JP2008096383A - Apparatus for diagnosing temperature detecting means - Google Patents

Apparatus for diagnosing temperature detecting means Download PDF

Info

Publication number
JP2008096383A
JP2008096383A JP2006281403A JP2006281403A JP2008096383A JP 2008096383 A JP2008096383 A JP 2008096383A JP 2006281403 A JP2006281403 A JP 2006281403A JP 2006281403 A JP2006281403 A JP 2006281403A JP 2008096383 A JP2008096383 A JP 2008096383A
Authority
JP
Japan
Prior art keywords
temperature
temperature detection
detection means
detected
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281403A
Other languages
Japanese (ja)
Other versions
JP4992373B2 (en
Inventor
Hiroshi Kaneko
寛 金子
Shinsuke Yoshida
伸輔 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006281403A priority Critical patent/JP4992373B2/en
Publication of JP2008096383A publication Critical patent/JP2008096383A/en
Application granted granted Critical
Publication of JP4992373B2 publication Critical patent/JP4992373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a short circuit and failure of a plurality of temperature sensors in a system provided with a plurality of the temperature sensors. <P>SOLUTION: The temperature sensor 5 detects a temperature of a region upstream of a cooling wind among regions in a module 8 cooled by the cooling wind from a battery fan 2. The temperature sensor 6 detects a temperature of a region downstream of the cooling wind. When the cooling fan 2 is actuated, a battery controller 1 detects the short circuit and the failure of the temperature sensors 5, 6 based on the temperatures detected by the temperature sensors 5, 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、温度検出手段の短絡故障を検出する温度検出手段の診断装置に関する。   The present invention relates to a diagnostic device for temperature detection means for detecting a short-circuit fault in the temperature detection means.

従来、組電池を構成する複数のモジュールに温度センサを設け、複数の温度センサで検出される温度の平均温度を組電池の温度として検出する技術が知られている(特許文献1参照)。   2. Description of the Related Art Conventionally, a technique is known in which temperature sensors are provided in a plurality of modules constituting an assembled battery, and an average temperature detected by the plurality of temperature sensors is detected as the temperature of the assembled battery (see Patent Document 1).

特開2002−165380号公報JP 2002-165380 A

温度センサを複数設けるシステムにおいて、温度センサの信号出力線が短絡する故障が生じると、組電池の検出温度に誤差が生じるが、従来の技術では、このような短絡故障を検出することができなかった。   In a system with multiple temperature sensors, if a failure occurs that shorts the signal output line of the temperature sensor, an error occurs in the detection temperature of the assembled battery, but the conventional technology cannot detect such a short-circuit failure. It was.

本発明による温度検出手段の診断装置は、冷媒によって冷却可能な温度検出対象物の各部位のうち、冷媒の上流側の部位の温度を第1の温度検出手段で検出するとともに、冷媒の下流側の部位の温度を第2の温度検出手段で検出し、冷媒が流れている状態で、第1の温度検出手段によって検出される第1の温度と、第2の温度検出手段によって検出される第2の温度とに基づいて、第1の温度検出手段および第2の温度検出手段の短絡故障を検出することを特徴とする。   The diagnostic device for temperature detection means according to the present invention detects, with the first temperature detection means, the temperature of the upstream part of the refrigerant among the parts of the temperature detection target that can be cooled by the refrigerant, and the downstream side of the refrigerant. The first temperature detected by the first temperature detecting means and the second temperature detecting means detected by the second temperature detecting means in a state where the refrigerant is flowing in the second temperature detecting means. Based on the second temperature, a short circuit failure of the first temperature detection means and the second temperature detection means is detected.

本発明による温度検出手段の診断装置によれば、2つ以上の温度検出手段の短絡故障を検出することができる。   According to the diagnostic device for temperature detecting means according to the present invention, it is possible to detect a short-circuit failure of two or more temperature detecting means.

図1は、一実施の形態における温度検出手段の診断装置の構成を示す図である。以下では、一実施の形態における温度検出手段の診断装置をハイブリッド車に搭載して使用する例を挙げて説明する。バッテリパック7は、ケース内部にモジュール8を内蔵している。モジュール(組電池)8は、複数の単電池(セル)から構成されており、図示しない車両駆動用モータに電力を供給するとともに、モータの回生運転時に発電される電力によって、充電される。   FIG. 1 is a diagram showing a configuration of a diagnostic device for temperature detection means in one embodiment. Hereinafter, an example in which the diagnostic device for temperature detection means in one embodiment is mounted on a hybrid vehicle will be described. The battery pack 7 has a module 8 built in the case. The module (assembled battery) 8 is composed of a plurality of single cells (cells), supplies power to a vehicle drive motor (not shown), and is charged by power generated during regenerative operation of the motor.

バッテリパック7のケースは、ダクト10およびダクト9を介して、車室内と通じている。車室内とダクト9との間には、ダクト9内への異物の流入を防ぐために、網目状の吸入口12が設けられている。バッテリパック7のケースは、また、ダクト11を介して、車外と通じている。車外とダクト11との間には、ダクト11内への異物の流入を防ぐために、網目状の排出口13が設けられている。   The case of the battery pack 7 communicates with the vehicle interior via the duct 10 and the duct 9. A mesh-shaped suction port 12 is provided between the passenger compartment and the duct 9 in order to prevent inflow of foreign matter into the duct 9. The case of the battery pack 7 also communicates with the outside of the vehicle via the duct 11. A mesh-shaped discharge port 13 is provided between the outside of the vehicle and the duct 11 in order to prevent foreign matter from flowing into the duct 11.

ダクト9とダクト10との間には、バッテリファン2が設けられている。バッテリファン2は、後述するバッテリコントローラ1からの指示に基づいて作動して、モジュール8を冷却する。バッテリファン2の作動時には、車室内の空気が吸入口12を介して、ダクト9内に入り、ダクト10、ダクト11、および、排出口13を介して、車外に抜けていく。   A battery fan 2 is provided between the duct 9 and the duct 10. The battery fan 2 operates based on an instruction from the battery controller 1 described later to cool the module 8. When the battery fan 2 is in operation, the air in the vehicle compartment enters the duct 9 through the inlet 12 and escapes outside the vehicle through the duct 10, the duct 11, and the outlet 13.

室内空気温度センサ3は、室内空気温度Trを検出して、バッテリコントローラ1に出力する。吸入空気温度センサ4は、ダクト9内の吸入空気温度Tiを検出して、バッテリコントローラ1に出力する。電流センサ14は、モジュール8の充放電電流Iを検出して、バッテリコントローラ1に出力する。回転数センサ15は、バッテリファン2の回転数Rbを検出して、バッテリコントローラ1に出力する。   The indoor air temperature sensor 3 detects the indoor air temperature Tr and outputs it to the battery controller 1. The intake air temperature sensor 4 detects the intake air temperature Ti in the duct 9 and outputs it to the battery controller 1. The current sensor 14 detects the charge / discharge current I of the module 8 and outputs it to the battery controller 1. The rotation speed sensor 15 detects the rotation speed Rb of the battery fan 2 and outputs it to the battery controller 1.

バッテリ温度センサ5およびバッテリ温度センサ6は、それぞれモジュール8の異なる部位の温度を計測する。具体的には、バッテリ温度センサ5は、吸入口12から排出口13の方向に流れる冷却風(冷媒)の上流側の部位の温度TbAを検出し、バッテリ温度センサ6は、冷却風の下流側の部位の温度TbBを検出する。   The battery temperature sensor 5 and the battery temperature sensor 6 each measure the temperature of a different part of the module 8. Specifically, the battery temperature sensor 5 detects the temperature TbA of the upstream portion of the cooling air (refrigerant) flowing from the inlet 12 to the outlet 13 and the battery temperature sensor 6 is downstream of the cooling air. The temperature TbB of the part is detected.

バッテリコントローラ1は、CPU1a、メモリ1b、および、カウンタ1cを備え、モジュール8の入力/出力可能パワーや、SOC等を算出して、モジュール8の充放電を制御する。また、バッテリコントローラ1は、バッテリ温度センサ5,6によってそれぞれ検出されるバッテリ温度TbAおよびTbBのうち、高い方のバッテリ温度に応じて、バッテリファン2を作動させる。すなわち、バッテリ温度が高くなるほど、バッテリファン2の作動速度(ファン回転数)を速くする。   The battery controller 1 includes a CPU 1a, a memory 1b, and a counter 1c. The battery controller 1 calculates the input / output possible power of the module 8, the SOC, and the like, and controls charging / discharging of the module 8. Further, the battery controller 1 operates the battery fan 2 according to the higher one of the battery temperatures TbA and TbB detected by the battery temperature sensors 5 and 6, respectively. That is, as the battery temperature increases, the operating speed (fan rotation speed) of the battery fan 2 is increased.

また、バッテリコントローラ1は、後述する方法によって、バッテリ温度センサ5,6の短絡故障を検出する。ここで、短絡故障とは、バッテリ温度センサ5,6の検出温度が同一値で固定される故障であり、例えば、バッテリ温度センサ5およびバッテリコントローラ1の間を結ぶ信号線25と、バッテリ温度センサ6およびバッテリコントローラ1の間を結ぶ信号線26との間が短絡する故障や、バッテリコントローラ1の信号入力端子のうち、信号線25の入力端子と信号線26の入力端子との間が接触する故障などが含まれる。   Further, the battery controller 1 detects a short circuit failure of the battery temperature sensors 5 and 6 by a method described later. Here, the short circuit failure is a failure in which the detected temperatures of the battery temperature sensors 5 and 6 are fixed at the same value. For example, the signal line 25 connecting the battery temperature sensor 5 and the battery controller 1 and the battery temperature sensor 6 and the signal line 26 connecting between the battery controller 1 and the signal line 26 of the battery controller 1 are in contact with each other between the input terminal of the signal line 25 and the input terminal of the signal line 26. Includes breakdowns.

図2は、一実施の形態における温度検出手段の診断装置によって行われる処理内容を示すフローチャートである。車両が起動すると、バッテリコントローラ1は、ステップS10の処理を開始する。ステップS10では、カウンタ1cのカウンタ値Ct、および、後述する電流積算値Isをリセットして、ステップS20に進む。   FIG. 2 is a flowchart showing the content of processing performed by the diagnostic device for temperature detection means in one embodiment. When the vehicle is activated, the battery controller 1 starts the process of step S10. In step S10, the counter value Ct of the counter 1c and a current integrated value Is described later are reset, and the process proceeds to step S20.

ステップS20では、電流センサ14によって検出される充放電電流I、バッテリ温度センサ5によって検出されるバッテリ温度TbA、バッテリ温度センサ6によって検出されるバッテリ温度TbB、室内空気温度センサ3によって検出される室内空気温度Tr、吸入空気温度センサ4によって検出される吸入空気温度Ti、および、回転数センサ15によって検出される回転数Rbを取得して、ステップS30に進む。   In step S20, the charging / discharging current I detected by the current sensor 14, the battery temperature TbA detected by the battery temperature sensor 5, the battery temperature TbB detected by the battery temperature sensor 6, and the indoor air temperature sensor 3 detected by the room air temperature sensor 3. The air temperature Tr, the intake air temperature Ti detected by the intake air temperature sensor 4, and the rotational speed Rb detected by the rotational speed sensor 15 are acquired, and the process proceeds to step S30.

ステップS30では、バッテリ温度センサ5によって検出されるバッテリ温度TbAと、バッテリ温度センサ6によって検出されるバッテリ温度TbBとの差の絶対値が所定温度T1より小さいか否かを判定する。所定温度T1は、バッテリ温度TbAおよびTbBがほぼ同一とみなせる値であるか否かを判定するためのしきい値であり、温度センサ5,6の検出精度誤差や、バッテリコントローラ1の分解能等を考慮して、適切な値を予め設定しておく。バッテリ温度TbAおよびTbBの差の絶対値が所定温度T1以上であると判定すると、ステップS10に戻り、所定温度T1未満であると判定すると、ステップS40に進む。   In step S30, it is determined whether or not the absolute value of the difference between the battery temperature TbA detected by the battery temperature sensor 5 and the battery temperature TbB detected by the battery temperature sensor 6 is smaller than a predetermined temperature T1. The predetermined temperature T1 is a threshold value for determining whether or not the battery temperatures TbA and TbB are values that can be regarded as substantially the same. The detection accuracy error of the temperature sensors 5 and 6, the resolution of the battery controller 1, and the like are determined. Considering this, an appropriate value is set in advance. If it is determined that the absolute value of the difference between the battery temperatures TbA and TbB is equal to or higher than the predetermined temperature T1, the process returns to step S10. If it is determined that the absolute value is lower than the predetermined temperature T1, the process proceeds to step S40.

ステップS40では、次式(1)により、電流センサ14によって検出される充放電電流Iの電流積算値Isを求める。
Is=Is+|I| (1)
In step S40, the current integrated value Is of the charge / discharge current I detected by the current sensor 14 is obtained by the following equation (1).
Is = Is + | I | (1)

ステップS40に続くステップS50では、次式(2)および(3)が成り立つか否かを判定する。
Rb>Rb1 (2)
|Tr−Ti|<Tbr (3)
In step S50 following step S40, it is determined whether or not the following expressions (2) and (3) hold.
Rb> Rb1 (2)
| Tr-Ti | <Tbr (3)

ここで、式(2)におけるRbは、回転数センサ15によって検出される回転数であり、Rb1は所定のしきい値である。所定のしきい値Rb1は、バッテリファン2の作動時に、バッテリ温度TbAとTbBとの間で温度差が生じるような回転数に設定しておく。すなわち、式(2)では、バッテリファン2が所定の回転数Rb1より大きい回転数で作動しているか否かを判定している。   Here, Rb in Equation (2) is the rotation speed detected by the rotation speed sensor 15, and Rb1 is a predetermined threshold value. The predetermined threshold value Rb1 is set to a rotational speed at which a temperature difference occurs between the battery temperatures TbA and TbB when the battery fan 2 is operated. That is, in Expression (2), it is determined whether or not the battery fan 2 is operating at a rotational speed greater than the predetermined rotational speed Rb1.

また、式(3)におけるTrは、室内空気温度センサ3によって検出される室内空気温度、Tiは、吸入空気温度センサ4によって検出される吸入空気温度、Tbrは、所定のしきい値温度である。バッテリファン2が作動していれば、室内空気温度Trと吸入空気温度Tiとの差の絶対値は小さくなるが、吸入口12またはダクト9の詰まりが発生している場合には、室内空気温度Trと吸入空気温度Tiとの差の絶対値は大きくなる。すなわち、式(3)では、吸入口12またはダクト9の詰まりが発生していないかを判定しており、室内空気温度Trと吸入空気温度Tiとの差の絶対値が所定のしきい値温度Tbrより低ければ、吸入口12またはダクト9の詰まりは発生していないと判定する。   Further, Tr in Equation (3) is the indoor air temperature detected by the indoor air temperature sensor 3, Ti is the intake air temperature detected by the intake air temperature sensor 4, and Tbr is a predetermined threshold temperature. . If the battery fan 2 is operating, the absolute value of the difference between the indoor air temperature Tr and the intake air temperature Ti is small. However, if the suction port 12 or the duct 9 is clogged, the indoor air temperature The absolute value of the difference between Tr and the intake air temperature Ti increases. That is, in the expression (3), it is determined whether the suction port 12 or the duct 9 is clogged, and the absolute value of the difference between the indoor air temperature Tr and the intake air temperature Ti is a predetermined threshold temperature. If it is lower than Tbr, it is determined that the inlet 12 or duct 9 is not clogged.

上式(2)および(3)は、モジュール8が冷却される状態にあるか否かを判定するための式である。式(2)または式(3)の関係が成り立たないと判定すると、ステップS20に戻る。一方、式(2)および(3)の関係が成り立つ、すなわち、モジュール8が冷却される状態にあると判定すると、ステップS60に進む。ステップS60では、カウンタ1cのカウンタ値Ctを1つカウントアップして、ステップS70に進む。   The above equations (2) and (3) are equations for determining whether or not the module 8 is in a cooled state. If it is determined that the relationship of Expression (2) or Expression (3) does not hold, the process returns to Step S20. On the other hand, if it is determined that the relationship of the expressions (2) and (3) is established, that is, the module 8 is in a state of being cooled, the process proceeds to step S60. In step S60, the counter value Ct of the counter 1c is incremented by 1, and the process proceeds to step S70.

ステップS70では、次式(4)および(5)の関係が成り立つか否かを判定する。
Ct>C1 (4)
Is>Is1 (5)
ここで、式(4)におけるCtは、カウンタ1cのカウンタ値であり、C1は所定のしきい値である。式(4)は、ステップS30の判定およびステップS50の判定を肯定する状態が所定時間以上継続したか否かを判定するための式である。また、式(5)におけるIsは、ステップS40で算出した電流積算値であり、Is1は、所定のしきい値である。所定のしきい値Is1は、充放電によるモジュール8の発熱量が所定量以上であるか否かを判定するためのしきい値であり、実験等を行うことにより、予め適切な値に設定しておく。
In step S70, it is determined whether or not the relationship of the following expressions (4) and (5) holds.
Ct> C1 (4)
Is> Is1 (5)
Here, Ct in Expression (4) is a counter value of the counter 1c, and C1 is a predetermined threshold value. Expression (4) is an expression for determining whether or not the state in which the determination in step S30 and the determination in step S50 are positive continues for a predetermined time or more. In the equation (5), Is is the current integrated value calculated in step S40, and Is1 is a predetermined threshold value. The predetermined threshold Is1 is a threshold for determining whether or not the amount of heat generated by the module 8 due to charging / discharging is equal to or greater than a predetermined amount, and is set to an appropriate value in advance by performing an experiment or the like. Keep it.

ステップS70において、式(4)または(5)の関係が成り立たないと判定すると、ステップS20に戻る。一方、式(4)および(5)の関係が成り立つと判定すると、ステップS80に進む。   If it is determined in step S70 that the relationship of formula (4) or (5) does not hold, the process returns to step S20. On the other hand, if it is determined that the relationship between the expressions (4) and (5) is established, the process proceeds to step S80.

ステップS80では、バッテリ温度センサ5,6の短絡故障が生じていると判定する。モジュール8が発熱している状態で、バッテリファン2の冷却風によってモジュール8が冷却されている場合、冷却風の上流側に設けられているバッテリ温度センサ5によって検出される温度TbAと、冷却風の下流側に設けられているバッテリ温度センサ6によって検出されるバッテリ温度TbBとの間には、温度差が生じる。しかし、検出温度TbAと検出温度TbBとの間の温度差が所定のしきい値温度T1より低い場合には、バッテリ温度センサ5,6の短絡故障が生じていると判定する。   In step S80, it is determined that a short circuit failure has occurred in the battery temperature sensors 5, 6. When the module 8 is cooled by the cooling air of the battery fan 2 while the module 8 is generating heat, the temperature TbA detected by the battery temperature sensor 5 provided on the upstream side of the cooling air, and the cooling air There is a temperature difference between the battery temperature TbB detected by the battery temperature sensor 6 provided on the downstream side. However, when the temperature difference between the detected temperature TbA and the detected temperature TbB is lower than the predetermined threshold temperature T1, it is determined that a short circuit failure has occurred in the battery temperature sensors 5 and 6.

図3は、モジュール8の温度を算出する処理内容を示すフローチャートであり、図2に示すフローチャートの処理と並行して、バッテリコントローラ1によって行われる。なお、モジュール8の温度は、モジュール8の容量(SOC)の算出、劣化度の算出等の各種制御時に用いられる。具体的には、例えば、充放電電流(I)と電圧(V)とから内部抵抗を算出し、算出した内部抵抗を下記のように算出したモジュール8の温度に基づく係数で補正して劣化度を求めたり、補正した内部抵抗を用いてSCOを算出し、算出した劣化度やSOCに基づいてモジュールの充放電制御を行う。なお、これらの制御は、電池の制御として一般的に行われる公知の制御内容であり、ここでは詳述しない。   FIG. 3 is a flowchart showing the processing contents for calculating the temperature of the module 8, and is performed by the battery controller 1 in parallel with the processing of the flowchart shown in FIG. The temperature of the module 8 is used in various controls such as the calculation of the capacity (SOC) of the module 8 and the calculation of the degree of deterioration. Specifically, for example, the internal resistance is calculated from the charging / discharging current (I) and the voltage (V), and the calculated internal resistance is corrected by a coefficient based on the temperature of the module 8 calculated as follows, and the degree of deterioration is calculated. The SCO is calculated using the corrected internal resistance, and the module charge / discharge control is performed based on the calculated deterioration degree and SOC. These controls are well-known control contents that are generally performed as battery controls, and will not be described in detail here.

ステップS100では、バッテリ温度センサ5,6の短絡故障が生じているか否かを判定する。この判定は、図2のフローチャートのステップS80の処理を行ったか否かに基づいて行う。バッテリ温度センサ5,6の短絡故障が生じていないと判定すると、ステップS120に進む。   In step S100, it is determined whether or not a short circuit failure has occurred in the battery temperature sensors 5 and 6. This determination is made based on whether or not the process of step S80 in the flowchart of FIG. 2 has been performed. If it is determined that no short circuit failure has occurred in the battery temperature sensors 5, 6, the process proceeds to step S120.

ステップS120では、次式(6)より、バッテリ温度センサ5,6によって検出されるバッテリ温度TbAおよびTbBの平均温度Tbavを、モジュール8の温度として算出する。
Tbav=(TbA+TbB)/2 (6)
In step S120, the average temperature Tbav of the battery temperatures TbA and TbB detected by the battery temperature sensors 5 and 6 is calculated as the temperature of the module 8 from the following equation (6).
Tbav = (TbA + TbB) / 2 (6)

一方、ステップS100において、バッテリ温度センサ5,6の短絡故障が生じていると判定すると、ステップS110に進む。ステップS110では、次式(7)に基づいて求められる温度Tbavを、モジュール8の温度として算出する。
Tbav=(TbA+TbB)/2×k1 (7)
ただし、k1(0<k1<1)は、所定の係数であり、バッテリ温度センサ5,6の短絡故障が生じた場合の実温度と、センサ検出温度との関係に基づいて、予め定めておく。すなわち、式(7)では、バッテリ温度センサ5の検出温度TbAおよびバッテリ温度センサ6の検出温度TbBに基づいて、平均温度Tbavを推定している。
On the other hand, if it is determined in step S100 that a short circuit failure has occurred in the battery temperature sensors 5 and 6, the process proceeds to step S110. In step S110, the temperature Tbav obtained based on the following equation (7) is calculated as the temperature of the module 8.
Tbav = (TbA + TbB) / 2 × k1 (7)
However, k1 (0 <k1 <1) is a predetermined coefficient, and is determined in advance based on the relationship between the actual temperature when the short circuit failure of the battery temperature sensors 5 and 6 occurs and the sensor detection temperature. . That is, in Expression (7), the average temperature Tbav is estimated based on the detected temperature TbA of the battery temperature sensor 5 and the detected temperature TbB of the battery temperature sensor 6.

一実施の形態における温度検出手段の診断装置によれば、冷媒である冷却風によって冷却可能な温度検出対象物の各部位のうち、冷媒の上流側の部位の温度を温度センサ5で検出するとともに、冷媒の下流側の部位の温度を温度センサ6で検出し、冷媒が流れている状態で、温度センサ5によって検出される第1の温度と、温度センサ6によって検出される第2の温度とに基づいて、温度センサ5および温度センサ6の短絡故障を検出する。これにより、温度センサ5,6の短絡故障を検出することができる。   According to the diagnostic device of the temperature detection means in one embodiment, the temperature sensor 5 detects the temperature of the part upstream of the refrigerant among the parts of the temperature detection target that can be cooled by the cooling air that is the refrigerant. The temperature of the downstream portion of the refrigerant is detected by the temperature sensor 6, and the first temperature detected by the temperature sensor 5 and the second temperature detected by the temperature sensor 6 in a state where the refrigerant flows. Based on the above, a short circuit failure of the temperature sensor 5 and the temperature sensor 6 is detected. Thereby, the short circuit failure of the temperature sensors 5 and 6 can be detected.

特に、一実施の形態における温度検出手段の診断装置によれば、温度検出対象物が発熱しており、かつ、冷媒が流れている状態で、温度センサ5によって検出される第1の温度と、温度センサ6によって検出される第2の温度とに基づいて、温度センサ5および温度センサ6の短絡故障を検出する。冷媒が流れているだけの状態に比べて、さらに、温度検出対象物が発熱している場合には、温度センサ5,6によって検出される温度にさらに偏差が生じやすくなるため、温度センサ5,6の温度検出値に基づいて、より確実に、温度センサ5および温度センサ6の短絡故障を検出することができる。   In particular, according to the diagnostic device of the temperature detection means in one embodiment, the first temperature detected by the temperature sensor 5 in a state where the temperature detection object is generating heat and the refrigerant is flowing, Based on the second temperature detected by the temperature sensor 6, a short circuit failure of the temperature sensor 5 and the temperature sensor 6 is detected. Since the temperature detected by the temperature sensors 5 and 6 is more likely to have a deviation when the temperature detection object is generating heat as compared with the state in which only the refrigerant is flowing, the temperature sensor 5 Based on the detected temperature value of 6, the short circuit failure of the temperature sensor 5 and the temperature sensor 6 can be detected more reliably.

特に、一実施の形態における温度検出手段の診断装置によれば、温度検出対象物の発熱量が所定値以上であり、かつ、冷媒が流れている状態で、温度センサ5によって検出される第1の温度と、温度センサ6によって検出される第2の温度とに基づいて、温度センサ5および温度センサ6の短絡故障を検出する。温度検出対象物の発熱量が所定値以上であり、かつ、冷媒が流れている状態では、温度センサ5,6によって検出される温度にさらに偏差が生じやすくなるため、温度センサ5,6の温度検出値に基づいて、より確実に、温度センサ5および温度センサ6の短絡故障を検出することができる。   In particular, according to the diagnostic device of the temperature detection means in one embodiment, the first detected by the temperature sensor 5 in a state where the calorific value of the temperature detection object is not less than a predetermined value and the refrigerant is flowing. And the second temperature detected by the temperature sensor 6, a short-circuit failure of the temperature sensor 5 and the temperature sensor 6 is detected. In a state where the heat generation amount of the temperature detection object is equal to or greater than a predetermined value and the refrigerant is flowing, the temperature detected by the temperature sensors 5 and 6 is more likely to have a deviation. Based on the detected value, it is possible to detect the short circuit failure of the temperature sensor 5 and the temperature sensor 6 more reliably.

一実施の形態における温度検出手段の診断装置によれば、冷媒の流路(ダクト)に詰まりが発生していないと判定すると、温度センサ5および温度センサ6の短絡故障診断を行う。冷媒流路に詰まりが発生している場合には、温度検出対象物を効果的に冷却することができないため、温度センサ5,6の温度検出値に偏差が生じにくくなり、短絡故障を正確に判定することができなくなる。従って、冷媒流路に詰まりが発生していない時に短絡故障診断を行うことにより、短絡故障診断を正確に行うことができる。   According to the diagnostic device of the temperature detection means in one embodiment, if it is determined that the refrigerant flow path (duct) is not clogged, a short circuit failure diagnosis of the temperature sensor 5 and the temperature sensor 6 is performed. When clogging occurs in the refrigerant flow path, the temperature detection target cannot be cooled effectively, so that the temperature detection values of the temperature sensors 5 and 6 are less likely to be deviated, and the short-circuit failure is accurately detected. It becomes impossible to judge. Therefore, the short-circuit failure diagnosis can be performed accurately by performing the short-circuit failure diagnosis when the refrigerant flow passage is not clogged.

一実施の形態における温度検出手段の診断装置によれば、温度センサ5によって検出される温度TbAと、温度センサ6によって検出される温度TbBとの差の絶対値が所定温度T1より低い状態が所定時間以上継続すると、温度センサ5および温度センサ6が短絡故障していると判定するので、短絡故障が発生しているか否かを精度良く判定することができる。   According to the diagnostic device for temperature detection means in one embodiment, a state where the absolute value of the difference between the temperature TbA detected by the temperature sensor 5 and the temperature TbB detected by the temperature sensor 6 is lower than the predetermined temperature T1 is predetermined. If it continues for more than time, since it determines with the temperature sensor 5 and the temperature sensor 6 having a short circuit failure, it can be determined accurately whether the short circuit failure has generate | occur | produced.

また、一実施の形態における温度検出手段の診断装置によれば、温度センサ5,6の短絡故障時には、バッテリ温度センサ5の検出温度TbAおよびバッテリ温度センサ6の検出温度TbBに基づいて、平均温度Tbavを推定するので、温度センサ5,6の短絡故障時でも、温度検出対象物の温度を推定することができる。   Further, according to the diagnostic device of the temperature detecting means in the embodiment, when the temperature sensors 5 and 6 are short-circuited, the average temperature is determined based on the detected temperature TbA of the battery temperature sensor 5 and the detected temperature TbB of the battery temperature sensor 6. Since Tbav is estimated, the temperature of the temperature detection object can be estimated even when the temperature sensors 5 and 6 are short-circuited.

本発明は、上述した一実施の形態に限定されることはない。例えば、温度検出対象物として、モジュール8を例に挙げたが、モジュールに限られることはない。また、温度検出対象物であるモジュールを冷却するための冷媒として、冷却風を用いたが、冷媒が冷却風に限定されることはなく、例えば、水やオイルなどを用いることもできる。   The present invention is not limited to the embodiment described above. For example, the module 8 has been described as an example of the temperature detection target, but is not limited to the module. Moreover, although cooling air was used as a refrigerant | coolant for cooling the module which is a temperature detection target object, a refrigerant | coolant is not limited to cooling air, For example, water, oil, etc. can also be used.

上述した一実施の形態では、温度検出手段の診断装置をハイブリッド車に搭載して使用する例を挙げて説明したが、電気自動車や燃料電池車に搭載して使用することもできるし、車両以外のシステムに適用することもできる。   In the above-described embodiment, an example in which the temperature detection means is mounted on a hybrid vehicle has been described as an example. However, the temperature detection unit may be mounted on an electric vehicle or a fuel cell vehicle. It can also be applied to other systems.

また、本発明が温度検出手段である温度センサの種類によって限定されることもない。   Further, the present invention is not limited by the type of temperature sensor that is a temperature detecting means.

特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、温度センサ5が第1の温度検出手段を、温度センサ6が第2の温度検出手段を、バッテリコントローラ1が故障診断手段、詰まり判定手段、および、温度算出手段をそれぞれ構成する。なお、以上の説明はあくまで一例であり、発明を解釈する上で、上記の実施形態の構成要素と本発明の構成要素との対応関係に何ら限定されるものではない。   The correspondence between the constituent elements of the claims and the constituent elements of the embodiment is as follows. That is, the temperature sensor 5 constitutes a first temperature detection means, the temperature sensor 6 constitutes a second temperature detection means, and the battery controller 1 constitutes a failure diagnosis means, a clogging determination means, and a temperature calculation means. In addition, the above description is an example to the last, and when interpreting invention, it is not limited to the correspondence of the component of said embodiment and the component of this invention at all.

一実施の形態における温度検出手段の診断装置の構成を示す図The figure which shows the structure of the diagnostic apparatus of the temperature detection means in one embodiment. 一実施の形態における温度検出手段の診断装置によって行われる処理内容を示すフローチャートThe flowchart which shows the processing content performed by the diagnostic apparatus of the temperature detection means in one embodiment モジュールの温度を算出する処理内容を示すフローチャートFlowchart showing processing contents for calculating module temperature

符号の説明Explanation of symbols

1…バッテリコントローラ、2…バッテリファン、3…室内空気温度センサ、4…吸入空気温度センサ、5…バッテリ温度センサ、6…バッテリ温度センサ、7…バッテリパック、8…モジュール、9…ダクト、10…ダクト、11…ダクト、12…吸入口、13…排出口、14…電流センサ、15…回転数センサ、25,26…信号線 DESCRIPTION OF SYMBOLS 1 ... Battery controller, 2 ... Battery fan, 3 ... Indoor air temperature sensor, 4 ... Intake air temperature sensor, 5 ... Battery temperature sensor, 6 ... Battery temperature sensor, 7 ... Battery pack, 8 ... Module, 9 ... Duct, 10 ... Duct, 11 ... Duct, 12 ... Suction port, 13 ... Discharge port, 14 ... Current sensor, 15 ... Speed sensor, 25, 26 ... Signal line

Claims (7)

冷媒によって冷却可能な温度検出対象物の温度を検出する温度検出手段の診断装置において、
前記温度検出対象物の各部位のうち、前記冷媒の上流側の部位の温度を検出する第1の温度検出手段と、
前記温度検出対象物の各部位のうち、前記冷媒の下流側の部位の温度を検出する第2の温度検出手段と、
前記冷媒が流れている状態で、前記第1の温度検出手段によって検出される第1の温度と、前記第2の温度検出手段によって検出される第2の温度とに基づいて、前記第1の温度検出手段および前記第2の温度検出手段の短絡故障を検出する故障診断手段とを備えることを特徴とする温度検出手段の診断装置。
In the diagnostic device of the temperature detection means for detecting the temperature of the temperature detection object that can be cooled by the refrigerant
A first temperature detecting means for detecting a temperature of a part upstream of the refrigerant among the parts of the temperature detection object;
A second temperature detecting means for detecting a temperature of a part on the downstream side of the refrigerant among the parts of the temperature detection object;
Based on the first temperature detected by the first temperature detecting means and the second temperature detected by the second temperature detecting means in a state where the refrigerant is flowing, the first temperature A temperature detection means diagnosis apparatus comprising: a temperature detection means; and a failure diagnosis means for detecting a short-circuit failure of the second temperature detection means.
請求項1に記載の温度検出手段の診断装置において、
前記故障診断手段は、前記温度検出対象物が発熱しており、かつ、前記冷媒が流れている状態で、前記第1の温度検出手段によって検出される第1の温度と、前記第2の温度検出手段によって検出される第2の温度とに基づいて、前記第1の温度検出手段および前記第2の温度検出手段の短絡故障を検出することを特徴とする温度検出手段の診断装置。
In the diagnostic device of the temperature detection means according to claim 1,
The failure diagnosis means includes a first temperature detected by the first temperature detection means and the second temperature in a state where the temperature detection object is generating heat and the refrigerant is flowing. A diagnostic device for temperature detection means, comprising: detecting a short-circuit failure between the first temperature detection means and the second temperature detection means based on a second temperature detected by the detection means.
請求項2に記載の温度検出手段の診断装置において、
前記故障診断手段は、前記温度検出対象物の発熱量が所定値以上であり、かつ、前記冷媒が流れている状態で、前記第1の温度検出手段によって検出される第1の温度と、前記第2の温度検出手段によって検出される第2の温度とに基づいて、前記第1の温度検出手段および前記第2の温度検出手段の短絡故障を検出することを特徴とする温度検出手段の診断装置。
In the diagnostic device of the temperature detection means according to claim 2,
The failure diagnosis means has a first temperature detected by the first temperature detection means in a state where the heat generation amount of the temperature detection object is not less than a predetermined value and the refrigerant is flowing, and A temperature detection means diagnosis comprising: detecting a short-circuit failure between the first temperature detection means and the second temperature detection means based on a second temperature detected by the second temperature detection means. apparatus.
請求項1から請求項3のいずれか一項に記載の温度検出手段の診断装置において、
前記冷媒の流路に詰まりが発生していないか判定する詰まり判定手段をさらに備え、
前記故障診断手段は、前記詰まり判定手段によって、前記冷媒の流路に詰まりが発生していないと判定されると、前記前記第1の温度検出手段および前記第2の温度検出手段の短絡故障診断を行うことを特徴とする温度検出手段の診断装置。
In the diagnostic apparatus of the temperature detection means as described in any one of Claims 1-3,
Clogging determination means for determining whether clogging has occurred in the flow path of the refrigerant,
When the clogging determining means determines that the clogging of the refrigerant flow path is not clogged, the failure diagnosing means diagnoses a short circuit failure of the first temperature detecting means and the second temperature detecting means. A diagnostic device for temperature detection means.
請求項1から請求項4のいずれか一項に記載の温度検出手段の診断装置において、
前記故障診断手段は、前記第1の温度検出手段によって検出される第1の温度と、前記第2の温度検出手段によって検出される第2の温度との差の絶対値が所定温度より低ければ、前記第1の温度検出手段および前記第2の温度検出手段が短絡故障していると判定することを特徴とする温度検出手段の診断装置。
In the diagnostic apparatus of the temperature detection means as described in any one of Claims 1-4,
If the absolute value of the difference between the first temperature detected by the first temperature detection means and the second temperature detected by the second temperature detection means is lower than a predetermined temperature, the failure diagnosis means A diagnostic apparatus for temperature detection means, wherein the first temperature detection means and the second temperature detection means determine that a short circuit has occurred.
請求項5に記載の温度検出手段の診断装置において、
前記故障診断手段は、前記第1の温度検出手段によって検出される第1の温度と、前記第2の温度検出手段によって検出される第2の温度との差の絶対値が所定温度より低い状態が所定時間以上継続すると、前記第1の温度検出手段および前記第2の温度検出手段が短絡故障していると判定することを特徴とする温度検出手段の診断装置。
In the diagnostic device of the temperature detection means according to claim 5,
The failure diagnosis means is in a state where the absolute value of the difference between the first temperature detected by the first temperature detection means and the second temperature detected by the second temperature detection means is lower than a predetermined temperature. Is continued for a predetermined time or more, it is determined that the first temperature detecting means and the second temperature detecting means are short-circuited.
請求項1から請求項6のいずれか一項に記載の温度検出手段の診断装置において、
前記第1の温度検出手段および前記第2の温度検出手段の短絡故障が発生していない場合には、前記第1の温度検出手段によって検出される第1の温度および前記第2の温度検出手段によって検出される第2の温度の平均温度を、前記温度検出対象物の温度として算出する温度算出手段をさらに備え、
前記温度算出手段は、前記故障診断手段によって、前記第1の温度検出手段および前記第2の温度検出手段の短絡故障が検出されると、前記第1の温度検出手段によって検出される第1の温度および前記第2の温度検出手段によって検出される第2の温度に基づいて、前記平均温度を推定することを特徴とする温度検出手段の診断装置。
In the diagnostic apparatus of the temperature detection means as described in any one of Claims 1-6,
The first temperature and the second temperature detection means detected by the first temperature detection means when no short-circuit failure has occurred between the first temperature detection means and the second temperature detection means. Temperature calculating means for calculating an average temperature of the second temperatures detected by the temperature detection object as a temperature of the temperature detection object;
When the failure diagnosis unit detects a short-circuit failure between the first temperature detection unit and the second temperature detection unit, the temperature calculation unit detects the first temperature detected by the first temperature detection unit. A diagnostic apparatus for temperature detection means, wherein the average temperature is estimated based on a temperature and a second temperature detected by the second temperature detection means.
JP2006281403A 2006-10-16 2006-10-16 Diagnostic device for temperature detection means Expired - Fee Related JP4992373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281403A JP4992373B2 (en) 2006-10-16 2006-10-16 Diagnostic device for temperature detection means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281403A JP4992373B2 (en) 2006-10-16 2006-10-16 Diagnostic device for temperature detection means

Publications (2)

Publication Number Publication Date
JP2008096383A true JP2008096383A (en) 2008-04-24
JP4992373B2 JP4992373B2 (en) 2012-08-08

Family

ID=39379365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281403A Expired - Fee Related JP4992373B2 (en) 2006-10-16 2006-10-16 Diagnostic device for temperature detection means

Country Status (1)

Country Link
JP (1) JP4992373B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054789A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Cooling control method of battery
WO2020235263A1 (en) * 2019-05-20 2020-11-26 サンデン・オートモーティブクライメイトシステム株式会社 In-vehicle device temperature adjusting device and vehicle air conditioning device provided with same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628489B1 (en) 2014-09-25 2016-06-08 현대자동차주식회사 Apparatus and method for controlling high voltage battery in vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210740A (en) * 1995-02-01 1996-08-20 Hoshizaki Electric Co Ltd Failure detecting device of temperature sensor in refrigerator
JP2000045851A (en) * 1998-07-24 2000-02-15 Mitsubishi Motors Corp Failure determination device for water temperature sensor
JP2004003573A (en) * 2002-04-26 2004-01-08 Nsk Ltd Rolling device sensor
JP2004526959A (en) * 2001-03-14 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for monitoring a sensor
JP2005256447A (en) * 2004-03-12 2005-09-22 Hitachi Constr Mach Co Ltd Performance deterioration predictor for heat exchanger of construction machine, and cooling system
WO2006022362A2 (en) * 2004-08-25 2006-03-02 Toyota Motor Co Ltd Electric power source device
JP2006112944A (en) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd Battery temperature detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210740A (en) * 1995-02-01 1996-08-20 Hoshizaki Electric Co Ltd Failure detecting device of temperature sensor in refrigerator
JP2000045851A (en) * 1998-07-24 2000-02-15 Mitsubishi Motors Corp Failure determination device for water temperature sensor
JP2004526959A (en) * 2001-03-14 2004-09-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for monitoring a sensor
JP2004003573A (en) * 2002-04-26 2004-01-08 Nsk Ltd Rolling device sensor
JP2005256447A (en) * 2004-03-12 2005-09-22 Hitachi Constr Mach Co Ltd Performance deterioration predictor for heat exchanger of construction machine, and cooling system
WO2006022362A2 (en) * 2004-08-25 2006-03-02 Toyota Motor Co Ltd Electric power source device
JP2006112944A (en) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd Battery temperature detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054789A (en) * 2015-09-11 2017-03-16 トヨタ自動車株式会社 Cooling control method of battery
WO2020235263A1 (en) * 2019-05-20 2020-11-26 サンデン・オートモーティブクライメイトシステム株式会社 In-vehicle device temperature adjusting device and vehicle air conditioning device provided with same
JP2020191701A (en) * 2019-05-20 2020-11-26 サンデン・オートモーティブクライメイトシステム株式会社 Temperature adjuster of on-vehicle device and vehicle air conditioner including the same
JP7263116B2 (en) 2019-05-20 2023-04-24 サンデン株式会社 TEMPERATURE ADJUSTMENT DEVICE FOR ON-BOARD DEVICE AND VEHICLE AIR CONDITIONING DEVICE INCLUDING THE SAME
US11745565B2 (en) 2019-05-20 2023-09-05 Sanden Corporation In-vehicle device temperature adjusting device and vehicle air conditioning device provided with same

Also Published As

Publication number Publication date
JP4992373B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5369371B2 (en) Failure diagnosis device for battery cooling system
US7492129B2 (en) Temperature abnormality detecting apparatus and method for secondary battery
JP6210105B2 (en) Battery device
JP5404241B2 (en) Battery controller
JP5194827B2 (en) Fuel cell system
JP6237584B2 (en) Fuel cell system and air system abnormality determination method
JP2015186266A (en) Power storage system comprising abnormality detection unit
CN109975711A (en) Battery failure detection method and device
JP2001313092A (en) Cooling device for secondary battery
JP2017073845A (en) Battery device
CA2909663C (en) Fuel cell system and power generation monitoring method based on cathode gas deficiency
JP4992373B2 (en) Diagnostic device for temperature detection means
JP2002221559A (en) Vehicle battery diagnostic device
JP6369429B2 (en) Battery cooling control method
JP2014120457A (en) Power supply device
JP2018181654A (en) Fuel cell cooling system
JP5555994B2 (en) Fuel cell system
JP7015449B2 (en) Battery assembly abnormality judgment system
US10879545B2 (en) Fuel cell system and abnormality diagnosis method for fuel cell system
JP4929557B2 (en) Fuel cell system
JP6451073B2 (en) Cooling mechanism failure detection device
JP7135879B2 (en) power converter
JP7124596B2 (en) Battery temperature sensor abnormality detection device
JP6119647B2 (en) Electric vehicle
JP2003051341A (en) Residual capacity meter for battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees