JP2008096729A - Method for producing electrophotographic toner - Google Patents

Method for producing electrophotographic toner Download PDF

Info

Publication number
JP2008096729A
JP2008096729A JP2006278930A JP2006278930A JP2008096729A JP 2008096729 A JP2008096729 A JP 2008096729A JP 2006278930 A JP2006278930 A JP 2006278930A JP 2006278930 A JP2006278930 A JP 2006278930A JP 2008096729 A JP2008096729 A JP 2008096729A
Authority
JP
Japan
Prior art keywords
mass
water
pulverized
classification
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006278930A
Other languages
Japanese (ja)
Inventor
Tadahiro Tsubaki
忠洋 椿
Masahiro Maeda
正博 前田
Hideki Ikeda
英樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Casio Electronics Co Ltd
Original Assignee
Casio Computer Co Ltd
Casio Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Casio Electronics Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006278930A priority Critical patent/JP2008096729A/en
Publication of JP2008096729A publication Critical patent/JP2008096729A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an electrophotographic toner having excellent fogging properties by preventing the flocculation of particles in a classifying step thereby improving a classification yield. <P>SOLUTION: The method for producing the electrophotographic toner includes: a step where a raw material mixture including a binding resin and a coloring agent is melted and kneaded; a step where the kneaded material is cooled and solidified, and is thereafter coarsely pulverized; a step where the coarsely pulverized material is pulverized; and a step where the pulverized material is classified by an air flow classifying machine with a louver for introducing the same into a device with a carrier air. In the classifying step, the carrier air is admixed with water of 1.5 to 8 pts.mass per 100 pts.mass of the processing amount of the pulverized material or alkali electrolyzed water of 1 to 8 pts.mass per 100 pts.mass of the processing amount of the pulverized material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子写真用トナーの製造方法に係り、特に、分級効率が良好な分級工程を備える電子写真用トナーの製造方法に関する。   The present invention relates to a method for producing an electrophotographic toner, and more particularly, to a method for producing an electrophotographic toner including a classification step with good classification efficiency.

電子写真方式による画像形成は、一般に、帯電させたトナーにより静電荷像を現像して可視化し、現像により得られたトナー像を用紙に転写し、定着することにより行われる。このような画像形成に用いられるトナーの製造方法としては、粉砕法、重合法等があるが、一般には粉砕法が主流を占めている。   In general, image formation by electrophotography is performed by developing and visualizing an electrostatic image with charged toner, and transferring and fixing the toner image obtained by development onto a sheet. As a method for producing such a toner used for image formation, there are a pulverization method, a polymerization method, and the like. In general, the pulverization method dominates.

粉砕法の一般的な製造方法は、結着樹脂、着色剤、離型剤、及び帯電制御剤等の原料を乾式で混合した後、2軸押出機などで溶融混練し、冷却固化した後に粗粉砕を行い、混練粗砕物を得る。その後、ジェットミルなどで微粉砕を行い、適切な粒度分布になるように分級機で粒度調整を行う。更にシリカなどと一緒に混合機で混合することで表面処理を行い、トナーを得るものである。   A general production method of the pulverization method is to mix raw materials such as a binder resin, a colorant, a release agent, and a charge control agent in a dry manner, then melt and knead with a twin-screw extruder or the like, and after cooling and solidifying, Crushing is performed to obtain a kneaded crushed material. Thereafter, fine pulverization is performed with a jet mill or the like, and the particle size is adjusted with a classifier so as to obtain an appropriate particle size distribution. Further, the toner is obtained by performing surface treatment by mixing with silica etc. in a mixer.

近年の電子写真用トナーにおける要求性能は益々高度になっている。小粒径化、オイルレス化、低温定着化、高転写効率、高画質化がトナーに対する主な要求である。これらに共通するトナーの要素技術としては、顔料、帯電制御剤、離型剤等のトナー内添剤を微細に均一に結着樹脂中に分散させることが必要である。   The required performance of electrophotographic toners in recent years has become increasingly sophisticated. The main requirements for toners are to reduce the particle size, reduce oil, fix at low temperature, increase transfer efficiency, and improve image quality. As an elemental technology common to these toners, it is necessary to disperse a toner internal additive such as a pigment, a charge control agent, and a release agent finely and uniformly in the binder resin.

特に、トナーを小粒径化すると、粒子同士の静電気力やファンデルワールス力による凝集力が増大し、かつ微粉の量が増大するため、粉砕後の分級工程における分級収率が低下するという問題があり、この問題の解決が望まれている。   In particular, when the toner particle size is reduced, the cohesive force due to electrostatic force and van der Waals force between particles increases, and the amount of fine powder increases, so the classification yield in the classification process after pulverization decreases. There is a need to solve this problem.

トナーの分級工程で用いられる気流分級機の代表的なものとして図1に示すようなディスパージョンセパレーター(日本ニューマチック工業(株)製)が知られている。図1に示す気流分級機の分級室への粉体材料供給部は、サイクロン状の形状をなしており、上部カバー10の上面中央部には案内筒11が起立状に設けられ、この案内筒11の上部外周面に供給筒12が接続されている。供給筒12は、案内筒11の外周に供給筒12を介して供給される粉体材料が案内筒内円周の接線方向に導入されるように接続されている。   As a typical air classifier used in the toner classification process, a dispersion separator (manufactured by Nippon Pneumatic Industry Co., Ltd.) as shown in FIG. 1 is known. The powder material supply unit to the classification chamber of the airflow classifier shown in FIG. 1 has a cyclone shape, and a guide cylinder 11 is provided upright at the center of the upper surface of the upper cover 10. A supply cylinder 12 is connected to the upper outer peripheral surface of the motor 11. The supply cylinder 12 is connected to the outer periphery of the guide cylinder 11 so that the powder material supplied via the supply cylinder 12 is introduced in the tangential direction of the inner circumference of the guide cylinder.

このような供給筒12より案内筒11内に粉体材料を供給すると、粉体材料は案内筒11の内周面に沿って旋回しながら下降する。この場合、粉体材料は、供給筒12より案内筒11内周面に沿って帯状に下降するため、分級室13に流入する粉体材料の分布及び濃度が不均一となり(分級室へ案内筒内周面の一部からのみ粉体材料は流入する)、分散が悪い。また、処理量を大きくとると粉体材料の凝集が一層起こり易く、さらに分散が十分に行われなくなり、高精度の分級が行えないという問題点がある。   When the powder material is supplied from the supply cylinder 12 into the guide cylinder 11, the powder material descends while turning along the inner peripheral surface of the guide cylinder 11. In this case, since the powder material descends from the supply tube 12 along the inner peripheral surface of the guide tube 11, the distribution and concentration of the powder material flowing into the classification chamber 13 become uneven (the guide tube to the classification chamber). The powder material flows only from a part of the inner peripheral surface), and the dispersion is poor. Further, when the processing amount is increased, there is a problem that the powder material is more likely to be aggregated, and further, the dispersion is not sufficiently performed, so that high-precision classification cannot be performed.

また、粉体材料を搬送するための空気量が多い場合、分級室に流入する空気量が多いため、分級室において旋回する粒子の中心向き速度が大きくなり、分離粒子径が大きくなるという問題点がある。   In addition, when the amount of air for conveying the powder material is large, the amount of air flowing into the classification chamber is large, so that the center direction speed of the swirling particles in the classification chamber increases and the separation particle size increases. There is.

したがって、通常、分離粒子径を小さくする場合、案内筒上部14より空気をダンパーによりコントロールして抜いているが、抜く空気量が多いと粉体材料の一部も排出され、損失するという実用上の問題点が生じる場合もある。   Therefore, normally, when the separation particle diameter is reduced, air is extracted from the guide cylinder upper part 14 by controlling with a damper. However, if the amount of air to be extracted is large, part of the powder material is discharged and lost. The problem may occur.

このような問題を解決する気流分級機として、特許文献1に記載されているようなものがある。この気流分級機は、図2に示すように、筒状の本体ケーシング1及び下部ケーシング2を備え、その下部に粗粉排出用のホッパー3が接続されている。本体ケーシング1の内部は、分級室4が形成されており、この分級室4の上部は本体ケーシング1の上部に取付けた環状の案内室5と中央部が高くなる円錐状(傘状)の上部カバー6によって閉鎖されている。   As an air classifier that solves such a problem, there is one described in Patent Document 1. As shown in FIG. 2, this airflow classifier includes a cylindrical main body casing 1 and a lower casing 2, and a hopper 3 for discharging coarse powder is connected to the lower part thereof. A classification chamber 4 is formed inside the main casing 1, and an upper portion of the classification chamber 4 is an annular guide chamber 5 attached to the upper portion of the main casing 1 and a conical (umbrella-shaped) upper portion whose central portion is raised. It is closed by a cover 6.

分級室4と案内室5の間の仕切壁に円周方向に配列する複数のルーバー7が設けられ、案内室5に送り込まれた粉体材料と空気を各ルーバー7の間より分級室4に旋回させて流入させている。   A plurality of louvers 7 arranged in the circumferential direction are provided on a partition wall between the classification chamber 4 and the guide chamber 5, and the powder material and air fed into the guide chamber 5 are transferred to the classification chamber 4 from between the louvers 7. It is swirling and flowing.

また、本体ケーシング1の下部には、円周方向に配列する分級ルーバー9が設けられ、外部から分級室4へ旋回流を起こす分級空気を、分級ルーバー9を介して取り入れている。   A classification louver 9 arranged in the circumferential direction is provided at the lower part of the main body casing 1, and classification air that causes a swirling flow from the outside to the classification chamber 4 is taken in via the classification louver 9.

以上のような構成の気流分級機では、ルーバー7を介して、空気と粉体材料が分級室4へ供給され、ルーバー7を介して、分級室4へ供給する際に、従来の方式より著しい分散の向上が得られるという利点がある。   In the airflow classifier configured as described above, air and powder material are supplied to the classification chamber 4 via the louver 7, and when supplied to the classification chamber 4 via the louver 7, the airflow classifier is significantly different from the conventional method. There is an advantage that an improvement in dispersion can be obtained.

しかし、近年の小粒径トナー(6.0μm以下)では、分級時の凝集が多く、上記のような装置側からの対応だけでは不十分である。
特開平5−23611号公報
However, recent toners with a small particle diameter (6.0 μm or less) often have agglomeration during classification, and it is not sufficient to deal with the above-mentioned device side alone.
Japanese Patent Laid-Open No. 5-23611

本発明は、以上のような事情の下になされ、分級工程において粒子の凝集を防止して分級収率を向上させ、かぶり特性の良好な電子写真用トナーを製造する方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and an object of the present invention is to provide a method for producing an electrophotographic toner having good fog characteristics by preventing aggregation of particles in the classification step to improve the classification yield. And

上記課題を解決するため、本発明の第1の態様は、結着樹脂及び着色剤を含む原料混合物を溶融混練する工程、混練物を冷却固化した後、粗粉砕する工程、粗粉砕物を粉砕する工程、及び粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級する工程を具備し、前記分級工程において、前記搬送空気に、粉砕物処理量100質量部あたり1.5〜8質量部の水を添加することを特徴とする電子写真用トナーの製造方法を提供する。   In order to solve the above problems, the first aspect of the present invention includes a step of melt kneading a raw material mixture containing a binder resin and a colorant, a step of coarsely pulverizing the kneaded product after cooling and solidifying, and crushing the coarsely pulverized product And a step of classifying the pulverized product with an airflow classifier having a louver that introduces the pulverized product into the apparatus using the carrier air. In the classifying step, 1.5% per 100 parts by mass of the pulverized material processing amount is added to the carrier air. Provided is a method for producing an electrophotographic toner, which comprises adding ˜8 parts by mass of water.

本発明の第2の態様は、結着樹脂及び着色剤を含む原料混合物を溶融混練する工程、混練物を冷却固化した後、粗粉砕する工程、粗粉砕物を粉砕する工程、及び粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級する工程を具備し、前記分級工程において、前記搬送空気に、粉砕物処理量100質量部あたり1〜8質量部のアルカリ電解水を添加することを特徴とする電子写真用トナーの製造方法を提供する。   The second aspect of the present invention comprises a step of melt kneading a raw material mixture containing a binder resin and a colorant, a step of coarsely pulverizing the kneaded product after cooling and solidifying, a step of pulverizing the coarsely pulverized product, and a pulverized product. Comprising a step of classifying with an air classifier having a louver introduced into the apparatus by means of carrier air, and in the classifying step, 1 to 8 parts by mass of alkaline electrolyzed water per 100 parts by mass of the pulverized material processing amount is added to the carrier air. A method for producing an electrophotographic toner is provided.

本発明によると、混練物を冷却固化し粉砕した後に、粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級するに際し、搬送空気に水又はアルカリ電解水を添加しているため、粒子の凝集が妨げられ、分級収率を大幅に向上させることができ、かつトナーのカブリ特性の良好な電子写真用トナーを得ることができる。   According to the present invention, after cooling and solidifying and kneading the kneaded material, water or alkaline electrolyzed water is added to the carrier air when the pulverized material is classified by an air classifier having a louver that is introduced into the apparatus by carrier air. Therefore, aggregation of particles is hindered, the classification yield can be greatly improved, and an electrophotographic toner having good fog characteristics of the toner can be obtained.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明の第1の実施形態に係る電子写真用トナーの製造方法は、結着樹脂及び着色剤を含む混練物を冷却固化し、粗粉砕及び微粉砕した後に、粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級するに際し、搬送空気に、粉砕物処理量100質量部あたり1.5〜8質量部の水を添加することを特徴とする。   In the method for producing an electrophotographic toner according to the first embodiment of the present invention, a kneaded material containing a binder resin and a colorant is cooled and solidified, coarsely pulverized and finely pulverized, and then the pulverized material is transported into the apparatus by conveying air. When classifying by an air classifier equipped with a louver to be introduced into, 1.5 to 8 parts by mass of water is added to the carrier air per 100 parts by mass of the pulverized material processing amount.

このように、粉砕物を搬送空気によりルーバーを介して装置内に導入するに際し、搬送空気に水を添加し、分級することにより、分級の際の粉砕粒子の凝集を低減することができ、その結果、分級収率を大幅に向上させることができる。このように分級の際の粉砕粒子の凝集を低減することができるのは、水は静電気を除電する作用を有するため、分級の際に、粉砕粒子が静電気により凝集することが妨げられるからである。粉砕粒子が凝集すると、超微粉量も増加するため分級収率も低下するが、水の存在により粉砕粒子の静電凝集が解離されるため、分級収率が向上する。また、分級機の機壁への静電付着も低減される。   In this way, when the pulverized product is introduced into the apparatus via the louver by the carrier air, by adding water to the carrier air and classification, the aggregation of the pulverized particles during classification can be reduced. As a result, the classification yield can be greatly improved. The reason why the agglomeration of the pulverized particles during classification can be reduced in this way is that water has a function of eliminating static electricity, and therefore, during classification, the pulverized particles are prevented from aggregating due to static electricity. . When the pulverized particles agglomerate, the amount of ultrafine powder increases and the classification yield also decreases. However, since the electrostatic aggregation of the pulverized particles is dissociated by the presence of water, the classification yield is improved. In addition, electrostatic adhesion to the wall of the classifier is also reduced.

本発明の第1の実施形態に係る電子写真用トナーの製造方法において、搬送空気に添加される水の量は、粉砕物100質量部に対し、1.5〜8質量部である。水の量が1.5質量部未満では、水の添加による効果を得ることができず、即ち、超微粉量が多く、分級収率が低く、一方8質量部を超えても、超微粉量が多く、分級収率の向上が得られない。   In the method for producing an electrophotographic toner according to the first embodiment of the present invention, the amount of water added to the carrier air is 1.5 to 8 parts by mass with respect to 100 parts by mass of the pulverized product. If the amount of water is less than 1.5 parts by mass, the effect of adding water cannot be obtained, that is, the amount of ultrafine powder is large and the classification yield is low. The classification yield cannot be improved.

本発明の第2の実施形態に係る電子写真用トナーの製造方法は、結着樹脂及び着色剤を含む混練物を冷却固化し、粉砕した後に、粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級するに際し、搬送空気にアルカリ電解水を添加することを特徴とする。   The method for producing an electrophotographic toner according to the second embodiment of the present invention includes a louver that cools and solidifies a kneaded material containing a binder resin and a colorant, and then pulverizes the pulverized material into the apparatus using carrier air. When carrying out classification with an airflow classifier comprising: alkaline electrolyzed water is added to the carrier air.

このように、水の代わりにアルカリ電解水を用いた場合には、上記除電効果とともに、洗浄効果等の界面活性効果が発揮され、アルカリ電解水が微粉砕した後の微粒子に良く馴染むため、より高い凝集防止効果が発揮される。   In this way, when alkaline electrolyzed water is used instead of water, in addition to the above-mentioned static elimination effect, a surface active effect such as a cleaning effect is exhibited, and the alkaline electrolyzed water is well adapted to fine particles after being finely pulverized. High anti-aggregation effect is demonstrated.

なお、搬送空気に添加されるアルカリ電解水の量は、水の場合より少なくてもよく、粗粉砕物100質量部に対し、1〜8質量部である。アルカリ電解水の量が1質量部未満では、アルカリ電解水の添加による効果を得ることができず、即ち、超微粉量が多く、分級収率が低く、一方、8質量部を超えても、超微粉量が多く、分級収率の向上が得られない。   The amount of alkaline electrolyzed water added to the carrier air may be less than that of water, and is 1 to 8 parts by mass with respect to 100 parts by mass of the coarsely pulverized product. If the amount of alkaline electrolyzed water is less than 1 part by mass, the effect of addition of alkaline electrolyzed water cannot be obtained, that is, the amount of ultrafine powder is large and the classification yield is low. The amount of ultrafine powder is large, and the classification yield cannot be improved.

アルカリ電解水は、水を電気分解することにより、陰極側に形成されるものである。なお、陽極側からは、酸性電解水が得られる。一般に、酸及びアルカリは、中和して塩を形成するが、酸性水及びアルカリ水は、中和しても塩を形成しないという特徴を有する。従って、酸性電解水及びアルカリ電解水は、酸、アルカリではない。   Alkaline electrolyzed water is formed on the cathode side by electrolyzing water. In addition, acidic electrolyzed water is obtained from the anode side. In general, acids and alkalis are neutralized to form a salt, but acidic water and alkaline water have a characteristic that they do not form a salt even when neutralized. Therefore, acidic electrolyzed water and alkaline electrolyzed water are not acids or alkalis.

即ち、電解水は、水分子が電気分解して相対的に水素イオンに偏りができるために、pHでは酸性及びアルカリ性を示している。そのため、電解水を中和しても塩を形成せず、中性の水に戻ってしまうので、塩により悪影響を受けることはない。   That is, electrolyzed water is acidic and alkaline at pH because water molecules are electrolyzed and can be relatively biased to hydrogen ions. Therefore, even if the electrolyzed water is neutralized, no salt is formed and the water is returned to neutral water, so that it is not adversely affected by the salt.

電気分解に供される水は、通常は、水道水、井戸水、食塩水等が使用される。水道水や井戸水には、カルシウム、マグネシウム、ナトリウム、カリウム等のイオンが含まれており、食塩水には、ナトリウムイオンが含まれているため、電気分解が可能である。   As water used for electrolysis, tap water, well water, salt water, etc. are usually used. Tap water and well water contain ions such as calcium, magnesium, sodium, and potassium, and salt water contains sodium ions, so electrolysis is possible.

濃度2%以下の食塩水を電気分解した場合、陽極からpH2.7以下の強酸性次亜塩素酸水が酸性電解水として得られ、陰極からはpH11〜12の強アルカリ電解水が得られる。   When electrolyzing a salt solution having a concentration of 2% or less, strong acidic hypochlorous acid water having a pH of 2.7 or less is obtained as acidic electrolyzed water from the anode, and strong alkaline electrolyzed water having a pH of 11 to 12 is obtained from the cathode.

以上の本発明の第1及び第2の実施形態において、結着樹脂としては、例えば、ポリエステル樹脂、スチレンアクリル樹脂、エポキシ樹脂等が挙げられる。これらの中では、ポリエステル樹脂が好ましい。   In the first and second embodiments of the present invention described above, examples of the binder resin include a polyester resin, a styrene acrylic resin, and an epoxy resin. In these, a polyester resin is preferable.

着色剤としては、従来公知のものを使用することができる。   A conventionally well-known thing can be used as a coloring agent.

トナーには、更に離型剤、帯電制御剤等を添加することができる。帯電制御剤及び離型剤としては、従来公知の離型剤を用いることができる。そのような離型剤として、低分子量ポリエチレン、低分子量ポリプロピレン、パラフィン等の極性の低いもの或いはカルナバワックス、エステル系等の極性の高いものを挙げることが出来る。また、エマルジョンタイプのカルボキシル基変性ポリオレフィンとして、エチレン、プロピレン、ブテン−1、ペンテン−1等のオレフィン単位を骨格としてカルボキシル基を有するように変性され、かつアンモニアまたはアミンでカルボキシル基の少なくとも一部が中和されたポリエチレンワックス、ポリプロピレンワックス等を使用することも可能である。これらのワックスのうち、カルナバワックスが好ましい。   A release agent, a charge control agent, and the like can be further added to the toner. Conventionally known release agents can be used as the charge control agent and the release agent. Examples of such a release agent include those having low polarity such as low molecular weight polyethylene, low molecular weight polypropylene and paraffin, and those having high polarity such as carnauba wax and ester. In addition, the emulsion type carboxyl group-modified polyolefin is modified so as to have a carboxyl group with an olefin unit such as ethylene, propylene, butene-1, and pentene-1 as a skeleton, and at least a part of the carboxyl group is formed with ammonia or amine. It is also possible to use neutralized polyethylene wax, polypropylene wax or the like. Of these waxes, carnauba wax is preferred.

本発明の第1及び第2の実施形態に係るトナーの製造方法は、次のようにして行われる。   The toner manufacturing methods according to the first and second embodiments of the present invention are performed as follows.

まず、結着樹脂、着色剤、離型剤、及び帯電制御剤等の材料の計量を行い、計量され材料を混合機により混合する。混合機としては、ヘンシェルミキサー、スーパーミキサー、V型ブレンダー、ナウターミキサー等、任意のものを用いることが出来る。
原料混合物は、次いで混練機に供給され、そこで溶融混練される。混練機としては、二軸押出し混練機及び単軸押出し混練機等の押出し混練機、連続式2本ロールミル、連続式3本ロールミル及びバッチ式ロールミル等のオープンロール型混練機等、任意の型のものを用いることができる。
First, materials such as a binder resin, a colorant, a release agent, and a charge control agent are measured, and the materials are measured and mixed by a mixer. As a mixing machine, arbitrary things, such as a Henschel mixer, a super mixer, a V-type blender, and a Nauta mixer, can be used.
The raw material mixture is then fed to a kneader where it is melt kneaded. As the kneading machine, any type of extrusion kneading machine such as a twin-screw extrusion kneading machine and a single-screw extrusion kneading machine, an open roll type kneading machine such as a continuous two-roll mill, a continuous three-roll mill, and a batch roll mill can be used. Things can be used.

混練機から排出された溶融混練物は、通常、トナーの製造に用いられる方法に従って、冷却され、粗粉砕される。これによって得た粗粉砕物を微粉砕し、次いで気流分級機により所定の粒度に分級して、トナー粒子母体が得られる。   The melt-kneaded product discharged from the kneader is usually cooled and coarsely pulverized according to the method used for the production of toner. The coarsely pulverized product thus obtained is finely pulverized and then classified to a predetermined particle size by an airflow classifier to obtain a toner particle matrix.

気流分級機は、例えば、図2に示すような、粉砕物を搬送空気により装置内に導入するルーバー7を備えるものであり、搬送空気には、水又はアルカリ電解水が水蒸気の形で添加される。従って、気流分級機の搬送空気導入路には、水又はアルカリ電解水を気化するための気化器が接続されている。   The airflow classifier includes, for example, a louver 7 for introducing the pulverized material into the apparatus by carrier air as shown in FIG. 2, and water or alkaline electrolyzed water is added to the carrier air in the form of water vapor. The Therefore, a vaporizer for vaporizing water or alkaline electrolyzed water is connected to the carrier air introduction path of the airflow classifier.

この場合、ルーバーを介して、水又はアルカリ電解水が添加された搬送空気により気流分級機内に導入された粒子は、水又はアルカリ電解水の存在のため凝集せず、超微粉量も少ない。そのため分級収率が大幅に向上する。また、超微粉量が少ないため分級機の機壁への付着が低減でき、かつかぶりも低減できる。   In this case, the particles introduced into the air classifier by the carrier air to which water or alkaline electrolyzed water is added via the louver do not aggregate due to the presence of water or alkaline electrolyzed water, and the amount of ultrafine powder is small. Therefore, the classification yield is greatly improved. In addition, since the amount of ultrafine powder is small, adhesion to the wall of the classifier can be reduced, and fogging can be reduced.

このようにして得たトナー粒子母体に、シリカ等の外添剤を加え、混合・攪拌することにより、電子写真用トナーが得られる。   An electrophotographic toner can be obtained by adding an external additive such as silica to the toner particle matrix thus obtained, followed by mixing and stirring.

実施例
以下、本発明の実施例及び比較例を示し、本発明について更に具体的に説明する。
Examples Hereinafter, examples and comparative examples of the present invention will be shown to describe the present invention more specifically.

まず、下記に示す配合の原材料をヘンシェルミキサー(三井鉱山(株)製)にて混合し、二軸押出混練機により溶融混練した。   First, raw materials having the following composition were mixed with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) and melt-kneaded with a twin-screw extrusion kneader.

架橋ポリエステル樹脂(軟化点141℃、ガラス転移点62℃) 93質量%
着色剤 (C.Iピグメントレッド 57:1) 3質量%
離型剤 (三洋化成(株)製 ビスコール660P) 3質量%
帯電制御剤 (オリエント化学(株)製 E−84) 1質量%
得られた混練物を空気中で冷却した後、ロートプレックス(三井鉱山(株)製)にて粗粉砕し、目開き2mmの篩いに通し、最大径2mm以下の粗粉砕品を得た。
Cross-linked polyester resin (softening point 141 ° C., glass transition point 62 ° C.) 93% by mass
Colorant (C.I Pigment Red 57: 1) 3% by mass
Mold release agent (Sanyo Chemical Co., Ltd., Biscol 660P) 3% by mass
Charge control agent (E-84, manufactured by Orient Chemical Co., Ltd.) 1% by mass
The obtained kneaded product was cooled in the air, and then coarsely pulverized with a Rotoplex (manufactured by Mitsui Mining Co., Ltd.), and passed through a sieve having an opening of 2 mm to obtain a coarsely pulverized product having a maximum diameter of 2 mm or less.

得られた粗粉砕物を粉砕圧0.5MPaに調整した衝突板式粉砕機(日本ニューマチック工業(株)製「IDS−10」)にて質量平均粒径5.8μmに微粉砕し、さらに分級機(日本ニューマチック工業(株)製「DSX−10」により、処理量30kg/hで分級して、6.0μmの着色微粒子を得た。この際、搬送空気とともに種々の量の水蒸気をルーバーから分級室内に導入した。   The resulting coarsely pulverized product is finely pulverized to a mass average particle diameter of 5.8 μm with a collision plate type pulverizer (“IDS-10” manufactured by Nippon Pneumatic Industry Co., Ltd.) adjusted to a pulverization pressure of 0.5 MPa, and further classified. Machine (Nippon Pneumatic Kogyo Co., Ltd. “DSX-10” was classified at a throughput of 30 kg / h to obtain 6.0 μm colored fine particles. Introduced into the classification room.

次に、この着色微粒子100質量部、疎水性シリカ(日本アエロジル(株)製「R972」)1質量部および疎水性シリカ(日本アエロジル(株)製「RX50」)0.5%を、ヘンシェルミキサーで混合し、トナーを得た。   Next, 100 parts by mass of the colored fine particles, 1 part by mass of hydrophobic silica (“R972” manufactured by Nippon Aerosil Co., Ltd.) and 0.5% of hydrophobic silica (“RX50” manufactured by Nippon Aerosil Co., Ltd.) are added to a Henschel mixer. To obtain a toner.

以上の実施例及び比較例で得たトナー試料について、下記の特性の測定及び試験を行い、特性を評価した。   The toner samples obtained in the above examples and comparative examples were measured and tested for the following characteristics to evaluate the characteristics.

1.粒径及び超微粉量の測定
ビーカーに試料少量と精製水、界面活性剤を入れ、超音波洗浄器にて分散したものを試料として用い、マルチサイザーII(コールター(株)製)により測定した。アパーチャーは100μmで行い、カウントは50,000個で行い、体積、個数分布をそれぞれ得て、体積分布のメジアン径を平均粒径とし、個数分布の2μm以下の割合(%)を超微粉量とした。
1. Measurement of particle size and amount of ultrafine powder A small sample, purified water, and a surfactant were placed in a beaker and dispersed with an ultrasonic cleaner, and the sample was measured with Multisizer II (manufactured by Coulter Co., Ltd.). The aperture is 100 μm, the count is 50,000, the volume and number distributions are obtained, the median diameter of the volume distribution is the average particle diameter, and the ratio (%) of the number distribution of 2 μm or less is the amount of ultrafine powder. did.

2.分級収率(%)
下記の式により、分級収率(%)を求めた。
2. Classification yield (%)
The classification yield (%) was determined by the following formula.

分級収率=((得られた分級品総量)÷(投入した微粉砕物総量))×100
3.かぶり
非磁性一成分現像装置「カシオページプレストN−5」(カシオ計算機(株)製:カラープリンタ毎分29枚機(A4横)、プロセススピード129mm/sec)にトナーを実装し、通常環境(25℃、50%RH)において、普通紙(XEROX−P紙A4サイズ)を用いて5%印字画像を10,000枚連続印字した後、白紙印字を行い、印字している途中でフロント扉を開けることにより、印字を強制終了させ、その時のOPCドラム上のカブリトナーをメンディングテープに写しとり、目視にて比較した。
Classification yield = ((Total amount of classified product obtained) ÷ (Total amount of finely pulverized product charged)) × 100
3. Fog A non-magnetic one-component developing device “Casio Page Presto N-5” (manufactured by Casio Computer Co., Ltd .: 29 printers per minute (A4 horizontal), process speed 129 mm / sec) with toner mounted in a normal environment ( After printing 10,000 sheets of 5% print images continuously on plain paper (XEROX-P paper A4 size) at 25 ° C. and 50% RH), perform blank paper printing and open the front door while printing. By opening, the printing was forcibly terminated, and the fog toner on the OPC drum at that time was copied onto a mending tape and compared visually.

比較例2と比較し、比較例2よりカブリが少ない場合は○、比較例2とカブリ量が同等の場合は△、比較例2よりカブリが多い場合は×とした。   In comparison with Comparative Example 2, the case where there was less fog than in Comparative Example 2 was marked as ◯, the case where the amount of fog was equivalent to that in Comparative Example 2 was Δ, and the case where there was more fog than Comparative Example 2 was marked as x.

以上の試験結果を下記表1に示す。なお、水蒸気添加量は、分級処理量100質量部あたりの水蒸気添加量の質量部を示す。

Figure 2008096729
The above test results are shown in Table 1 below. In addition, water vapor | steam addition amount shows the mass part of the water vapor | steam addition amount per 100 mass parts of classification treatment amount.
Figure 2008096729

上記表1から、以下のことが明らかである。即ち、処理量100質量部に対し、1〜8質量部の範囲内のアルカリ電解水を添加した実施例1、4、7、処理量100質量部に対し、1.5〜8質量部の範囲内の水を添加した実施例2、3、5、6は、いずれも超微粉量が26%以下と少なく、分級収率が66%以上と高く、かつかぶりが少ないという優れた結果を得た。   From Table 1 above, the following is clear. That is, the range of 1.5-8 mass parts with respect to 100 mass parts of Examples 1, 4, and 7 which added alkaline electrolyzed water in the range of 1-8 mass parts with respect to 100 mass parts of process amounts. In Examples 2, 3, 5 and 6 to which water was added, the amount of ultrafine powder was as low as 26% or less, the classification yield was as high as 66% or more, and excellent results were obtained with little fogging. .

これに対し、粗粉砕物に対し水またはアルカリ電解水を添加していない比較例1、水の添加量が1質量%と少ない比較例2、アルカリ電解水の添加量が1質量%に満たない比較例3、水の添加量が10質量%と多い比較例4は、超微粉量が27%以上と多く、分級収率は62%以下と低かった。また、比較例1及び比較例4は、かぶりが比較例2、3より多かった。   In contrast, Comparative Example 1 in which water or alkaline electrolyzed water is not added to the coarsely pulverized product, Comparative Example 2 in which the amount of water added is as small as 1% by mass, and the amount of alkaline electrolyzed water added is less than 1% by mass. In Comparative Example 3 and Comparative Example 4 in which the amount of water added was as large as 10% by mass, the amount of ultrafine powder was as large as 27% or more, and the classification yield was as low as 62% or less. Further, Comparative Example 1 and Comparative Example 4 had more fog than Comparative Examples 2 and 3.

気流分級機の代表例であるディスパージョンセパレーターの構造を示す断面図。Sectional drawing which shows the structure of the dispersion separator which is a typical example of an airflow classifier. ルーバー7を介して、空気と粉体材料を分級室へ供給するルーバーを備える気流分級機の構造を示す断面図。Sectional drawing which shows the structure of an airflow classifier provided with the louver which supplies air and a powder material to a classification chamber via the louver.

符号の説明Explanation of symbols

1…本体ケーシング、2…下部ケーシング、3…粗粉排出用ホッパー、4…分級室、5…案内室、6…上部カバー、7…ルーバー、9…分級ルーバー、10…上部カバー、11…案内筒、12…供給筒、13…分級室。   DESCRIPTION OF SYMBOLS 1 ... Main body casing, 2 ... Lower casing, 3 ... Coarse powder discharge hopper, 4 ... Classification room, 5 ... Guide room, 6 ... Upper cover, 7 ... Louver, 9 ... Classification louver, 10 ... Upper cover, 11 ... Guide Tube, 12 ... supply tube, 13 ... classification room.

Claims (2)

結着樹脂及び着色剤を含む原料混合物を溶融混練する工程、
混練物を冷却固化した後、粗粉砕する工程、
粗粉砕物を粉砕する工程、及び
粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級する工程を具備し、
前記分級工程において、前記搬送空気に、粉砕物処理量100質量部あたり1.5〜8質量部の水を添加することを特徴とする電子写真用トナーの製造方法。
A step of melt-kneading a raw material mixture containing a binder resin and a colorant;
A step of coarsely pulverizing the kneaded product after cooling and solidifying,
Comprising a step of pulverizing the coarsely pulverized product, and a step of classifying the pulverized product with an air classifier having a louver that introduces the pulverized product into the apparatus by carrier air,
In the classifying step, 1.5 to 8 parts by mass of water per 100 parts by mass of the pulverized material processing amount is added to the carrier air.
結着樹脂及び着色剤を含む原料混合物を溶融混練する工程、
混練物を冷却固化した後、粗粉砕する工程、
粗粉砕物を粉砕する工程、及び
粉砕物を搬送空気により装置内に導入するルーバーを備える気流分級機により分級する工程を具備し、
前記分級工程において、前記搬送空気に、粉砕物処理量100質量部あたり1〜8質量部のアルカリ電解水を添加することを特徴とする電子写真用トナーの製造方法。
A step of melt-kneading a raw material mixture containing a binder resin and a colorant;
A step of coarsely pulverizing the kneaded product after cooling and solidifying,
Comprising a step of pulverizing the coarsely pulverized product, and a step of classifying the pulverized product with an air classifier having a louver that introduces the pulverized product into the apparatus by carrier air,
In the classification step, 1 to 8 parts by mass of alkaline electrolyzed water is added to the carrier air per 100 parts by mass of the pulverized material processing amount.
JP2006278930A 2006-10-12 2006-10-12 Method for producing electrophotographic toner Pending JP2008096729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006278930A JP2008096729A (en) 2006-10-12 2006-10-12 Method for producing electrophotographic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006278930A JP2008096729A (en) 2006-10-12 2006-10-12 Method for producing electrophotographic toner

Publications (1)

Publication Number Publication Date
JP2008096729A true JP2008096729A (en) 2008-04-24

Family

ID=39379640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006278930A Pending JP2008096729A (en) 2006-10-12 2006-10-12 Method for producing electrophotographic toner

Country Status (1)

Country Link
JP (1) JP2008096729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505225B2 (en) 2014-12-30 2019-12-10 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505225B2 (en) 2014-12-30 2019-12-10 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same

Similar Documents

Publication Publication Date Title
JP2006293160A (en) Toner for electrophotography, and electrophotographic apparatus using the same
JP2007199579A (en) Electrostatic charge image developing toner and manufacturing method therefor
JP5078059B2 (en) Method for producing toner for developing electrostatic image
JPH0356131A (en) Continuous powder mixing apparatus and preparation of toner for electrostatic charge development
JP2009139511A (en) Electrophotographic toner, two-component developer, image forming method, image forming apparatus and process cartridge
JP2007271820A (en) Method for manufacturing electrophotographic toner
JP4506707B2 (en) Release agent master batch for toner, pulverized toner and method for producing the same
JP2008096729A (en) Method for producing electrophotographic toner
JPH06161153A (en) Manufacture of electrophotographic toner
JP5098265B2 (en) Method for producing toner for electrophotography
JP4779763B2 (en) Method for producing toner for electrophotography
JP5040233B2 (en) Method for producing toner for electrophotography
JP2659873B2 (en) Manufacturing method of electrophotographic toner
JP4967564B2 (en) Release agent master batch for toner, electrophotographic toner, and method for producing the same
JP2007093881A (en) Electrophotographic toner and method for manufacturing same
JP2009053352A (en) Method for manufacturing ground toner, air flow grinder for manufacturing ground toner, and air flow classifier for manufacturing ground toner
JPH1094758A (en) Air classifier and production of electrophotographic toner using the same
JP4784455B2 (en) Electrophotographic toner manufacturing method and kneading apparatus
JP2007271768A (en) Method for manufacturing electrophotographic color toner
JP2010079008A (en) Method for manufacturing electrophotographic toner
JP2009230065A (en) Electrophotographic toner
JP2009229759A (en) Manufacturing method of electrophotographic toner
JP5109760B2 (en) Method and apparatus for producing toner for electrophotography
JP2000352837A (en) Recyclable toner and its production
JP2007271767A (en) Method for manufacturing electrophotographic toner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110712