JP2008098006A - Fuel cell membrane-electrode junction material and solid polymer fuel cell - Google Patents

Fuel cell membrane-electrode junction material and solid polymer fuel cell Download PDF

Info

Publication number
JP2008098006A
JP2008098006A JP2006279020A JP2006279020A JP2008098006A JP 2008098006 A JP2008098006 A JP 2008098006A JP 2006279020 A JP2006279020 A JP 2006279020A JP 2006279020 A JP2006279020 A JP 2006279020A JP 2008098006 A JP2008098006 A JP 2008098006A
Authority
JP
Japan
Prior art keywords
fuel cell
electrode
membrane
peroxide
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006279020A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inoue
裕之 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006279020A priority Critical patent/JP2008098006A/en
Publication of JP2008098006A publication Critical patent/JP2008098006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell which can remove from a cell any harmful peroxide such as hydrogen peroxide arising during the operation of the fuel cell and which reduces deterioration of electrolyte present in an electrolyte membrane or electrode catalyst layer due to peroxide such as hydrogen peroxide for improving the durability performance. <P>SOLUTION: The fuel cell membrane-electrode junction material includes a pair of electrodes consisting of a fuel electrode to which fuel gas is supplied and an oxygen electrode to which oxidizer gas is supplied, and a polymer electrolyte membrane which is interposed between the pair of electrodes. The electrodes comprise a catalyst layer and a diffusion layer which are joined to the polymer electrolyte membrane, wherein the concentration of peroxide decomposition agent in the diffusion layer is greater in the vicinity of an end portion in the direction of the cell surface than in any area excepting the end portion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解質膜や電極触媒層中の電解質の劣化を抑制し、耐久性を向上させた燃料電池用膜−電極接合体、及びこれを備えた固体高分子型燃料電池に関する。   The present invention relates to a membrane-electrode assembly for a fuel cell that suppresses deterioration of an electrolyte in an electrolyte membrane or an electrode catalyst layer and has improved durability, and a polymer electrolyte fuel cell including the same.

水素ガスの電気化学反応により電気を発生させる燃料電池は、発電効率が高く、排出されるガスがクリーンで環境に対する影響が極めて少ない。そのため、近年、発電用、低公害の自動車用電源等、種々の用途が期待されている。燃料電池は、その電解質により分類することができ、例えば、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池、固体酸化物型燃料電池等が知られている。   A fuel cell that generates electricity by an electrochemical reaction of hydrogen gas has high power generation efficiency, clean gas discharged, and extremely little influence on the environment. Therefore, in recent years, various uses such as power generation and low-pollution automobile power supplies are expected. Fuel cells can be classified according to their electrolytes. For example, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid oxide fuel cells and the like are known.

固体高分子型燃料電池は、80℃程度の低温で作動させることができ、大きな出力密度を有する。固体高分子型燃料電池は、通常、プロトン導電性のある高分子膜を電解質とする。電解質となる高分子膜の両側にそれぞれ燃料極、酸素極となる一対の電極が設けられ電極接合体が構成される。この電極接合体をセパレータで挟持した単セルが発電単位となる。そして、水素や水素を含む燃料ガスが燃料極に、酸素や空気等の酸化剤ガスが酸素極にそれぞれ供給され、ガスと電解質と電極との三相界面における電気化学反応により発電する。電解質となる高分子膜は、水を含有した状態でプロトン導電性を有する。高分子膜のプロトン導電性を維持するため、通常、燃料ガス及び酸化剤ガスは、それぞれ加湿器にて加湿された後、各々の電極へ供給される。   The polymer electrolyte fuel cell can be operated at a low temperature of about 80 ° C. and has a large output density. In general, a polymer electrolyte fuel cell uses a proton conductive polymer membrane as an electrolyte. A pair of electrodes each serving as a fuel electrode and an oxygen electrode are provided on both sides of the polymer film serving as an electrolyte to form an electrode assembly. A single cell in which this electrode assembly is sandwiched between separators serves as a power generation unit. Then, hydrogen or a fuel gas containing hydrogen is supplied to the fuel electrode, and an oxidant gas such as oxygen or air is supplied to the oxygen electrode, and power is generated by an electrochemical reaction at the three-phase interface between the gas, the electrolyte, and the electrode. The polymer membrane serving as an electrolyte has proton conductivity in a state containing water. In order to maintain the proton conductivity of the polymer membrane, the fuel gas and the oxidant gas are usually humidified by a humidifier and then supplied to each electrode.

ところで、高分子電解質型燃料電池においては、電池反応によって固体高分子電解質膜と電極の界面に形成された触媒層において過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって電解質を劣化させる。例えば、燃料電池では燃料極で燃料の酸化、酸素極で酸素の還元が行われるが、水素を燃料とし、酸性の電解質を用いる場合の理想的な反応は、下記(1)式及び(2)式に示したように表される。
アノード(水素極):H2→2H++2e …(1)
カソード(酸素極):2H++2e+(1/2)O2→H2O …(2)
By the way, in the polymer electrolyte fuel cell, peroxide is generated in the catalyst layer formed at the interface between the solid polymer electrolyte membrane and the electrode by the cell reaction, and the peroxide is generated while diffusing the generated peroxide. This degrades the electrolyte. For example, in a fuel cell, fuel is oxidized at the fuel electrode and oxygen is reduced at the oxygen electrode. The ideal reaction when hydrogen is used as the fuel and an acidic electrolyte is used is expressed by the following equations (1) and (2). It is expressed as shown in the equation.
Anode (hydrogen electrode): H 2 → 2H + + 2e (1)
Cathode (oxygen electrode): 2H + + 2e + (1/2) O 2 → H 2 O (2)

アノードで式(1)の反応により生成した水素イオンは、H+ (XH2O)の水和状態で固体高分子電解質膜を透過(拡散)し、膜を透過した水素イオンは、カソードで式(2)の反応に供される。このアノード及びカソードにおける電極反応は、固体高分子電解質膜に密着した電極触媒層を反応サイトとし、当該電極触媒層における触媒と固体高分子電解質膜との界面で進行する。 Hydrogen ions generated by the reaction of the formula (1) at the anode permeate (diffuse) the solid polymer electrolyte membrane in the hydrated state of H + (XH 2 O), and the hydrogen ions that permeate the membrane are expressed at the cathode. It is used for the reaction (2). The electrode reaction at the anode and the cathode proceeds at the interface between the catalyst and the solid polymer electrolyte membrane in the electrode catalyst layer with the electrode catalyst layer in close contact with the solid polymer electrolyte membrane as a reaction site.

しかしながら、実際の燃料電池ではこれらの主反応の他に副反応が起こる。その代表的なものが過酸化水素(H)の生成である。その生成のメカニズムについては必ずしも完全に理解されているわけではないが、考えられるメカニズムは次のようである。すなわち、過酸化水素の生成は水素極、酸素極どちらの極でも起こりうるものであり、例えば、酸素極では、酸素の不完全還元反応により次に示した式によって過酸化水素が生じると考えられる。
+2H+2e→2H…(3)
However, in an actual fuel cell, side reactions occur in addition to these main reactions. A typical example is the generation of hydrogen peroxide (H 2 O 2 ). The mechanism of its generation is not necessarily fully understood, but possible mechanisms are: That is, the generation of hydrogen peroxide can occur at either the hydrogen electrode or the oxygen electrode. For example, at the oxygen electrode, it is considered that hydrogen peroxide is generated by the following equation due to incomplete reduction of oxygen. .
O 2 + 2H + + 2e → 2H 2 O 2 (3)

また、水素極では、ガス中に不純物としてあるいは意図的に混ぜることによって入っている酸素、若しくは酸素極で電解質にとけ込み水素極に拡散してきた酸素が反応に関与すると考えられ、その反応式は上記(3)式と同一か、若しくは次に示した式で表されると考えられる。
2M-H+O2−→2M+H…(4)
ここで、Mは、水素極に用いられている触媒金属を示し、M-Hはその触媒金属に水素が吸着した状態を示す。通常触媒金属には白金(Pt)等の貴金属が用いられる。
In addition, at the hydrogen electrode, it is considered that oxygen contained as an impurity in the gas or intentionally mixed, or oxygen diffused into the electrolyte at the oxygen electrode and diffused into the hydrogen electrode is involved in the reaction. It is considered to be the same as the above formula (3) or represented by the following formula.
2M-H + O 2- → 2M + H 2 O 2 ... (4)
Here, M represents a catalyst metal used for the hydrogen electrode, and MH represents a state in which hydrogen is adsorbed on the catalyst metal. Usually, a noble metal such as platinum (Pt) is used as the catalyst metal.

これらの電極上で発生した過酸化水素は、電極から拡散等のため離れ、電解質中に移動する。この過酸化水素は酸化力の強い物質で、電解質を構成する多くの有機物を酸化する。その詳しいメカニズムは必ずしも明らかになっていないが、多くの場合、過酸化水素がラジカル化し、生成した過酸化水素ラジカルが酸化反応の直接の反応物質になっていると考えられる。すなわち、次式のような反応で発生したラジカルが、電解質の有機物から水素を引き抜くか、他の結合を切断すると考えられる。ラジカル化する原因は、必ずしも明らかでないが、重金属イオンとの接触が触媒作用を有していると考えられている。このほか、熱、光等でもラジカル化すると考えられる。
→2・OH
又は
→・H+・OOH
このように、燃料電池の電解質膜には、耐久性(フッ素排出低減やクロスリーク増加の防止)と出力向上(プロトン伝導度の低下)の両方が求められている。
Hydrogen peroxide generated on these electrodes moves away from the electrodes due to diffusion or the like and moves into the electrolyte. This hydrogen peroxide is a substance having a strong oxidizing power and oxidizes many organic substances constituting the electrolyte. Although the detailed mechanism is not necessarily clear, in many cases, it is considered that hydrogen peroxide is radicalized, and the generated hydrogen peroxide radical is a direct reactant of the oxidation reaction. That is, it is considered that radicals generated by the reaction represented by the following formula draw hydrogen from the organic substance of the electrolyte or cut other bonds. The cause of radicalization is not necessarily clear, but contact with heavy metal ions is considered to have a catalytic action. In addition, it is considered that the radical is also formed by heat, light or the like.
H 2 O 2 → 2.OH
Or H 2 O 2 → · H + · OOH
As described above, the electrolyte membrane of the fuel cell is required to have both durability (reduction of fluorine emission and prevention of increase of cross leak) and improvement of output (decrease in proton conductivity).

Ce(セリウム)あるいはその化合物の、電解質膜もしくはMEAへの添加により、過酸化水素由来のラジカルによる電解質膜の化学的な劣化が抑制され、耐久性が大幅に向上することが分かっている。   It has been found that the addition of Ce (cerium) or a compound thereof to the electrolyte membrane or MEA suppresses chemical deterioration of the electrolyte membrane due to radicals derived from hydrogen peroxide, and greatly improves durability.

例えば、下記特許文献1では、電池内で生成された過酸化物を効率よく分解し、電極および電解質膜の劣化抑制を目的として、固体高分子型燃料電池用電解質膜電極接合体を構成する電解質膜の両側に設けられた一対の電極の少なくとも一方に、過酸化物を分解する過酸化物分解触媒を濃度差をつけて配置することが開示されている。   For example, in Patent Document 1 below, an electrolyte that constitutes an electrolyte membrane electrode assembly for a polymer electrolyte fuel cell for the purpose of efficiently decomposing peroxide generated in the battery and suppressing deterioration of the electrode and the electrolyte membrane It is disclosed that a peroxide decomposition catalyst for decomposing peroxide is arranged with a difference in concentration on at least one of a pair of electrodes provided on both sides of the membrane.

具体的には、過酸化物分解触媒は、電極において濃度差をもって配置され、濃度差は、電極の厚さ方向にあってもよく、電極の面方向にあってもよいとされ、特に、過酸化物分解触媒を電極の厚さ方向に濃度差をもって配置することが望ましい旨記載されている(0021段落、0022段落)。   Specifically, the peroxide decomposition catalyst is arranged with a concentration difference in the electrode, and the concentration difference may be in the thickness direction of the electrode or in the surface direction of the electrode. It is described that it is desirable to dispose the oxide decomposition catalyst with a concentration difference in the thickness direction of the electrode (paragraphs 0021 and 0022).

また、下記特許文献2では、電解質膜とセパレータとの間をシールするシール部材や、電解質膜等の劣化を抑制し、耐久性を向上させることを目的として、電解質膜電極接合体を両側から挟持するセパレータと電解質膜との間をシールするシール部材に、過酸化物を分解する過酸化物分解触媒を配置することが開示されている。   Further, in Patent Document 2 below, the electrolyte membrane electrode assembly is sandwiched from both sides for the purpose of suppressing the deterioration of the sealing member for sealing between the electrolyte membrane and the separator and the electrolyte membrane and improving the durability. It is disclosed that a peroxide decomposition catalyst for decomposing peroxide is disposed on a seal member that seals between the separator and the electrolyte membrane.

このような過酸化物を分解する過酸化物分解触媒を用いることの背反として、過酸化物分解触媒であるCe添加により初期の出力が低下することも分かっている。この原因は、電解質膜のスルホン酸基の一部をCeイオンがイオン交換することでプロトン伝導度が低下することに起因すると考えられる。例えば、Ce添加量が多い程、初期の出力低下も大きくなることが分かっている。そのため、Ce添加量をより少なくする(あるいは難溶な化合物を用いる)ことや、必要な部位にのみ添加する等の工夫が必要と考えられる。   As a contradiction to using a peroxide decomposition catalyst for decomposing such a peroxide, it has also been found that the initial output is reduced by addition of Ce as a peroxide decomposition catalyst. This cause is considered to be caused by a decrease in proton conductivity due to ion exchange of Ce ions with a part of the sulfonic acid group of the electrolyte membrane. For example, it has been found that the greater the Ce addition amount, the greater the initial output drop. Therefore, it is considered necessary to devise such as reducing the amount of Ce added (or using a poorly soluble compound) or adding only to the necessary site.

特開2005−235437号公報JP 2005-235437 A 特開2005−267904号公報JP 2005-267904 A

そこで、本発明は、燃料電池用膜−電極接合体(MEA)に求められる、高耐久性と高性能とを両立する過酸化物分解剤の適用法を探索することを目的とする。これにより、電解質膜や電極触媒層中の電解質の劣化を抑制し、耐久性を向上させた燃料電池を提供することを目的とする。   Then, an object of this invention is to search the application method of the peroxide decomposition agent which is calculated | required by the membrane-electrode assembly (MEA) for fuel cells, and is making high durability and high performance compatible. Accordingly, an object of the present invention is to provide a fuel cell in which the deterioration of the electrolyte in the electrolyte membrane or the electrode catalyst layer is suppressed and the durability is improved.

本発明者は、過酸化物分解剤を特定の部位に偏在させて存在させておくことにより、過酸化物が効率よく捕捉されることを見出し、本発明に到達した。   The present inventor has found that the peroxide is efficiently trapped by allowing the peroxide decomposing agent to be unevenly distributed at a specific site, and has reached the present invention.

即ち、第1に、本発明は、燃料電池用膜−電極接合体の発明であり、燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜を含む燃料電池用膜−電極接合体であって、該電極が該高分子電解質膜と接合された触媒層と拡散層からなり、該拡散層中に過酸化物分解剤がセル面方向端部付近に端部以外より高濃度に存在することを特徴とする。   That is, first, the present invention is an invention of a fuel cell membrane-electrode assembly, comprising a pair of electrodes each comprising a fuel electrode supplied with a fuel gas and an oxygen electrode supplied with an oxidant gas, A membrane-electrode assembly for a fuel cell including a polymer electrolyte membrane sandwiched between a pair of electrodes, the electrode comprising a catalyst layer and a diffusion layer joined to the polymer electrolyte membrane, and the diffusion It is characterized in that the peroxide decomposing agent is present in the layer at a higher concentration in the vicinity of the end in the cell surface direction than at the end.

燃料電池の運転中に発生した過酸化水素等の過酸化物は、ラジカル捕捉剤に捕捉される。この結果、有害な過酸化水素等の過酸化物がセル内から除去される。電解質膜の劣化はMEAの中央部ではなく、周辺部付近で顕著に発生することがわかってきている。この一因としては、排水性の悪さや、接着剤からの不純物の混入等により、電解質膜の化学的な劣化が促進している可能性が考えられる。   Peroxides such as hydrogen peroxide generated during operation of the fuel cell are captured by the radical scavenger. As a result, harmful peroxides such as hydrogen peroxide are removed from the cell. It has been found that the deterioration of the electrolyte membrane occurs notably in the vicinity of the MEA, but in the vicinity of the periphery. One possible reason for this is that chemical degradation of the electrolyte membrane may be promoted due to poor drainage and contamination with impurities from the adhesive.

本発明では、特に、過酸化物分解剤が拡散層中のセル面方向端部付近に端部以外より高濃度に存在することで、発電性能を低下させることなく、有害な過酸化水素等の過酸化物を効率良くセル内から除去することが可能となる。拡散層の端部へCeを添加することで、電解質膜の劣化が顕著でかつ発電への寄与の少ないと考えられる、MEAの周辺部へのセリウムの添加量を増やし、初期の出力低下を極力少なくし、かつ電解質膜の劣化を抑制する。   In the present invention, in particular, the peroxide decomposer is present at a higher concentration near the end in the cell surface direction in the diffusion layer than at the end, so that harmful hydrogen peroxide and the like can be obtained without reducing the power generation performance. Peroxide can be efficiently removed from the cell. Adding Ce to the end of the diffusion layer increases the amount of cerium added to the periphery of the MEA, which is considered to cause significant deterioration of the electrolyte membrane and contribute little to power generation. Reduce the electrolyte membrane deterioration.

拡散層に偏在して添加される過酸化物分解剤としては、燃料電池の過酸化物を分解剤する機能を有する過酸化物分解剤、過酸化物分解触媒、ラジカル捕捉剤等の名称で公知の化合物を広く用いることが出来る。これらの中で、CeO、Ru、Ag、RuO、WO、FeO、CePO、CrPO、AlPO、FePO、CeF、FeF、Fe−ポリフィン、及びCo−ポリフィンから選択される1種以上が好ましく例示される。 As the peroxide decomposer added unevenly in the diffusion layer, it is known by the names of peroxide decomposer, peroxide decomposition catalyst, radical scavenger, etc. having the function of decomposing the peroxide of fuel cells. These compounds can be widely used. Among these, selected from CeO 2 , Ru, Ag, RuO 2 , WO 3 , FeO 4 , CePO 4 , CrPO 4 , AlPO 4 , FePO 4 , CeF 3 , FeF 3 , Fe-polyfin, and Co-polyfin. One or more of these are preferably exemplified.

第2に、本発明は、上記の燃料電池用膜−電極接合体を備えた固体高分子型燃料電池である。   Secondly, the present invention is a polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly.

本発明によれば、燃料電池運転中に発生する有害な過酸化水素等の過酸化物をセルから取り除くことができ、過酸化水素等の過酸化物による電解質膜や電極触媒層中の電解質の劣化を抑制し、耐久性を向上させた燃料電池を得ることができる。   According to the present invention, harmful peroxides such as hydrogen peroxide generated during fuel cell operation can be removed from the cell, and electrolytes in the electrolyte membrane and electrode catalyst layer due to peroxides such as hydrogen peroxide can be removed. It is possible to obtain a fuel cell in which deterioration is suppressed and durability is improved.

図1に、本発明の燃料電池の断面模式図を示す。燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜を含む燃料電池用膜−電極接合体において、該電極が該高分子電解質膜と接合された触媒層と拡散層からなり、拡散層中に過酸化物分解剤がセル面方向端部付近に端部以外より高濃度に存在している。なお、図1では、拡散層の外側にセパレータが配置されている。ここで、拡散層中に過酸化物分解剤がセル面方向端部付近に端部以外より高濃度に存在していることによって、燃料電池運転中に電解質膜等に発生した過酸化水素等の過酸化物を効率的に除去することが出来る。つまり、拡散層の周辺部にのみCeの添加量を増やす(または周辺部にのみCeを添加する)ことで、初期の出力低下を極力少なくし、かつ電解質膜の劣化を抑制することのできるMEAを提供できる。   In FIG. 1, the cross-sectional schematic diagram of the fuel cell of this invention is shown. A membrane-electrode junction for a fuel cell comprising a pair of electrodes comprising a fuel electrode supplied with fuel gas and an oxygen electrode supplied with oxidant gas, and a polymer electrolyte membrane sandwiched between the pair of electrodes In the body, the electrode comprises a catalyst layer and a diffusion layer joined to the polymer electrolyte membrane, and the peroxide decomposition agent is present in the diffusion layer near the end in the cell surface direction at a higher concentration than other than the end. Yes. In FIG. 1, a separator is disposed outside the diffusion layer. Here, the peroxide decomposition agent is present in the diffusion layer at a higher concentration near the end in the cell surface direction than at the end, so that hydrogen peroxide and the like generated in the electrolyte membrane during fuel cell operation Peroxide can be removed efficiently. That is, by increasing the amount of Ce added only to the peripheral part of the diffusion layer (or adding Ce only to the peripheral part), the MEA can reduce initial output decrease as much as possible and suppress deterioration of the electrolyte membrane. Can provide.

具体的には、GDLの端部にセリウム溶液(硝酸セリウム溶液など)を塗布・乾燥させたあと、MEA形成する。塗布する面はMEA化時に触媒層に接する側の方が望ましい(電解質膜に近い側のCe量が多い方がよい)。従来の、Ce添加方法では、膜にイオン交換してから還元処理で膜内へ析出させる方法や、触媒層溶液や拡散層機水ペースト内に固形分として添加し、MEAを形成するといったものがあるが、これらの方法は基本的には面内均一にCeが添加されるため、出力の低下が大きいわりに、添加による耐久性向上の効果が低くなると考えられる。   Specifically, after applying and drying a cerium solution (such as a cerium nitrate solution) on the end of the GDL, MEA is formed. The surface to be applied is preferably on the side in contact with the catalyst layer during MEA conversion (the amount of Ce on the side close to the electrolyte membrane is preferably large). In the conventional Ce addition method, there are a method in which ion exchange is performed on the membrane and then it is deposited in the membrane by reduction treatment, or a MEA is formed by adding it as a solid content in the catalyst layer solution or diffusion layer water paste. However, since these methods basically add Ce uniformly in the plane, it is considered that the effect of improving the durability due to the addition is reduced although the output is greatly reduced.

また、周辺部のCe添加量を増やすことで、周辺部の電解質膜内へ接着剤からの不純物などが混入する前に、Ceがイオン交換することで、その結果として接着剤からの不純物の電解質膜への混入を防ぐ効果も期待される。   Further, by increasing the amount of Ce added in the peripheral portion, Ce is ion-exchanged before impurities from the adhesive are mixed into the electrolyte membrane in the peripheral portion, so that the electrolyte of impurities from the adhesive is consequently obtained. It is also expected to prevent the film from entering.

以下、本発明を実施例により説明する。   Hereinafter, the present invention will be described with reference to examples.

図1に示される燃料電池において、その拡散層の周辺部に幅約1cmに硝酸セリウム溶液を塗布・乾燥させた。塗布・乾燥後のセリウム量が約300μg/cmとなるようにした。この拡散層を両極へ用い、MEAを作製し、性能評価を行なった。結果を下記表1に示す。 In the fuel cell shown in FIG. 1, a cerium nitrate solution was applied to the periphery of the diffusion layer to a width of about 1 cm and dried. The amount of cerium after coating and drying was set to about 300 μg / cm 2 . Using this diffusion layer for both electrodes, an MEA was fabricated and performance evaluation was performed. The results are shown in Table 1 below.

Figure 2008098006
Figure 2008098006

表1の結果より、セリウムの添加によって、初期の出力低下は見られず、良好なI−V特性を示すことが分かった。これより、過酸化物分解剤を拡散層のセル面方向端部付近に端部以外より高濃度に存在させることが、燃料電池の運転中に発生する有害な過酸化水素等の過酸化物をセルから取り除くことに有効であり、過酸化水素等の過酸化物による電解質膜や電極触媒層中の電解質の劣化を抑制し、燃料電池の耐久性を向上させることが分かる。   From the results in Table 1, it was found that the addition of cerium did not show an initial decrease in output, and showed good IV characteristics. Thus, the presence of a peroxide decomposing agent near the end in the cell surface direction of the diffusion layer at a higher concentration than other than the end can prevent harmful peroxides such as hydrogen peroxide generated during operation of the fuel cell. It is effective for removing from the cell, and it is understood that the deterioration of the electrolyte in the electrolyte membrane and the electrode catalyst layer due to peroxides such as hydrogen peroxide is suppressed and the durability of the fuel cell is improved.

本発明によれば、燃料電池の過酸化物による劣化を抑制し、耐久性を向上させることができる。これにより、燃料電池の実用化と普及に貢献する。   ADVANTAGE OF THE INVENTION According to this invention, deterioration by the peroxide of a fuel cell can be suppressed and durability can be improved. This contributes to the practical application and spread of fuel cells.

本発明の燃料電池の断面模式図を示す。The cross-sectional schematic diagram of the fuel cell of this invention is shown.

Claims (3)

燃料ガスが供給される燃料極と酸化剤ガスが供給される酸素極とからなる一対の電極と、該一対の電極の間に挟装された高分子電解質膜を含む燃料電池用膜−電極接合体であって、該電極が該高分子電解質膜と接合された触媒層と拡散層からなり、該拡散層中に過酸化物分解剤がセル面方向端部付近に端部以外より高濃度に存在することを特徴とする燃料電池用膜−電極接合体。   A membrane-electrode junction for a fuel cell comprising a pair of electrodes comprising a fuel electrode supplied with fuel gas and an oxygen electrode supplied with oxidant gas, and a polymer electrolyte membrane sandwiched between the pair of electrodes The electrode comprises a catalyst layer joined to the polymer electrolyte membrane and a diffusion layer, and in the diffusion layer, the peroxide decomposing agent has a higher concentration near the end in the cell surface direction than at the end. A membrane-electrode assembly for a fuel cell, characterized in that it exists. 前記過酸化物分解剤がCeO、Ru、Ag、RuO、WO、FeO、CePO、CrPO、AlPO、FePO、CeF、FeF、Fe−ポリフィン、及びCo−ポリフィンから選択される1種以上であることを特徴とする請求項1に記載の燃料電池用膜−電極接合体。 The peroxide decomposer is CeO 2 , Ru, Ag, RuO 2 , WO 3 , FeO 4 , CePO 4 , CrPO 4 , AlPO 4 , FePO 4 , CeF 3 , FeF 3 , Fe-polyfin, and Co-polyfin. The membrane-electrode assembly for a fuel cell according to claim 1, wherein the membrane-electrode assembly is one or more selected. 請求項1または2に記載の燃料電池用膜−電極接合体を備えた固体高分子型燃料電池。   A polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly according to claim 1.
JP2006279020A 2006-10-12 2006-10-12 Fuel cell membrane-electrode junction material and solid polymer fuel cell Pending JP2008098006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279020A JP2008098006A (en) 2006-10-12 2006-10-12 Fuel cell membrane-electrode junction material and solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279020A JP2008098006A (en) 2006-10-12 2006-10-12 Fuel cell membrane-electrode junction material and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2008098006A true JP2008098006A (en) 2008-04-24

Family

ID=39380636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279020A Pending JP2008098006A (en) 2006-10-12 2006-10-12 Fuel cell membrane-electrode junction material and solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2008098006A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216380A (en) * 2010-04-01 2011-10-27 Hitachi Ltd Solid polymer electrolyte fuel cell
JP2012129011A (en) * 2010-12-14 2012-07-05 Toshiba Fuel Cell Power Systems Corp Solid polymer electrolyte type fuel battery
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JP2016081630A (en) * 2014-10-14 2016-05-16 トヨタ自動車株式会社 Water repellent layer and fuel cell
CN114614057A (en) * 2020-12-03 2022-06-10 丰田自动车株式会社 Fuel cell and fuel cell system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795923B2 (en) 2007-04-19 2014-08-05 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, fuel cell membrane-electrode assembly, and solid polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly
US8802314B2 (en) 2008-10-17 2014-08-12 Toyota Jidosha Kabushiki Kaisha Reinforced electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell comprising the same
JP2011216380A (en) * 2010-04-01 2011-10-27 Hitachi Ltd Solid polymer electrolyte fuel cell
JP2012129011A (en) * 2010-12-14 2012-07-05 Toshiba Fuel Cell Power Systems Corp Solid polymer electrolyte type fuel battery
JP2016081630A (en) * 2014-10-14 2016-05-16 トヨタ自動車株式会社 Water repellent layer and fuel cell
CN114614057A (en) * 2020-12-03 2022-06-10 丰田自动车株式会社 Fuel cell and fuel cell system
JP2022089031A (en) * 2020-12-03 2022-06-15 トヨタ自動車株式会社 Fuel cell and fuel cell system
JP7380537B2 (en) 2020-12-03 2023-11-15 トヨタ自動車株式会社 Fuel cells and fuel cell systems

Similar Documents

Publication Publication Date Title
CN102668210B (en) Fuel cell
JP2008098006A (en) Fuel cell membrane-electrode junction material and solid polymer fuel cell
JP2005190752A (en) Membrane electrode assembly for fuel cell, and solid polymer fuel cell using it
JP4969025B2 (en) Membrane electrode for fuel cell and fuel cell
US7579116B2 (en) Fluoride ion scavenger for fuel cell components
KR20070097473A (en) Fuel cell power generation device
JPH1145733A (en) Solid polimer fuel cell
JP4574149B2 (en) Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
EP1906474B1 (en) Fuel cell, method for producing electrode catalyst layer for fuel cell, and method for operating fuel cell
KR101101497B1 (en) Producing method for electrodes of fuel cell with high temperature type and membrane electrode assembly produced thereby
JP2011076815A (en) Membrane-electrode assembly for fuel cell
JP2006134802A (en) Fuel cell
JP2005149859A (en) Fuel cell and its manufacturing method
JP7359077B2 (en) Laminate for fuel cells
JP2003109623A (en) Polyelectrolyte fuel cell
JP5044909B2 (en) Fuel cell
JP2009170175A (en) Membrane electrode structure, and fuel cell
JP2010073419A (en) Electrolyte membrane-electrode assembly for fuel cell
JP2009218184A (en) Catalyst electrode for fuel cell, manufacturing method therefor, membrane electrode assembly, and solid polymer type fuel cell
JP2007134159A (en) Fuel cell
JP7115959B2 (en) Membrane electrode assembly
WO2024202863A1 (en) Fuel battery cell
JP3523853B2 (en) Electrodes for polymer electrolyte fuel cells
JP2004349180A (en) Membrane electrode assembly
JP2008034157A (en) Fuel cell