JP2008100198A - Apparatus for treating harmful gas by using atmospheric-pressure plasma element - Google Patents

Apparatus for treating harmful gas by using atmospheric-pressure plasma element Download PDF

Info

Publication number
JP2008100198A
JP2008100198A JP2006286568A JP2006286568A JP2008100198A JP 2008100198 A JP2008100198 A JP 2008100198A JP 2006286568 A JP2006286568 A JP 2006286568A JP 2006286568 A JP2006286568 A JP 2006286568A JP 2008100198 A JP2008100198 A JP 2008100198A
Authority
JP
Japan
Prior art keywords
gas
atmospheric pressure
cylindrical member
plasma
pressure plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006286568A
Other languages
Japanese (ja)
Inventor
Takeshi Matsumoto
猛史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006286568A priority Critical patent/JP2008100198A/en
Publication of JP2008100198A publication Critical patent/JP2008100198A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slim apparatus for treating a harmful gas by using an atmospheric-pressure plasma element, in which a large quantity of the gas, which is to be treated and is excited by plasma generated by discharging electricity, can be decomposed, synthesized or reformed and which can be used as a dry-cleaning apparatus or an ozone generation apparatus. <P>SOLUTION: The apparatus for treating the harmful gas by using the atmospheric-pressure plasma element is provided with: an external electrode formed by arranging a dielectric layer additionally onto an outer peripheral wall of a cylindrical member through which the gas to be treated can be circulated in atmospheric pressure; and an internal electrode becoming atmospheric-pressure plasma elements arranged successively inside the cylindrical member. The gas to be treated is repeatedly divided from/merged with oxygen while receiving shearing force in the cylindrical member to agitate/mix them and simultaneously the obtained mixture is conveyed to the inner peripheral wall of the cylindrical member and an open part at the rear end of the cylindrical member. Thereby, a high-frequency is applied between the external and internal electrodes to discharge electricity and generate plasma, so that the gas to be treated in the cylindrical member is decomposed, synthesized or reformed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、放電プラズマにより励起された処理対象である例えば有機物質、VOCあるいは繊維状物質等の大流量の有害ガスを分解・合成・改質可能とした大気圧プラズマ素子を使用した有害ガス処理装置に関する。   The present invention relates to a harmful gas treatment using an atmospheric pressure plasma element capable of decomposing, synthesizing and modifying a harmful gas having a large flow rate such as an organic substance, a VOC or a fibrous substance which is a treatment target excited by a discharge plasma. Relates to the device.

従来、この種の大気圧プラズマ反応器を使用した有害ガス処理装置としては、例えば特許文献1に開示されているように、内部に一対の対向電極を備えた大気圧プラズマ用略密閉型のチャンバーが少なくとも2個設けられ、一方のチャンバー内の対向電極間で処理された長尺状の被処理体を他方のチャンバー内の対向電極間で処理するよう連続移行させる移行手段が設けられ、隣り合うチャンバー同志を、内部に少なくとも2個一組の遮断ローラを備えた略密閉型のガス遮断室を介して接続し、長尺状の被処理体を上記一組の遮断ローラの間を各遮断ローラと接した状態で走行させて、一方のチャンバーから他方のチャンバーに導入するように構成されている大気圧プラズマ処理装置がある。   Conventionally, as a harmful gas processing apparatus using this kind of atmospheric pressure plasma reactor, as disclosed in, for example, Patent Document 1, a substantially sealed chamber for atmospheric pressure plasma having a pair of opposed electrodes therein. Are provided, and a transition means is provided for continuously transferring a long object to be processed between the counter electrodes in one chamber so as to be processed between the counter electrodes in the other chamber. The chambers are connected to each other through a substantially hermetic gas blocking chamber having at least two sets of blocking rollers inside, and a long object is connected between the pair of blocking rollers. There is an atmospheric pressure plasma processing apparatus configured to run in a state where it is in contact with and to be introduced from one chamber into the other chamber.

また、特許文献2に開示されているように、内部に搬送された基板の処理を施す反応処理容器を備え、略1気圧の圧力下で生成及び維持される第1のプラズマに前記基板を曝露することによって前記基板の処理を施すと共に、高周波電力が印加されて、前記第1のプラズマを生成及び維持するための高周波磁場を発生する高周波磁場発生部を備え、当該高周波磁場発生部に形成される前記高周波磁場の磁束密度の方向が、前記基板の表面と略垂直であるものとして構成した大気圧プラズマ処理装置がある。   Further, as disclosed in Patent Document 2, a reaction processing container for processing a substrate transported inside is provided, and the substrate is exposed to a first plasma generated and maintained under a pressure of about 1 atm. A high-frequency magnetic field generating unit that generates a high-frequency magnetic field for generating and maintaining the first plasma when high-frequency power is applied while processing the substrate, and is formed in the high-frequency magnetic field generating unit. There is an atmospheric pressure plasma processing apparatus configured such that the direction of the magnetic flux density of the high-frequency magnetic field is substantially perpendicular to the surface of the substrate.

さらに、特許文献3に開示されているように、大気圧又はその近傍の圧力下においてプラズマにより被処理物の表面処理を行うものであって、アースに接続され前記被処理物の表面に対して略直交するように配置された第1電極と、前記第1電極に対向するように配置され前記第1電極との間に放電空間を形成する第2電極と、前記第2電極にマッチング回路を介して接続され前記第2電極に高周波電力を供給する高周波電源および前記放電空間に処理ガスを供給する処理ガス供給手段を有してなる大気圧プラズマ処理装置がある。   Furthermore, as disclosed in Patent Document 3, the surface treatment of the object to be processed is performed by plasma under atmospheric pressure or a pressure near the atmospheric pressure, and the surface of the object to be processed is connected to the ground. A first electrode disposed so as to be substantially orthogonal, a second electrode disposed so as to face the first electrode and forming a discharge space between the first electrode, and a matching circuit for the second electrode There is an atmospheric pressure plasma processing apparatus having a high-frequency power source that supplies high-frequency power to the second electrode and a processing gas supply means that supplies a processing gas to the discharge space.

また、特許文献4に開示されているように、大気圧近傍の圧力下で、処理基材を挟んで一対の電極を備え、該電極間に処理ガスを導入する処理ガス供給手段と、ガスを排気するための処理ガス排気手段とを備えてなり、電圧を印加することにより、前記処理基材にプラズマ処理を施すと共に、少なくとも一方の電極に処理ガス供給口を2つ以上、及び処理ガス排気口を2つ以上設けてなり、かつ該処理ガス供給口及び処理ガス排気口が交互に配設されてなる大気圧プラズマ処理装置がある。   In addition, as disclosed in Patent Document 4, a processing gas supply means for introducing a processing gas between the electrodes, a processing gas supply means including a pair of electrodes sandwiching the processing base material under a pressure near atmospheric pressure, and a gas And a processing gas exhaust means for exhausting, and by applying a voltage, the processing substrate is subjected to plasma processing, and at least one electrode has two or more processing gas supply ports, and processing gas exhaust. There is an atmospheric pressure plasma processing apparatus in which two or more ports are provided and the processing gas supply port and the processing gas exhaust port are alternately arranged.

さらに、特許文献5に開示されているように、固体誘電体で被覆されると共に、所定の間隔を有して配置された一対の電極間に電界が印加され、上記電極間に発生するプラズマによって、大気圧下で被処理基材を処理するプラズマ処理部と、上記プラズマ処理部における上記電極間に処理ガスを供給する処理ガス供給手段と、上記プラズマ処理部および処理ガス供給手段を収納すると共に、上記被処理基材の入口および上記被処理基材の出口を有する筐体と、上記筺体内であって、上記被処理基材の入口および出口の近傍における上記被処理基材よりも上部および下部のうち少なくとも上記上部に設けられ、上記被処理基材側に且つ上記入口側および出口側に向かって斜めに、上記被処理基材の幅方向に亘ってカーテン状にガスを噴き出すガスカーテン部材と、を備えてなる大気圧プラズマ処理装置がある。
特開2004−319224号公報 特開2006−024442号公報 特開2006−048941号公報 特開2006−097105号公報 特開2006−140051号公報
Furthermore, as disclosed in Patent Document 5, an electric field is applied between a pair of electrodes that are covered with a solid dielectric and arranged at a predetermined interval, and plasma generated between the electrodes causes A plasma processing unit for processing a substrate to be processed under atmospheric pressure, a processing gas supply unit for supplying a processing gas between the electrodes in the plasma processing unit, and the plasma processing unit and the processing gas supply unit A housing having an inlet of the substrate to be processed and an outlet of the substrate to be processed; and an upper portion of the casing in the vicinity of the inlet and outlet of the substrate to be processed and above the substrate to be processed; A gas which is provided at least in the upper part of the lower part and which blows out gas in a curtain shape across the width direction of the substrate to be processed, obliquely toward the substrate to be processed and toward the inlet side and the outlet side. There is atmospheric pressure plasma processing device including a curtain member.
JP 2004-319224 A JP 2006-024442 A JP 2006-089441 A JP 2006-097105 A JP 2006-140051 A

しかしながら、従来における大気圧プラズマ反応器を使用した有害ガス処理装置では、基板や電磁放射発生源等を配置させるために、チャンバー・反応室内のスペースを十分に広くする必要があり、高圧電源の制御や操作圧力の制御が非常に困難なものとなる。しかも、製作費用も格段に高くなってしまう。さらに、処理対象ガスの濃度が増加すると放電分解効率が低下し、また、放電分解処理において酸素の供給量が少なくなれば、副生成物は重合反応等が進行し、臭気の強い生成物が多数発生してしまう虞れが有る。   However, in the conventional harmful gas processing apparatus using the atmospheric pressure plasma reactor, it is necessary to widen the space in the chamber and the reaction chamber in order to arrange the substrate, the electromagnetic radiation generation source, etc. And control of the operating pressure becomes very difficult. Moreover, the production cost is also significantly increased. Furthermore, if the concentration of the gas to be treated increases, the discharge decomposition efficiency decreases, and if the supply amount of oxygen decreases in the discharge decomposition treatment, the by-product undergoes a polymerization reaction, etc., and many products with strong odors are produced. There is a risk that it will occur.

そこで、本発明は叙上のような従来存した諸事情に鑑み創出されたもので、処理対象ガスの濃度が増加しても放電分解効率を上げることができ、また、放電分解処理において酸素供給を可能にすることで副生成物の重合反応を阻止でき、しかも低コストで連続稼働させることができると共に、処理対象ガスへの酸素供給量を増加させて、ラジカル化またはイオン化反応を促進させることができるものとなり、これによって放電プラズマにより励起された処理対象ガスを大量で且つ容易に分解・合成・改質可能とし、さらにドライ洗浄装置やオゾン発生装置として使用可能にしたスマートタイプの大気圧プラズマ素子を使用した有害ガス処理装置を提供することを目的とする。   Therefore, the present invention was created in view of the existing circumstances as described above, and can increase the discharge decomposition efficiency even when the concentration of the gas to be processed is increased. By making it possible, the polymerization reaction of by-products can be prevented, and it can be operated continuously at low cost, and the oxygen supply to the gas to be treated is increased to promote radicalization or ionization reaction. This makes it possible to decompose, synthesize, and modify the gas to be processed excited by the discharge plasma in a large amount and easily, and it can be used as a dry cleaning device and an ozone generator. An object of the present invention is to provide a harmful gas processing apparatus using the element.

さらに、VOCガスの分解・無害化処理装置、または種々の有機自然物質・有機化学物質の分解・改質処理装置、またはアスベスト等の微細粒子状物質を回収する装置、またはハイドロカーボン系混合ガスから水素ガスを大量に生成する装置、または酸化反応により生成されるオゾンガス利用の作業環境浄化・改善装置、または農業におけるビニールハウス・栽培工場・室内水耕栽培において炭酸ガス濃度調整および炭酸ガスセンサーとしての装置、または本装置の改質機能利用による資源開発リサイクル装置化等を可能にする等、様々な分野に幅広く応用できるようにすることを目的とする。   Furthermore, from VOC gas decomposition / detoxification treatment equipment, various organic natural / organic chemical decomposition / modification treatment equipment, equipment for collecting fine particulate matter such as asbestos, or hydrocarbon-based mixed gas As a device that produces a large amount of hydrogen gas, a device that purifies and improves the working environment using ozone gas generated by oxidation reaction, or a carbon dioxide gas concentration adjustment and carbon dioxide sensor in greenhouses, greenhouses, and indoor hydroponics in agriculture It is intended to be widely applicable in various fields, such as enabling the development of a resource development / recycling apparatus by utilizing the reforming function of the apparatus or this apparatus.

本発明にあっては、大気圧雰囲気中で処理対象ガスを流通可能とした筒状部材の外周壁に誘電体層を付設してなる外部電極と、該筒状部材の内部に配され、互いに連設された大気圧プラズマ素子となる内部電極とを備え、処理対象ガスと酸素を筒状部材内で剪断力を受けて分割および合流を繰り返すことにより両者が攪拌混合されると同時に筒状部材の内周壁および後方となる端部の開放部へ搬送することにより両電極間に高周波を印加させて放電プラズマを誘起させ、筒状部材内部の処理対象ガスを分解・合成・改質可能とした大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   In the present invention, an external electrode in which a dielectric layer is attached to the outer peripheral wall of a cylindrical member that allows the gas to be treated to flow in an atmospheric pressure atmosphere, and the outer electrode disposed inside the cylindrical member, A cylindrical member that is provided with a continuous internal electrode that serves as an atmospheric pressure plasma element, and that is subjected to shearing force in the cylindrical member and repeatedly splitting and merging the target gas and oxygen, thereby stirring and mixing the two at the same time It is possible to decompose, synthesize, and modify the gas to be treated inside the cylindrical member by inducing discharge plasma by applying a high frequency between both electrodes by conveying it to the open part of the inner peripheral wall and the rear end. It features a harmful gas treatment device using an atmospheric pressure plasma element.

また、大気圧プラズマ素子を、ピン形状の第1羽根部分、フィン形状の第2羽根部分のそれぞれを長手方向に沿って交互に配置してなる大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   Further, the present invention is characterized by a noxious gas treatment apparatus using an atmospheric pressure plasma element in which each of a pin-shaped first blade portion and a fin-shaped second blade portion is alternately arranged along the longitudinal direction. And

さらに、第1羽根部分、第2羽根部分のそれぞれは、互いに円周方向に一定の角度で位相をずらした状態で配置してなる大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   Further, each of the first blade portion and the second blade portion is characterized by a noxious gas treatment apparatus using an atmospheric pressure plasma element arranged in a state where the phases are shifted from each other by a certain angle in the circumferential direction.

また、大気圧プラズマ素子を、円錐部材およびそれに連続一体化された筒部材とより構成し、且つその周側面に時計回り方向となる螺旋形状の線状溝を形成し、螺旋形状の線状溝の形状を反時計回り方向に形成した他の円錐部材および筒部材とを長手方向に沿って交互に配置してなる大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   Further, the atmospheric pressure plasma element is composed of a conical member and a cylindrical member continuously integrated therewith, and a helical linear groove is formed on the peripheral side surface in a clockwise direction, and the helical linear groove is formed. A noxious gas treatment apparatus using an atmospheric pressure plasma element in which other conical members and cylindrical members formed in a counterclockwise direction are alternately arranged along the longitudinal direction.

さらに、大気圧プラズマ素子を、円錐部材およびそれに連続一体化された筒部材とより構成し、且つ筒部材の周側面から放射状に多数の先端膨出ピンが立設されている形状とし、それらの複数個を長手方向に沿って配置してなる大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   Furthermore, the atmospheric pressure plasma element is composed of a conical member and a cylindrical member continuously integrated therewith, and has a shape in which a large number of tip bulge pins are erected radially from the peripheral side surface of the cylindrical member. A noxious gas treatment apparatus using an atmospheric pressure plasma element in which a plurality are arranged along the longitudinal direction is characterized.

また、内部電極は、冷水あるいは冷風が循環可能な軸筒部材によって形成され、該軸筒部材と、プラズマ素子となる内部電極先端でのプラズマ領域との間の温度差で発生する熱起電力により発電可能とするゼーベック効果素子を有してなる大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   The internal electrode is formed of a shaft tube member through which cold water or cold air can circulate, and is generated by a thermoelectromotive force generated by a temperature difference between the shaft tube member and a plasma region at the tip of the internal electrode serving as a plasma element. A noxious gas treatment apparatus using an atmospheric pressure plasma element having a Seebeck effect element capable of generating power is characterized.

さらに、内部電極は、当該内部電極の軸筒部材内を流れる循環流体の低温維持を可能とするペルティエ効果素子を有してなる大気圧プラズマ素子を使用した有害ガス処理装置ことを特徴とする。   Furthermore, the internal electrode is a harmful gas treatment apparatus using an atmospheric pressure plasma element having a Peltier effect element that enables the circulating fluid flowing in the axial tube member of the internal electrode to be maintained at a low temperature.

また、処理対象ガスに過剰な酸素を供給すべく筒状部材に酸素供給源を接続し、放電プラズマ反応と同時進行して、酸素を含む処理対象ガスを放電プラズマにより酸化分解処理を行なうものとした大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   In addition, an oxygen supply source is connected to the cylindrical member to supply excess oxygen to the gas to be processed, and the gas to be processed containing oxygen is subjected to oxidative decomposition treatment by discharge plasma in parallel with the discharge plasma reaction. A noxious gas treatment apparatus using the atmospheric pressure plasma element is characterized.

さらに、前記筒状部材内部での放電プラズマによる励起によってラジカル状になった処理対象ガスを樹脂系基板上の接合部分に吹き付けてドライ洗浄を可能にするプラズマ洗浄装置として使用可能にした大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   Further, atmospheric pressure plasma that can be used as a plasma cleaning device that enables dry cleaning by spraying a gas to be processed, which has been radicalized by excitation by discharge plasma inside the cylindrical member, onto a joint portion on a resin substrate. It features a harmful gas treatment device using elements.

また、大気圧プラズマ装置をオゾン発生装置として使用可能にした大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   In addition, the present invention is characterized by a noxious gas treatment apparatus using an atmospheric pressure plasma element in which the atmospheric pressure plasma apparatus can be used as an ozone generator.

さらに、処理対象ガスの処理後には酸化マンガンにより無害化して回収するものとした大気圧プラズマ素子を使用した有害ガス処理装置を特徴とする。   Further, the present invention is characterized by a noxious gas treatment apparatus using an atmospheric pressure plasma element that is made harmless with manganese oxide and collected after treatment of the gas to be treated.

本発明によれば、処理対象ガスの濃度が増加しても放電分解効率を上げることができ、また、放電分解処理において酸素供給を可能にすることで副生成物の重合反応を阻止でき、しかも低コストで連続稼働させることができると共に、処理対象ガスへの酸素供給量を増加させて、ラジカル化またはイオン化反応を促進させることができるものとなり、これによって放電プラズマにより励起された処理対象ガスを大量で且つ容易に分解・合成・改質可能とし、さらにドライ洗浄装置、オゾン発生装置あるいはアスベスト回収装置等として使用可能にした。   According to the present invention, the discharge decomposition efficiency can be increased even if the concentration of the gas to be processed is increased, and the by-product polymerization reaction can be prevented by enabling oxygen supply in the discharge decomposition treatment. It can be operated continuously at low cost, and the oxygen supply amount to the gas to be processed can be increased to promote radicalization or ionization reaction. As a result, the gas to be processed excited by the discharge plasma can be obtained. It can be easily decomposed, synthesized and reformed in large quantities, and can be used as a dry cleaning device, ozone generator or asbestos recovery device.

すなわち、プラズマ素子となる内部電極は、互いに連設された攪拌手段と筒状部材の内周壁および後方となる開放部への搬送手段を配置してなるので、処理対象ガスの撹拌機能と、処理対象ガスの搬送機能との相乗効果により、当該処理対象ガスの処理能力が向上する。   In other words, since the internal electrode serving as the plasma element is provided with the stirring means connected to each other and the conveying means to the inner peripheral wall of the cylindrical member and the open portion at the rear, the stirring function of the processing target gas and the processing Due to the synergistic effect with the transfer function of the target gas, the processing capacity of the target gas is improved.

また、それらの手段は、互いに円周方向に一定の角度で位相をずらしたり、溝を設けたりすることにより、有害な処理対象ガスを流路内で旋回させると同時に、流路内で剪断力を受けて分割および合流を繰り返すことでキャリアガスと処理対象ガスとが効率良く攪拌混合し、さらに筒状部材の内周壁および後方となる開放部への搬送を効率的に行ない、これによりプラズマ反応と酸化反応とが同時進行するものとなり、したがって、放電プラズマによる酸化分解処理能力が飛躍的に高められるものとなる。   In addition, these means can cause harmful gas to be swirled in the flow path by shifting the phase at a certain angle in the circumferential direction or providing grooves, and at the same time, shear force in the flow path. By repeating the division and merging, the carrier gas and the gas to be processed are efficiently stirred and mixed, and further transported to the inner peripheral wall of the cylindrical member and the open part at the rear, thereby making the plasma reaction And the oxidation reaction proceed at the same time. Therefore, the oxidative decomposition ability by the discharge plasma is remarkably enhanced.

また、内部電極は、冷水あるいは冷風が循環可能な軸筒部材によって形成され、該軸筒部材と、プラズマ素子となる内部電極先端でのプラズマ領域との間の温度差で発生する熱起電力により発電可能とするゼーベック効果素子を有してなるので、プラズマ発生源の予備電源として有効利用することができ、したがって、省エネタイプの有害ガス処理装置を容易に提供することができる。   The internal electrode is formed of a shaft tube member through which cold water or cold air can circulate, and is generated by a thermoelectromotive force generated by a temperature difference between the shaft tube member and a plasma region at the tip of the internal electrode serving as a plasma element. Since the Seebeck effect element that enables power generation is provided, the Seebeck effect element can be effectively used as a backup power source for the plasma generation source. Therefore, an energy-saving harmful gas treatment apparatus can be easily provided.

さらに、内部電極は、当該内部電極の軸筒部材内を流れる循環流体から低温維持を可能とするペルティエ効果素子を有してなるので、該ペルティエ効果素子を介しての軸筒部材内の循環流体の冷却作用により、内部電極の冷却効率が向上する。   Furthermore, since the internal electrode has a Peltier effect element that enables a low temperature to be maintained from the circulating fluid that flows in the axial tube member of the internal electrode, the circulating fluid in the axial tube member through the Peltier effect element The cooling effect of the internal electrode improves the cooling efficiency of the internal electrode.

また、従来のような基板や電磁放射発生源等を配置させるための広いスペースを有するチャンバー・反応室等を必要とせず、また、高圧電源の制御や操作圧力の制御等が不要となるため、有害ガス処理装置自体をスマートタイプにでき、しかも安価に作製することができる。   In addition, it does not require a chamber / reaction chamber having a large space for placing a conventional substrate or electromagnetic radiation generation source, etc., and it is not necessary to control a high voltage power supply or control an operation pressure. The harmful gas treatment apparatus itself can be a smart type and can be manufactured at low cost.

さらに、本発明による装置は、VOCガスの分解・無害化処理装置、または種々の有機自然物質・有機化学物質の分解・改質処理装置、あるいはアスベスト等の繊維状物質を回収する装置、またはハイドロカーボン系混合ガスから水素ガスを大量に生成する装置、または酸化反応により生成されるオゾンガス利用の作業環境浄化・改善装置、または農業におけるビニールハウス・栽培工場・室内水耕栽培において炭酸ガス濃度調整および炭酸ガスセンサーとして利用することができ、しかも、本装置の改質機能利用による資源開発リサイクル装置化等を可能にする。   Furthermore, the apparatus according to the present invention is a VOC gas decomposing / detoxifying apparatus, a decomposing / modifying apparatus for various organic natural substances / organic chemical substances, or an apparatus for recovering fibrous substances such as asbestos, A device that generates a large amount of hydrogen gas from a carbon-based mixed gas, a working environment purification / improvement device that uses ozone gas generated by an oxidation reaction, or a carbon dioxide concentration adjustment and adjustment in greenhouses, cultivation factories, and indoor hydroponics in agriculture It can be used as a carbon dioxide sensor, and enables the development and recycling of resources by utilizing the reforming function of this device.

以下、本発明を実施する最良の形態について図面を参照して説明する。本発明に係る大気圧プラズマ反応器1は、ガラス材料を表面処理した中心金属電極をガラス管内に挿入し、ガラス管外の金属外部電極間に高周波を印加し、ガラス管内壁と中心電極間に非平衡プラズマを誘発させて処理対象ガスをプラズマと接触させることにより、当該処理対象ガスをプラズマ励起とプラズマ領域への強制接触効果で分解するチューブ型プラズマユニット反応器を使用している。   The best mode for carrying out the present invention will be described below with reference to the drawings. The atmospheric pressure plasma reactor 1 according to the present invention inserts a central metal electrode surface-treated with a glass material into a glass tube, applies a high frequency between metal external electrodes outside the glass tube, and between the inner wall of the glass tube and the central electrode. A tube type plasma unit reactor is used that induces non-equilibrium plasma to bring the gas to be processed into contact with the plasma and decomposes the gas to be processed by plasma excitation and a forced contact effect on the plasma region.

図1に示すように、大気圧プラズマ反応器1は、キャリアガスとして大気圧を利用し、例えば有害な有機物質、VOCあるいは繊維状物質等の処理対象ガスを長手方向に沿って通流させる耐熱強化ガラス製の細長でスマートなガラス管である筒状部材の外周壁に誘電体層を付設してなる外部電極2を形成すると共に、当該外部電極2の筒状部材4内部には、プラズマ素子となる互いに連設されたピン形状(一対のピンによる羽根形状(図2(a)参照))の第1羽根部分3a、フィン形状(例えば、竹とんぼの如き任意の捩れ角度を有する一対の羽根形状(図2(b)参照))の第2羽根部分3bのそれぞれを周面長手方向に沿って交互に離隔した状態で配置してなり、内部を冷水あるいは冷風が循環することを可能とした軸筒部材5による内部電極3を備えている。   As shown in FIG. 1, the atmospheric pressure plasma reactor 1 uses an atmospheric pressure as a carrier gas, and has a heat resistance that allows a gas to be treated such as a harmful organic substance, VOC, or fibrous substance to flow along the longitudinal direction. An external electrode 2 is formed by attaching a dielectric layer to the outer peripheral wall of a cylindrical member, which is a slender and smart glass tube made of tempered glass, and a plasma element is formed inside the cylindrical member 4 of the external electrode 2. A first blade portion 3a having a pin shape (a blade shape by a pair of pins (see FIG. 2A)) and a fin shape (for example, a bamboo dragonfly, for example, a pair of blade shapes having an arbitrary twist angle) Each of the second blade portions 3b (see FIG. 2 (b)) is arranged in a state of being alternately spaced along the circumferential direction of the circumferential surface, and a shaft that allows cold water or cold air to circulate inside. By cylinder member 5 And a part electrode 3.

また、軸筒部材5の長手方向に沿って配置されたピン形状の第1羽根部分3a、フィン形状の第2羽根部分3bのそれぞれは、互いに円周方向に30度位相をずらした状態で配置され、全体として螺旋回転状となって隣接配置される。尚、この位相ズレを30度とする替わりに、15度や45度としたり、あるいはランダム位相で配置したりしても良い。   In addition, the pin-shaped first blade portion 3a and the fin-shaped second blade portion 3b disposed along the longitudinal direction of the shaft tube member 5 are disposed with their phases shifted by 30 degrees in the circumferential direction. As a whole, they are spirally rotated and arranged adjacent to each other. Instead of setting this phase shift to 30 degrees, it may be set to 15 degrees, 45 degrees, or arranged in a random phase.

このピン形状の第1羽根部分3aは、処理対象ガスを撹拌させる機能を有し、一方、フィン形状の第2羽根部分3bは、処理対象ガスを筒状部材の内周壁および後方となる開放部へ搬送させる機能を有している。そして、両羽根部分3a,3b同士の間隔をちぢめてあることで処理対象ガスの処理能力を向上させている。すなわち、両羽根部分3a,3b相互の形状の組み合わせにより、導入された処理対象ガスのプラズマ領域への誘導分解効率を高めている。   The pin-shaped first blade portion 3a has a function of stirring the processing target gas, while the fin-shaped second blade portion 3b is an open portion that serves as the inner peripheral wall and the rear side of the cylindrical member. It has the function to convey to. And the processing capability of the gas to be processed is improved by setting the distance between the blade portions 3a and 3b. That is, the induction decomposition efficiency of the introduced gas to be processed into the plasma region is enhanced by the combination of the shapes of the blade portions 3a and 3b.

したがって、両電極2,3間において筒状部材4内部を放電プラズマ反応スペースとしている。そして、筒状部材4内の両電極2,3間に、例えばパルス幅が100〜150kHzの範囲にあるパルス型の高周波電源による印加により非平衡プラズマを誘発させ、処理対象ガスを酸素と共に筒状部材4内に吸引させてプラズマと接触させることで処理対象ガスの酸化分解処理が行なわれた後、筒状部材4の端部開放側から排出されるものとしている。   Therefore, the inside of the cylindrical member 4 is used as a discharge plasma reaction space between the electrodes 2 and 3. Then, non-equilibrium plasma is induced between the electrodes 2 and 3 in the cylindrical member 4 by application of, for example, a pulse type high frequency power source having a pulse width in the range of 100 to 150 kHz, and the gas to be processed is cylindrical with oxygen. The gas to be treated is oxidatively decomposed by being sucked into the member 4 and brought into contact with plasma, and then discharged from the end opening side of the cylindrical member 4.

すなわち、有害な処理対象ガスを流路内で旋回させると同時に、流路内で剪断力を受けて分割および合流を繰り返すことでキャリアガスと処理対象ガスとが効率良く攪拌混合され、これによりプラズマ反応と酸化反応とが同時進行するものとなる。したがって、放電プラズマによる酸化分解処理能力が高められるものとなる。そして、処理対象ガスの処理後には、例えば酸化マンガン等により無害化して回収することができる。   That is, the carrier gas and the gas to be treated are efficiently stirred and mixed by rotating the harmful gas to be treated in the flow path and receiving the shearing force in the flow path and repeating the division and merging. The reaction and the oxidation reaction proceed simultaneously. Therefore, the oxidative decomposition treatment capability by the discharge plasma is enhanced. Then, after the processing of the processing target gas, it can be made harmless with, for example, manganese oxide and recovered.

なお、第1羽根部分3aと第2羽根部分3bとの境界部には孔部(図示せず)が設けられ、当該孔部を第1羽根部分3aの端部と第2羽根部分3bの端部とが約90°の角度で直交するように捩られることで、第1羽根部分3aおよび第2羽根部分3bにより筒状部材4内が2個の流路に仕切られてなる攪拌式の静止型流体混合機により形成されていても良い。   In addition, a hole (not shown) is provided at the boundary between the first blade portion 3a and the second blade portion 3b, and the hole is formed at the end of the first blade portion 3a and the end of the second blade portion 3b. The stirrer type stationary structure in which the inside of the tubular member 4 is partitioned into two flow paths by the first blade portion 3a and the second blade portion 3b by being twisted so as to be orthogonal to the portion at an angle of about 90 °. It may be formed by a mold fluid mixer.

内部電極3の軸筒部材5内には、一端開口部から他端開口部にわたって冷水あるいは冷風が循環可能となるように形成されており、また、内部電極3には、外部電極2に通じるゼーベック効果素子6を備え、冷却される軸筒部材5と両羽根部分3a,3bでのプラズマ領域との間の温度差で発生する熱起電力により発電可能としてある。このゼーベック効果素子6は、2種の異なる金属または半導体の両端を接合して形成され、両接点を異なる温度に保つときに起電力が発生する周知の熱電効果素子である。具体的には、内部電極3の軸筒部材5を約30℃前後とし、両羽根部分3a,3b先端のプラズマ接触外周部を230〜250℃前後とすることで、両部分に約200℃の温度差が得られ、ゼーベック効果素子6により両羽根部分3a,3b相互間に直列で高圧の電流が発生する。   In the shaft cylinder member 5 of the internal electrode 3, cold water or cold air can be circulated from the opening at one end to the opening at the other end, and the internal electrode 3 has a Seebeck leading to the external electrode 2. The effect element 6 is provided, and power generation is possible by the thermoelectromotive force generated by the temperature difference between the shaft member 5 to be cooled and the plasma region in the blade portions 3a and 3b. The Seebeck effect element 6 is a well-known thermoelectric effect element that is formed by joining both ends of two different metals or semiconductors, and generates electromotive force when the two contacts are kept at different temperatures. Specifically, the axial tube member 5 of the internal electrode 3 is set to about 30 ° C., and the plasma contact outer peripheral portion at the tips of the blade portions 3a and 3b is set to about 230 to 250 ° C. A temperature difference is obtained, and the Seebeck effect element 6 generates a high-voltage current in series between the blade portions 3a and 3b.

内部電極3の軸筒部材5には、ペルティエ効果素子7を配してあり、前記ゼーベック効果素子6による熱起電力、もしくは両羽根部分3a,3b相互間に発生する電流等によって吸熱作用が発生し、当該軸筒部材5内を流れる循環冷水あるいは冷風により熱を吸収して当該循環流体の低温維持を可能にすることで、内部電極3自体の冷却効果を高めている。このペルティエ効果素子7は、2種の異なる金属または半導体の接点に電流を通すとき、該接点でジュール熱以外の熱の発生または吸収が起こる周知の熱電効果素子であり、この熱の吸収効果を循環流体の冷却に寄与させるものである。   The axial tube member 5 of the internal electrode 3 is provided with a Peltier effect element 7, and an endothermic action is generated by the thermoelectromotive force generated by the Seebeck effect element 6 or the current generated between the blade portions 3a and 3b. In addition, the cooling effect of the internal electrode 3 itself is enhanced by absorbing heat by circulating cold water or cold air flowing through the shaft cylinder member 5 and allowing the circulating fluid to be maintained at a low temperature. The Peltier effect element 7 is a well-known thermoelectric effect element that generates or absorbs heat other than Joule heat at a contact point between two different metal or semiconductor contacts. This contributes to cooling of the circulating fluid.

また、筒状部材4内部での放電プラズマによる励起によってラジカル化した例えば窒素、酸素、ヘリウム等の処理対象ガスを筒状部材4の端部開放側から放出させ、これを樹脂系基板上の接合部分に吹き付けて、当該基板表面の有機物を二酸化炭素や水に変えてガス化してドライ洗浄を可能にするプラズマ洗浄装置として使用することも可能である。   Further, a processing target gas such as nitrogen, oxygen, and helium that has been radicalized by excitation by discharge plasma inside the cylindrical member 4 is released from the end opening side of the cylindrical member 4 and is bonded to the resin-based substrate. It can also be used as a plasma cleaning device that sprays on a portion and changes the organic substance on the surface of the substrate into carbon dioxide or water to gasify it to enable dry cleaning.

また、筒状部材4に周知の構造による不図示の酸素供給源を接続することにより、処理対象ガスに過剰な酸素を供給するようにしても良い。また、パルス型の高周波電源を使用する替わりに、他の電源を使用することも可能である。さらに、上記した両電極2,3を長さ80cmとしたチューブ型プラズマユニット反応器を並列に設置すると実用性に富むものとなる。   Further, by connecting an oxygen supply source (not shown) having a known structure to the cylindrical member 4, excess oxygen may be supplied to the processing target gas. Further, instead of using the pulse type high frequency power source, it is possible to use another power source. Furthermore, if a tube type plasma unit reactor in which both the electrodes 2 and 3 are 80 cm in length is installed in parallel, it will be practical.

また、上記した静止型流体混合機による攪拌混合原理としては、互いに連設されたピン形状の第1羽根部分3a、フィン形状の第2羽根部分3bのそれぞれ一つのエレメントを通過する毎に二分割される(分割数N=2のn(エレメント数)乗)分割作用と、エレメント内の捩れ面に沿って筒状部材4中央部から壁部へ、また壁部から中央部へと並び替える転換作用と、1エレメント毎に回転方向が替わり、急激な慣性力の反転を受けて乱流攪拌される反転作用それぞれにより2流体を効果的に混合するものである。   Further, the principle of stirring and mixing by the above-described static fluid mixer is divided into two parts each time it passes through one element of each of the pin-shaped first blade portion 3a and the fin-shaped second blade portion 3b connected to each other. Splitting action (division number N = 2 to the power of n (number of elements)) and conversion of rearranging from the central part of the cylindrical member 4 to the wall part and from the wall part to the central part along the torsion surface in the element The two fluids are effectively mixed by the action and the reversal action in which the rotation direction is changed for each element and the turbulent stirring is performed under the sudden reversal of the inertial force.

一般に、筒状部材4内を層流状態となって流れる流体は、壁面との粘性力により壁面位置よりも中央位置の方が速く流れるため、流動中に不均一になり易いのであるが、上記した混合原理に基づけば、筒状部材4内を流れる流体は半径方向に均一化(半径方向に沿っての速度勾配がゼロ)させるものとなる。また、このような大気圧プラズマ素子は、短時間加熱が可能で、熱交換効率や流体の溶解効率等も大幅に向上する。さらに、インライン型連続反応器としても優れた効果を発揮する。   In general, the fluid flowing in a laminar state in the cylindrical member 4 flows more quickly at the center position than at the wall surface due to the viscous force with the wall surface, and thus tends to be non-uniform during flow. Based on the mixing principle, the fluid flowing in the cylindrical member 4 is made uniform in the radial direction (the velocity gradient along the radial direction is zero). Moreover, such an atmospheric pressure plasma element can be heated for a short time, and the heat exchange efficiency, the fluid dissolution efficiency, and the like are greatly improved. Furthermore, it exhibits excellent effects as an in-line continuous reactor.

また、本発明に係る大気圧プラズマ反応器1をオゾン発生装置として使用したり、あるいは処理対象ガスの分解以外に、処理対象ガスの合成・改質装置として使用したりしても良い。   In addition, the atmospheric pressure plasma reactor 1 according to the present invention may be used as an ozone generator, or may be used as a synthesis / reformation apparatus for a target gas other than decomposition of the target gas.

次に、以上のように構成された最良の形態についての使用、動作の一例を説明する。図1に示すように、内部電極3の軸筒部材5内に、一端開口部から他端開口部にわたって冷水あるいは冷風を循環させると共に、筒状部材4の吸入側から有害な有機物質、VOCあるいは繊維状物質等の処理対象ガスを大気圧によるキャリアガスと共に吸入する。   Next, an example of use and operation of the best mode configured as described above will be described. As shown in FIG. 1, cold water or cold air is circulated in the shaft tube member 5 of the internal electrode 3 from one end opening portion to the other end opening portion, and harmful organic substances, VOC or A gas to be treated such as a fibrous substance is sucked together with a carrier gas at atmospheric pressure.

そして、キャリアガスと処理対象ガスとを筒状部材4の流路内で、ピン形状の第1羽根部分3a、フィン形状の第2羽根部分3bそれぞれによって流通制御させると、流路内で剪断力を受けて分割および合流を繰り返すものとなり、これによってキャリアガスと処理対象ガスとが効率良く攪拌混合される。このとき、ピン形状の第1羽根部分3aは、処理対象ガスを撹拌させ、フィン形状の第2羽根部分3bは、処理対象ガスを筒状部材の内周壁および後方となる端部開放部へ搬送させる。   When the carrier gas and the gas to be processed are flow controlled by the pin-shaped first blade portion 3a and the fin-shaped second blade portion 3b in the flow path of the cylindrical member 4, shearing force is generated in the flow path. In this way, division and merging are repeated, whereby the carrier gas and the gas to be treated are efficiently stirred and mixed. At this time, the pin-shaped first blade portion 3a stirs the processing target gas, and the fin-shaped second blade portion 3b transports the processing target gas to the inner peripheral wall of the cylindrical member and the end opening portion that is the rear. Let

これと同時に、筒状部材4内の両電極2,3間に、高周波電源をスイッチオンして例えばパルス幅が100〜150kHzの範囲にあるパルス型高周波を印加させて非平衡プラズマを誘発させ、酸素を混合させた処理対象ガスをプラズマと接触させる。   At the same time, a high-frequency power source is switched on between both electrodes 2 and 3 in the tubular member 4 to apply a pulse-type high frequency having a pulse width in the range of 100 to 150 kHz, for example, to induce non-equilibrium plasma, A gas to be treated mixed with oxygen is brought into contact with plasma.

このとき、ゼーベック効果素子6は、30℃前後に冷却された軸筒部材5と、両羽根部分3a,3b先端の230〜250℃前後のプラズマ接触外周部との間の温度差(約200℃)により、両羽根部分3a,3b相互間に熱起電力が発生し、この電力はプラズマ発生源である高周波電源の予備電圧として使用される。   At this time, the Seebeck effect element 6 has a temperature difference (about 200 ° C.) between the shaft tube member 5 cooled to about 30 ° C. and the plasma contact outer periphery of about 230 to 250 ° C. at the tips of both blade portions 3a and 3b. ), A thermoelectromotive force is generated between the blade portions 3a and 3b, and this power is used as a reserve voltage for a high-frequency power source that is a plasma generation source.

また、ペルティエ効果素子7は、前記ゼーベック効果素子6による熱起電力、もしくは両羽根部分3a,3b相互間に発生する電流等によって吸熱作用が発生し、軸筒部材5内を流れる循環流体から熱を吸収し、これによって内部電極3自体の冷却効果を高めている。   Further, the Peltier effect element 7 generates an endothermic action due to a thermoelectromotive force generated by the Seebeck effect element 6 or a current generated between the blade portions 3a and 3b, and heat is generated from the circulating fluid flowing in the shaft tube member 5. This enhances the cooling effect of the internal electrode 3 itself.

これにより、処理対象ガスのプラズマ反応と酸化反応とが同時進行して当該処理対象ガスは酸化分解処理される。このとき、筒状部材4内部での放電プラズマによる励起によって処理対象ガスがラジカル化した状態となり、この処理対象ガスは筒状部材4の後方となる端部開放側から放出された後、例えば酸化マンガン等により無害化して回収することができる。   As a result, the plasma reaction and the oxidation reaction of the processing target gas proceed simultaneously, and the processing target gas is subjected to oxidative decomposition processing. At this time, the gas to be processed is radicalized by excitation by the discharge plasma inside the cylindrical member 4, and after the gas to be processed is released from the end opening side at the rear of the cylindrical member 4, for example, oxidation It can be recovered by detoxification with manganese or the like.

図3は、プラズマ素子となる内部電極8の他の実施例を示している。筒状部材9内部に、先端を円錐部材10a、10bとし、それに連続一体化された筒部材11a、11bとより内部電極8a、8bを形成している。該円錐部材10a、10bおよび筒部材11a、11bの周側面には螺旋形状をした線状の溝12を多数形成している。実施例のものは長さ約20mmのものに20本前後の溝12を形成している。深さは0.2mm乃至0.6mmとしている。   FIG. 3 shows another embodiment of the internal electrode 8 serving as a plasma element. Inside the cylindrical member 9, conical members 10a and 10b are formed at the ends, and internal electrodes 8a and 8b are formed by cylindrical members 11a and 11b continuously integrated therewith. A large number of spiral grooves 12 are formed on the peripheral side surfaces of the conical members 10a and 10b and the cylindrical members 11a and 11b. In the embodiment, about 20 grooves 12 are formed in a length of about 20 mm. The depth is 0.2 mm to 0.6 mm.

図4は、内部電極8a素子の拡大図を示し、円錐部材10aでは該円錐部材10aの頂点を中心として時計回り方向への旋回溝12とし、筒部材11aでは円錐部材10a側から後方へ向かって時計回り方向へ連続する螺旋形溝12としている。   FIG. 4 shows an enlarged view of the internal electrode 8a element. In the conical member 10a, the turning groove 12 is formed in the clockwise direction around the apex of the conical member 10a, and in the cylindrical member 11a, the conical member 10a is directed rearward. The spiral groove 12 is continuous in the clockwise direction.

他方、図5は、他の内部電極8b素子の拡大図を示し、円錐部材10bでは該円錐部材10bの頂点を中心として反時計回り方向への旋回溝とし、筒部材11bでは円錐部材10b側から後方へ向かって反時計回り方向へ連続する螺旋形溝12としている。   On the other hand, FIG. 5 shows an enlarged view of another internal electrode 8b element. In the conical member 10b, a turning groove is formed in the counterclockwise direction around the apex of the conical member 10b, and in the cylindrical member 11b, the conical member 10b is viewed from the side. The spiral groove 12 is continuous in the counterclockwise direction toward the rear.

上記構成よりなる内部電極8a、8bを長手方向に沿って円錐部材10a、10bを処理対象ガスの通流する方向に向け、且つその先端が前方側の筒部材11a、11bに接するようにして交互に配置して、内部電極8としている。   The internal electrodes 8a, 8b having the above-described configuration are alternately oriented along the longitudinal direction so that the conical members 10a, 10b flow in the direction in which the gas to be processed flows and the tips thereof are in contact with the front cylindrical members 11a, 11b. The internal electrode 8 is arranged.

処理対象ガスは、上記内部電極8a、8bに形成された円錐部材10a、10bや溝12により攪拌され、且つ筒状部材の内周壁に押し付けられながら搬送させられる。また、内部電極8a、8bはその長さが短いので処理対象ガスのプラズマ領域への誘導分解効率を高めることができ、処理能力を向上させることが可能となった。他の各種装置並びにプラズマ反応と酸化反応および他の処理手段は上記実施例1と同様である。   The gas to be treated is agitated by the conical members 10a and 10b and the grooves 12 formed on the internal electrodes 8a and 8b, and conveyed while being pressed against the inner peripheral wall of the cylindrical member. In addition, since the internal electrodes 8a and 8b are short in length, the induction decomposition efficiency of the gas to be processed into the plasma region can be increased, and the processing capability can be improved. Other various apparatuses, plasma reaction, oxidation reaction, and other processing means are the same as those in the first embodiment.

内部電極8a、8bの中心部は水冷、空冷を問わず、該内部電極8a、8bの筒部材11a、11bの周側面との間に前記実施例と同様、温度差が得られるものであればよい。   The central part of the internal electrodes 8a and 8b can be water-cooled or air-cooled, as long as a temperature difference can be obtained between the inner electrodes 8a and 8b and the peripheral side surfaces of the cylindrical members 11a and 11b. Good.

図6は、プラズマ素子となる内部電極13の他の実施例を示している。筒状部材14内部に、先端を円錐部材15とし、それに連続一体化された筒部材16とよりなる内部電極13を配置している。該筒部材16の周側面から垂直方向に多数のピン17aおよびその先端の球状体17bよりなる先端膨出ピン17が立設されている。上記ピンの長さは適宜変えることができるし、球状体17bには各種形状の膨出部が採用される。   FIG. 6 shows another embodiment of the internal electrode 13 serving as a plasma element. Inside the cylindrical member 14, an internal electrode 13 including a cylindrical member 15 having a tip formed as a conical member 15 and continuously integrated therewith is disposed. From the peripheral side surface of the cylindrical member 16, a distal end bulging pin 17 made up of a large number of pins 17 a and a spherical body 17 b at the distal end is erected. The length of the pin can be appropriately changed, and various shapes of bulging portions are employed for the spherical body 17b.

先端膨出ピン17は、筒部材16から放射状に多数本立設される。実施例では同一ラインの円周方向で24本乃至36本程度が等間隔あるいはランダムに立設されているが、それに限定されるものではない。また、先端の円錐部材15および/あるいは筒部材16には上記実施例2と同様に旋回状の溝を形成することも効果的である。この場合は、上記実施例2同様に螺旋方向の異なるものを交互に配置することになる。   A large number of tip bulging pins 17 are erected radially from the cylindrical member 16. In the embodiment, about 24 to 36 lines are erected at equal intervals or randomly in the circumferential direction of the same line, but the present invention is not limited to this. In addition, it is also effective to form a swirling groove in the conical member 15 and / or the cylindrical member 16 at the tip as in the second embodiment. In this case, similarly to the second embodiment, the ones having different spiral directions are alternately arranged.

上記構成よりなる内部電極13を図6に示すように、長手方向に沿って円錐部材15を処理対象ガスの通流する方向に向け、且つその先端が前方側の筒部材16に接するか(不図示)あるいは適宜間隔を有して配置している。冷却手段を兼ねた軸を設けるのも効果的である。このことは上記実施例2においても同様である。   As shown in FIG. 6, the internal electrode 13 having the above-described configuration is directed so that the conical member 15 is directed in the direction in which the gas to be processed flows along the longitudinal direction, and the tip thereof is in contact with the cylindrical member 16 on the front side. (Shown in the figure) or arranged with appropriate intervals. It is also effective to provide a shaft that also serves as a cooling means. The same applies to the second embodiment.

上記実施例1、2と同様、処理対象ガスは、上記内部電極13に形成された円錐部材15や先端膨出ピン17により攪拌され、且つ筒状部材の内周壁に押し付けられながら搬送させられる。また、内部電極13はその長さが例えば25mm乃至30mm程度と短くすることができるので処理対象ガスのプラズマ領域への誘導分解効率を高めることができ、処理能力を向上させることが可能となった。   As in the first and second embodiments, the gas to be processed is agitated by the conical member 15 and the tip bulging pin 17 formed on the internal electrode 13 and is conveyed while being pressed against the inner peripheral wall of the cylindrical member. In addition, since the length of the internal electrode 13 can be reduced to, for example, about 25 mm to 30 mm, the induction decomposition efficiency of the gas to be processed into the plasma region can be increased, and the processing capability can be improved. .

他の各種装置並びにプラズマ反応や酸化反応および他の処理手段は内部電極冷却手段を含め上記実施例1、2と同様である。   Other various apparatuses, plasma reaction, oxidation reaction, and other processing means are the same as those in the first and second embodiments including the internal electrode cooling means.

なお、上記実施例1乃至3の大気圧プラズマ素子を適宜組み合わせて処理対象ガスを攪拌混合ならびに内周壁および後方となる端部開放部へ搬送することを可能とする内部電極とすることができる。   In addition, it can be set as the internal electrode which enables the atmospheric pressure plasma element of the said Example 1 thru | or 3 to be combined suitably, and can convey process target gas to agitation mixing and an inner peripheral wall and the edge part open part which becomes back.

本発明を実施するための最良の形態における大気圧プラズマ反応器の使用状態を示すもので、(a)は正面図、(b)は断面図である。BRIEF DESCRIPTION OF THE DRAWINGS The use condition of the atmospheric pressure plasma reactor in the best form for implementing this invention is shown, (a) is a front view, (b) is sectional drawing. 大気圧プラズマ素子の構造の一例を示すもので、(a)はピン形状の第1羽根部分を示す斜視図、(b)はフィン形状の第2羽根部分を示す斜視図である。An example of the structure of an atmospheric pressure plasma element is shown, (a) is a perspective view showing a pin-shaped first blade portion, and (b) is a perspective view showing a fin-shaped second blade portion. 本発明を実施するための他の実施の形態における大気圧プラズマ反応器の使用状態を示す一部断面図である。It is a partial cross section figure which shows the use condition of the atmospheric pressure plasma reactor in other embodiment for implementing this invention. 大気圧プラズマ素子の構造の他の実施例を示すもので、(a)は円錐部材に螺旋形状の溝を形成したことを示す正面図、(b)は円錐部分および筒部材に螺旋形状の溝を形成したことを示す側面図である。FIG. 6 shows another embodiment of the structure of the atmospheric pressure plasma element, in which (a) is a front view showing that a spiral groove is formed in the conical member, and (b) is a spiral groove in the conical portion and the cylindrical member. It is a side view which shows having formed. 大気圧プラズマ素子の構造の他の実施例を示すもので、(a)は円錐部材に螺旋形状の溝を図4のものとは逆の反時計回り方向に形成したことを示す正面図、(b)は円錐部分および筒部材に螺旋形状の溝を後方となる端部開放部へ向かって反時計回り方向に形成したことを示す側面図である。(A) is a front view showing that a spiral groove is formed in a conical member in a counterclockwise direction opposite to that of FIG. b) is a side view showing that a spiral groove is formed in the conical portion and the cylindrical member in the counterclockwise direction toward the rear end opening portion. (a)は本発明を実施するための他の実施の形態における大気圧プラズマ反応器の使用状態を示す断面図、(b)は大気圧プラズマ素子の構造の他の実施例の正面断面図である。(A) is sectional drawing which shows the use condition of the atmospheric pressure plasma reactor in other embodiment for implementing this invention, (b) is front sectional drawing of the other Example of the structure of an atmospheric pressure plasma element. is there.

符号の説明Explanation of symbols

1 大気圧プラズマ反応器
2 外部電極
3、8、8a、8b、13 内部電極
3a 第1羽根部分
3b 第2羽根部分
4、9、14 筒状部材
5 軸筒部材
6 ゼーベック効果素子
7 ペルティエ効果素子
10a、10b、15 円錐部材
11a、11b、16 筒部材
12 溝
17 先端膨出ピン
17a ピン
17b 球状体
DESCRIPTION OF SYMBOLS 1 Atmospheric pressure plasma reactor 2 External electrode 3, 8, 8a, 8b, 13 Internal electrode 3a 1st blade | wing part 3b 2nd blade | wing part 4, 9, 14 Cylindrical member 5 Shaft cylinder member 6 Seebeck effect element 7 Peltier effect element 10a, 10b, 15 Conical members 11a, 11b, 16 Cylindrical member 12 Groove 17 Tip bulging pin 17a Pin 17b Spherical body

Claims (11)

大気圧雰囲気中で処理対象ガスを流通可能とした筒状部材の外周壁に誘電体層を付設してなる外部電極と、該筒状部材の内部に配され、互いに連設された大気圧プラズマ素子となる内部電極とを備え、処理対象ガスと酸素を筒状部材内で剪断力を受けて分割および合流を繰り返すことにより両者が攪拌混合されると同時に筒状部材の内周壁および後方となる端部の開放部へ搬送することにより両電極間に高周波を印加させて放電プラズマを誘起させ、筒状部材内部の処理対象ガスを分解・合成・改質可能としたことを特徴とする大気圧プラズマ素子を使用した有害ガス処理装置。   An external electrode in which a dielectric layer is attached to the outer peripheral wall of a cylindrical member capable of circulating a gas to be processed in an atmospheric pressure atmosphere, and an atmospheric pressure plasma arranged inside the cylindrical member and connected to each other An internal electrode serving as an element, and the gas to be treated and oxygen are subjected to shearing force in the cylindrical member and repeatedly divided and merged so that both are stirred and mixed, and at the same time, the inner peripheral wall and the rear of the cylindrical member Atmospheric pressure characterized in that it is possible to decompose, synthesize, and reform the gas to be treated inside the cylindrical member by inducing discharge plasma by applying a high frequency between both electrodes by conveying to the open part of the end Toxic gas treatment equipment using plasma elements. 大気圧プラズマ素子を、ピン形状の第1羽根部分、フィン形状の第2羽根部分のそれぞれを長手方向に沿って交互に配置してなることを特徴とする請求項1に記載の大気圧プラズマ素子を使用した有害ガス処理装置。   2. The atmospheric pressure plasma element according to claim 1, wherein each of the pin-shaped first blade portion and the fin-shaped second blade portion is alternately arranged along the longitudinal direction. Hazardous gas treatment equipment using. 第1羽根部分、第2羽根部分のそれぞれは、互いに円周方向に一定の角度で位相をずらした状態で配置してなることを特徴とする請求項2に記載の大気圧プラズマ素子を使用した有害ガス処理装置。   The atmospheric pressure plasma device according to claim 2, wherein each of the first blade portion and the second blade portion is arranged in a state where the phases are shifted from each other by a certain angle in the circumferential direction. Hazardous gas treatment equipment. 大気圧プラズマ素子を、円錐部材およびそれに連続一体化された筒部材とより構成し、且つその周側面に時計回り方向となる螺旋形状の線状溝を形成し、螺旋形状の線状溝を反時計回り方向に形成した他の円錐部材および筒部材とを長手方向に沿って交互に配置してなることを特徴とする請求項1に記載の大気圧プラズマ素子を使用した有害ガス処理装置。   The atmospheric pressure plasma element is composed of a conical member and a cylindrical member continuously integrated therewith, and a spiral linear groove is formed on the peripheral side surface in a clockwise direction, and the spiral linear groove is bent. The harmful gas processing apparatus using an atmospheric pressure plasma element according to claim 1, wherein other conical members and cylindrical members formed in a clockwise direction are alternately arranged along the longitudinal direction. 大気圧プラズマ素子を、円錐部材およびそれに連続一体化された筒部材とより構成し、且つ筒部材の周側面から放射状に多数の先端膨出ピンが立設されている形状とし、それらの複数個を長手方向に沿って配置してなることを特徴とする請求項1に記載の大気圧プラズマ素子を使用した有害ガス処理装置。   The atmospheric pressure plasma element is composed of a conical member and a cylindrical member continuously integrated therewith, and has a shape in which a large number of tip bulge pins are erected radially from the peripheral side surface of the cylindrical member, and a plurality of them The harmful gas processing apparatus using the atmospheric pressure plasma element according to claim 1, wherein the gas is disposed along the longitudinal direction. 内部電極は、冷水あるいは冷風が循環可能な軸筒部材によって形成され、該軸筒部材と、プラズマ素子となる内部電極先端でのプラズマ領域との間の温度差で発生する熱起電力により発電可能とするゼーベック効果素子を有してなることを特徴とする請求項1乃至5のいずれかに記載の大気圧プラズマ素子を使用した有害ガス処理装置。   The internal electrode is formed by a shaft tube member through which cold water or cold air can circulate, and can generate power by the thermoelectromotive force generated by the temperature difference between the shaft tube member and the plasma region at the tip of the internal electrode serving as a plasma element. The harmful gas processing apparatus using the atmospheric pressure plasma element according to any one of claims 1 to 5, wherein the Seebeck effect element is provided. 内部電極は、当該内部電極の軸筒部材内を流れる循環流体の低温維持を可能とするペルティエ効果素子を有してなることを特徴とする請求項1乃至6のいずれかに記載の大気圧プラズマ素子を使用した有害ガス処理装置。   The atmospheric pressure plasma according to any one of claims 1 to 6, wherein the internal electrode has a Peltier effect element capable of maintaining a low temperature of the circulating fluid flowing in the shaft member of the internal electrode. Toxic gas treatment equipment using elements. 処理対象ガスに過剰な酸素を供給すべく筒状部材に酸素供給源を接続し、放電プラズマ反応と同時進行して、酸素を含む処理対象ガスを放電プラズマにより酸化分解処理を行なうものとしたことを特徴とする請求項1乃至7のいずれかに記載の大気圧プラズマ素子を使用した有害ガス処理装置。   An oxygen supply source was connected to the cylindrical member to supply excess oxygen to the gas to be processed, and the gas to be processed containing oxygen was subjected to oxidative decomposition treatment by discharge plasma in parallel with the discharge plasma reaction. A noxious gas treatment apparatus using the atmospheric pressure plasma element according to any one of claims 1 to 7. 請求項1乃至8のいずれかの記載において、前記筒状部材内部での放電プラズマによる励起によってラジカル状になった処理対象ガスを樹脂系基板上の接合部分に吹き付けてドライ洗浄を可能にするプラズマ洗浄装置として使用可能にしたことを特徴とする大気圧プラズマ素子を使用した有害ガス処理装置。   9. The plasma according to any one of claims 1 to 8, wherein dry processing is performed by spraying a gas to be processed, which is radicalized by excitation by discharge plasma inside the cylindrical member, onto a joint portion on a resin substrate. A noxious gas treatment apparatus using an atmospheric pressure plasma element, characterized in that it can be used as a cleaning apparatus. 請求項1乃至8のいずれかの記載の大気圧プラズマ装置をオゾン発生装置として使用可能にしたことを特徴とする大気圧プラズマ素子を使用した有害ガス処理装置。   A harmful gas treatment apparatus using an atmospheric pressure plasma element, wherein the atmospheric pressure plasma apparatus according to any one of claims 1 to 8 is usable as an ozone generator. 請求項1乃至8のいずれかの記載において、処理対象ガスの処理後には酸化マンガンにより無害化して回収するものとしたことを特徴とする大気圧プラズマ素子を使用した有害ガス処理装置。   9. The noxious gas treatment apparatus using an atmospheric pressure plasma element according to any one of claims 1 to 8, wherein after the treatment of the gas to be treated, it is detoxified with manganese oxide and recovered.
JP2006286568A 2006-10-20 2006-10-20 Apparatus for treating harmful gas by using atmospheric-pressure plasma element Pending JP2008100198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006286568A JP2008100198A (en) 2006-10-20 2006-10-20 Apparatus for treating harmful gas by using atmospheric-pressure plasma element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006286568A JP2008100198A (en) 2006-10-20 2006-10-20 Apparatus for treating harmful gas by using atmospheric-pressure plasma element

Publications (1)

Publication Number Publication Date
JP2008100198A true JP2008100198A (en) 2008-05-01

Family

ID=39434925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006286568A Pending JP2008100198A (en) 2006-10-20 2006-10-20 Apparatus for treating harmful gas by using atmospheric-pressure plasma element

Country Status (1)

Country Link
JP (1) JP2008100198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508750A (en) * 2018-10-12 2022-01-19 ヴラドレノヴィッチ ミスラフスキー,ボリス Methods and equipment for plasma chemical gas / gas mixture conversion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508750A (en) * 2018-10-12 2022-01-19 ヴラドレノヴィッチ ミスラフスキー,ボリス Methods and equipment for plasma chemical gas / gas mixture conversion

Similar Documents

Publication Publication Date Title
Kovačević et al. Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres
Ramakers et al. Gliding arc plasmatron: providing an alternative method for carbon dioxide conversion
Wolf et al. Implications of thermo-chemical instability on the contracted modes in CO2 microwave plasmas
CN105027685B (en) The method and apparatus for handling two-phase fragment shape or pulverulent material by non-isothermal reaction plasma auxiliary agent
Yuan et al. Ozone production in parallel multichannel dielectric barrier discharge from oxygen and air: the influence of gas pressure
Koutsospyros et al. Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor
KR102274454B1 (en) Apparatus for removing stink using plasma
Lozano-Parada et al. The role of kinetics in the design of plasma microreactors
US7887764B2 (en) Mixer with a catalytic surface
CA2395180A1 (en) Segmented electrode capillary discharge, non-thermal plasma apparatus and process for promoting chemical reactions
JP2010051941A (en) Plasma device
KR20120090935A (en) Tubular flow reactor
Zhang et al. Rotating gliding arc assisted water splitting in atmospheric nitrogen
KR20160096981A (en) Plasma equipment for treating powder
JP2008100198A (en) Apparatus for treating harmful gas by using atmospheric-pressure plasma element
Li et al. Direct conversion of N2 and O2: status, challenge and perspective
Ding et al. Reaction pathways for bio-active species in a He/H2O atmospheric pressure capacitive discharge
Jasiński et al. Destruction of Freon HFC-134a using a nozzleless microwave plasma source
Jones et al. Improving oxidation efficiency through plasma coupled thin film processing
KR101814770B1 (en) Plasmacatalyst type scrubber
Mok et al. Degradation of organic contaminant by using dielectric barrier discharge reactor immersed in wastewater
KR101443342B1 (en) APPARATUS OF REMOVING NOx
Kang et al. Feasibility test of a concurrent process for CO2 reduction and plastic upcycling based on CO2 plasma jet
Yang et al. Simulated experiments for removal of odorous gases by wire-mesh electrode dielectric barrier discharge
JP6374294B2 (en) Microwave processing apparatus and microwave introduction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091019

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101025

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110412