JPS6320892B2 - - Google Patents
Info
- Publication number
- JPS6320892B2 JPS6320892B2 JP59132896A JP13289684A JPS6320892B2 JP S6320892 B2 JPS6320892 B2 JP S6320892B2 JP 59132896 A JP59132896 A JP 59132896A JP 13289684 A JP13289684 A JP 13289684A JP S6320892 B2 JPS6320892 B2 JP S6320892B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- water
- steel
- steel material
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 claims description 159
- 229910000831 Steel Inorganic materials 0.000 claims description 71
- 239000010959 steel Substances 0.000 claims description 71
- 239000000463 material Substances 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000498 cooling water Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 18
- 238000005096 rolling process Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000004781 supercooling Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000004804 winding Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000011276 addition treatment Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0224—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for wire, rods, rounds, bars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
- C21D9/5732—Continuous furnaces for strip or wire with cooling of wires; of rods
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、熱間圧延鋼材に水を噴射して、均一
高冷却能をもたらす冷却方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cooling method that provides uniform high cooling performance by injecting water onto a hot rolled steel material.
(従来技術)
近年、組織の微細化と材質の強靭性を図る新技
術として、合金添加や熱処理によらない制御圧延
技術が一般化してきている。この技術は、熱間圧
延工程を単なる成形プロセスとしてでなく、加工
熱処理プロセスとして積極的に活用しようとする
もので、省資源、省工程、省エネルギーを図りな
がら、高付加価値製品を大量に合理的に製造する
技術である。(Prior Art) In recent years, controlled rolling technology that does not rely on alloy addition or heat treatment has become popular as a new technology for making microstructures finer and materials tougher. This technology actively utilizes the hot rolling process not just as a forming process, but also as a processing heat treatment process, which allows for the production of high value-added products in large quantities in a rational manner while conserving resources, processes, and energy. This is a manufacturing technology.
更に最近になつて、厚板では制御圧延後の冷却
を、材質向上に利用する制御冷却技術が開発され
るに至り、溶接性、靭性を損なうことなく高強度
の鋼材を得ることが可能となつた。当然のことな
がら、本技術は棒線材部門においても同様な効果
をもたらすことは明らかであることから、最近の
新設圧延機はこれらの制御圧延が実施できるよう
に、ミルモーターパワーの大きなものを設置して
きている。 Furthermore, in recent years, controlled cooling technology has been developed that utilizes cooling after controlled rolling for thick plates to improve material quality, making it possible to obtain high-strength steel materials without sacrificing weldability or toughness. Ta. Naturally, it is clear that this technology will have similar effects in the rod and wire rod sector, so recently new rolling mills have been installed with large mill motor power to enable controlled rolling. I've been doing it.
しかし、最近の細径線材の仕上速度は90〜110
m/Sにもおよぶ高速となるため、従来のままの
冷却時間では、冷却ゾーンが非常に長くなり、通
材性の問題を引き起す。従つて、短時間で制御冷
却しようとすれば、均一高冷却能の冷却技術が必
要になる。 However, the finishing speed of recent small diameter wires is 90 to 110
Since the cooling speed is as high as m/s, the cooling zone becomes extremely long if the conventional cooling time is used, causing problems with material passing. Therefore, if controlled cooling is to be achieved in a short period of time, a cooling technology with uniform and high cooling performance is required.
従来から、鋼材(特に棒線材)の冷却装置とし
て、種々のものが提案されているが、(特公昭46
−39569号,特公昭51−20283号,特公昭52−
35007号,特公昭52−49401号,特公昭56−44935
号,特公昭56−48566号,実公昭52−18998号,実
公昭55−41813号)冷却水の水量密度と冷却ムラ
及び冷却装置の複数配置等の関係において、体系
付けられていないため、これらの冷却装置のみで
は均一高冷却能は望めない状況にあつた。均一高
冷却が達成できない理由を、第7図の従来から用
いられている冷却装置により説明する。 Various cooling devices have been proposed for steel materials (particularly rods and wire rods).
−39569, Special Publication No. 51-20283, Special Publication No. 52-
No. 35007, Special Publication No. 52-49401, Special Publication No. 56-44935
No., Special Publication No. 56-48566, Publication No. 18998, Japanese Publication No. 41813) Because there is no systematization regarding the relationship between cooling water volume density, cooling unevenness, and multiple locations of cooling devices, etc. The situation was such that uniform and high cooling performance could not be expected with only the cooling device. The reason why uniform high cooling cannot be achieved will be explained using a conventionally used cooling device shown in FIG.
第7図において1は内管、2は外管、3は冷却
水、4は孔、5は鋼材、6は単位冷却装置を表わ
す。 In FIG. 7, 1 is an inner tube, 2 is an outer tube, 3 is a cooling water, 4 is a hole, 5 is a steel material, and 6 is a unit cooling device.
このような冷却装置で鋼材を冷却する際、鋼材
5が内管1内で偏ると、内管1に設けられた孔4
あるいはスリツトからの噴射水が、鋼材の周方向
で水量および動圧が変化し冷却ムラを引起す。更
に極端な偏りが生じると、内管壁と鋼材の隙間部
分に冷却水が入り込めず、その部分は著るしく冷
却能が低下することになる。従つて、鋼材5を単
位冷却装置6の内管1内にセンターリングして冷
却することが、均一冷却の基本的要因である。 When cooling a steel material with such a cooling device, if the steel material 5 is uneven in the inner tube 1, the hole 4 provided in the inner tube 1
Alternatively, the amount of water and dynamic pressure of the water jetted from the slit changes in the circumferential direction of the steel material, causing uneven cooling. If even more extreme deviation occurs, cooling water will not be able to enter the gap between the inner pipe wall and the steel material, and the cooling capacity will be significantly reduced in that area. Therefore, centering and cooling the steel material 5 within the inner tube 1 of the unit cooling device 6 is a fundamental factor for uniform cooling.
しかし、冷却装置の内管は通材性を考慮して、
鋼材径より大きくして、1つの冷却装置で数種の
径の異なる鋼材の冷却を行なうのが一般的である
ので、従来のままの単位冷却装置6を、単に鋼材
の進行方向に直列に連続配置するだけでは、鋼材
径の変化あるいは搬送速度の変化によつて、鋼材
が内管1内で偏ることになり、冷却ムラを生じる
ことになる。 However, the inner tube of the cooling device is designed in consideration of material permeability.
Generally, the diameter of the steel material is larger than that of the steel material, and several kinds of steel materials with different diameters are cooled with one cooling device. If they are simply arranged, the steel material will become uneven within the inner tube 1 due to a change in the steel material diameter or a change in the conveyance speed, resulting in uneven cooling.
このように、同一種類の単位冷却装置が、直列
に連続配置される冷却装置で、数種の異なる径の
鋼材を均一冷却するには、第8図に示す単位冷却
装置6の前後で、鋼材5のセンターリングを可能
ならしめる可動誘導ガイド7の設置、又は鋼材の
偏りに合せて冷却装置も移動させる可動式冷却装
置の設置、更にはピンチローラ8等を独立に取付
けるか、又は組合せて取付けるかしてセンターリ
ングする方法がある。 In this way, in order to uniformly cool several types of steel materials with different diameters using a cooling device in which unit cooling devices of the same type are consecutively arranged in series, it is necessary to cool the steel materials before and after the unit cooling device 6 shown in FIG. Installation of a movable guide guide 7 that enables centering of 5, installation of a movable cooling device that moves the cooling device according to the unevenness of the steel material, and installation of pinch rollers 8 etc. independently or in combination. There is a method of centering.
しかし、この対策はガイド7や冷却装置を可動
させ、強制的にセンターリングしようとするもの
で、鋼材5はこれらとの接触でスリ疵となる問題
がある。又、ピンチローラ8を用いる方式も、仕
上速度の高速化に伴ない、ロール径を大きくして
回転数を低下させ、ベアリングの摩耗等に対応し
なければならない等の問題があるため、品質、費
用、メンテナンス上のデメリツトがある。 However, this measure attempts to forcibly center the guide 7 and the cooling device by moving the guide 7 and the cooling device, and there is a problem that the steel material 5 becomes scratched when it comes into contact with these. In addition, the method using pinch rollers 8 also has problems such as the need to increase the diameter of the roll and reduce the number of revolutions as the finishing speed increases, as well as to deal with wear of the bearings. There are disadvantages in terms of cost and maintenance.
(発明が解決しようとする問題点)
本発明は、かかる問題点を有利に解決するため
になされたもので、鋼材を冷却装置にセンターリ
ングしなくても均一冷却できる方法であり、従来
技術ではなし得ない制御圧延、制御冷却を行なう
上で、欠くことのできない均一高冷却能を与える
冷却方法を提供するものである。(Problems to be Solved by the Invention) The present invention has been made to advantageously solve these problems, and is a method that allows uniform cooling of steel materials without centering them in a cooling device, which is not possible in the prior art. The object of the present invention is to provide a cooling method that provides uniform and high cooling performance, which is indispensable for performing controlled rolling and controlled cooling.
(問題点を解決するための手段、作用) 以下に本発明を図面を用いて詳細に説明する。(Means and actions for solving problems) The present invention will be explained in detail below using the drawings.
本発明者らは第7図に示すような内管1と外管
2との間に水3を供給し、かつ内管に複数の孔4
あるいはスリツトを設け、ここから管内を通過す
る鋼材5に水を噴射して冷却する装置において、
単位冷却装置6が、第8図のように鋼材の進行方
向に直列に連続配置される場合の冷却ムラおよび
冷却能は、水量密度と鋼材温度に一定の関係があ
ることを見い出した。 The present inventors supplied water 3 between an inner tube 1 and an outer tube 2 as shown in FIG. 7, and provided a plurality of holes 4 in the inner tube.
Alternatively, in a device that provides a slit and injects water to the steel material 5 passing through the pipe to cool it,
It has been found that the cooling unevenness and cooling capacity when the unit cooling devices 6 are arranged continuously in series in the traveling direction of the steel material as shown in FIG. 8 have a certain relationship between the water density and the steel material temperature.
第1図に示すように、鋼材を冷却管内中心部に
安定して保持した場合は、水量密度(単位時間、
被冷却材の単位表面積当りの冷却水量)にほとん
ど影響されずに均一冷却が可能であるが、鋼材が
冷却管内で偏ると、水量密度250m3/h,m2以下
で急激に冷却ムラが生じる。 As shown in Figure 1, when the steel material is stably held in the center of the cooling pipe, the water density (unit time,
Uniform cooling is possible almost unaffected by the amount of cooling water per unit surface area of the material to be cooled. However, if the steel material is uneven in the cooling pipe, cooling becomes suddenly uneven when the water density is less than 250m 3 /h, m 2 .
すなわち、鋼材が冷却装置内管と接触しない程
度、好ましくは2〜10mmの間隙にして、第1図に
示すように、水量密度250m3/h,m2以上となる
ように冷却水を供給することで、均一高冷却能を
得ることが可能である。ここで、水量密度250
m3/h,m2以上と限定した理由は、大量の冷却水
を単位冷却装置6に供給し、鋼材周囲を冷却水で
完全に包囲し、鋼材周囲に一定の冷却水厚みを確
保することで、ノズルからの噴射冷却水が直接鋼
材に衝突して生じる衝突部分の面積を押し広げ、
周方向水量密度分布を均一にする役目と、鋼材表
面と冷却水の境膜熱伝達率を安定させる役目をな
している。 That is, the cooling water is supplied so that the steel material does not come into contact with the inner tube of the cooling device, preferably with a gap of 2 to 10 mm, and the water density is 250 m 3 /h, m 2 or more, as shown in Figure 1. By doing so, it is possible to obtain uniform and high cooling performance. Here, the water density is 250
The reason why it is limited to m 3 /h, m 2 or more is to supply a large amount of cooling water to the unit cooling device 6, completely surround the steel material with cooling water, and ensure a constant thickness of cooling water around the steel material. The cooling water jetted from the nozzle directly collides with the steel material, expanding the area of the collision area.
Its role is to make the water density distribution uniform in the circumferential direction and to stabilize the film heat transfer coefficient between the steel surface and the cooling water.
更に大量の高圧冷却水で、ノズルから噴射しな
がら冷却装置に充満させることで、鋼材が冷却装
置内で偏心するのを防止する役目も持つており、
前記効果との相乗効果で、鋼材の周方向水量密度
分布はますます均一化され、又冷却装置ノズルか
らの周方向噴出水量分布も均一化されるので、そ
の均一冷却性能の向上は著るしい。 Furthermore, by filling the cooling system with a large amount of high-pressure cooling water while spraying it from the nozzle, it also serves to prevent the steel from becoming eccentric within the cooling system.
Due to the synergistic effect with the above effects, the circumferential water density distribution of the steel material becomes more and more uniform, and the circumferential water volume distribution from the cooling device nozzle is also made uniform, so the uniform cooling performance is significantly improved. .
又冷却能は、鋼材表面温度との関数となるが、
600〜1000℃の範囲であれば、熱伝達率は水量密
度のみの関数として表わされることも、実験的に
確認した。水量密度の増加は、冷却水噴流による
衝突部分の運動量を大きくすると共に、冷却装置
内冷却水の滞留時間を短かくし、鋼材周囲の境膜
水温を下げて、この部分の伝熱抵抗を小さくする
ので、冷却能が増加すると考えられる。 Also, the cooling capacity is a function of the steel surface temperature,
It was also experimentally confirmed that in the range of 600 to 1000°C, the heat transfer coefficient is expressed as a function only of water density. Increasing the water density increases the momentum of the collision part caused by the cooling water jet, shortens the residence time of the cooling water in the cooling device, lowers the film water temperature around the steel material, and reduces the heat transfer resistance in this part. Therefore, it is thought that the cooling capacity increases.
次に鋼材温度と冷却能の関係について述べる。
第2図は工場の全体レイアウトで、NTブロツク
ミル前後に設置した、#1冷却ゾーン9及び#2
冷却ゾーン10で鋼材を冷却する場合のレイアウ
トである。図において、加熱炉30、粗圧延機3
1、中間圧延機32、第1仕上圧延機33、第2
仕上圧延機34、NTブロツクミル35を示す、
このようなレイアウトの既設ミルに、制御圧延、
制御冷却を適用しようとすれば、前後設備の関係
から、冷却ゾーン長さは制限されるので、冷却装
置の仕様には均一高冷却能が要求され、前記本発
明の適用が必要となる。 Next, we will discuss the relationship between steel material temperature and cooling capacity.
Figure 2 shows the overall layout of the factory, with #1 cooling zone 9 and #2 cooling zone installed before and after the NT block mill.
This is a layout when steel material is cooled in the cooling zone 10. In the figure, a heating furnace 30, a rough rolling mill 3
1, intermediate rolling mill 32, first finishing mill 33, second rolling mill
Showing a finishing rolling mill 34 and an NT block mill 35,
An existing mill with such a layout is equipped with controlled rolling,
If controlled cooling is to be applied, the length of the cooling zone is limited due to the relationship between the front and rear equipment, so the specifications of the cooling system require a uniform high cooling capacity, which necessitates application of the present invention.
又NTブロツクミル後の#2冷却ゾーンの長さ
は、鋼材の腰折れ等の問題から、最大45m程度が
限界とも言われ、新設、既設改造に関係なく、非
常に厳しい均一高冷却能が要求され、前記同様本
発明の適用が望まれる。従来法におけるNTブロ
ツクミル後の冷却ゾーン長さは、その生産量との
比、即ち冷熱ゾーン長さ(m)/生産量(T/
H)が0.55〜0.66(m/T/H)の範囲であつた
が、仕上速度が90m/S以上になると、上記関係
が0.4(m/T/H)前後となることから、鋼材表
面の過冷限界温度以上を保持しつつ、目標の巻取
温度まで冷却するには、従来技術で対応できない
状況になつている。 In addition, the length of the #2 cooling zone after the NT block mill is said to be limited to a maximum of 45 m due to problems such as bending of the steel material, and regardless of whether it is a new construction or an existing modification, extremely uniform and high cooling performance is required. Similar to the above, application of the present invention is desired. In the conventional method, the length of the cooling zone after NT block milling is the ratio to the production volume, that is, the length of the cooling zone (m)/production volume (T/
H) was in the range of 0.55 to 0.66 (m/T/H), but when the finishing speed exceeds 90 m/S, the above relationship becomes around 0.4 (m/T/H), so the steel surface The situation is such that the conventional technology cannot cope with cooling to the target winding temperature while maintaining the supercooling limit temperature or higher.
ここで過冷限界温度とは、第3図に示すa線を
指し、冷却鋼材に異常組織冷却ワレなどを生じさ
せない最低限度温度であり、目標巻取温度はb線
を指す。 Here, the supercooling limit temperature refers to the line a shown in FIG. 3, which is the minimum temperature that does not cause abnormal structure cooling cracks in the cooled steel material, and the target winding temperature refers to the line b.
そこで、冷却ゾーンの最短長さを追求して、目
標鋼材温度を達成する必要が生じる。第3図は理
論最短長さを求めるための概念図である。理論最
短長さlは、冷却ゾーンで冷却開始と共に鋼材表
面熱伝達率無限大で冷却し、鋼材表面温度が、過
冷限界温度aに達した時点で、その温度を保持す
るため、鋼材内部からの復熱により、温度上昇す
るのを防ぐ程度に緩冷却し、鋼材の平均温度が目
標温度bになるまでに要する長さlと定義するこ
とができる。l′は熱伝達率無限大で冷却する区間
である。 Therefore, it is necessary to pursue the shortest length of the cooling zone to achieve the target steel material temperature. FIG. 3 is a conceptual diagram for determining the theoretical shortest length. The theoretical shortest length l is determined by cooling the steel material with an infinite heat transfer coefficient at the start of cooling in the cooling zone, and when the steel material surface temperature reaches the supercooling limit temperature a, in order to maintain that temperature, can be defined as the length l required for the average temperature of the steel material to reach the target temperature b by slow cooling to an extent that prevents the temperature from rising due to the recuperation of the steel material. l′ is the cooling section with infinite heat transfer coefficient.
しかし、実際には鋼材の表面熱伝達率は有限で
あると共に、鋼材表面温度を過冷限界aで保持す
ることも困難である。従つて、実現できる限界最
短長さLは、第4図に示すように、できるだけ多
くの多段冷却を行ない、各冷却ゾーン出口の鋼材
表面温度が略一定になるように制御冷却すること
である。図中Cは実現可能熱伝達率による多段冷
却の表面温度である。この時の一定温度は、過冷
限界温度に対して、計測誤差、制御誤差等を考慮
して、若干の余裕をもたせると良い。又冷却ゾー
ン数は、目標温度に対する計測誤差と、第5図に
示す関係、即ち過冷限界への余裕温度は、ゾーン
分割を増すに従つて大きくなる点を考慮して決定
する。 However, in reality, the surface heat transfer coefficient of steel is finite, and it is also difficult to maintain the steel surface temperature at the supercooling limit a. Therefore, as shown in FIG. 4, the shortest limit length L that can be achieved is to perform as many multi-stage cooling as possible and perform controlled cooling so that the surface temperature of the steel material at the outlet of each cooling zone is approximately constant. In the figure, C is the surface temperature of multistage cooling based on the achievable heat transfer coefficient. It is preferable that the constant temperature at this time has some margin with respect to the supercooling limit temperature, taking measurement errors, control errors, etc. into consideration. The number of cooling zones is determined by taking into account the measurement error with respect to the target temperature and the relationship shown in FIG. 5, that is, the margin temperature to the supercooling limit increases as the number of zones increases.
次に本発明の水量密度250m3/h,m2の単位冷
却装置を、直列に複数個配置した際の冷却方法の
具体例について述べる。 Next, a specific example of a cooling method when a plurality of unit cooling devices of the present invention having a water flow density of 250 m 3 /h, m 2 are arranged in series will be described.
多鋼種、多サイズの製造に対して、単位冷却装
置の水量密度250m3/h,m2以上を確保しながら
均一冷却するには、冷却ゾーンの前工程で鋼材温
度を測定し、その温度と冷却鋼材の仕様、圧延条
件、および冷却条件を計算機に入力し、圧延鋼材
温度予測モデルで、冷却ゾーン入側の鋼材温度を
予測し、使用冷却ゾーンおよび最適水量を求め、
その値をもとに冷却バルブ、冷却水量制御するこ
とにより、仕上速度が高速化しても、従来と大差
ない冷却ゾーン長さで、制御圧延、制御冷却を可
能とする。これを第6図により説明する。 In order to ensure uniform cooling while ensuring a water flow density of 250 m 3 /h, m 2 or more in the unit cooling equipment for manufacturing multiple steel types and sizes, the temperature of the steel material is measured in the pre-process of the cooling zone, and the temperature and temperature are compared. Input the specifications of the cooling steel material, rolling conditions, and cooling conditions into the computer, use the rolled steel material temperature prediction model to predict the temperature of the steel material on the entrance side of the cooling zone, determine the cooling zone to be used and the optimum amount of water,
By controlling the cooling valve and the amount of cooling water based on this value, controlled rolling and controlled cooling can be achieved with the same cooling zone length as before, even if the finishing speed increases. This will be explained with reference to FIG.
第6図は、冷却ゾーンが2個所の場合で、前段
が#1冷却ゾーン9、後段が#2冷却ゾーン10
である。夫々の冷却ゾーンは、第7図、第8図に
示す単位冷却装置6を複数個直列に配置して構成
すると共に、夫々の冷却ゾーンで単位冷却装置を
2つの群、即ち#1冷却ゾーンにおいては9A,
9Bに、又#2冷却ゾーンは10A,10Bとし
て、単位冷却装置群9A,9B,10A,10B
は冷却水の噴出、停止を各々の群内で一斉に行な
うものとする。 Figure 6 shows a case where there are two cooling zones, the first being the #1 cooling zone 9 and the second being the #2 cooling zone 10.
It is. Each cooling zone is constructed by arranging a plurality of unit cooling devices 6 shown in FIGS. 7 and 8 in series, and in each cooling zone, the unit cooling devices are divided into two groups, namely, in the #1 cooling zone. is 9A,
9B, and the #2 cooling zone is 10A, 10B, unit cooling device groups 9A, 9B, 10A, 10B.
The cooling water shall be spouted and stopped simultaneously within each group.
図において11は冷却ゾーン前工程の鋼材温度
計、12は冷却ゾーン後工程の鋼材温度計であ
る。13は制御演算部で通常コンピユーターを使
用する。14は情報設定器であり、冷却対象鋼材
の情報を入力する。15は冷却水送出ポンプ、1
6は本管流量計、17は#1冷却ゾーン流量計、
18は#2冷却ゾーン流量計、19は本管バル
ブ、20は#1冷却ゾーンバルブ、21は#2冷
却ゾーンバルブ、22は#1冷却ゾーンの冷却装
置群9Bのバルブ、23は#2冷却ゾーンの冷却
装置群10Bのバルブ、24は冷却群設定器、2
5は捲取機である。 In the figure, reference numeral 11 indicates a steel thermometer in the pre-process of the cooling zone, and reference numeral 12 indicates a steel thermometer in the post-process of the cooling zone. Reference numeral 13 denotes a control calculation unit which normally uses a computer. Reference numeral 14 denotes an information setting device, into which information on the steel material to be cooled is input. 15 is a cooling water delivery pump, 1
6 is the main flow meter, 17 is the #1 cooling zone flow meter,
18 is the #2 cooling zone flow meter, 19 is the main valve, 20 is the #1 cooling zone valve, 21 is the #2 cooling zone valve, 22 is the valve of the cooling device group 9B of the #1 cooling zone, and 23 is the #2 cooling Valve of zone cooling device group 10B, 24 is cooling group setting device, 2
5 is a winding machine.
鋼材5の冷却時、まず情報設定器14により線
径、圧延速度、鋼種、目標捲取温度等の鋼材仕
様、圧延条件、冷却条件を制御演算部13に入力
する。これと合せて、冷却ゾーン前工程の鋼材温
度計11により、鋼材温度を入力する。これらの
情報をもとに、制御演算部13では、各単位冷却
装置の水量密度が250m3/h,m2以上で、冷却後
の鋼材捲取温度が目標値なる最適冷却条件、即ち
可動単位冷却装置群9A,9B,10A,10B
の選択及び冷却水量の計算を行なう。 When cooling the steel material 5, first, the information setting device 14 inputs steel material specifications such as wire diameter, rolling speed, steel type, target winding temperature, rolling conditions, and cooling conditions to the control calculation section 13. At the same time, the steel material temperature is input using the steel material thermometer 11 in the cooling zone pre-process. Based on this information, the control calculation unit 13 determines the optimum cooling condition where the water density of each unit cooling device is 250 m 3 /h, m 2 or more and the steel material coiling temperature after cooling is the target value, that is, the movable unit. Cooling device group 9A, 9B, 10A, 10B
Select and calculate the amount of cooling water.
この計算結果により本管バルブ19、#1冷却
水バルブ20、#2冷却水バルブ21のON,
OFFを行ない、冷却ゾーンの選択可動及び冷却
群設定器24を介して、冷却装置群バルブ22,
23を操作する。冷却水流量は、本管流量計1
6、#1冷却ゾーン流量計17,#2冷却ゾーン
流量計18により夫々計測し、結果を制御演算部
13に入力する。 Based on this calculation result, the main valve 19, #1 cooling water valve 20, and #2 cooling water valve 21 are turned ON.
OFF, and the cooling device group valve 22,
Operate 23. The cooling water flow rate is determined by main flow meter 1.
6. The #1 cooling zone flow meter 17 and the #2 cooling zone flow meter 18 measure the flow rate, respectively, and input the results to the control calculation unit 13.
制御演算部13では設定流量と異なつた値とな
つた時、修正値を各冷却水バルブに出力する。冷
却ゾーン後工程温度計12で測定した鋼材温度
は、制御演算部に入力し、目標捲取温度と比較
し、異なつていれば修正すべく冷却装置群の選択
あるいは冷却水量の変更を行なう。 When the flow rate differs from the set flow rate, the control calculation unit 13 outputs a corrected value to each cooling water valve. The steel material temperature measured by the cooling zone post-process thermometer 12 is input to the control calculation section and compared with the target winding temperature, and if there is a difference, a cooling device group is selected or the amount of cooling water is changed to correct it.
(発明の効果)
本発明により棒、線材の圧延時焼むらのない高
性能の均一冷却が可能で、かつ短かい冷却ゾーン
により、制御冷却が実現できる。(Effects of the Invention) According to the present invention, high-performance uniform cooling without unevenness during rolling of rods and wire rods is possible, and controlled cooling can be realized with a short cooling zone.
第1図は冷却むらと水量密度の関係を表わすグ
ラフ、第2図は棒線材の製造ラインを示す全体説
明図、第3図はクーリングゾーンの理論最短長さ
の説明図、第4図はクーリングゾーンの実現可能
最短長さの説明図、第5図は水冷ゾーン数と過冷
限界への余裕温度との関係図表、第6図は本発明
を実施する一例の構成説明図、第7図は従来例の
説明図、第8図は冷却装置を複数個連続して設け
た説明図である。
1:内管、2:外管、3:冷却水、4:孔、
5:鋼材、6:冷却装置、7:誘導ガイド、8:
ピンチローラー、9:#1冷却ゾーン、9A,9
B:単位冷却装置群、10:#2冷却ゾーン、1
0A,10B:単位冷却装置群、11:冷却ゾー
ン前工程温度計、12:冷却ゾーン後工程温度
計、13:制御演算部、14:情報設定部、1
5:冷却水送水ポンプ、16:本管流量計、1
7:#1冷却ゾーン流量計、18:#2冷却ゾー
ン流量計、19:本管バルブ、20:#1冷却ゾ
ーンバルブ、21:#2冷却ゾーンバルブ、2
2,23:冷却装置群バルブ、24:冷却群設定
器、25:捲取機。
Figure 1 is a graph showing the relationship between cooling unevenness and water density, Figure 2 is an overall explanatory diagram showing the production line for rods and wires, Figure 3 is an explanatory diagram of the theoretical shortest length of the cooling zone, and Figure 4 is a diagram showing the cooling zone. Fig. 5 is an explanatory diagram of the shortest possible length of a zone, Fig. 5 is a diagram of the relationship between the number of water cooling zones and the margin temperature to the supercooling limit, Fig. 6 is an explanatory diagram of a configuration of an example of implementing the present invention, and Fig. 7 is an explanatory diagram of the configuration of an example of implementing the present invention. FIG. 8, an explanatory diagram of a conventional example, is an explanatory diagram in which a plurality of cooling devices are successively provided. 1: Inner pipe, 2: Outer pipe, 3: Cooling water, 4: Hole,
5: Steel material, 6: Cooling device, 7: Induction guide, 8:
Pinch roller, 9: #1 cooling zone, 9A, 9
B: Unit cooling device group, 10: #2 cooling zone, 1
0A, 10B: Unit cooling device group, 11: Cooling zone pre-process thermometer, 12: Cooling zone post-process thermometer, 13: Control calculation section, 14: Information setting section, 1
5: Cooling water pump, 16: Main flow meter, 1
7: #1 cooling zone flow meter, 18: #2 cooling zone flow meter, 19: Main valve, 20: #1 cooling zone valve, 21: #2 cooling zone valve, 2
2, 23: Cooling device group valve, 24: Cooling group setting device, 25: Winding machine.
Claims (1)
おいて、被冷却材の単位表面積当りの水量密度が
250m2/h・m2以上の単位冷却装置を鋼材進行方
向に直列に連続配置して冷却することを特徴とす
る鋼材の冷却方法。 2 水冷ゾーンが鋼材の進行方向に直列に複数ゾ
ーン設置される場合において、各水冷ゾーン出口
の鋼材表面温度が略一定になるように冷却制御す
ることを特徴とする特許請求の範囲第1項記載の
鋼材の冷却方法。 3 水冷ゾーンの前工程に設置した鋼材温度計の
出力と、冷却鋼材の仕様、圧延条件および冷却条
件をもとに、圧延鋼材の冷却ゾーン入口の鋼材温
度を予測し、使用冷却ゾーンおよび最適水量を求
め、この値に基づいて各冷却水バルブ、冷却水量
を制御することを特徴とする特許請求の範囲第1
項記載の鋼材の冷却方法。[Claims] 1. In a method of cooling hot rolled steel by injecting water, the water density per unit surface area of the material to be cooled is
A method for cooling steel materials, characterized in that unit cooling devices with a capacity of 250 m 2 /h・m 2 or more are continuously arranged in series in the direction in which the steel materials travel. 2. Claim 1, characterized in that when a plurality of water cooling zones are installed in series in the traveling direction of the steel material, cooling is controlled so that the surface temperature of the steel material at the exit of each water cooling zone is approximately constant. method of cooling steel materials. 3 Based on the output of the steel thermometer installed in the pre-process of the water cooling zone, the specifications of the cooled steel, rolling conditions, and cooling conditions, predict the steel temperature at the entrance of the cooling zone for the rolled steel, and determine the cooling zone to be used and the optimum amount of water. is determined, and each cooling water valve and the amount of cooling water are controlled based on this value.
Method for cooling steel materials as described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13289684A JPS6112830A (en) | 1984-06-29 | 1984-06-29 | Method for cooling steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13289684A JPS6112830A (en) | 1984-06-29 | 1984-06-29 | Method for cooling steel material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6112830A JPS6112830A (en) | 1986-01-21 |
JPS6320892B2 true JPS6320892B2 (en) | 1988-05-02 |
Family
ID=15092078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13289684A Granted JPS6112830A (en) | 1984-06-29 | 1984-06-29 | Method for cooling steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6112830A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4786338A (en) * | 1985-10-31 | 1988-11-22 | Norio Anzawa | Method for cooling rolled steels |
JP3200409B2 (en) * | 1998-04-06 | 2001-08-20 | 愛知株式会社 | Seat stretching method, chair seat and backrest |
US6292990B1 (en) | 1998-04-06 | 2001-09-25 | Aichi Co., Ltd. | Method of spreading a sheet on a frame member and method of manufacturing a chair by the sheet spreading method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493886A (en) * | 1972-05-04 | 1974-01-14 | ||
US4226106A (en) * | 1975-01-03 | 1980-10-07 | Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie | Plants for treating rolled steel products |
JPS56136215A (en) * | 1980-03-29 | 1981-10-24 | Sumitomo Metal Ind Ltd | Method and apparatus for feedback control of water cooling for steel material in rolling line |
JPS57121814A (en) * | 1981-01-21 | 1982-07-29 | Nippon Steel Corp | Temperature controlling method in rolling of wire rod or bar |
-
1984
- 1984-06-29 JP JP13289684A patent/JPS6112830A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493886A (en) * | 1972-05-04 | 1974-01-14 | ||
US4226106A (en) * | 1975-01-03 | 1980-10-07 | Centre De Recherches Metallurgiques-Centrum Voor Research In De Metallurgie | Plants for treating rolled steel products |
JPS56136215A (en) * | 1980-03-29 | 1981-10-24 | Sumitomo Metal Ind Ltd | Method and apparatus for feedback control of water cooling for steel material in rolling line |
JPS57121814A (en) * | 1981-01-21 | 1982-07-29 | Nippon Steel Corp | Temperature controlling method in rolling of wire rod or bar |
Also Published As
Publication number | Publication date |
---|---|
JPS6112830A (en) | 1986-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100233700B1 (en) | A method of preparing a steel pipe, an apparatus thereof and a steel pipe | |
US4528834A (en) | Reduced energy consumption method for rolling bars or wire rods | |
JP2952625B2 (en) | Water cooling control method for steel bars and wires | |
EP0715550B1 (en) | Rolling of metal strip | |
JPS6320892B2 (en) | ||
JP3178370B2 (en) | Temperature control method in hot continuous rolling of steel pipe. | |
JP2001300628A (en) | Method for cooling joined steel sheet | |
KR19990052505A (en) | High-temperature wire uniform cooling device | |
KR20010064192A (en) | Transversal homogeneous cooling method of hot rolled wire | |
JPS61253112A (en) | Control method for cooling steel plate | |
JPH0216372B2 (en) | ||
JPH0115324B2 (en) | ||
JPH05337505A (en) | Method for controlling cooling of material to be rolled in hot rolling | |
JP3661668B2 (en) | Metal plate manufacturing method and temperature control device | |
JPH0671328A (en) | Controller for cooling hot rolled steel plate | |
CN111589879B (en) | Control method for improving texture uniformity of thick-wall seamless steel tube online cooling process | |
JP2642834B2 (en) | Hot rolling method | |
JPH06190419A (en) | Method for cooling strip | |
JP2001334304A (en) | Device for controlling temperature on outlet side of hot finishing rolling mill | |
JP2002219504A (en) | Hot rolling method and its facilities | |
KR100451823B1 (en) | Slow Cooling Method For Hot Rolled Wire Rod | |
SU584917A1 (en) | Method of controlling the rate of delivery of billets from heating furnaces | |
CN1033842A (en) | Steel billet in the stove is heated to the method for rolling temperature | |
JPH06246331A (en) | Method for cooling hot rolled steel sheet | |
JPS5916526B2 (en) | Outer diameter correction method and device for diameter-sizing machine for seamless steel pipe production |