿孔する際に易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が100N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が16N/15mm幅以上となるように積層される。
The carrier film is a film laminated to reinforce the perforated film, and has a breaking stress of not less than 80 N / 15 mm width and a breaking elongation of not more than 155% through an easily water-soluble adhesive described later. Tensile (at 1% elongation) stress
It is reinforced so that the width is 8 N / 15 mm or more. Particularly, when perforation is performed densely, a film for perforation having a breaking stress of less than 100 N / 15 mm width and a breaking elongation of 155% or more is continuously and densely formed. A carrier film is laminated through an easily water-soluble adhesive layer when perforating the material, and the breaking stress is 100 N / 15 mm width or more, the breaking elongation is 155% or less, and the initial tensile (at 1% elongation) stress is 16 N / It is laminated so as to have a width of 15 mm or more.

上記の穿孔が密に行われる場合とは、例えば穿孔が配列されたとき、フィルムの幅方向のフィルム残存部の実質的な幅が元のフィルム幅の30%以下、特に20%以下などの場合は、工程におけるフィルムの張力が実質的にその30%以下、20%以下の部分で支えることになり、いわゆる応力集中の状態になるため、通常の通紙工程では予想できない張力を受けることになる。因みに、本発明の実施例の場合は、直径300μmφの孔を幅方向に350μmピッチで配列されるため、フィルム残存部の実質的な幅は約14%程度になる。 The case where the above perforations are densely performed means that, for example, when the perforations are arranged, the substantial width of the film remaining portion in the width direction of the film is 30% or less, particularly 20% or less of the original film width. The film tension in the process is substantially supported by a portion of 30% or less and 20% or less, and is in a so-called stress concentration state, so that it receives a tension that cannot be predicted in a normal paper passing process. . Incidentally, in the case of the embodiment of the present invention, since the holes having a diameter of 300 μmφ are arranged at a pitch of 350 μm in the width direction, the substantial width of the remaining film portion is about 14%.

キャリアフィルムを積層した後の初期引っ張り(1%伸長時)応力が8N/15mm幅未満の場合は、この積層体を穿孔工程に通紙したとき引っ張りジワが生じ易く、穿孔形状が所期の形状から外れて歪んだものとなり易い。この引っ張りジワの発生を回避するために通紙の張力を弱めるとフィルムが波打ったり揺動して穿孔位置が不安定になり、等間隔に配列出来なくなり、極端な場合は隣接する孔が重なったり、フィルムの切断の原因ともなる。特に穿孔が密に行われる場合には初期引っ張り(1%伸長時)応力が16N/15mm幅以上であるのが好ましい。
また、積層体の破断応力が80N/15mm幅未満の場合は、通紙状態におけるフィルムの揺動が無い程度に緊張
したとき、穿孔後に残る連続部分において切断が生じ易くなり、特に穿孔が密に行われる場合には破断応力が100N/15mm幅以上であるのが好ましい。
また、破断伸度が155%以上の場合、穿孔操作の段階で積層体が完全に切断しにくく、切断残り部分による引きずり現象が生じ易く、この場合には、積層フィルムが穿孔用刃の上下動に引きずられて揺動し、穿孔用位置がずれ、時には切断の原因ともなる。
When the initial tensile stress (at 1% elongation) after laminating the carrier film is less than 8 N / 15 mm width, pulling wrinkles are likely to occur when the laminate is passed through the perforating process, and the perforated shape is the desired shape. It is easy to become distorted by coming off. If the tension of the paper is weakened to avoid the occurrence of pulling wrinkles, the film will wave and swing and the perforation position will become unstable, making it impossible to arrange them at regular intervals. In extreme cases, adjacent holes will overlap. Or cause cutting of the film. In particular, when perforation is performed densely, the initial tensile (at 1% elongation) stress is preferably 16 N / 15 mm width or more.
Further, when the breaking stress of the laminate is less than 80 N / 15 mm width, the film is tensioned to the extent that the film does not swing in the paper passing state.
When it does, it will become easy to produce a cut | disconnection in the continuous part which remain | survives after a drilling, and when a drilling is performed densely, it is preferable that a breaking stress is 100 N / 15mm width or more.
In addition, when the elongation at break is 155% or more, the laminate is difficult to cut completely at the stage of drilling operation, and a drag phenomenon due to the uncut portion tends to occur. In this case, the laminated film moves up and down the punching blade. The position for drilling is displaced and sometimes causes cutting.

かかるキャリアフィルムを構成する素材としては、前記の穿孔用フィルムとして列挙したフィルム類の厚さを厚くしてキャリアフィルムとしての素材特性を示すようになったものの他、銅箔、硬質アルミニウム箔、ステンレススチール箔などの金属箔類、および上記のフィルム類や金属箔類を複数種類貼り合わせたものが使用でき、中でも特性のみの観点からは破断応力が大きく破断伸度が小さい銅箔がきわめて好ましいが、キャリアフィルムはあくまで副材料であるため安価で且つ取り扱いが容易な素材がより好ましく、例えば、シリカ微粒子、炭酸カルシウム粒子など無機質粒子を添加して、キャリアフィルムで補強後の積層フィルムの破断伸度が155%程度以下を満たすポリエステル系樹脂フィルムも実用的である。 As a material constituting such a carrier film, a copper foil, a hard aluminum foil, a stainless steel, as well as those which have shown the material characteristics as a carrier film by increasing the thickness of the films listed as the above-mentioned perforating film Metal foils such as steel foil, and those obtained by laminating a plurality of types of the above films and metal foils can be used. Among them, a copper foil having a high breaking stress and a low breaking elongation is very preferable from the viewpoint of characteristics alone. In addition, since the carrier film is a secondary material to the last, a material that is inexpensive and easy to handle is more preferable.For example, the inorganic film such as silica fine particles and calcium carbonate particles are added, and the elongation at break of the laminated film after reinforcement with the carrier film A polyester resin film satisfying about 155% or less is also practical.

上記のキャリアフィルムの厚さの上限は、穿孔性があるものであれば特に限定されないが、穿孔される孔の直径とのバランスの面から、孔の直径の2倍以下であるのが好ましい。また、コスト面などの観点から通常500μm以下、上記の特性を呈するものであれば100μm以下でもよく、実用的には50μm以下で十分なものもある。 The upper limit of the thickness of the carrier film is not particularly limited as long as it has a piercing property, but is preferably not more than twice the diameter of the hole from the viewpoint of balance with the diameter of the hole to be punched. Further, from the viewpoint of cost and the like, it is usually 500 μm or less, and may be 100 μm or less as long as it exhibits the above characteristics, and practically 50 μm or less is sufficient.

上記の穿孔用フィルムにキャリアフィルムを積層するのに使用される接着剤としては、穿孔処理工程において剥離しない程度の接着性を有し、且つ、穿孔後に容易に、すなわち穿孔フィルムとキャリアフィルムが引っ張りじわが生じない程度の引っ張り応力により、剥離できる接着剤が好ましく、例えば、積層フィルムの接着剤層を水系溶媒に浸漬することにより湿潤または溶解して水から分離しうる程度の可溶性を得ることが出来るもの、即ち易水溶性接着剤が好適に使用される。本発明で使用する易水溶性接着剤とは、水または水系溶媒に容易に溶解する接着剤を意味する。 The adhesive used for laminating the carrier film on the above-mentioned perforated film has an adhesive property that does not peel in the perforating process and is easily pulled after perforation, that is, the perforated film and the carrier film are pulled. An adhesive that can be peeled off by a tensile stress that does not cause wrinkles is preferable. For example, it is possible to obtain a solubility that can be separated from water by being wet or dissolved by immersing the adhesive layer of the laminated film in an aqueous solvent. What can be used, that is, an easily water-soluble adhesive is preferably used. The easily water-soluble adhesive used in the present invention means an adhesive that dissolves easily in water or an aqueous solvent.

上記の易水溶性接着剤としては、具体的には、対象とする穿孔用フィルム、キャリアフィルムを構成する素材の種類により、公知の接着剤から適宜選択して使用されるが、易水溶性接着剤の市販品の具体例としては、水溶解性ウレタン樹脂系の「パラミリオンAF−36」、「パラミリオンFL−34」(いずれも商品名、大原パラジウム株式会社製)を好適に挙げることが出来るが、これらに限定されるものではない。 Specifically, the water-soluble adhesive is appropriately selected from known adhesives depending on the type of material constituting the target perforating film and carrier film. Specific examples of commercially available agents include water-soluble urethane resin-based "Paramilion AF-36" and "Paramilion FL-34" (both trade names, manufactured by Ohara Palladium Co., Ltd.). Yes, but not limited to these.

なお、上記の水系溶媒としては、水の他、通常水系溶媒として認識される溶媒は全て含まれ、例えば、水100質量部に対してメタノール、エタノール、プロパノール、グリコール類などの水溶性有機溶媒を100質量部以下配合した混合溶媒を挙げることが出来る。また、浸漬する際の溶媒の温度は、常温であることが望ましいが、例えば、45℃以下の温度であっても良い。 The aqueous solvent includes all solvents that are normally recognized as aqueous solvents in addition to water. For example, a water-soluble organic solvent such as methanol, ethanol, propanol, or glycols is added to 100 parts by mass of water. The mixed solvent which mix | blended 100 mass parts or less can be mentioned. Moreover, although it is desirable that the temperature of the solvent at the time of immersion is normal temperature, for example, the temperature may be 45 ° C. or lower.

前記の穿孔用フィルムとキャリアフィルムとを積層して積層フィルムを形成する方法としては、公知の手段により行うことが出来る。例えば、接着剤として上記のパラミリオンAF−36のような加熱接着性の接着剤を使用する場合は、通常、薄い穿孔用フィルムに過大な引っ張り応力が掛かるのを避けるため、キャリアフィルムの接着すべき面に接着剤溶液を塗布し乾燥して、接着剤層を有するキャリアフィルムを得、この接着剤層を有するキャリアフィルムの接着剤層表面に穿孔用フィルムの接合すべき面を重ね合わせて加熱ラミネートする方法が例示される。なお、上記の積層工程においては、穿孔用フィルムに可能な限り張力がかからないようにするのが好ましく、例えば連続的に長尺物を製造する場合にはテンションカッターなどの装置を併用するなどの配慮をするのが好ましい。 The method for laminating the perforating film and the carrier film to form a laminated film can be performed by a known means. For example, when a heat-adhesive adhesive such as the above-mentioned Paramilion AF-36 is used as the adhesive, the carrier film is usually bonded to avoid excessive tensile stress on the thin perforated film. Apply the adhesive solution to the surface to be dried and dry it to obtain a carrier film having an adhesive layer. The surface of the carrier film having the adhesive layer is superposed on the surface to be bonded of the perforated film and heated. A method of laminating is exemplified. In the above laminating step, it is preferable that tension is not applied to the perforated film as much as possible. For example, when a long product is continuously manufactured, consideration is given to using a device such as a tension cutter together. It is preferable to

上記接着剤溶液の濃度は、それぞれの接着剤の種類、特性に応じて適宜設定されるが、通常、2〜50質量%であるが、接着剤の塗布量は、乾燥後の厚さとして、通常0.1〜5μm、実用的には0.2〜1μm程度で比較的少なくてもよいため、接着剤溶液の濃度は2〜10質量%でも十分である。また、乾燥条件は、使用した接着剤の種類、溶液の濃度、塗布量等により適宜設定されるが、通常80〜100℃の熱風中で30〜180秒程度である。 The concentration of the adhesive solution is appropriately set according to the type and characteristics of each adhesive, but is usually 2 to 50% by mass, but the applied amount of the adhesive is the thickness after drying, Usually, 0.1 to 5 μm, practically about 0.2 to 1 μm, which may be relatively small, the concentration of the adhesive solution may be 2 to 10% by mass. Moreover, although drying conditions are suitably set by the kind of adhesive used, the density | concentration of a solution, the application quantity, etc., it is about 30 to 180 second normally in a hot air of 80-100 degreeC.

以上のようにして得られた穿孔用フィルム層/接着剤層/キャリアフィルム層の構成を有する積層フィルムは、穿孔用フィルム自体の初期引っ張り応力が低位のものであっても引っ張り応力が補強されているため穿孔工程に適した積層フィルムであり、この積層フィルムの状態で穿孔することによって穿孔工程が安定し、穿孔位置の精度が優れている。   The laminated film having the structure of the perforated film layer / adhesive layer / carrier film layer obtained as described above is reinforced with the tensile stress even if the initial tensile stress of the perforated film itself is low. Therefore, it is a laminated film suitable for the perforating process, and the perforating process is stabilized by perforating in the state of this laminated film, and the accuracy of the perforating position is excellent.

上記の積層フィルムを穿孔する手段としては、格別限定するものではなく、公知の手段を適用することが出来るが、例えば、目的とする穿孔形状に対応する先端形状の凸型とこれに対応する凹型とを組み合わせて所望のパターン状に配列した凹凸金型刃によるプレス式穿孔を挙げることができる。なお、特に、凹凸1対の金型刃を使用して、制御機構により穿孔位置を適宜制御するタイプの穿孔装置も好適に使用できる。   The means for perforating the laminated film is not particularly limited, and known means can be applied. For example, a tip-shaped convex shape corresponding to the target perforated shape and a concave shape corresponding thereto And press-type perforation with a concave and convex mold blade arranged in a desired pattern. In particular, a punching device of a type in which a punching position is appropriately controlled by a control mechanism using a pair of concave and convex mold blades can be suitably used.

上記の手段で穿孔された積層フィルムは、積層されている接着剤層およびキャリアフィルム層を除去および/または剥離して目的とする穿孔フィルムが単離される。この際、特にフィルムの穿孔が密集している部分があり、フィルムの走行方向に非穿孔部の面積比が大きい部分を有しない場合、僅かな引っ張り応力により容易に引っ張りじわが生じやすい。従って、穿孔された積層フィルムには可能な限り引っ張り応力がかからないように注意深く取り扱うのが好ましい。   From the laminated film perforated by the above means, the target perforated film is isolated by removing and / or peeling the laminated adhesive layer and carrier film layer. At this time, particularly when there are portions where the perforations of the film are dense, and there are no portions where the area ratio of the non-perforated portions is large in the running direction of the film, the wrinkles are easily generated by a slight tensile stress. Therefore, it is preferable to handle the perforated laminated film carefully so as not to be subjected to tensile stress as much as possible.

上記の手段で穿孔された積層フィルムの接着剤層およびキャリアフィルム層を除去および/または剥離する方法は、上記の穿孔された積層フィルムの接着剤層に水系溶媒を作用させて接着剤層を膨潤または溶解させて穿孔フィルムに強い引っ張り応力をかけない状態で剥離または除去する方法を挙げることが出来る。かかる方法の具体例としては、例えば、穿孔された積層フィルムの末端に剥離口を形成した後、室温の水系溶媒の浴中に浸漬し、剥離口を水系溶媒の中に維持しつつ剥離し水系溶媒の浴から取り出す方法を挙げることが出来る。上記の水浴から取り出す速度は、使用する接着剤の水溶性および穿孔の程度等の条件により適宜調節される。このようにして単離された穿孔フィルムは、必要により残存する接着剤を前記の水系溶媒の浴内またはその流れの中で、必要により温浴内またはその流れの中で洗浄し、濯ぐことにより穿孔ピッチが一様で、接着剤等の不純物の残留が無い穿孔フィルムを容易に得ることが出来る。 The method for removing and / or peeling the adhesive layer and carrier film layer of the laminated film perforated by the above means is to swell the adhesive layer by applying an aqueous solvent to the adhesive layer of the perforated laminated film. Alternatively, there can be mentioned a method of dissolving or removing in a state where a strong tensile stress is not applied to the perforated film. As a specific example of such a method, for example, after forming a peeling opening at the end of the perforated laminated film, it is immersed in a bath of an aqueous solvent at room temperature, and is peeled off while maintaining the peeling opening in the aqueous solvent. The method of taking out from the bath of a solvent can be mentioned. The speed of taking out from the water bath is appropriately adjusted depending on conditions such as the water solubility of the adhesive used and the degree of perforation. The perforated film thus isolated can be washed by rinsing and rinsing the remaining adhesive, if necessary, in the above-mentioned aqueous solvent bath or its flow, if necessary in a warm bath or its flow. A perforated film having a uniform perforation pitch and no residue of an adhesive or the like can be easily obtained.

以下に、本発明を実施例により具体的に説明するが、本発明は以下の実施例により限定されるものではない。
なお、本実施例および比較例において、各種特性の評価方法は以下の基準によった。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
In the examples and comparative examples, the evaluation methods for various characteristics were based on the following criteria.

(1)
穿孔用フィルム物性(初期引っ張り応力)
測定装置としてテンシロン引っ張り試験機を使用し、試験片幅:15mm、チャック間距離:150mm、引張速度:200mm/分条件で引っ張り、長さ方向(MD)および幅方向(TD)毎に3試験片について測定し、それらの平均値を評価結果とした。
(2)
キャリアフィルムの物性(破断応力、破断伸度、初期引っ張り(1%伸長時)応力)
上記の測定装置を使用し、同じ測定条件により、長さ方向(MD)および幅方向(TD)毎に3試験片について測定し、それらの平均値を評価結果とした。
(3)
穿孔の正確性

所定の位置に穿孔でき、しかも穿孔壁がきれいであった。

所定の位置に穿孔できる。
×1 穿孔位置が所定の位置からずれ、穿孔形状は歪んでいた。
×2 積層フィルムが揺動し、新しい穿孔部の位置が前の穿孔部と重なった。
(4)
穿孔操作時のフィルムの搬送性

フィルムの揺動が無く且つ引っ張りジワもなく、トラブル無く穿孔が継続できた。
×1 最初は穿孔用フィルムと共にきれいに穿孔されたが、穿孔後の搬送時の張力により積層フィルムが切断し、穿孔操作が継続できなかった。
×2 積層フィルムに引っ張りジワが生じない様に調節したらフィルムが揺動し、穿孔位置が安定しなかった。
×3 キャリアフィルムの切断が不完全で、切断残り部分による引きずり現象が生じ、凸型刃の上下に伴って積層フィルムが引っ張られて揺動。
(1)
Film properties for perforation (initial tensile stress)
Using a Tensilon tensile tester as a measuring device, test piece width: 15 mm, distance between chucks: 150 mm, pulling speed: 200 mm / min, tensile test: 3 test pieces for each length direction (MD) and width direction (TD) Were measured and the average value thereof was taken as the evaluation result.
(2)
Physical properties of carrier film (breaking stress, breaking elongation, initial tensile (at 1% elongation) stress)
Three test pieces were measured for each of the length direction (MD) and the width direction (TD) under the same measurement conditions using the above-described measurement apparatus, and the average value thereof was taken as the evaluation result.
(3)
Drilling accuracy ◎
It was possible to perforate at a predetermined position, and the perforated wall was clean.

Drill in place.
× 1 The drilling position was shifted from the predetermined position, and the drilling shape was distorted.
X2 The laminated film was swung, and the position of the new perforated part overlapped with the previous perforated part.
(4)
Film transportability during punching operation
There was no swinging of the film and no pulling wrinkles, and perforation could be continued without any trouble.
× 1 At first, the film was perforated neatly together with the perforated film, but the laminated film was cut by the tension during conveyance after perforation, and the perforation operation could not be continued.
X2 When the laminated film was adjusted so as not to cause pulling wrinkles, the film shook and the perforation position was not stable.
X3 Cutting of the carrier film is incomplete, causing a drag phenomenon due to the uncut portion, and the laminated film is pulled and swung along the top and bottom of the convex blade.

[実施例1]
接着剤としてのパラミリオンAF−36(易水溶性ウレタン樹脂系、固形分35質量%、大原パラジウム株式会社製)100質量部を有機溶媒IPA(イソプロピルアルコール)600mlに溶解した接着剤溶液をキャリアフィルムとしての厚さ35μmの銅箔に、乾燥後の厚さが0.5μmと成るように塗布し、100℃の熱風中で2分間乾燥して接着剤層付きキャリアフィルムを作製した。このキャリアフィルムの接着剤層側表面に穿孔用の幅48mm、厚さ12μmのPPS(ポリフェニレンサルファイト)フィルムを重ね合わせ、ロール型ラミネーターを用いてロール温度80℃で積層し、積層フィルムを得た。
[Example 1]
An adhesive solution prepared by dissolving 100 parts by mass of paramilion AF-36 (easily water-soluble urethane resin, solid content 35 mass%, manufactured by Ohara Palladium Co., Ltd.) as an adhesive in 600 ml of an organic solvent IPA (isopropyl alcohol) is used as a carrier film. Was applied to a copper foil with a thickness of 35 μm so that the thickness after drying was 0.5 μm, and dried in hot air at 100 ° C. for 2 minutes to prepare a carrier film with an adhesive layer. A PPS (polyphenylene sulfite) film having a width of 48 mm for punching and a thickness of 12 μm was superposed on the adhesive layer side surface of this carrier film, and laminated at a roll temperature of 80 ° C. using a roll laminator to obtain a laminated film. .

得られた積層フィルムを、目的とする300μmφの円形孔に対応する凸型刃と凹型刃の一対から成り、穿孔部の位置が制御できる駆動装置により幅方向および長さ方向に間歇的に穿孔できる一穴式のプレス型穿孔機に通して、積層フィルムの幅方向に350μmピッチで100孔、長さ方向に350μmピッチで1000mm長さに亘って1分間に100孔の速度で穿孔試験することを目標とし穿孔操作を進め、その間のキャリアフィルムの変形を観察した。穿孔処理後、水洗して穿孔されたPPSフィルムとキャリアフィルムとの間の接着剤を溶解して穿孔されたPPSフィルムを分離して得た。分離されたPPSフィルムの穿孔された孔の形状を観察し、これらの結果および使用したキャリアフィルムの物性と共に表1に示した。   The obtained laminated film is composed of a pair of convex blades and concave blades corresponding to the intended circular hole of 300 μmφ, and can be intermittently perforated in the width direction and the length direction by a drive device that can control the position of the perforated part. Through a single-hole type press punching machine, punching test is carried out at a rate of 100 holes per minute over 350 mm pitch in the width direction of the laminated film and 1000 mm length in the length direction of 350 μm pitch. The drilling operation was advanced as a target, and the deformation of the carrier film was observed during that time. After the perforation treatment, the PPS film was obtained by separating the perforated PPS film by dissolving the adhesive between the PPS film perforated by washing with water and the carrier film. The shape of the perforated holes in the separated PPS film was observed, and the results and the physical properties of the used carrier film are shown in Table 1.

[実施例2]〜[実施例4]
実施例2〜4として、使用したキャリアフィルムをそれぞれ、厚さ38μmのトレリナ(PPS樹脂フィルム、東レ株式会社製)、厚さ38μmのルミラー38E20(ポリエステルフィルム、東レ株式会社製)フィルム、10μmのアルミニウム箔と厚さ25μmのポリエステルフィルムとの積層品、に代えた以外は実施例1と全く同様に積層フィルムの試験片を作製し、また同様に穿孔操作を進め、その間の積層フィルムの変形および穿孔された孔の形状を観察した。これらの結果および使用したキャリアフィルムの物性と共に表1に示した。
[Example 2] to [Example 4]
As Examples 2 to 4, the used carrier films were Torelina (PPS resin film, manufactured by Toray Industries, Inc.) with a thickness of 38 μm, Lumirror 38E20 (polyester film, manufactured by Toray Industries, Inc.) with a thickness of 10 μm, and 10 μm of aluminum. A laminate film test piece was prepared in the same manner as in Example 1 except that the laminate was a laminate of a foil and a polyester film having a thickness of 25 μm, and the punching operation proceeded in the same manner. The shape of the formed holes was observed. These results and the physical properties of the carrier film used are shown in Table 1.

[比較例1]〜[比較例2]
比較例1〜2として、使用したキャリアフィルムとしてそれぞれ厚さ30μmのアルミニウム箔、および厚さ38μmのルミラー38S10(ポリエステルフィルム、東レ株式会社製)に代えた以外は実施例1と全く同様に積層フィルムの試験片を作製し、また同様に穿孔操作を進め、その間の積層フィルムの変形および穿孔された孔の形状を観察した。これらの結果および使用したキャリアフィルムの物性と共に表1に示した。
[Comparative Example 1] to [Comparative Example 2]
As Comparative Examples 1 and 2, a laminated film was used in exactly the same manner as in Example 1 except that the carrier film used was replaced with an aluminum foil with a thickness of 30 μm and Lumirror 38S10 (polyester film, manufactured by Toray Industries, Inc.) with a thickness of 38 μm. The test piece was prepared and the perforation operation proceeded in the same manner, and the deformation of the laminated film and the shape of the perforated hole were observed during that time. These results and the physical properties of the carrier film used are shown in Table 1.

[参考例1]〜[参考例3]
実施例1において、穿孔用フィルムの代わりに、[参考例1]〜[参考例3]としてそれぞれ厚さ12μmのPPSフィルム、厚さ16μmのPPSフィルム、および厚さ25μmのPPSフィルムを使用し、さらにキャリアフィルムを積層しないこと以外は、実施例1と同様に穿孔操作を進め、その操作中の穿孔用フィルムの挙動および穿孔された孔の形状を観察し、これらの結果を、使用した穿孔用フィルムの物性と共に表1に示した。
[Reference Example 1] to [Reference Example 3]
In Example 1, in place of the perforating film, a [PS 1] film having a thickness of 12 μm, a PPS film having a thickness of 16 μm, and a PPS film having a thickness of 25 μm were used as [Reference Example 1] to [Reference Example 3], respectively. Further, except for not laminating the carrier film, the perforation operation was advanced in the same manner as in Example 1, the behavior of the perforating film during the operation and the shape of the perforated holes were observed, and these results were used for perforation. Table 1 shows the physical properties of the film.

Figure 2008100327
Figure 2008100327

(実験結果のまとめ)
表1の結果からも明らかなように、穿孔用フィルムの初期引っ張り(1%伸長時)応力が小さい場合であっても、キャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り応力境界値(1%伸長時、)を8N/15mm幅以上に補強した積層フィルムの状態で穿孔することにより、穿孔位置のずれが無く、継続して穿孔できたが、比較例1は、キャリアフィルムの破断応力が小さ過ぎるため積層フィルムの破断応力も小さく、穿孔中で切断してキャリアフィルムとしての役目を果たすことが出来ず、比較例2(破断伸度が155%超)の場合は、伸度が大きすぎるため切断操作時に穿孔しても孔部のキャリアフィルムが完全に分離されず、切断残り部分による引きずり現象が生じ、穿孔用刃に引っ張られて積層フィルムが揺動して穿孔位置が連続し、結局積層フィルムが切断した。また、参考例2は積層フィルムではないが、破断応力が80N/15mm幅未満、初期引っ張り応力境界値(1%伸長時、)が8N/15mm幅未満では、引っ張りジワが生じて穿孔形状が歪み、これを避けるため張力を低下させたときはフィルムの揺動が始まった。参考例3は穿孔用フィルムの破断応力が80N/15mm幅以上、初期引っ張り応力境界値(1%伸長時、)が8N/15mm幅以上で、キャリアフィルムの搬送性は安定し、穿孔形状は正確であった。
(Summary of experimental results)
As is clear from the results in Table 1, even when the initial tensile stress (at 1% elongation) of the perforating film is small, the carrier film is laminated and the breaking stress is 80 N / 15 mm width or more, the breaking elongation. However, when perforated in the state of a laminated film in which the initial tensile stress boundary value (at 1% elongation) was reinforced to 8 N / 15 mm width or more, there was no displacement of the perforation position, and the perforation could be continued continuously. In Comparative Example 1, since the breaking stress of the carrier film is too small, the breaking stress of the laminated film is also small, and it cannot be cut during perforation to serve as a carrier film. Comparative Example 2 (breaking elongation is 155) %)), The carrier film in the hole is not completely separated even when drilling during the cutting operation, and a drag phenomenon occurs due to the remaining part of the cutting. Tensioned by the laminated film perforation position is continuously swung, eventually laminated film was cut. In addition, although Reference Example 2 is not a laminated film, if the breaking stress is less than 80 N / 15 mm width and the initial tensile stress boundary value (at 1% elongation) is less than 8 N / 15 mm width, tensile wrinkles occur and the perforated shape is distorted. When the tension was lowered to avoid this, the film began to swing. In Reference Example 3, the breaking stress of the perforated film is 80 N / 15 mm width or more, the initial tensile stress boundary value (when 1% stretched) is 8 N / 15 mm width or more, the carrier film transportability is stable, and the perforated shape is accurate. Met.

本発明の積層フィルムは、初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムでも、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が8N/15mm幅以上となるように補強することにより工程に通紙した状態で初期の形状の穿孔を継続して行うことが出来、穿孔した後に、キャリアフィルム層を剥離除去することにより、穿孔位置がずれないで目的とする位置に継続して穿孔できるため、産業上の効果は大である。 The laminated film of the present invention is a film for perforation having a small initial tensile (at 1% elongation) stress, and a carrier film is laminated through a water-soluble adhesive layer so that the breaking stress is 80 N / 15 mm width or more. The initial shape can be continuously perforated in the state of passing through the process by reinforcing the strength to be 155% or less and the initial tensile (at 1% elongation) stress to be 8 N / 15 mm width or more, After the perforation, the carrier film layer is peeled and removed, so that the perforation position can be continuously perforated without shifting and the industrial effect is great.

Claims (5)

初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムを工程に通紙した状態で連続的に穿孔する際、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が80N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が8N/15mm幅以上となるように補強した積層フィルムの状態で穿孔した後、キャリアフィルム層を剥離除去することを特徴とする初期引っ張り(1%伸長時)応力が小さいフィルムの穿孔方法。
When continuously perforating a perforated film having a low initial tensile stress (at 1% elongation) while passing through the process, the carrier film is laminated through a water-soluble adhesive layer, and the breaking stress is 80 N / The carrier film layer is peeled and removed after perforation in the state of a laminated film reinforced to have a width of 15 mm or more, a breaking elongation of 155% or less, and an initial tensile (at 1% elongation) stress of 8 N / 15 mm width or more. A method for perforating a film having a small initial tensile (at 1% elongation) stress.
初期引っ張り(1%伸長時)応力が小さい穿孔用フィルムを工程に通紙した状態で連続的且つ密に穿孔する際、、易水溶性の接着剤層を介してキャリアフィルムを積層して破断応力が100N/15mm幅以上、破断伸度が155%以下、初期引っ張り(1%伸長時)応力が16N/15mm幅以上となるように補強した積層フィルムの状態で穿孔した後、キャリアフィルム層を剥離することを特徴とする初期引っ張り(1%伸長時)応力が小さいフィルムの穿孔方法。
When continuously and densely perforating a film for punching with a low initial tensile stress (at 1% elongation) through the process, the carrier film is laminated via a water-soluble adhesive layer to break stress. Is pierced in the state of a laminated film reinforced so that the elongation is 100 N / 15 mm width or more, the breaking elongation is 155% or less, and the initial tensile stress (at 1% elongation) is 16 N / 15 mm width or more, and then the carrier film layer is peeled off A method for perforating a film having a low initial tensile (at 1% elongation) stress.
剥離方法が、穿孔された積層フィルムを水系溶媒に浸漬することにより行われることを特徴とする請求項1または請求項2に記載の引っ張り応力が小さいフィルムの穿孔方法。
The method for perforating a film having a small tensile stress according to claim 1 or 2, wherein the peeling method is performed by immersing the perforated laminated film in an aqueous solvent.
請求項1または請求項2に記載の補強した積層フィルム。
The reinforced laminated film according to claim 1 or 2.
請求項4に記載の積層フィルムの状態で穿孔した後、キャリアフィルム層を剥離除去することにより得られる穿孔フィルム。 A perforated film obtained by perforating in the state of the laminated film according to claim 4 and then peeling and removing the carrier film layer.
JP2006286104A 2006-10-20 2006-10-20 Film punching method and punched film Pending JP2008100327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286104A JP2008100327A (en) 2006-10-20 2006-10-20 Film punching method and punched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286104A JP2008100327A (en) 2006-10-20 2006-10-20 Film punching method and punched film

Publications (1)

Publication Number Publication Date
JP2008100327A true JP2008100327A (en) 2008-05-01

Family

ID=39435035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286104A Pending JP2008100327A (en) 2006-10-20 2006-10-20 Film punching method and punched film

Country Status (1)

Country Link
JP (1) JP2008100327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061641B1 (en) * 2017-11-24 2020-01-02 이민석 Aggregates screen module hole forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102061641B1 (en) * 2017-11-24 2020-01-02 이민석 Aggregates screen module hole forming method

Similar Documents

Publication Publication Date Title
CN107076679B (en) Film manufacturing method, film manufacturing device
US20150217219A1 (en) Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
JP2013512974A (en) Hole processed film
JP4982251B2 (en) Wiring board plating method and wiring board
JP2007083394A (en) Perforated laminate
KR20040068201A (en) Separation membrane
JP5926437B1 (en) Manufacturing method and manufacturing apparatus of microporous plastic film
TWI362907B (en) The drilled porous resin base material and the manufacturing method for porous resin base material with inner surface of pore which has been made electrically conductive
JP2008100327A (en) Film punching method and punched film
JP2001062784A (en) Method for punching fragile material and punching die used for the same
AU744229B1 (en) Process for manufacturing a multi-layered adhesive tape
JP2011101837A (en) Separation membrane, and method of producing the same
JP2017019028A (en) Manufacturing method of sheet member
JP4367623B2 (en) Method for producing electrical circuit component made of porous stretched polytetrafluoroethylene sheet or porous stretched polytetrafluoroethylene film, and electrical circuit component
JP2005343908A (en) Pressure-sensitive adhesive sheet and its manufacturing method
JP2007098628A (en) Laminated film for minute boring
JP4543762B2 (en) Perforated porous resin base material and method for producing porous resin base material having conductive inner wall surface perforated
JP2006121035A (en) Film peeling apparatus and method for manufacturing wiring board
JP4868581B2 (en) Reinforcement method, label processing method, sticking device and label processing device
JP2005075966A (en) Method for manufacturing pressure-sensitive adhesive sheet and pressure-sensitive adhesive sheet
TW462923B (en) Form plate for screen process printing
EP1270207B1 (en) Porous sheet substrate
FI112622B (en) Method and apparatus for making a coupling film
Plovie et al. Stretchable mold interconnect optimization: peeling automation and carrierless techniques
JP2000176897A (en) Trimming die and manufacture thereof