JP2008100245A - Apparatus and method for cooling hot-rolled wire material - Google Patents

Apparatus and method for cooling hot-rolled wire material Download PDF

Info

Publication number
JP2008100245A
JP2008100245A JP2006283305A JP2006283305A JP2008100245A JP 2008100245 A JP2008100245 A JP 2008100245A JP 2006283305 A JP2006283305 A JP 2006283305A JP 2006283305 A JP2006283305 A JP 2006283305A JP 2008100245 A JP2008100245 A JP 2008100245A
Authority
JP
Japan
Prior art keywords
cooling
hot
rolled
rolled wire
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006283305A
Other languages
Japanese (ja)
Inventor
Kazumoto Tsukagoshi
一基 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006283305A priority Critical patent/JP2008100245A/en
Publication of JP2008100245A publication Critical patent/JP2008100245A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for cooling a hot-rolled wire material, by which apparatus and method, the uniformity of cooling and the degree of freedom of installation can be advantageously secured. <P>SOLUTION: The apparatus for cooling the hot-rolled wire material comprises a cooling pipe for forcedly cooling the hot-rolled wire material running through the inside thereof. The cooling pipe is divided into a plurality of sections in the circumference of the rolled material, and has a system for supplying refrigerant for every section. Further, every system for supplying refrigerant has a gas blowing system for mixing gas into the refrigerant liquid at an arbitrary ratio. In addition, thermometers for measuring the temperature of the rolled material in at least two sections of a plurality of circumferential sections of the rolled material are arranged on an inlet side and an outlet side of the cooling apparatus. Further, the cooling pipe in the cooling apparatus is arranged such that the pass line of the rolled material has a required curvature or a gradually changing curvature. The cooling condition is controlled for every section in the circumference of the rolled material using the apparatus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、普通鋼、合金鋼、ステンレス鋼等を熱間連続圧延して、円形断面の棒材、線材等の線条材に成形する工程において、圧延途中または圧延終了後の線条材を水等の冷却媒体により冷却する冷却装置および冷却方法の改良に関する。   The present invention is a method of continuously rolling hot steel, alloy steel, stainless steel, etc. into a wire rod such as a rod having a circular cross section, a wire rod, etc. The present invention relates to an improvement of a cooling device and a cooling method for cooling with a cooling medium such as water.

線材や棒材等の熱間圧延では、圧延終了後の線条材の機械的性質や表面性状の向上を狙い制御圧延や制御冷却を行うことが多い。圧延に伴う加工発熱による圧延材内部組織の再結晶を抑制し微細化を図ったり、表面スケールの生成を抑制したりするために、熱伝達係数の大きい冷却媒体として、殆どは水を用いて冷却を行っている。   In hot rolling of wire rods and rods, controlled rolling and controlled cooling are often performed with the aim of improving the mechanical properties and surface properties of the wire rod after rolling. Most of the cooling medium with a large heat transfer coefficient is cooled with water in order to suppress recrystallization of the internal structure of the rolled material due to processing heat generated during rolling and to reduce the size of the material. It is carried out.

熱間圧延線条材の冷却装置には、これまでに様々な方式が開発されているが、多くは管内に水を吹き出して充満させその中に圧延材を通すことで冷却を行う冷却管方式が採られている。そして、線条材の機械的性質や表面性状を向上させる観点から、圧延材を均一に冷却するための様々な装置が発明されている。   Various methods have been developed so far for cooling devices for hot-rolled wire rods, but most of them are cooling tube methods that cool water by blowing water into the tube and filling it with the rolled material. Has been adopted. And from the viewpoint of improving the mechanical properties and surface properties of the wire rod, various devices for uniformly cooling the rolled material have been invented.

特許文献1および特許文献2では、冷却装置内に軸心が稼働するローラーガイドを設置し、装置通過中の圧延材に一方向からローラーガイドをあてがうか、圧延材を二方向からローラーガイドで挟むことで、冷却管中心と圧延材の中心を略一致させる発明が開示されている。これにより圧延材と冷却管内壁とで形成する間隙を一定にし、その周辺を流れる冷却媒体の条件を同じにし、冷却の均一化を図るものである。   In Patent Document 1 and Patent Document 2, a roller guide whose axis is operated is installed in the cooling device, and the roller guide is applied to the rolled material passing through the device from one direction, or the rolled material is sandwiched by the roller guide from two directions. Thus, an invention is disclosed in which the center of the cooling pipe and the center of the rolled material are substantially coincided with each other. As a result, the gap formed between the rolled material and the inner wall of the cooling pipe is made constant, the conditions of the cooling medium flowing around the same are made the same, and the cooling is made uniform.

また、特許文献3では、冷却管内に圧延材周方向の旋回流を発生させることで冷却媒体のよどみや偏流をなくし冷却の均一化を図る発明が開示されている。   Patent Document 3 discloses an invention in which a swirling flow in the circumferential direction of the rolled material is generated in the cooling pipe to eliminate stagnation and drift of the cooling medium and to achieve uniform cooling.

さらに近年では、機械的性質や表面性状に対する品質要求の高まりから、圧延の途中の制御冷却の重要性が増しており、新設圧延ラインの多くは圧延途中に水冷装置を設置(以下、中間水冷装置と称す。)するか将来の設置スペースを設けることが一般的になっている。これに対し、既存の圧延ラインでも中間冷却装置を設置する動きがあるが、冷却に必要な直線長さが不足することがある。この場合は、特許文献4に記載の発明のように分岐させた迂回ラインを付加することで装置の設置スペースを得ている事例がある。
特開昭54−141368号公報 特開昭59−166317号公報 特開昭62−139827号公報 特開2000−094004号公報
Furthermore, in recent years, the importance of controlled cooling during rolling has increased due to increasing quality requirements for mechanical properties and surface properties. Many new rolling lines are equipped with water cooling devices during rolling (hereinafter referred to as intermediate water cooling devices). It is common to provide future installation space. On the other hand, although there is a movement to install an intermediate cooling device even in an existing rolling line, the linear length necessary for cooling may be insufficient. In this case, there is a case where an installation space for the apparatus is obtained by adding a branched detour line as in the invention described in Patent Document 4.
JP 54-141368 A JP 59-166317 A JP-A-62-139827 JP 2000-094004 A

しかしながら、上記の従来技術による冷却手段には、なお、冷却の均一性や設置自由度の確保の面で改善の余地がある。   However, the cooling means according to the above prior art still has room for improvement in terms of ensuring the uniformity of cooling and the degree of freedom of installation.

はじめに、冷却の均一性の面からの課題について記す。   First, the issues from the uniformity of cooling will be described.

従来は、上記特許文献1、2に記載の発明のように、冷却管と圧延材との隙間を均等にしたり、特許文献3に記載の発明のように、圧延材周囲の冷却水の偏流をなくしたりすることで、圧延材周囲の冷却条件を均一にすることに着目してきた。これらの従来技術は、圧延材の状態に拘らず周囲の冷却条件を均一にしようという考えに基づくものである。しかし、更に圧延材の冷却精度を高めるためには、冷却開始以前に圧延材自身に生じている不均一性を考慮する必要がある。この不均一性には、大きく圧延材の温度の不均一性と表面性状の不均一性が挙げられる。以下、それらの不均一性について詳述する。   Conventionally, as in the inventions described in Patent Documents 1 and 2, the gap between the cooling pipe and the rolled material is made uniform, or as in the invention described in Patent Document 3, the drift of the cooling water around the rolled material is reduced. It has been noted that the cooling conditions around the rolled material are made uniform by eliminating them. These prior arts are based on the idea of making the surrounding cooling conditions uniform regardless of the state of the rolled material. However, in order to further improve the cooling accuracy of the rolled material, it is necessary to consider the non-uniformity generated in the rolled material itself before the start of cooling. This non-uniformity largely includes non-uniformity in the temperature of the rolled material and non-uniformity in the surface texture. Hereinafter, those non-uniformities will be described in detail.

線条材の熱間圧延は、孔型を有するロールを用いるのが一般的である。その多くは、二対の孔型付ロールで材料を挟み込むように行うが、三方ロールあるいは四方ロールを用いることもある。図4は、二対の孔型ロールによる線条材の圧延の冷却開始前の最終圧延スタンドのロール直下の圧延材の状況を、ロール軸方向の垂直断面図で模式的に示す図である。すなわち、冷却開始前の最終圧延スタンドで円形に圧延されるときの、入側の材料形状32は多くの場合楕円である。この楕円形状32を円形3に変形する際、ロール31の孔型に拘束される部分33は、変形量が他の部分より大きくなり、従って、加工発熱量も孔型に拘束されない部分34より多くなる。この結果、周方向断面の温度分布は、孔型に拘束された部分33がより高く、拘束されない部分34はより低くなる。また、孔型に拘束された部分33の圧延材の表面は、ロール31の機械加工面が転写されて円滑に成形されるが、拘束されない部分34の表面は、ロール31に挟まれて圧縮され微細な皺が生じるために、表面粗さが増し冷却媒体との接触面積が増大する。圧延に伴うこれらの現象により、圧延材は、冷却前の最終圧延スタンドの孔型で拘束された部分33の温度が高く冷え難い状態となり、反対に、孔型で拘束されない部分34は、温度が低く冷えやすい状態となる。   In general, hot rolling of a wire rod uses a roll having a hole shape. In many cases, the material is sandwiched between two pairs of perforated rolls, but a three-way roll or a four-way roll may be used. FIG. 4 is a diagram schematically showing the state of the rolled material immediately below the roll of the final rolling stand before the start of cooling of the wire rod with two pairs of perforated rolls, in a vertical sectional view in the roll axis direction. That is, the material shape 32 on the entry side when rolled into a circle at the final rolling stand before the start of cooling is often an ellipse. When the elliptical shape 32 is deformed into the circular shape 3, the portion 33 constrained by the hole shape of the roll 31 has a larger deformation amount than the other portions, and therefore the processing heat generation amount is also larger than the portion 34 not constrained by the hole shape. Become. As a result, the temperature distribution of the circumferential cross section is higher in the portion 33 constrained by the hole shape and lower in the portion 34 not constrained. Further, the surface of the rolled material in the portion 33 constrained by the hole mold is smoothly formed by transferring the machined surface of the roll 31, but the surface of the unconstrained portion 34 is sandwiched by the roll 31 and compressed. Since fine wrinkles occur, the surface roughness increases and the contact area with the cooling medium increases. Due to these phenomena associated with rolling, the rolled material is in a state where the temperature of the portion 33 constrained by the hole mold of the final rolling stand before cooling is high and difficult to cool, and conversely, the temperature of the portion 34 not constrained by the hole mold is high. It becomes low and easy to cool.

このように、圧延材自身の断面内温度や表面性状が不均一であると、上記従来技術のように周辺の冷却条件を均一にしても圧延材を均一に冷却するには自ずと限界があり、冷却後の機械的性質や表面性状の品質ばらつきをなくすことはできなかった。   Thus, if the temperature in the cross section and the surface properties of the rolled material itself are non-uniform, there is a natural limit to uniformly cooling the rolled material even if the surrounding cooling conditions are uniform as in the prior art, Variations in mechanical properties and surface quality after cooling could not be eliminated.

更に、圧延ラインでは、制御冷却の前後で圧延材の温度を計測し、この結果を冷却装置の条件設定、即ち、流量制御に利用することが多いが、殆どが圧延材の周方向のいずれか一点の温度を計っており、圧延材の周方向に温度差があってもそれが把握できなかった。また、たとえ周方向に複数点の温度計測をしていても、圧延材の周方向で冷却条件を変える手段がなく、その温度差を低減できなかった。
これまでは、圧延材の断面内温度や表面性状の不均一がある程度の範囲で生じ、その後の調整冷却を行っても線条材はある程度の品質ばらつきを持つものと捉えられ、その後の工程ではその分の安全率や歩留を見込んで加工を行っており特段の問題は生じなかった。しかし、近年は線条材に対する機械的性質や表面性状などの要求品質は厳格化が進んでおり、これに応えるためにも、これまで以上に冷却の均一化を行う必要が生じてきている。
Furthermore, in the rolling line, the temperature of the rolled material is measured before and after the controlled cooling, and this result is often used for setting the condition of the cooling device, that is, for controlling the flow rate. The temperature at one point was measured, and even if there was a temperature difference in the circumferential direction of the rolled material, it could not be grasped. Moreover, even if the temperature is measured at a plurality of points in the circumferential direction, there is no means for changing the cooling condition in the circumferential direction of the rolled material, and the temperature difference cannot be reduced.
Until now, the temperature in the cross section of the rolled material and the unevenness of the surface properties have occurred within a certain range, and even after the subsequent adjustment cooling, it is considered that the filament material has some degree of quality variation. Machining was performed in anticipation of the safety factor and yield, and no particular problem occurred. However, in recent years, the required quality such as mechanical properties and surface properties for the wire rod has been stricter, and in order to meet this demand, it has become necessary to make cooling more uniform than ever.

次に、設置自由度の面からの課題について記す。   Next, the problem from the aspect of installation flexibility is described.

従来の冷却装置は、その内部を鋼材が通る軌跡(以下、パスラインと称す。)が直線である。これは、冷却装置内で鋼材が偏り冷却が不均一になることを避ける狙いがある。しかし、このように冷却装置のパスラインを直線にしなければならないということは、圧延ラインの設備レイアウトに制約を与えるという問題を有している。新しく圧延工場を建設する場合は、設備設計の自由度が大きく、設置スペースが問題となる場合は少ないが、既設圧延ラインでは、特に中間冷却装置の改造や増設の場合は、直線状の設置スペースを十分確保できないことが多いため、冷却装置の設置スペースの問題は深刻である。また、特許文献4のように分岐ラインを設ける場合でも、既設設備との干渉を回避しなければならないという問題がある。これら制約のために、不十分な長さの冷却装置、即ち、不十分な冷却能力を許容するか、或いは費用負担を増して干渉部を改造することになり、設置自由度が小さくなるという問題があった。   In the conventional cooling device, the trajectory (hereinafter referred to as a pass line) through which the steel material passes is a straight line. This has the aim of avoiding uneven uneven cooling due to uneven steel in the cooling device. However, the fact that the pass line of the cooling device has to be straight in this way has a problem of restricting the equipment layout of the rolling line. When constructing a new rolling mill, the degree of freedom in equipment design is large, and there are few cases where the installation space becomes a problem. However, in the existing rolling line, especially when the intermediate cooling device is modified or added, a linear installation space is required. In many cases, the problem of the installation space of the cooling device is serious. Moreover, even when providing a branch line like patent document 4, there exists a problem that interference with the existing installation must be avoided. Due to these restrictions, a cooling device having an insufficient length, that is, an inadequate cooling capacity is allowed, or the interference part is modified at an increased cost, thereby reducing the degree of freedom of installation. was there.

そこで、本発明は、上記従来技術よりも均一な冷却を行うことができ、且つ設置の自由度を向上させた、熱間圧延線条材の冷却装置および冷却方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a hot-rolled wire rod cooling device and a cooling method that can perform more uniform cooling than the above-described prior art and have improved installation flexibility. Is.

本発明者らは、上記の従来技術の問題点を解決するため、鋭意検討を進めた結果、単純に冷却管の中心に圧延材を位置させたり、圧延材周囲を流れる冷却媒体の条件を均一にしたりするだけではなく、圧延材が冷却開始前に持っている断面内あるいは周方向の不均一性に応じて周方向の冷却条件を変えることで、一層の均一な冷却が可能なことを見出した。即ち、温度が高く表面が円滑で冷えにくい部位には多くの冷却媒体を吹き付け、逆に、温度が低く表面が粗くて冷えやすい部位には冷却媒体の吹き付け量を減らすといった具合に、圧延材の温度および表面性状に応じて周囲から与える冷却条件を任意に変えることで、圧延材周方向断面内の冷却の均一化を図り、機械的性質や表面性状のばらつきを従来に比べて小さくすることが可能となる。   As a result of diligent investigations to solve the above-described problems of the prior art, the inventors simply positioned the rolled material at the center of the cooling pipe or made the conditions of the cooling medium flowing around the rolled material uniform. It has been found that even more uniform cooling is possible by changing the cooling conditions in the circumferential direction according to the non-uniformity in the cross-section or circumferential direction that the rolled material has before the start of cooling. It was. That is, a lot of cooling medium is sprayed on the part where the temperature is high and the surface is smooth and difficult to cool, and conversely, the amount of cooling medium sprayed is reduced on the part where the temperature is low and the surface is rough and easy to cool. By arbitrarily changing the cooling conditions given from the surroundings according to the temperature and surface properties, it is possible to make the cooling uniform in the circumferential cross section of the rolled material and to reduce the variation in mechanical properties and surface properties compared to the conventional one. It becomes possible.

圧延する圧延材の成分組成や製品となる線条材の仕上りサイズによって、ロール孔型形状、上下ロール間のギャップ、圧延スタンド間張力などの圧延条件が変わるため、圧延材の周方向断面の不均一状態も変わることになる。ただし、このような圧延条件は、一般に製造標準として管理されているため、圧延材周方向の温度および表面性状の不均一状態も圧延する圧延材の種別やサイズによって再現性がある。従って、周方向に変える冷却条件も、圧延する圧延材の種別やサイズに応じて変える必要がある反面、予め圧延条件に応じて決めておくことができる。   The rolling conditions such as the roll hole shape, the gap between the upper and lower rolls, and the tension between the rolling stands vary depending on the composition of the rolled material and the finished size of the line material used as the product. The uniform state will also change. However, since such rolling conditions are generally managed as manufacturing standards, the temperature in the circumferential direction of the rolled material and the uneven state of the surface properties are also reproducible depending on the type and size of the rolled material to be rolled. Therefore, the cooling conditions to be changed in the circumferential direction need to be changed according to the type and size of the rolled material to be rolled, but can be determined in advance according to the rolling conditions.

次に、均一化の精度をより高めるためには、圧延ラインにおいて圧延材の温度を周方向で温度差が生じやすい複数点を計測するようにし、その計測結果に応じて冷却装置の冷却媒体吹き付け条件を変えるフィードバック、或いはフィードフォワード制御を行うようにする。これにより、1ビレットの加熱履歴、ロール孔型の磨耗状況、スタンド間張力やロールギャップ等、製造標準の管理幅内で変動する圧延条件ばらつきに対しても対応することができる。   Next, in order to further increase the accuracy of homogenization, the temperature of the rolled material in the rolling line is measured at a plurality of points where a temperature difference is likely to occur in the circumferential direction, and the cooling medium spraying of the cooling device is performed according to the measurement result. Feedback to change conditions or feedforward control is performed. Thereby, it is possible to cope with variations in rolling conditions that vary within the management standard of the manufacturing standard, such as the heating history of one billet, the wear condition of the roll hole mold, the tension between the stands and the roll gap.

さらに、圧延材を曲げて冷却装置内を通したときに、冷却管内で圧延材が偏り周囲の冷却媒体流れが不均一になっても、周方向の冷却条件を変えることで、断面内の温度ばらつきを小さくできる。曲げる軌跡は、冷却装置内で曲率一定としても、冷却装置内で変化させてもよく、また、曲げ方向も、水平や上下、さらにはこれらの組合せでもよい。この結果、冷却装置を設置する場所の自由度が飛躍的に高まる。   Furthermore, when the rolled material is bent and passed through the cooling device, even if the rolled material is biased in the cooling pipe and the flow of the surrounding cooling medium becomes uneven, the temperature in the cross section can be changed by changing the circumferential cooling conditions. Variation can be reduced. The bending trajectory may be constant in the cooling device or may be changed in the cooling device, and the bending direction may be horizontal, up and down, or a combination thereof. As a result, the degree of freedom of the place where the cooling device is installed is dramatically increased.

本発明は、上記の知見に基づき、さらに検討を進めて初めてなされたものであり、その要旨は、次の通りである。   The present invention has been made for the first time after further investigation based on the above findings, and the gist thereof is as follows.

(1) 内部空間を走行通過する熱間圧延線条材を冷却媒体で強制冷却する冷却管を備えた、熱間圧延線条材の冷却装置において、前記冷却管が周方向に複数に区分され、該区分毎に、冷却媒体の供給系統を有することを特徴とする、熱間圧延線条材の冷却装置。 (1) In a cooling apparatus for hot-rolled wire rods, provided with a cooling tube that forcibly cools the hot-rolled wire rods passing through the internal space with a cooling medium, the cooling tubes are divided into a plurality in the circumferential direction. An apparatus for cooling a hot-rolled wire rod, comprising a cooling medium supply system for each section.

(2) 前記冷却媒体が液体であり、前記冷却媒体の供給系統毎に、該液体に気体を任意の比率で混合させる気体送風系統を有することを特徴とする、上記(1)に記載の熱間圧延線条材の冷却装置。 (2) The heat according to (1), wherein the cooling medium is a liquid, and each of the supply systems of the cooling medium has a gas blowing system that mixes a gas with the liquid at an arbitrary ratio. Cooling device for cold rolled wire rod.

(3) 前記冷却装置の入側および/または出側に、前記冷却管の複数の区分のうちの少なくとも2以上の区分に各々対応する部分についての圧延材の表面温度を計測する温度計を配設することを特徴とする、上記(1)または(2)に記載の熱間圧延線条材の冷却装置。 (3) Thermometers for measuring the surface temperature of the rolled material for portions corresponding to at least two or more of the plurality of sections of the cooling pipe are arranged on the inlet side and / or the outlet side of the cooling device. The apparatus for cooling a hot-rolled wire rod according to (1) or (2), characterized in that it is provided.

(4) 圧延材のパスラインが所定の曲率または漸次変化する曲率を有するように、前記冷却管が前記冷却装置内に1台または連続する複数台配設されていることを特徴とする、上記(1)ないし(3)のいずれか1項に記載の熱間圧延線条材の冷却装置。 (4) The cooling pipe is provided with one or a plurality of continuous cooling pipes so that a pass line of the rolled material has a predetermined curvature or a gradually changing curvature. (1) The cooling device for hot-rolled filament material according to any one of (3).

(5) 内部空間を走行通過する熱間圧延線条材を冷却媒体で強制冷却する冷却管を備えた冷却装置による熱間圧延線条材の冷却方法において、熱間圧延線条材の周方向の温度偏差を解消するように、圧延材の周方向を複数に区分して、該区分毎に、冷却条件を制御することを特徴とする、熱間圧延線条材の冷却方法。 (5) In the method of cooling a hot-rolled wire rod by a cooling device provided with a cooling pipe that forcibly cools the hot-rolled wire rod passing through the internal space with a cooling medium, the circumferential direction of the hot-rolled wire rod A method of cooling a hot-rolled wire rod, wherein the rolling material is divided into a plurality of circumferential directions so as to eliminate the temperature deviation, and the cooling condition is controlled for each of the divisions.

(6) 前記冷却媒体が液体であり、前記冷却の区分毎に、該液体と気体を任意の比率で混合させることにより前記冷却条件を制御することを特徴とする、上記(5)に記載の熱間圧延線条材の冷却方法。 (6) The cooling medium is a liquid, and the cooling condition is controlled by mixing the liquid and gas at an arbitrary ratio for each of the cooling sections. Method for cooling hot-rolled wire rod.

(7) 前記冷却装置の入側および/または出側で、前記冷却管の複数の区分のうちの少なくとも2以上の区分に各々対応する部分についての圧延材の表面温度を計測し、その計測結果に基づいて、前記冷却条件を制御することを特徴とする、上記(5)または(6)に記載の熱間圧延線条材の冷却方法。 (7) On the entry side and / or exit side of the cooling device, the surface temperature of the rolled material is measured for portions corresponding to at least two or more of the plurality of sections of the cooling pipe, and the measurement result The method for cooling a hot-rolled wire rod according to (5) or (6), wherein the cooling condition is controlled based on the above.

(8) 圧延材のパスラインが所定の曲率または漸次変化する曲率を有するように前記冷却装置内に1台または連続する複数台配設された前記冷却管内を、圧延材を曲げて走行通過させながら冷却することを特徴とする、上記(5)ないし(7)のいずれか1項に記載の熱間圧延線条材の冷却方法。 (8) The rolling material is caused to pass through the cooling pipe disposed in the cooling device so that the pass line of the rolling material has a predetermined curvature or a gradually changing curvature, or one of a plurality of continuous cooling devices. The method for cooling a hot-rolled filament material according to any one of (5) to (7) above, wherein the cooling is performed while cooling.

本発明によれば、圧延材に対して均一な冷却を行うことが可能になり、制御冷却の精度が向上する。このため、冷却後の圧延材の機械的性質および表面性状のばらつきを小さくできる結果、当該工程の品質外れ量を少なくできる。また、前記ばらつきの影響を小さくする目的で合金添加していた場合はその量を減らすことができる。或いは前記ばらつきがあるが故にオンラインでの制御冷却ができず圧延後に別工程で熱処理を行っていた場合は、これをオンライン制御冷却に変更でき、別工程で熱処理する場合に必要だった鋼材の再加熱が不要になり、製造コストを下げることができる。さらに、次工程でも前記ばらつきが小さくなることで、加工効率や歩留の向上を図ることができる。さらに、本発明によれば、パスラインが曲がった部分に冷却装置を設置した場合にも、均一な冷却を行うことができるため、従来公知技術では設置が不可能または困難であった部分に冷却装置を設置することが可能となり、パスライン設計の自由度が増す。この結果、従来はオンラインに冷却装置が設置できなかった事例でもオンラインで冷却装置を設置でき、別工程で行っていた熱処理を省略し製造コストを下げることができる。また、設置自由度が増すため、既設ラインに冷却装置を設ける場合などでは干渉設備が減り設置費用を削減することができる。以上のとおり、本発明によれば、従来の熱間圧延線条材の冷却における冷却の均一性や設置の自由度の問題を有利に解決できることから、産業上の効果は計り知れない。   According to the present invention, it is possible to uniformly cool the rolled material, and the accuracy of control cooling is improved. For this reason, as a result of reducing the variation in the mechanical properties and surface properties of the rolled material after cooling, the amount of out-of-quality quality in the process can be reduced. Further, when an alloy is added for the purpose of reducing the influence of the variation, the amount can be reduced. Alternatively, if online control cooling could not be performed due to the above-mentioned variation and heat treatment was performed in a separate process after rolling, this could be changed to online control cooling, and the steel material required for heat treatment in a separate process could be changed. Heating is not necessary, and the manufacturing cost can be reduced. Furthermore, since the variation is reduced in the next process, the processing efficiency and the yield can be improved. Furthermore, according to the present invention, even when a cooling device is installed in a portion where the pass line is bent, uniform cooling can be performed. It becomes possible to install the device, and the degree of freedom of the pass line design is increased. As a result, even in the case where the cooling device cannot be installed online, the cooling device can be installed online, so that the heat treatment performed in a separate process can be omitted and the manufacturing cost can be reduced. In addition, since the degree of freedom of installation increases, interference equipment is reduced and installation costs can be reduced when a cooling device is provided on an existing line. As described above, according to the present invention, it is possible to advantageously solve the problems of the cooling uniformity and the degree of freedom of installation in the conventional cooling of hot-rolled wire rods, and thus the industrial effects are immeasurable.

以下に、本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施の形態に係る冷却装置1の構成を模式的に説明する図である。同図において、冷却装置1の内部には圧延方向に冷却媒体を通す管を内蔵した架台4が組み込まれ、その上に冷却管2を設置する。   FIG. 1 is a diagram schematically illustrating the configuration of a cooling device 1 according to an embodiment of the present invention. In the figure, a gantry 4 having a built-in tube for passing a cooling medium in the rolling direction is incorporated in the cooling device 1, and a cooling tube 2 is installed thereon.

図2(a)には、冷却管2の詳細を示す。冷却管2は、出側ボディ5と入側ボディ6とからなるボディ、出側冷却管7と入側冷却管8、仕切り板9、接続用配管10などで構成する。ボディ5、6は、仕切り板9を内蔵するため2分割構造とし、通しボルト等で結合するのが好ましい。ボディ5、6の内面と、出側冷却管7および入側冷却管8とに管軸方向に沿った溝を設け、図2(b)に単体図を示す仕切り板9が嵌り込むようにする。出側冷却管7と入側冷却管8は、ボディ組立後にその前後から差し込み、各々のフランジ部をボルトで固定することによって、入側冷却管8の内部空間と出側冷却管7の内部空間とが接続され、圧延材3を入側から出側に走行通過させることが可能な通路Pが形成されている。   FIG. 2A shows details of the cooling pipe 2. The cooling pipe 2 is composed of a body composed of an outlet body 5 and an inlet body 6, an outlet cooling pipe 7, an inlet cooling pipe 8, a partition plate 9, a connection pipe 10, and the like. It is preferable that the bodies 5 and 6 have a two-divided structure in order to incorporate the partition plate 9 and are coupled with a through bolt or the like. Grooves along the tube axis direction are provided in the inner surfaces of the bodies 5, 6 and the outlet side cooling pipe 7 and the inlet side cooling pipe 8, so that the partition plate 9 shown in a single view in FIG. . The outlet side cooling pipe 7 and the inlet side cooling pipe 8 are inserted from the front and rear after assembly of the body, and the respective flange portions are fixed with bolts, whereby the inner space of the inlet side cooling pipe 8 and the inner space of the outlet side cooling pipe 7 are fixed. Are connected, and a passage P is formed through which the rolled material 3 can travel from the entry side to the exit side.

ボディ5、6の内部に各々挿入された出側冷却管7および入側冷却管8の間には、通路Pの外側から内側に冷却媒体を送込む吹き出し口として用いられる環状の隙間Tが形成されている。本実施の形態では、図2(a)に示すように出側冷却管7の入側端部では、外側部分が内側部分よりも入側に突出した形状をしており、この形状と整合するように、入側冷却管8の出側端部では、内側部分が外側部分よりも出側に突出した形状をしている。これにより、出側冷却管7および入側冷却管8の間に形成される隙間(吹き出し口)Tは入側(即ち、通路Pの外側)から出側(即ち、通路Pの内側)に向かって徐々に縮径する円錐形状に形成されている。   An annular gap T is formed between the outlet side cooling pipe 7 and the inlet side cooling pipe 8 respectively inserted into the bodies 5 and 6 and used as a blowout port for feeding the cooling medium from the outside to the inside of the passage P. Has been. In the present embodiment, as shown in FIG. 2A, the inlet side end portion of the outlet side cooling pipe 7 has a shape in which the outer portion protrudes more toward the inlet side than the inner portion, and matches this shape. As described above, at the outlet end portion of the inlet side cooling pipe 8, the inner portion protrudes more toward the outlet side than the outer portion. As a result, the gap (blowing port) T formed between the outlet side cooling pipe 7 and the inlet side cooling pipe 8 is directed from the inlet side (that is, outside the passage P) toward the outlet side (that is, inside the passage P). It is formed into a conical shape that gradually decreases in diameter.

図3には、図2(a)に示す冷却管2のB−B断面図を示す。本実施の形態では、図3に示すように、4枚の仕切り板9が用いられている。これら4枚の仕切り板9は、各々、ボディ5、6の内面と、出側冷却管7および入側冷却管8とに管軸方向に沿った溝に嵌め込まれている。これにより、出側冷却管7および入側冷却管8の外面とボディ5、6の内面との間に形成される空間Kと、この空間Kから通路P内に冷却媒体を送る環状の吹き出し口Tは、4枚の仕切り板9によって仕切られて、図3に示すように、周方向に沿って4つに区分されている。   FIG. 3 is a cross-sectional view of the cooling pipe 2 shown in FIG. In the present embodiment, as shown in FIG. 3, four partition plates 9 are used. These four partition plates 9 are respectively fitted in the grooves along the tube axis direction in the inner surfaces of the bodies 5 and 6, the outlet side cooling pipe 7 and the inlet side cooling pipe 8. Thus, a space K formed between the outer surfaces of the outlet side cooling pipe 7 and the inlet side cooling pipe 8 and the inner surfaces of the bodies 5 and 6, and an annular outlet for sending the cooling medium from the space K into the passage P T is partitioned by four partition plates 9, and is divided into four along the circumferential direction as shown in FIG.

架台4の内部には圧延方向に冷却媒体を通す管を設け、架台4に冷却管2を取り付けた後、架台4内の配管と冷却管2とを接続用配管10で接続する。架台4内のそれぞれの配管には、冷却媒体本管11から分岐させた配管を接続するとともに途中に圧力調整弁12、流量計13、流量調整弁14、三方弁15等からなる圧力、流量調整手段を組み込む。さらに気体本管16から分岐させた配管を接続するとともに、途中に圧力調整弁17、オリフィス流量計18、流量調整弁19、遮断弁20、逆止弁21等からなる圧力、流量調整手段を組み込み、冷却媒体に気体を混入可能とする。   A pipe through which a cooling medium is passed in the rolling direction is provided inside the gantry 4, and after the cooling pipe 2 is attached to the gantry 4, the pipe in the gantry 4 and the cooling pipe 2 are connected by the connecting pipe 10. Each pipe in the gantry 4 is connected to a pipe branched from the cooling medium main pipe 11, and the pressure and flow adjustment comprising the pressure regulating valve 12, the flow meter 13, the flow regulating valve 14, the three-way valve 15 and the like in the middle. Incorporate means. Further, a pipe branched from the gas main pipe 16 is connected, and a pressure / flow rate adjusting means including a pressure adjusting valve 17, an orifice flow meter 18, a flow adjusting valve 19, a shutoff valve 20, a check valve 21 and the like is incorporated on the way. The gas can be mixed into the cooling medium.

出側冷却管7および入側冷却管8の内部に形成される通路Pの内面と圧延材3の外面との間には間隙がある。このため、吹き出し口Tを周方向に区切ってそれぞれの口から異なる条件で冷却媒体を吹き付けても、ほどなく冷却管内で互いに混ざり合ってしまう。このような事態が発生すると、冷却管2内の空間Kおよび吹き出し口Tを周方向に区分し、各区分毎の個別の設定を可能にした効果が低減する。この対策として、従来はボディ5、6から長く延ばしていた出側冷却管7および入側冷却管8をボディ5、6とほぼ同じ長さに抑えることで冷却管の圧延方向長を短くして、一定の圧延方向長に設置可能な冷却管の数を従来より多くし、冷却媒体の混合が進む前に圧延材に吹き付ける回数を多くするのが好ましい。また、ある区分の吹き付け冷却媒体量を減らすと圧力も低下し隣接した区分から冷却媒体が流れ込んで、冷却管2内の空間Kおよび吹き出し口Tを区分した効果が低減する。この対策として、気体を事前に混合し冷却媒体量が減ることに伴う圧力低下を補って隣接条件との圧力差を小さくし、通路P内で隣接区域間の冷却媒体同士の混合をされにくくするのが好ましい。   There is a gap between the inner surface of the passage P formed inside the outlet side cooling pipe 7 and the inlet side cooling pipe 8 and the outer surface of the rolled material 3. For this reason, even if the outlet T is divided in the circumferential direction and the cooling medium is sprayed from the respective outlets under different conditions, they are mixed with each other within the cooling pipe. When such a situation occurs, the space K and the outlet T in the cooling pipe 2 are sectioned in the circumferential direction, and the effect of enabling individual settings for each section is reduced. As a countermeasure against this, the length of the cooling pipe in the rolling direction is shortened by restraining the outlet side cooling pipe 7 and the inlet side cooling pipe 8 that have been extended from the bodies 5 and 6 to be substantially the same length as the bodies 5 and 6. It is preferable to increase the number of cooling pipes that can be installed in a certain length in the rolling direction as compared with the conventional one, and to increase the number of times of spraying the rolled material before mixing of the cooling medium proceeds. Further, when the amount of sprayed cooling medium in a certain section is reduced, the pressure is also reduced and the cooling medium flows from the adjacent section, and the effect of partitioning the space K and the outlet T in the cooling pipe 2 is reduced. As a countermeasure, the pressure difference with the adjacent condition is made small by compensating for the pressure drop caused by the gas being mixed in advance and the amount of the cooling medium is reduced, so that the cooling medium between the adjacent areas is hardly mixed in the passage P. Is preferred.

また、冷却装置1前後の適当な位置で、温度計21により圧延材3の周方向温度を複数点計測する。望ましくは、冷却管2内の空間Kおよび吹き出し口Tを周方向に区分した各区分に対応する部分について、圧延材3の表面温度を計測する。その計測結果を、基準値と比べ、基準値より計測温度が高い場合は冷却媒体の量を多くし、逆に基準値より計測温度が低い場合は冷却媒体の量を少なくしその分気体の混合量を増やす。これを圧延中にフィードバック或いはフィードフォワードすることで、圧延材の実際の状態に合わせた精度のよい冷却を可能とする。望ましくは測定値と基準値の比較からそれに応じた冷却媒体の流量制御、気体の混合制御といったロジックを冷却装置の制御回路に組み込み自動で行う。   Further, the temperature in the circumferential direction of the rolled material 3 is measured at a plurality of points by a thermometer 21 at appropriate positions before and after the cooling device 1. Desirably, the surface temperature of the rolling material 3 is measured for a portion corresponding to each section obtained by dividing the space K and the outlet T in the cooling pipe 2 in the circumferential direction. Compare the measurement result with the reference value, if the measured temperature is higher than the reference value, increase the amount of the cooling medium. Conversely, if the measured temperature is lower than the reference value, decrease the amount of the cooling medium and mix the gas accordingly. Increase the amount. By feeding back or feeding forward this during rolling, it is possible to perform cooling with high accuracy in accordance with the actual state of the rolled material. Desirably, logic such as flow rate control of the cooling medium and gas mixing control according to the comparison between the measured value and the reference value is automatically incorporated into the control circuit of the cooling device.

以上の実施形態によれば、冷却管2内の空間Kおよび吹き出し口Tを周方向に区分し、各区分毎の個別の設定を可能にしたことによって、圧延材3に対して均一な冷却を行うことが可能になり、制御冷却の精度が向上する。このため、冷却後の圧延材の機械的性質および表面性状のばらつきを小さくできる結果、当該工程の品質外れ量を少なくできる。また、前記ばらつきの影響を小さくする目的で合金添加していた場合はその量を減らすことができる。或いは前記ばらつきがあるが故にオンラインでの制御冷却ができず圧延後に別工程で熱処理を行っていた場合は、これをオンライン制御冷却に変更でき、別工程で熱処理する場合に必要だった鋼材の再加熱が不要になり、製造コストを下げることができる。さらに、次工程でも前記ばらつきが小さくなることで、加工効率や歩留の向上を図ることができる。   According to the above embodiment, the space K in the cooling pipe 2 and the blowout port T are divided in the circumferential direction, and individual setting for each division is made possible, whereby uniform cooling can be performed on the rolled material 3. This makes it possible to improve the accuracy of control cooling. For this reason, as a result of reducing the variation in the mechanical properties and surface properties of the rolled material after cooling, the amount of out-of-quality quality in the process can be reduced. Further, when an alloy is added for the purpose of reducing the influence of the variation, the amount can be reduced. Alternatively, if online control cooling could not be performed due to the above-mentioned variation and heat treatment was performed in a separate process after rolling, this could be changed to online control cooling, and the steel material required for heat treatment in a separate process could be changed. Heating is not necessary, and the manufacturing cost can be reduced. Furthermore, since the variation is reduced in the next process, the processing efficiency and the yield can be improved.

さらに、冷却管2内の空間Kおよび吹き出し口Tを周方向に区分し、各区分毎に冷却媒体の吹き付け条件を変える機能を持たせたことによって、冷却装置1が形成する圧延材3のパスラインを図5に示すように湾曲した構成にした場合にも均一な冷却を行うことが可能になる。圧延材3のパスラインは所定の曲率または漸次変化する曲率のいずれにも構成することができる。また、冷却管2は短管とすることで、各冷却管2内の出側冷却管7および入側冷却管8を管軸方向を直線状に形成してもよいが、望ましくは冷却装置1の曲率に合わせて管軸方向を湾曲形状に形成した出側冷却管7および入側冷却管8を用いる。なお、図5には7台の冷却管2によって、圧延材3の湾曲したパスラインが形成されているが、任意の台数の冷却管2を用いてもよい。更に、各冷却管2の間にガイドローラー35を設置することは圧延材3の表面疵防止や誘導性向上の観点から有効である。   Furthermore, the space K and the blowout port T in the cooling pipe 2 are divided in the circumferential direction, and the path of the rolling material 3 formed by the cooling device 1 is provided by the function of changing the blowing condition of the cooling medium for each division. Even when the line has a curved configuration as shown in FIG. 5, uniform cooling can be performed. The pass line of the rolled material 3 can be configured with either a predetermined curvature or a gradually changing curvature. In addition, the cooling pipe 2 may be a short pipe, and the outlet side cooling pipe 7 and the inlet side cooling pipe 8 in each cooling pipe 2 may be formed linearly in the axial direction. The outlet side cooling pipe 7 and the inlet side cooling pipe 8 which are formed in a curved shape in the pipe axis direction according to the curvature are used. In FIG. 5, a curved pass line of the rolled material 3 is formed by seven cooling pipes 2, but an arbitrary number of cooling pipes 2 may be used. Furthermore, installing the guide roller 35 between the cooling pipes 2 is effective from the viewpoint of preventing surface flaws of the rolled material 3 and improving inductivity.

上述した利点によれば、パスラインが曲がった部分に冷却装置を設置した場合にも、均一な冷却を行うことができるため、従来公知技術では設置が不可能または困難であった部分に冷却装置を設置することが可能となり、パスライン設計の自由度が増す。この結果、従来はオンラインに冷却装置が設置できなかった事例でもオンラインで冷却装置を設置でき、別工程で行っていた熱処理を省略し製造コストを下げることができる。また、設置自由度が増すため、既設ラインに冷却装置を設ける場合などでは干渉設備が減り設置費用を削減することができる。以上のとおり、本発明によれば、従来の熱間圧延線条材の冷却における冷却の均一性や設置の自由度の問題を有利に解決できることから、産業上の効果は計り知れない。   According to the above-described advantages, even when the cooling device is installed at a portion where the pass line is bent, uniform cooling can be performed. Can be installed, increasing the freedom of passline design. As a result, even in the case where the cooling device cannot be installed online, the cooling device can be installed online, so that the heat treatment performed in a separate process can be omitted and the manufacturing cost can be reduced. In addition, since the degree of freedom of installation increases, interference equipment is reduced and installation costs can be reduced when a cooling device is provided on an existing line. As described above, according to the present invention, it is possible to advantageously solve the problems of the cooling uniformity and the degree of freedom of installation in the conventional cooling of hot-rolled wire rods, and thus the industrial effects are immeasurable.

図1(a)において、冷却装置1は、冷却管2を9台内蔵する。図2において、それぞれの冷却管は、出側冷却管7および入側冷却管8で形成する吹き付け口Tを仕切り板9を4枚用いて上下左右の4区分(区画)に区切り、ボディ6にはそれぞれの区分に冷却媒体を送る貫通穴を開ける。架台4の内部には圧延方向に4つの配管を配し、それぞれに外部から接続用配管10を接続する。この架台4の内部の4つの配管には圧力調整弁12、流量計13、流量調整弁14、三方弁15等からなる圧力、流量調整手段を組み込む。さらに気体配管と圧力調整弁17、オリフィス流量計18、流量調整弁19、遮断弁20、逆止弁21等からなる圧力、流量調整手段を組み合わせた気体送風系統を接続し、冷却媒体の量あるいは圧力が小さい場合は気体を混入可能とする。こうして、ボディ5、6内の空間Kを仕切って周方向に4区分した各部屋ごとに冷却媒体を異なる量や圧力で送ることができるようにする。   In FIG. 1A, the cooling device 1 includes nine cooling pipes 2. In FIG. 2, each cooling pipe divides the blowing port T formed by the outlet side cooling pipe 7 and the inlet side cooling pipe 8 into four sections (partitions) of upper, lower, left and right using four partition plates 9. Opens through holes to feed the cooling medium to each section. Inside the gantry 4, four pipes are arranged in the rolling direction, and a connection pipe 10 is connected to the outside from the outside. Pressure and flow rate adjusting means including a pressure adjusting valve 12, a flow meter 13, a flow rate adjusting valve 14, a three-way valve 15 and the like are incorporated in the four pipes inside the gantry 4. In addition, a gas blower system that combines pressure and flow rate adjusting means including a gas pipe and a pressure adjusting valve 17, an orifice flow meter 18, a flow rate adjusting valve 19, a shutoff valve 20, a check valve 21 and the like is connected, and the amount of cooling medium or When the pressure is low, gas can be mixed. In this way, the cooling medium can be sent in different amounts and pressures for each room divided into four in the circumferential direction by dividing the space K in the bodies 5 and 6.

図1(a)において、冷却装置1の出側に温度計22を配置する。温度計22は図1(b)のように、圧延材周方向の上下左右の温度を計測できるように4台配置する。望ましくは、実施例のように冷却管2内の空間Kおよび吹き出し口Tを区分した各区分に対応した部分の温度を計測するが、温度や表面性状は、上下や左右の対称性が高いことから上下のいずれか一方と左右のいずれか一方を計測してもよい。ただし、この場合は上下左右配置した場合に比べ、計測しない側の冷却精度は劣る。そして、計測した温度を図示していない冷却制御装置内の基準温度と比較し、計測値の方が高ければ冷却媒体量を多くし、計測値の方が低ければ冷却媒体量を減らす。温度計22はフィードバック制御を主に行う場合は冷却装置1の出側に設置し、フィードフォワード制御を主に行う場合は冷却装置1の入側に設置する。温度計22を冷却装置1の入側と出側の両方に設置しそれぞれの測定値に重みをつけて評価し冷却媒体量を制御してもよい。また、計測した結果を次の圧延材に対する制御に用いてもよい。   In FIG. 1A, a thermometer 22 is arranged on the exit side of the cooling device 1. As shown in FIG. 1B, four thermometers 22 are arranged so as to measure the temperature in the up and down and left and right directions in the circumferential direction of the rolled material. Desirably, the temperature of the part corresponding to each division into which the space K in the cooling pipe 2 and the outlet T is divided as in the embodiment is measured, but the temperature and surface properties are highly symmetric in the vertical and horizontal directions. One of the upper and lower sides and either one of the left and right sides may be measured. However, in this case, the cooling accuracy on the non-measurement side is inferior compared to the case where the upper, lower, left, and right sides are arranged. Then, the measured temperature is compared with a reference temperature in a cooling control device (not shown). If the measured value is higher, the amount of the cooling medium is increased, and if the measured value is lower, the amount of the cooling medium is decreased. The thermometer 22 is installed on the exit side of the cooling device 1 when feedback control is mainly performed, and is installed on the entrance side of the cooling device 1 when feedforward control is mainly performed. The thermometer 22 may be installed on both the entry side and the exit side of the cooling device 1, and the measured values may be weighted and evaluated to control the amount of the cooling medium. Moreover, you may use the measured result for control with respect to the following rolling material.

既設圧延ラインの中間冷却装置として組み込む場合、図5のように装置をラインに合わせて曲げる。同図では同一曲率で曲がる例を示すが、曲げ方は複数の曲率を組み合わせても、水平や上下の方向の曲げを組み合わせても、直線と組み合わせてもよい。また同図では擦り疵防止のために冷却管2の間にガイドローラー35を設置している。   When incorporating as an intermediate cooling device for an existing rolling line, the device is bent to fit the line as shown in FIG. Although the figure shows an example of bending with the same curvature, the bending method may be a combination of a plurality of curvatures, a combination of bending in the horizontal and vertical directions, or a combination with a straight line. In the figure, a guide roller 35 is installed between the cooling pipes 2 to prevent scuffing.

図6に既設圧延ラインに中間冷却装置を設置する例を示す。図6(a)は本発明を用いない例であり、水冷装置は直線になるため、所定の冷却長さを得るため、中間圧延機37間の曲がりトラフの延長を行っており、この結果、設置に必要なスペースが大きくなっている。これに対し図5(b)は本発明を用いた例であり、水冷装置は中間圧延機37の間に当初からあった曲がりトラフに置き換えて設置することができており、本発明を用いない場合に比べ設置スペースの拡大は抑えられ、費用が小さく済んでいる。   FIG. 6 shows an example in which an intermediate cooling device is installed in an existing rolling line. FIG. 6 (a) is an example in which the present invention is not used, and since the water cooling device is a straight line, the bending trough is extended between the intermediate rolling mills 37 in order to obtain a predetermined cooling length. The space required for installation has increased. On the other hand, FIG. 5B is an example using the present invention, and the water-cooling device can be installed in the middle rolling mill 37 in place of the bent trough that was originally provided, and the present invention is not used. Compared with the case, the expansion of the installation space is suppressed and the cost is reduced.

本発明は、普通鋼、合金鋼、ステンレス鋼等を熱間連続圧延して、円形断面の棒材、線材等の線条材に成形する工程において、圧延途中または圧延終了後の線条材を水等の冷却媒体により冷却する冷却装置等に有用である。   The present invention is a method of continuously rolling hot steel, alloy steel, stainless steel, etc. into a wire rod such as a rod having a circular cross section, a wire rod, etc. It is useful for a cooling device that cools with a cooling medium such as water.

(a)は、本発明による冷却装置の一実施例を側面図にて模式的に説明する図であり、図1(b)は、本発明による冷却装置における温度計測の一実施例を模式的に説明する図である。(A) is a figure which illustrates typically one Example of the cooling device by this invention in a side view, FIG.1 (b) is typical of one Example of the temperature measurement in the cooling device by this invention. FIG. (a)は、本発明による冷却装置に組み込む冷却管の一実施例を側面断面図にて模式的に説明する図であり、(b)は、本発明による冷却管に組み込む仕切り板の一実施例を模式的に説明する図である。(A) is a figure which illustrates typically one Example of the cooling pipe incorporated in the cooling device by this invention with a sectional side view, (b) is one implementation of the partition plate incorporated in the cooling pipe by this invention It is a figure which illustrates an example typically. 本発明による冷却装置の一実施例を正面断面図および配管系統図にて模式的に説明する図である。It is a figure which illustrates typically one Example of the cooling device by this invention with front sectional drawing and piping system diagram. 2対のロールによる圧延を模式的に説明する図である。It is a figure which illustrates typically rolling by two pairs of rolls. 本発明による曲がり部を持つ冷却装置の一実施例を平面図にて模式的に説明する図である。It is a figure which illustrates typically one Example of the cooling device with a bending part by this invention with a top view. (a)は、本発明を用いずに既設圧延ラインに中間冷却装置を設置した例を模式的に説明する図であり、(b)は、本発明を用いて既設圧延ラインに中間冷却装置を設置した例を模式的に説明する図である。(A) is a figure which illustrates typically the example which installed the intermediate cooling device in the existing rolling line, without using this invention, (b) is an intermediate cooling device in the existing rolling line using this invention. It is a figure which illustrates the example installed.

符号の説明Explanation of symbols

1 冷却装置
2 冷却管
3 圧延材
4 架台
5 (出側)ボディ
6 (入側)ボディ
7 出側冷却管
8 入側冷却管
9 仕切り板
10 接続用配管
11 冷却媒体本管
12 圧力調整弁
13 流量計
14 流量調整弁
15 三方弁
16 気体本管
17 圧力調整弁
18 流量計
19 流量調整弁
20 遮断弁
21 逆止弁
22 温度計
31 ロール
32 圧延前の材料形状
33 圧延材において孔型に拘束される部位
34 圧延材において孔型に拘束されない部位
35 ガイドローラー
36 粗圧延機群
37 中間圧延機群
38 シャー
39 仕上圧延機群
40 加熱炉
K 内部空間
P 通路
T 吹き出し口
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Cooling pipe 3 Rolled material 4 Base 5 (Exit side) Body 6 (Incoming side) Body 7 Outlet cooling pipe 8 Inlet side cooling pipe 9 Partition plate 10 Connection pipe 11 Cooling medium main pipe 12 Pressure adjusting valve 13 Flow meter 14 Flow adjustment valve 15 Three-way valve 16 Gas main pipe 17 Pressure adjustment valve 18 Flow meter 19 Flow adjustment valve 20 Shut-off valve 21 Check valve 22 Thermometer 31 Roll 32 Material shape before rolling 33 Restrained to hole shape in rolling material 34 Part to be Rolled and Not Restrained by Hole Type 35 Guide Roller 36 Coarse Rolling Mill Group 37 Intermediate Rolling Mill Group 38 Shear 39 Finishing Roller Group 40 Heating Furnace K Internal Space P Passage T Outlet

Claims (8)

内部空間を走行通過する熱間圧延線条材を冷却媒体で強制冷却する冷却管を備えた、熱間圧延線条材の冷却装置において、前記冷却管が周方向に複数に区分され、該区分毎に、冷却媒体の供給系統を有することを特徴とする、熱間圧延線条材の冷却装置。 In the cooling apparatus for hot-rolled wire rods, which is provided with a cooling tube that forcibly cools the hot-rolled wire rods passing through the internal space with a cooling medium, the cooling tubes are divided into a plurality in the circumferential direction. A cooling device for hot-rolled wire rods, characterized in that each has a supply system for a cooling medium. 前記冷却媒体が液体であり、前記冷却媒体の供給系統毎に、該液体に気体を任意の比率で混合させる気体送風系統を有することを特徴とする、請求項1に記載の熱間圧延線条材の冷却装置。 The hot rolling filament according to claim 1, characterized in that the cooling medium is a liquid and has a gas blowing system for mixing a gas with the liquid at an arbitrary ratio for each supply system of the cooling medium. Material cooling device. 前記冷却装置の入側および/または出側に、前記冷却管の複数の区分のうちの少なくとも2以上の区分に各々対応する部分についての圧延材の表面温度を計測する温度計を配設することを特徴とする、請求項1または2に記載の熱間圧延線条材の冷却装置。 A thermometer for measuring the surface temperature of the rolled material for portions corresponding to at least two or more of the plurality of sections of the cooling pipe is disposed on the entry side and / or the exit side of the cooling device. The apparatus for cooling a hot-rolled wire rod according to claim 1 or 2, characterized in that: 圧延材のパスラインが所定の曲率または漸次変化する曲率を有するように、前記冷却管が前記冷却装置内に1台または連続する複数台配設されていることを特徴とする、請求項1〜3のいずれかに記載の熱間圧延線条材の冷却装置。 One or a plurality of continuous cooling pipes are disposed in the cooling device so that a pass line of the rolled material has a predetermined curvature or a gradually changing curvature. The hot-rolled wire rod cooling device according to any one of 3 above. 内部空間を走行通過する熱間圧延線条材を冷却媒体で強制冷却する冷却管を備えた冷却装置による熱間圧延線条材の冷却方法において、熱間圧延線条材の周方向の温度偏差を解消するように、圧延材の周方向を複数に区分して、該区分毎に、冷却条件を制御することを特徴とする、熱間圧延線条材の冷却方法。 In the method of cooling a hot-rolled wire rod by a cooling device equipped with a cooling pipe that forcibly cools the hot-rolled wire rod passing through the internal space with a cooling medium, the temperature deviation in the circumferential direction of the hot-rolled wire rod The method for cooling a hot-rolled wire rod is characterized in that the circumferential direction of the rolled material is divided into a plurality of sections so as to eliminate the problem, and the cooling conditions are controlled for each of the sections. 前記冷却媒体が液体であり、前記冷却の区分毎に、該液体と気体を任意の比率で混合させることにより前記冷却条件を制御することを特徴とする、請求項5に記載の熱間圧延線条材の冷却方法。 The hot rolling line according to claim 5, wherein the cooling medium is a liquid, and the cooling condition is controlled by mixing the liquid and gas at an arbitrary ratio for each of the cooling sections. A method of cooling the strip. 前記冷却装置の入側および/または出側で、前記冷却管の複数の区分のうちの少なくとも2以上の区分に各々対応する部分についての圧延材の表面温度を計測し、その計測結果に基づいて、前記冷却条件を制御することを特徴とする、請求項5または6に記載の熱間圧延線条材の冷却方法。 On the entry side and / or exit side of the cooling device, the surface temperature of the rolled material is measured for portions corresponding to at least two or more of the plurality of sections of the cooling pipe, and based on the measurement results The method for cooling a hot-rolled wire rod according to claim 5 or 6, wherein the cooling condition is controlled. 圧延材のパスラインが所定の曲率または漸次変化する曲率を有するように前記冷却装置内に1台または連続する複数台配設された前記冷却管内を、圧延材を曲げて走行通過させながら冷却することを特徴とする、請求項5〜7のいずれかに記載の熱間圧延線条材の冷却方法。 Cooling is performed while the rolling material is bent and passed through the cooling pipe disposed in the cooling device so that the pass line of the rolling material has a predetermined curvature or a gradually changing curvature. The method for cooling a hot-rolled wire rod according to any one of claims 5 to 7, wherein
JP2006283305A 2006-10-18 2006-10-18 Apparatus and method for cooling hot-rolled wire material Withdrawn JP2008100245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283305A JP2008100245A (en) 2006-10-18 2006-10-18 Apparatus and method for cooling hot-rolled wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283305A JP2008100245A (en) 2006-10-18 2006-10-18 Apparatus and method for cooling hot-rolled wire material

Publications (1)

Publication Number Publication Date
JP2008100245A true JP2008100245A (en) 2008-05-01

Family

ID=39434961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283305A Withdrawn JP2008100245A (en) 2006-10-18 2006-10-18 Apparatus and method for cooling hot-rolled wire material

Country Status (1)

Country Link
JP (1) JP2008100245A (en)

Similar Documents

Publication Publication Date Title
CN101678419B (en) Device for impact Temperature Distribution on width
JP4735784B1 (en) Hot rolled steel sheet manufacturing apparatus and hot rolled steel sheet manufacturing method
EP2939751B1 (en) Cooling method and cooling device for hot-rolled steel strip
KR20080034966A (en) Hot rolling facility of steel plate and hot rolling method
KR0159121B1 (en) Metal band cooling apparatus and cooling method thereof
EP3730633A1 (en) Cooling device and cooling method for thick steel sheet, and production equipment and production method for thick steel sheet
US11413670B2 (en) Cooling device and cooling method of hot-rolled steel sheet
TWI731415B (en) Cooling device for hot-rolled steel sheet and cooling method for hot-rolled steel sheet
JP7541141B2 (en) Method for cooling long products using a device for cooling long products
JP2008100245A (en) Apparatus and method for cooling hot-rolled wire material
KR102629986B1 (en) Secondary cooling device and secondary cooling method for continuous casting cast steel
CA1314602C (en) Method and system for suppressing fluctuation of width in hot rolled strip or sheet metal
TWI445581B (en) Manufacturing apparatus of hot-rolled steel sheet and manufacturing method of hot-rolled steel sheet
CN104959387A (en) Rod and wire controlled cooling device after rolling
US10350659B2 (en) Cooling method and cooling apparatus for hot-rolled steel sheet
EP2682203A2 (en) Blocking element, roll line &amp; continuous casting apparatus
JP3284934B2 (en) High-temperature metal plate cooling system
JP7151265B2 (en) Cooling device for hot-rolled steel sheet and method for cooling hot-rolled steel sheet
CN202224452U (en) Cooling device capable of generating flat jet
KR100236172B1 (en) Control apparatus of wire rod cooling zone temperature
JPS6233005B2 (en)
KR20030053097A (en) Device for cooling of hot rolled wire rode
CN213530190U (en) Cooling element
KR20120071711A (en) Cooling header
JPS6320892B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100105