JP2008096192A - Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith - Google Patents

Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith Download PDF

Info

Publication number
JP2008096192A
JP2008096192A JP2006276430A JP2006276430A JP2008096192A JP 2008096192 A JP2008096192 A JP 2008096192A JP 2006276430 A JP2006276430 A JP 2006276430A JP 2006276430 A JP2006276430 A JP 2006276430A JP 2008096192 A JP2008096192 A JP 2008096192A
Authority
JP
Japan
Prior art keywords
wheel
bearing
bearing support
train
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006276430A
Other languages
Japanese (ja)
Inventor
Akira Ebi
明 海老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006276430A priority Critical patent/JP2008096192A/en
Publication of JP2008096192A publication Critical patent/JP2008096192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gears, Cams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing mechanism for a timepiece gear train capable of adjusting easily each inter-shaft distance between wheels constituting the timepiece gear train in response to a desire, and a timepiece equipped therewith. <P>SOLUTION: The bearing mechanism 1 for the timepiece gear train typically has the first bearing support lever A40 for supporting the third wheel A30 engaged with the first and second wheels between the first and second wheels A10, A20 among a series of three wheels constituting the timepiece gear train, and having the first tip side arm part with the first bearing supporting long hole on the tip side, and mounted turnably on a timepiece gear train support A6 on a middle part; the second bearing support lever A50 having the second tip side arm part equipped with the second bearing supporting long hole crossed and overlapped with the first bearing supporting long hole, and mounted rotatably on the timepiece gear train support A6 on the middle part; and a bearing part A31 fitted with the first and second bearing supporting long holes and supported at a crossing part J of the first and second bearing supporting long holes A45, A55. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、時計の軸受機構に係り、より詳しくは、時計輪列用軸受機構、時計輪列構造体及びこれを備えた時計に係る。   The present invention relates to a timepiece bearing mechanism, and more particularly to a timepiece wheel train bearing mechanism, a timepiece wheel train structure, and a timepiece having the same.

時計は、多数の車(歯車等)が相互に又は順に噛合されてなる輪列すなわち時計用輪列を有する。時計用輪列を構成する車は小さく、最小限の動力で動き得るように、輪列を構成する車の間の距離が正確に規定されることが望ましい。しかしながら、時計部品が量産される際の公差などに起因して、時計用輪列の車の間隔が必ずしも適切な状態で製造され難いことがある。また、当初は適切な状態に設定されていた時計用輪列であっても、時計の長期間の使用による車のほぞ部の磨耗などによって、回転が滑らかに伝達されにくくなることもある。   A timepiece has a train wheel formed by a large number of wheels (gears, etc.) meshed with each other or sequentially. It is desirable that the distance between the cars constituting the train wheel be precisely defined so that the cars constituting the watch train wheel are small and can move with minimal power. However, due to tolerances when the timepiece parts are mass-produced, it may be difficult to manufacture the timepiece wheel train with an appropriate distance between the wheels. Further, even with a watch train wheel initially set to an appropriate state, rotation may become difficult to be transmitted smoothly due to wear of the tenon portion of the car due to long-term use of the watch.

二つの相互に噛合する車の間の距離を調整可能にすべく、一方の車の軸受部の位置を調整できるようにした時計は、提案されている(特許文献1)。   There has been proposed a timepiece in which the position of the bearing portion of one vehicle can be adjusted so that the distance between the two meshing vehicles can be adjusted (Patent Document 1).

この特許文献1の時計では、二つの相互噛合車のうち一方の車のほぞ部を、穴石(受石)と偏心ピンの形態のほぞ枠とからなる軸受によって支え、該偏心ピンを回動することによって、受石の中心軸線の位置を調整し、これにより該軸受に支持された車とこれに噛合する特定の一つの車との間隔を調整できるようにしている。   In the watch disclosed in Patent Document 1, the tenon of one of the two intermeshing wheels is supported by a bearing made of a hole stone (receiving stone) and a tenon frame in the form of an eccentric pin, and the eccentric pin is rotated. Thus, the position of the central axis of the stone is adjusted so that the distance between the vehicle supported by the bearing and one specific vehicle meshing with the vehicle can be adjusted.

この特許文献1の時計では、一対の車の軸間距離は一応調整できるものの、偏心ピンによって調整される車の回転中心は、偏心ピンの偏心量を半径とする円に沿って変位されるから、軸間距離の調整が制限される。すなわち、車の中心軸線位置の変更可能量を大きくしておこうとすると、該車の中心軸線位置が必然的に円に沿って横に大きくずれるのを避け難い。   In the watch of this Patent Document 1, although the distance between the axles of the pair of cars can be adjusted, the rotation center of the car adjusted by the eccentric pin is displaced along a circle whose radius is the eccentric amount of the eccentric pin. The adjustment of the inter-axis distance is limited. That is, if the changeable amount of the center axis position of the vehicle is increased, it is difficult to avoid that the center axis position of the vehicle inevitably shifts laterally along the circle.

また、この特許文献1の時計では、偏心ピンによって調整される車の回転中心は、偏心ピンの偏心量を半径とする円に沿って変位されるから、相互に異なる中心軸線のまわりで回転される一連の三つの車のうち、第一及び第二の車の間に位置し該第一及び第二の車に噛合する第三の車の回転中心軸線の位置調整は実際上行い得ない。すなわち、第三の車の中心軸線の位置を調整することによって第一及び第二の車のうちの一方の車と第三の車との軸間距離を特許文献1の構造により調整すると、該調整に従って、第一及び第二の車のうちの他方の車と第三の車との軸間距離も一義的に変ってしまう。従って、第三の車を介した第一の車と第二の車との間の回転の伝達が実際上効果的には行われ難くなる。
特開2003−279670号公報
In the timepiece disclosed in Patent Document 1, the center of rotation of the vehicle adjusted by the eccentric pin is displaced along a circle whose radius is the amount of eccentricity of the eccentric pin, and thus is rotated around mutually different central axes. In the series of three cars, the position adjustment of the rotation center axis of the third car located between the first and second cars and meshing with the first and second cars cannot be practically performed. That is, by adjusting the position of the central axis of the third vehicle and adjusting the inter-axis distance between one of the first and second vehicles and the third vehicle according to the structure of Patent Document 1, According to the adjustment, the inter-axis distance between the other of the first and second cars and the third car also changes unambiguously. Accordingly, it is difficult to effectively transmit rotation between the first vehicle and the second vehicle via the third vehicle.
JP 2003-279670 A

本発明は、前記した点に鑑みなされたものであって、その第一の目的は、時計輪列を構成する車の軸間距離を所望に応じて調整し易い時計輪列用軸受機構、時計輪列構造体及びこれを備えた時計を提供することにある。   The present invention has been made in view of the above-described points, and a first object thereof is to provide a watch wheel train bearing mechanism and a timepiece that can easily adjust a distance between axles of a wheel constituting the watch train wheel as desired. An object is to provide a train wheel structure and a timepiece having the same.

本発明の第二の目的は、多数の車を含む時計輪列のうち相互に異なる回転中心軸線のまわりで回転される一連の三つの車の間における回転の伝達を効果的に行わせ得る時計輪列用軸受機構、時計輪列構造体及びこれを備えた時計を提供することにある。   A second object of the present invention is a timepiece capable of effectively transmitting rotation between a series of three wheels rotated around mutually different rotation center axes in a time train including a plurality of vehicles. An object is to provide a wheel train bearing mechanism, a timepiece wheel train structure, and a timepiece including the same.

本発明の時計輪列用軸受機構は、前記第一の目的を達成すべく、時計用輪列を構成し、相互に異なる回転中心軸線のまわりで回転される一連の二つの車のうち一方の車を回転自在に支持する時計輪列用軸受機構であって、先端側に第一の軸受支持用長穴を備えた第一の先端側腕部を有し時計輪列支持体に取付けられた第一の軸受支持レバーと、前記第一の軸受支持用長穴に交差する方向に延び且つ該第一の軸受支持用長穴に重なる第二の軸受支持用長穴を備えた第二の先端側腕部を先端側に有し、該先端と基端との中間部で前記時計輪列支持体に回動可能に取付けられた第二の軸受支持レバーと、前記第一及び第二の軸受支持用長穴の交差部において、第一及び第二の軸受支持用長穴に嵌合され支持された前記一方の車用の軸受部とを有する。   In order to achieve the first object, the timepiece wheel train bearing mechanism of the present invention constitutes a timepiece wheel train, and is one of a series of two vehicles rotated around different rotation center axes. A bearing mechanism for a watch wheel train for rotatably supporting a car, having a first tip arm having a first bearing support slot on the tip side and attached to the watch train wheel support. A second tip having a first bearing support lever and a second bearing support slot extending in a direction intersecting the first bearing support slot and overlapping the first bearing support slot A second bearing support lever having a side arm portion on the distal end side and rotatably attached to the watch wheel train support body at an intermediate portion between the distal end and the proximal end; and the first and second bearings And a bearing portion for the one of the vehicles fitted and supported in the first and second bearing support slots at the intersection of the support slots.

本発明の時計輪列用軸受機構では、「第二の軸受支持用長穴を備えた第二の先端側腕部を先端側に有し、該先端と基端との中間部で時計輪列支持体に回動可能に取付けられた第二の軸受支持レバー」が設けられ且つ「一方の車用の軸受部が第二の軸受支持用長穴に嵌合され支持されている」ので、第二の軸受支持レバーを時計輪列支持体に対して回動させると、該第二の軸受支持レバーの第二の先端側腕部の回動に伴い、該第二の先端側腕部の第二の軸受支持用長穴に嵌合された前記一方の車用の軸受部が該第二の先端側腕部と共に変位される。また、本発明の時計輪列用軸受機構では、「先端側に第一の軸受支持用長穴を備えた第一の先端側腕部を有し時計輪列支持体に取付けられた第一の軸受支持レバー」が設けられ且つ一方の車用の軸受部が「第一及び第二の軸受支持用長穴の交差部において、第一及び第二の軸受支持用長穴に嵌合され支持されている」ので、該一方の車用の軸受部が変位される際、該軸受部は第一の軸受支持レバーの第一の先端側腕部の第一の軸受支持用長穴の延在方向に沿って変位されることになる。すなわち、本発明の時計輪列用軸受機構では、第二の軸受支持レバーを回動させることにより、軸受を第一の軸受支持レバーの第一の先端側腕部の第一の軸受支持用長穴の延在方向に沿って変位させ得る。従って、第一の軸受支持レバーをその第一の軸受支持用長穴が所望の特定方向を向くように配置しておくことにより、軸受を当該長穴によって規定される方向に変位させ得る。その結果、当該軸受、即ち、前記一方の軸受を狙った方向に確実に所望距離だけ変位させ易い。すなわち、本発明の時計輪列用軸受機構では、時計用輪列を構成する一連の二つの車の軸間距離が確実に所望量だけ変更され易く、該二つの車の噛み合いを最適な状態に調整し得、回転力を効率的に伝達し得る。   In the watch wheel train bearing mechanism according to the present invention, “the second tip arm having the second bearing support elongated hole is provided on the tip side, and the watch wheel train is provided at an intermediate portion between the tip and the base end. Since the second bearing support lever pivotally attached to the support body is provided and "the bearing portion for one vehicle is fitted and supported in the second bearing support slot", the first When the second bearing support lever is rotated with respect to the timepiece wheel train support body, the second tip side arm part of the second tip side arm part is rotated along with the turning of the second tip side arm part of the second bearing support lever. The one vehicle bearing portion fitted in the second bearing support elongated hole is displaced together with the second tip side arm portion. In the watch wheel train bearing mechanism of the present invention, “the first tip arm having a first bearing support elongated hole on the tip end side and attached to the watch train wheel support body” A bearing support lever "is provided, and one of the vehicle bearing portions is fitted and supported in the first and second bearing support slots at the intersection of the first and second bearing support slots. Therefore, when the bearing portion for one of the vehicles is displaced, the bearing portion extends in the extending direction of the first bearing support slot in the first tip side arm portion of the first bearing support lever. Will be displaced along. That is, in the timepiece wheel train bearing mechanism of the present invention, the first bearing support length of the first tip side arm portion of the first bearing support lever is obtained by rotating the second bearing support lever. It can be displaced along the extending direction of the hole. Therefore, by disposing the first bearing support lever so that the first bearing support slot faces the desired specific direction, the bearing can be displaced in the direction defined by the slot. As a result, the bearing, that is, the one bearing can be surely displaced by a desired distance in the intended direction. In other words, in the watch wheel train bearing mechanism of the present invention, the distance between the axes of a series of two cars constituting the watch train wheel is easily changed by a desired amount, and the engagement of the two cars is brought into an optimum state. The torque can be adjusted and the rotational force can be transmitted efficiently.

なお、上記において、前記一方の軸受は、第一及び第二の軸受支持用長穴の夫々に対してその長手方向に実際上摺動自在であるように該第一及び第二の軸受支持用長穴に嵌合されている。第一の軸受支持用長穴は、典型的には、直線状に延在するけれども、所望ならば、多少湾曲したり、蛇行するように延在していてもよい。第二の軸受支持用長穴についても同様である。   In the above, the one bearing is used for supporting the first and second bearings so as to be slidable in the longitudinal direction with respect to each of the first and second bearing supporting slots. It is fitted in the long hole. The first bearing support slot typically extends linearly, but may be somewhat curved or serpentine if desired. The same applies to the second bearing support slot.

本発明の時計輪列用軸受機構において、
(1)前記一方の車が時計輪列の端に位置する車であっても、
(2)前記一方の車が、時計用輪列を構成し相互に異なる回転中心軸線のまわりで回転される一連の三つの車のうち第一及び第二の車の間に位置し該第一及び第二の車に噛合する第三の車であり、前記一連の二つの車のうち他方の車が前記第一又は第二の車であってもよい。
In the watch wheel train bearing mechanism of the present invention,
(1) Even if the one of the cars is located at the end of the clock train,
(2) The one vehicle is located between a first vehicle and a second vehicle among a series of three vehicles constituting a watch train wheel and rotating around mutually different rotation center axes. And the third vehicle meshing with the second vehicle, and the other vehicle of the series of two vehicles may be the first or second vehicle.

前者すなわち(1)の場合、第一の軸受支持レバーは、典型的には、時計輪列支持体に対して固定される。但し、可動であってもよい。   In the former case (1), the first bearing support lever is typically fixed to the watch train wheel support. However, it may be movable.

一方、後者すなわち(2)の場合、第一軸受支持レバーは、典型的には、時計輪列支持体に対して可動に構成される。但し、一連の三つの車について通常生じ易い公差等を考慮して第一の軸受支持レバーの第一の軸受支持用長穴の延在方向を所定の向きに予め設定しておくような場合には、第一の軸受支持レバーを時計輪列支持体に固定しておいてもよい。   On the other hand, in the latter case (2), the first bearing support lever is typically configured to be movable with respect to the watch train wheel support. However, in the case where the extension direction of the first bearing support slot of the first bearing support lever is set in a predetermined direction in consideration of the tolerance that normally occurs for a series of three cars. The first bearing support lever may be fixed to the timepiece train wheel support.

以下では、主として、上記(2)の場合について、説明する。   Below, the case of said (2) is mainly demonstrated.

すなわち、本発明の時計輪列用軸受機構は、前記第二の目的を達成すべく、「前記一方の車が、時計用輪列を構成し相互に異なる回転中心軸線のまわりで回転される一連の三つの車のうち第一及び第二の車の間に位置し該第一及び第二の車に噛合する第三の車であり、前記一連の二つの車のうち他方の車が前記第一又は第二の車である」という条件下で、前記第一の軸受支持レバーが、その前記先端と基端との中間部で前記時計輪列支持体に回動可能に取付けられている。   That is, in order to achieve the second object, the timepiece wheel train bearing mechanism of the present invention is “a series in which the one wheel is rotated around different rotation center axes constituting the timepiece wheel train. Among the three cars, a third car that is located between the first and second cars and meshes with the first and second cars, and the other of the series of two cars is the first car. The first bearing support lever is rotatably attached to the timepiece wheel train support body at an intermediate portion between the front end and the base end.

この場合、前述のように、第二の軸受支持レバーを回動させることにより、前記一方の車の軸受すなわち第三の車の軸受を第一の軸受支持レバーの第一の軸受支持用長穴の延在方向に沿って変位させ得るだけでなく、第一の軸受支持レバーを回動させることにより、第三の車の軸受を第二の軸受支持レバーの第二の軸受支持用長穴の延在方向に沿って変位させ得る。従って、第三の車の軸受を、二次元面内の所望の箇所に、すなわち、第三の車の軸受をその回転中心軸線が第一及び第二の車の回転中心軸線に対して任意の所望の距離だけ離れたところに(第三の車と第一及び第二の車の夫々との軸間距離が任意の所望の大きさになるところに)変位させ得る。その結果、一連の三つの車による回転の伝達が効率的に行われ得るような軸間距離に一連の三つの車の相対位置を調整し得る。従って、ムーブメントに部品を組込んだ際における部品のバラツキに起因して輪列の回転伝達効率が低くなったり、長期間の使用によるほぞ部の磨耗などによって輪列の回転伝達効率が低くなった場合でも、輪列を構成する三つの車のうち中間に位置する第三の車を任意の位置に調整して回転伝達効率を所望レベルに高めることが可能になる。なお、以上において、第一及び第二の軸受支持レバーの回動量は、典型的には、微小量である。   In this case, as described above, by rotating the second bearing support lever, the bearing of the one vehicle, that is, the bearing of the third vehicle is moved to the first bearing support slot of the first bearing support lever. In addition to being able to be displaced along the extending direction of the first bearing support lever, by rotating the first bearing support lever, the third bearing of the second bearing support slot of the second bearing support lever It can be displaced along the extending direction. Accordingly, the bearing of the third car is placed at a desired position in the two-dimensional plane, that is, the bearing of the third car has an arbitrary rotation center axis relative to the rotation center axes of the first and second cars. It can be displaced away by a desired distance (where the inter-axis distance between the third car and each of the first and second cars is any desired magnitude). As a result, the relative position of the series of three cars can be adjusted to an inter-axis distance such that rotation transmission by the series of three cars can be efficiently performed. Therefore, the rotation transmission efficiency of the train wheel is lowered due to the variation of the parts when the parts are assembled in the movement, or the rotation transmission efficiency of the train wheel is lowered due to wear of the tenon part due to long-term use. Even in this case, it is possible to increase the rotation transmission efficiency to a desired level by adjusting the third car located in the middle of the three cars constituting the train wheel to an arbitrary position. In the above, the amount of rotation of the first and second bearing support levers is typically a minute amount.

本発明の時計輪列用軸受機構では、例えば、第三の車に対して第一及び第二の車が直角な位置又は直角から大きくはズレていない相対位置に配置されるような場合、典型的には、前記第一の軸受支持レバーの回動中心軸が前記第一の車の回転中心軸と同軸である。   In the bearing mechanism for a watch wheel train of the present invention, for example, when the first and second cars are arranged at a right angle position or a relative position not greatly deviated from the right angle with respect to the third car, Specifically, the rotation center axis of the first bearing support lever is coaxial with the rotation center axis of the first vehicle.

同様に、本発明の時計輪列用軸受機構では、例えば、第三の車に対して第一及び第二の車が直角な位置又は直角から大きくはズレていない相対位置に配置されるような場合、典型的には、前記第二の軸受支持レバーの回動中心軸が前記第二の車の回転中心軸と同軸である。   Similarly, in the watch wheel train bearing mechanism of the present invention, for example, the first and second cars are arranged at a right angle or a relative position not greatly deviated from the right angle with respect to the third car. In this case, typically, the rotation center axis of the second bearing support lever is coaxial with the rotation center axis of the second vehicle.

これらの場合、レバーを回転させる際に、第三の車の中心と第一及び第二の中心との相対的な位置関係の変動を常に視認し得るから、位置調整を行い易い。   In these cases, when the lever is rotated, the relative positional relationship between the center of the third vehicle and the first and second centers can always be visually recognized, so that the position adjustment can be easily performed.

本発明の時計輪列用軸受機構では、例えば、第三の車に対して第一及び第二の車が直角から大きくズレた相対位置に配置される場合、典型的には、前記第二の軸受支持レバーは、前記第二の軸受支持用長穴の延在方向が前記第一及び第三の車の回転中心を結ぶ方向に対して直角になり得るように前記時計輪列支持体に回動可能に取付られる。このように交差して配置される軸受支持レバーは、第二の軸受支持レバーの代わりに第一の軸受支持レバーでもよい。いずれの場合も、第一及び第二の軸受支持レバーが、実際上、相互に直角な配置を取り得るから、第三の車の回転中心軸線を二次元面内で効率的に位置調整しやすい。すなわち、その場合、第一又は第二の軸受支持レバーの回動が、夫々、第三の車と第二又は第一の車との軸間距離の調整になるので、調整が行われ易い。   In the watch wheel train bearing mechanism of the present invention, for example, when the first and second cars are arranged at a relative position greatly deviated from a right angle with respect to the third car, The bearing support lever is rotated around the watch train wheel support so that the extending direction of the second bearing support slot is perpendicular to the direction connecting the rotation centers of the first and third vehicles. Mounted movably. The bearing support levers arranged to intersect in this way may be the first bearing support lever instead of the second bearing support lever. In any case, since the first and second bearing support levers can be arranged at right angles to each other in practice, it is easy to efficiently adjust the rotation center axis of the third vehicle in the two-dimensional plane. . That is, in this case, the rotation of the first or second bearing support lever is the adjustment of the inter-axis distance between the third vehicle and the second or first vehicle, respectively.

本発明の時計輪列用軸受機構では、典型的には、前記第一の軸受支持レバーがその前記基端側に該第一の軸受支持レバーの前記第一の軸受支持部の回動中心軸線のまわりでの回動位置を調整する第一の回動位置調整機構を備える。   In the bearing mechanism for a watch wheel train of the present invention, typically, the first bearing support lever has a rotation center axis of the first bearing support portion of the first bearing support lever on the base end side thereof. Is provided with a first rotation position adjustment mechanism for adjusting the rotation position around the.

この場合、第一の回動調整機構を操作することにより、第一の軸受支持レバーの回動量を調整し得る。   In this case, the amount of rotation of the first bearing support lever can be adjusted by operating the first rotation adjustment mechanism.

本発明の時計輪列用軸受機構では、典型的には、前記第二の軸受支持レバーがその前記基端側に該第二の軸受支持レバーの前記第二の軸受支持部の回動中心軸線のまわりでの回動位置を調整する第二の回動位置調整機構を備える。   In the watch wheel train bearing mechanism of the present invention, typically, the second bearing support lever has a rotation center axis of the second bearing support portion of the second bearing support lever on the base end side thereof. Is provided with a second rotation position adjustment mechanism for adjusting the rotation position around the.

この場合、第二の回動調整機構を操作することにより、第一の軸受支持レバーの回動量を調整し得る。   In this case, the amount of rotation of the first bearing support lever can be adjusted by operating the second rotation adjustment mechanism.

本発明の時計輪列用軸受機構では、典型的には、前記回動位置調整機構が、偏心ピンを含む。   In the timepiece wheel train bearing mechanism of the present invention, typically, the rotational position adjusting mechanism includes an eccentric pin.

この場合、偏心ピンを回転させるだけで、対応する軸受支持レバーを回動させ、軸受を二つのうち他方の軸受支持レバーの長手方向に沿って並進移動させ得る。   In this case, only by rotating the eccentric pin, the corresponding bearing support lever can be rotated, and the bearing can be translated along the longitudinal direction of the other bearing support lever.

本発明の時計輪列用軸受機構では、典型的には、前記第一及び第二の軸受支持用長穴のうち少なくとも一方の長穴が、対応する軸受支持レバーの前記先端で開口している。この場合、軸受支持レバーや軸受の組付けや分解が容易に行われ得る。また、この場合、典型的には、前記第一及び第二の軸受支持レバーのうちの少なくとも一方が、軸受支持用長穴に嵌合された軸受を弾性的に挟む板ばねになっている。これにより、最低限の厚さで軸受を支え得る。   In the watch wheel train bearing mechanism of the present invention, typically, at least one of the first and second bearing support slots is opened at the tip of the corresponding bearing support lever. . In this case, assembly and disassembly of the bearing support lever and the bearing can be easily performed. In this case, typically, at least one of the first and second bearing support levers is a leaf spring that elastically sandwiches the bearing fitted in the bearing support slot. Thereby, the bearing can be supported with a minimum thickness.

本発明の時計輪列構造体は、好ましくは、上記時計輪列用軸受機構を第三の車の両端に備える。この場合、第三の車の軸が第一及び第二の車の軸に対して平行に保たれ得、回転の伝達効率が高く保たれ得る。但し、上記時計輪列用軸受機構が第三の車の一端のみに設けられていてもよい。その場合、第三の車と他の車との噛み合いを考慮して、第三の車のどちらの端部に設けるかを、選択してもよい。   The timepiece wheel train structure according to the present invention preferably includes the bearing mechanism for the timepiece wheel train at both ends of the third vehicle. In this case, the shaft of the third wheel can be kept parallel to the shafts of the first and second wheels, and the transmission efficiency of rotation can be kept high. However, the timepiece wheel train bearing mechanism may be provided only at one end of the third wheel. In that case, in consideration of meshing between the third vehicle and another vehicle, it may be selected which end of the third vehicle is provided.

本発明の時計輪列構造体では、また、時計用輪列が四つ以上の一連の車を含み、該一連の車のうち少なくとも二組の一連の三つの車のうち中間の車が上述のような時計輪列用軸受機構を有していてもよい。   In the watch train wheel structure of the present invention, the watch train wheel includes a series of four or more cars, and an intermediate car of at least two sets of three cars of the series of cars is the above-described car. Such a watch wheel train bearing mechanism may be provided.

その場合、複数組の車の間の軸間距離を最適化し得、時計輪列構造体の回転伝達効率を最大限に高めることが可能になる。   In that case, the inter-shaft distance between a plurality of sets of vehicles can be optimized, and the rotation transmission efficiency of the timepiece wheel train structure can be maximized.

従って、本発明の時計は、上述のような時計輪列用軸受機構又は上述のような時計輪列構造体を具備する。   Therefore, the timepiece of the present invention includes the above-described watch wheel train bearing mechanism or the above-described watch train train structure.

本発明の好ましい実施の形態を添付図面に示した好ましい実施例に基づいて説明する。   A preferred embodiment of the present invention will be described based on a preferred example shown in the accompanying drawings.

まず、本発明の好ましい一実施例の時計輪列用軸受機構1を、その特徴を端的に示す図1に基づいて説明する。   First, a watch wheel train bearing mechanism 1 according to a preferred embodiment of the present invention will be described with reference to FIG.

図1は、軸受機構1を含む時計輪列構造体2の一部を平面図で示したもので、時計輪列構造体2は、地板や輪列受の如き時計輪列支持体の本体に対して固定されるレバー支持体A6を備える。レバー支持体A6は、地板や輪列受に固定されることにより、時計輪列支持体の一部をなす。このレバー支持体A6は、地板や輪列受の一部であってもよい。時計輪列構造体2は、レバー支持体A6を含む時計輪列支持体A7によって支持された一連の三つの車A10,A20,A30を含む。この三つの車A10,A20,A30のうち第一及び第二の車A10,A20の間に第三の車A30が配置されている。従って、第三の車A30は、その歯車部(図示せず)で第一の車A10の歯車部(図示せず)に噛合され、且つその歯車部(図示せず)で第二の車20の歯車部(図示せず)に噛合されている。ここで、第一の車A10の歯車部(図示せず)に噛合される第三の車A30の歯車部(図示せず)と第二の車A20の歯車部(図示せず)に噛合される第三の車A30の歯車部(図示せず)とは、同一の歯車部であっても、同心の別の歯車部であってもよい。別の歯車部である場合、典型的には二つの歯車部は一体的に構成される。但し、二つの歯車部が同心である限り、相互にスリップ係合していてもよい。   FIG. 1 is a plan view showing a part of a timepiece wheel train structure 2 including a bearing mechanism 1. The timepiece wheel train structure 2 is attached to a main body of a timepiece wheel train support body such as a main plate or a train wheel bridge. There is provided a lever support A6 that is fixed to the lever support A6. The lever support A6 forms a part of the timepiece wheel train support body by being fixed to the main plate or the train wheel bridge. The lever support A6 may be a part of a main plate or a train wheel bridge. The watch train wheel structure 2 includes a series of three wheels A10, A20, A30 supported by a watch train wheel support A7 including a lever support A6. Among these three cars A10, A20, A30, a third car A30 is arranged between the first and second cars A10, A20. Therefore, the third wheel A30 is meshed with the gear portion (not shown) of the first wheel A10 at its gear portion (not shown), and the second wheel 20 at its gear portion (not shown). Is engaged with a gear portion (not shown). Here, it is meshed with a gear part (not shown) of the third car A30 and a gear part (not shown) of the second car A20 meshed with a gear part (not shown) of the first car A10. The gear portion (not shown) of the third vehicle A30 may be the same gear portion or another concentric gear portion. When it is another gear part, typically two gear parts are comprised integrally. However, as long as the two gear portions are concentric, they may be slip-engaged with each other.

時計輪列構造体2は、三つの軸受としてのほぞ受A11,A21,A31を備える。ほぞ受A11,A21は、第一及び第二の車A10,A20の端部の細い軸部すなわちほぞ部A12,A22を回転自在に支持している。一方、三つのほぞ受A11,A21,A31のうち第三のほぞ受A31は、時計輪列支持体A6の開口(図示せず)に遊嵌された状態で、第三の車30の端部の細い軸部ないしほぞ部A32を回転自在に支持する。   The timepiece train wheel structure 2 includes tenon receivers A11, A21, and A31 as three bearings. The tenon receivers A11 and A21 rotatably support the thin shaft portions at the ends of the first and second vehicles A10 and A20, that is, the tenon portions A12 and A22. On the other hand, of the three tenon receivers A11, A21, A31, the third tenon receiver A31 is loosely fitted in the opening (not shown) of the watch wheel train support A6 and is the end of the third wheel 30. The thin shaft portion or tenon portion A32 of the shaft is rotatably supported.

レバー支持体A6の孔A14には、第一のほぞ受A11と同心に円筒状の中心ピンA15が嵌着され、孔A24には、第二のほぞ受A21と同心に円筒状の中心ピンA25が嵌着されている。中心ピンA15,A25は、図1の面から手前に向かって突出している。そのうち第一の中心ピンA15は位置AP1においてレバー支持体A6に取付けられ、第二のA25は位置AP2において時計輪列支持体A6に取付けられている。ここで、ほぞ受A11,A21及び中心ピンA15,A25の位置は、その中心軸線AC1,AC2の位置を指す。   A cylindrical center pin A15 is fitted into the hole A14 of the lever support A6 concentrically with the first tenon receiver A11, and a cylindrical center pin A25 concentric with the second tenon receiver A21 is inserted into the hole A24. Is inserted. The center pins A15 and A25 protrude toward the front from the surface of FIG. Among them, the first center pin A15 is attached to the lever support A6 at the position AP1, and the second A25 is attached to the timepiece train wheel support A6 at the position AP2. Here, the positions of the tenon receivers A11 and A21 and the center pins A15 and A25 indicate the positions of the center axes AC1 and AC2.

ほぞ受A31は、受石A34とほぞ枠A35とからなるほぞ受構造体の形態を採り、ほぞ枠A35は、円筒状部A36とフランジ状部A37とを有する。受石A34はほぞ枠A35の円筒状部A36内に嵌着されている。   The tenon receiver A31 takes the form of a tenon receiving structure composed of a stone receiver A34 and a tenon frame A35, and the tenon frame A35 has a cylindrical portion A36 and a flange-shaped portion A37. The jewel A34 is fitted in the cylindrical portion A36 of the tenon frame A35.

時計輪列構造体2は、また、一対の軸受支持レバーとしての微動回転レバーA40,A50を備える。この一対のレバーA40,A50のうち第一の微動回転レバーA40は、中心軸線AC1のまわりで回転可能に、取付け部A41のバネ部A42において中心ピンA15の円筒状部の外周に弾性的に取付けられている。第一のレバーA40は、取付け部A41の先端側に先端側腕部A43を有し、該取付け部A41の基端側に基端側腕部A44を有する。先端側腕部A43と基端側腕部A44とは、この例では、後述の偏心ピンA48を配設し易いように、角度α1の角度をなす。偏心ピンA48の取付け領域があれば、レバー40は直線状でもよい。   The timepiece train wheel structure 2 also includes fine rotation levers A40 and A50 as a pair of bearing support levers. Of the pair of levers A40 and A50, the first fine rotation lever A40 is elastically attached to the outer periphery of the cylindrical portion of the center pin A15 at the spring portion A42 of the attachment portion A41 so as to be rotatable around the center axis AC1. It has been. The first lever A40 has a distal arm portion A43 on the distal end side of the attachment portion A41, and a proximal arm portion A44 on the proximal end side of the attachment portion A41. In this example, the distal end side arm portion A43 and the proximal end side arm portion A44 form an angle α1 so that an eccentric pin A48 described later can be easily disposed. If there is an attachment area for the eccentric pin A48, the lever 40 may be linear.

先端側腕部A43は、その先端縁A43Aから取付け部A41の円形外周部A41Aまで延びた長穴としてのスリットないし溝部A45とその両側の一対の弾性腕部A46,A46とを有するフォーク状腕部の形態である。フォーク状腕部A43の溝部A45内には、第三のほぞ受A31がほぞ枠A35の胴部A36で、該溝部A45の長手方向Bに移動自在に嵌合されている。   The front end side arm portion A43 is a fork-like arm portion having a slit or groove portion A45 as a long hole extending from the front end edge A43A to the circular outer peripheral portion A41A of the mounting portion A41 and a pair of elastic arm portions A46, A46 on both sides thereof. It is a form. In the groove portion A45 of the fork-shaped arm portion A43, a third tenon receiver A31 is fitted in the body portion A36 of the tenon frame A35 so as to be movable in the longitudinal direction B of the groove portion A45.

従って、フォーク状腕部A43が第一のレバーA40の回動中心軸線AC1のまわりでD1,D2方向に回動されると、第三のほぞ受A31は、該フォーク状腕部A43に従ってD1,D2方向に回動され、且つフォーク状腕部A43の溝部A45の長手方向Bに沿ってB1,B2方向に移動可能である。   Accordingly, when the fork-shaped arm portion A43 is rotated in the directions D1 and D2 around the rotation center axis AC1 of the first lever A40, the third tenon receiver A31 is in accordance with the fork-shaped arm portion A43 according to D1, D2. It is rotated in the D2 direction and is movable in the B1 and B2 directions along the longitudinal direction B of the groove portion A45 of the fork-shaped arm portion A43.

基端側腕部A44は、その基端縁A44Aに幅が一定で深さが幅と同程度の凹部A47を備える。該凹部A47には、レバー支持体A6に回転可能に取付けられた偏心ピンA48の偏心頭部A49が丁度嵌合されている。ここで、偏心ピンA48は、レバー支持体A6の円柱状穴に回転可能に嵌合された円柱状軸部(図示せず)と、該円柱状軸部に対して偏心した状態で形成されたより大径の円板状頭部すなわち偏心頭部A49とからなる。偏心頭部A49の頂面には、マイナスドライバの如き工具の先端が係合可能なマイナス溝A49Aが形成されている。頭部A49の外周面がカム面として働きうる限り、頭部A49が偏心した円形である代わりに、楕円形その他の非円形形状であってもよい。   The base end side arm portion A44 includes a concave portion A47 having a constant width and a depth similar to the width at the base end edge A44A. An eccentric head A49 of an eccentric pin A48 that is rotatably attached to the lever support A6 is fitted in the recess A47. Here, the eccentric pin A48 is formed with a cylindrical shaft portion (not shown) rotatably fitted in the cylindrical hole of the lever support A6, and formed in an eccentric state with respect to the cylindrical shaft portion. It consists of a large-diameter disk-shaped head, that is, an eccentric head A49. On the top surface of the eccentric head A49, a minus groove A49A in which the tip of a tool such as a minus driver can be engaged is formed. As long as the outer peripheral surface of the head A49 can function as a cam surface, the head A49 may have an elliptical shape or other noncircular shape instead of the eccentric circular shape.

偏心ピンA48の偏心頭部A49が偏心ピンA48の軸部(図示せず)の中心軸線EのまわりでE1,E2方向に回動されると、偏心頭部A49の偏心方向及び偏心の大きさに応じて、基端側凹部A47で偏心頭部A49に係合した基端側腕部A44がD1,D2方向に回動され、これに伴い先端側腕部A43もD1,D2方向に回動されて、第三のほぞ受A31が動かされる。   When the eccentric head A49 of the eccentric pin A48 is rotated in the directions E1 and E2 around the central axis E of the shaft portion (not shown) of the eccentric pin A48, the eccentric direction and the magnitude of the eccentricity of the eccentric head A49 Accordingly, the proximal arm A44 engaged with the eccentric head A49 in the proximal recess A47 is rotated in the D1 and D2 directions, and the distal arm A43 is also rotated in the D1 and D2 directions. Then, the third tenon receptacle A31 is moved.

一対のレバーA40,A50のうち第二の微動回転レバーA50は、中心軸線AC2のまわりでH1,H2方向に回転可能なように、取付け部A51のバネ部A52において中心ピンA25の円筒状胴部の外周に弾性的に取付けられている点を除き、基本的には、第一のレバーA40と同様に構成される。   Of the pair of levers A40, A50, the second fine rotation lever A50 is a cylindrical body portion of the center pin A25 at the spring portion A52 of the attachment portion A51 so that it can rotate in the H1, H2 direction around the center axis AC2. Basically, it is configured in the same manner as the first lever A40 except that it is elastically attached to the outer periphery of the first lever A40.

即ち、第二のレバーA50は、取付け部A51の先端側に先端側腕部A53を有し、該取付け部A51の基端側に基端側腕部A54を有する。先端側腕部A53と基端側腕部A54とは、この例では、後述の偏心ピンA48を配設し易いように、第一のレバーA40の場合とは逆向きに、角度α2の角度をなす。偏心ピンA58の取付け領域があれば、レバー50も直線状でもよい。   That is, the second lever A50 has a distal end side arm portion A53 on the distal end side of the attachment portion A51, and a proximal end side arm portion A54 on the proximal end side of the attachment portion A51. In this example, the distal arm portion A53 and the proximal arm portion A54 have an angle α2 opposite to that of the first lever A40 so that an eccentric pin A48 described later can be easily disposed. Eggplant. As long as there is a mounting area for the eccentric pin A58, the lever 50 may also be linear.

先端側腕部A53は、長穴としての溝部A55とその両側の一対の弾性腕部A56,A56とを有するフォーク状腕部の形態である。フォーク状腕部A53の溝部A55内には、第三のほぞ受A31のほぞ枠A35の胴部A36が、該溝部A55の長手方向Fに沿ってF1,F2方向に移動自在に嵌合されている。   The distal end side arm portion A53 is in the form of a fork-like arm portion having a groove portion A55 as a long hole and a pair of elastic arm portions A56, A56 on both sides thereof. In the groove portion A55 of the fork-shaped arm portion A53, a body portion A36 of a tenon frame A35 of the third tenon receptacle A31 is fitted so as to be movable in the F1 and F2 directions along the longitudinal direction F of the groove portion A55. Yes.

すなわち、第三のほぞ受A31の胴部A36は、第一のレバーA40のB方向に延在する先端側腕部A43と第二のレバーA50のF方向に延在する先端側腕部A53とによって両腕部A43,A53の交差部Jで位置決めされ且つ支持される。   That is, the body part A36 of the third tenon receiver A31 includes a front end side arm part A43 extending in the B direction of the first lever A40 and a front end side arm part A53 extending in the F direction of the second lever A50. Is positioned and supported at the intersection J of both arms A43 and A53.

基端側腕部A54は、その基端縁A54Aに幅が一定で深さが幅と同程度の凹部A57を備える。該凹部A57には、時計輪列支持体A6に回転可能に取付けられた偏心ピンA58の偏心頭部A59が丁度嵌合されている。偏心ピンA58は偏心ピンA48と同様な形態であり、偏心頭部A59の頂面には、マイナス溝A59Aが形成されている。   The base end side arm portion A54 includes a concave portion A57 having a constant width and a depth substantially equal to the width at the base end edge A54A. An eccentric head A59 of an eccentric pin A58 that is rotatably attached to the watch train wheel support A6 is fitted in the recess A57. The eccentric pin A58 has the same form as the eccentric pin A48, and a minus groove A59A is formed on the top surface of the eccentric head A59.

従って、偏心ピンA58の偏心頭部A59が偏心ピンA58の中心軸線GのまわりでG1,G2方向に回動されると、偏心頭部A59の偏心方向及び偏心の大きさに応じて、基端側凹部A57で偏心頭部A59に係合した基端側腕部A54が第二のレバーA50の回動中心軸線AC2のまわりでH1,H2方向に回動され、これに伴い先端側腕部A43の溝部A55に係合された第三のほぞ受A31も、回動中心軸線AC2のまわりでH1,H2方向に回動され且つ第一レバー40の溝部A45の長手方向Bに沿ってB1,B2方向に移動可能である。   Accordingly, when the eccentric head A59 of the eccentric pin A58 is rotated in the G1 and G2 directions around the central axis G of the eccentric pin A58, the proximal end is determined according to the eccentric direction and the magnitude of the eccentricity of the eccentric head A59. The proximal arm A54 engaged with the eccentric head A59 by the side recess A57 is rotated in the H1 and H2 directions around the rotation center axis AC2 of the second lever A50, and accordingly, the distal arm A43 is rotated. The third tenon receiver A31 engaged with the groove A55 of the first lever 40 is also rotated in the H1 and H2 directions around the rotation center axis AC2, and B1, B2 along the longitudinal direction B of the groove A45 of the first lever 40. It can move in the direction.

以上の如く構成された時計輪列用軸受機構1では、例えば、第一のレバーA40用の偏心ピンA48がE1又はE2方向に回転されると、第一のレバーA40がD1またはD2方向に回動される。従って、第三のほぞ受A31は、第一のレバーA40のフォーク状腕部A43と同様にD1又はD2方向に揺動され、且つD1又はD2方向揺動の際、時計輪列支持体A6に対して実際上静置状態に保たれる第二のレバーA50の溝部A55の延在方向Fに沿ってF1又はF2方向に変位される。   In the watch wheel train bearing mechanism 1 configured as described above, for example, when the eccentric pin A48 for the first lever A40 is rotated in the E1 or E2 direction, the first lever A40 is rotated in the D1 or D2 direction. Moved. Accordingly, the third tenon receiver A31 is swung in the D1 or D2 direction in the same manner as the fork-shaped arm portion A43 of the first lever A40, and when swung in the D1 or D2 direction, On the other hand, it is displaced in the F1 or F2 direction along the extending direction F of the groove portion A55 of the second lever A50 which is actually kept stationary.

この例の場合、フォーク状腕部A43,A53がほぼ直交する方向に延在しているので、D1,D2方向(の接線方向)が実際上F1,F2方向と一致するから、第一のレバーA40のD1又はD2方向回動の際には第三のほぞ受A51は第一の車A10の回転中心軸線AC1との距離が実際上一定に保たれたまま、第二の車A20の回転中心軸線AC2に対して離間されるか近接される。   In this example, since the fork-like arm portions A43 and A53 extend in a substantially perpendicular direction, the D1 and D2 directions (tangent directions thereof) actually coincide with the F1 and F2 directions. When the A40 rotates in the direction D1 or D2, the third mortise receiver A51 is maintained at a constant distance from the rotation center axis AC1 of the first car A10, and the rotation center of the second car A20 is maintained. It is separated from or close to the axis AC2.

偏心ピンA58によって第二のレバーA50を回動させる場合も、同様であり、これにより、第二のレバーA50がH1又はH2方向を回動させると、第三のほぞ受A51と第二の車A20の回転中心軸線AC2との距離が実際上一定に保たれたまま、第一の車10の回転中心軸線AC1に対して離間されるか近接される。   The same applies to the case where the second lever A50 is rotated by the eccentric pin A58. Thus, when the second lever A50 is rotated in the H1 or H2 direction, the third tenon receiver A51 and the second vehicle The distance from the rotation center axis AC2 of A20 is kept away from or close to the rotation center axis AC1 of the first vehicle 10 while being kept constant in practice.

なお、二つのレバーA40,A50の延在方向が、90度からズレている場合、いずれのレバーA40,A50を回動させた場合でも、第三のほぞ受A31は、他方のレバーA50,A40の溝A55,A45の長手方向F,Bに沿って、第二又は第一の車20,10の回転中心軸線AC2,AC1に対して、夫々、近接されるか離間されることになる。従って、大まかにいえば、平行四辺形(但し、厳密には、各辺が円弧からなり、向き合った辺の長さは多少異なる)の対角線方向に移動させるために、該平行四辺形の隣接する二辺に沿って順に第三のほぞ受A51を移動させるように二つのレバーA40,A50を順に所望角度だけ回動させることになる。このような例については、図2〜図4に基づいて後で詳述する。なお、ここで、調整される距離は、典型的には、0.01mmのオーダーである。但し、より大きくても、より小さくてもよい。   When the extending directions of the two levers A40, A50 are deviated from 90 degrees, the third tenon receiver A31 is not connected to the other lever A50, A40 regardless of which lever A40, A50 is rotated. Along the longitudinal directions F and B of the grooves A55 and A45, the rotation center axes AC2 and AC1 of the second or first wheels 20 and 10 are respectively close to or separated from each other. Therefore, broadly speaking, adjacent parallelograms are moved in order to move in a diagonal direction of a parallelogram (however, strictly speaking, each side consists of a circular arc, and the lengths of facing sides are slightly different). The two levers A40 and A50 are sequentially rotated by a desired angle so as to move the third tenon receptacle A51 in order along the two sides. Such an example will be described later in detail with reference to FIGS. Here, the distance to be adjusted is typically on the order of 0.01 mm. However, it may be larger or smaller.

以上においては、第一及び第二のレバーA40,A50の回動中心軸線が第一及び第二の車10,20の回転中心軸線AC1,AC2に一致する例について説明したけれども、第一及び第二のレバーA40,A50の回動中心軸線のうち一方又は両方が第一及び第二の車10,20の回転中心軸線AC1,AC2とは異なっていてもよい。   In the above description, an example in which the rotation center axes of the first and second levers A40 and A50 coincide with the rotation center axes AC1 and AC2 of the first and second wheels 10 and 20 has been described. One or both of the rotation center axes of the second levers A40 and A50 may be different from the rotation center axes AC1 and AC2 of the first and second wheels 10 and 20.

すなわち、方向B,F(に延びる仮想線)の成す直角から相当ずれる場合、第一及び第二のレバーのうち少なくとも一方の回動中心軸線を第一及び第二の車の回転中心軸線からズレたところに配置してもよい。   That is, when the directions B and F (the imaginary lines extending in the direction) are substantially different from each other, the rotation center axis of at least one of the first and second levers is displaced from the rotation center axes of the first and second vehicles. You may arrange in the place.

次に、本発明の好ましい一実施例の時計3を、図2〜図4に基づいて、より詳しく説明する。   Next, the timepiece 3 according to a preferred embodiment of the present invention will be described in more detail with reference to FIGS.

時計3は、図2の平面説明図及び図3の断面説明図で示したような時計本体4を有する。時計本体4は、一番車すなわち香箱車10と、二番車すなわち分車20と、三番車30と、四番車すなわち秒車40と、ガンギ車51及びテンプ52がアンクル53で結合された調速脱進機構50と、筒車すなわち時車58(図3)とを有する。ぜんまい11を備えた香箱車10の香箱歯車12が二番車20の二番かな21に噛合し、二番車20の二番歯車22が三番車30の三番かな31に噛合し、三番車30の三番歯車32が四番車40の四番かな41に噛合し、四番車40の四番歯車42が調速脱進機構50のガンギ車51のガンギかな54に噛合して、時計輪列構造体5が形成されている。なお、筒車58は日の裏車(図示せず)を介して二番車20に噛合されている。   The timepiece 3 has a timepiece body 4 as shown in the plan view of FIG. 2 and the cross-sectional view of FIG. In the watch body 4, the first wheel or barrel complete 10, the second wheel or minute wheel 20, the third wheel 30, the fourth wheel or second wheel 40, the escape wheel 51 and the balance 52 are connected by an ankle 53. And a speed control escapement mechanism 50 and an hour wheel 58 (FIG. 3). The barrel wheel 12 of the barrel wheel 10 equipped with the mainspring 11 meshes with the second pinion 21 of the second wheel 20, the second gear 22 of the second wheel 20 meshes with the third pinion 31 of the third wheel 30, and three The third gear 32 of the number wheel 30 is engaged with the fourth pinion 41 of the fourth wheel 40, and the fourth gear 42 of the fourth wheel 40 is engaged with the escape pinion 54 of the escape wheel 51 of the speed control escapement mechanism 50. A watch wheel train structure 5 is formed. The hour wheel 58 is meshed with the center wheel & pinion 20 via a minute wheel (not shown).

時計輪列構造体5を構成する車は、時計輪列支持体としての地板61や一番受62や二番受65の如き輪列受等によって、夫々、回転可能又は回転自在に支持されている。図2からわかるとおり、香箱車10、二番車20及び筒車58、三番車30、四番車40、ガンギ車51及びテンプ52は、夫々、中心軸線C1,C2,C3,C4,C5及びC6のまわりで回転可能又は回転自在である。   The cars constituting the watch train wheel structure 5 are rotatably or rotatably supported by a wheel train receiver such as a main plate 61 as a watch train wheel support body, a first receiver 62 and a second receiver 65, respectively. Yes. As can be seen from FIG. 2, the barrel wheel 10, the second wheel 20 and the hour wheel 58, the third wheel 30, the fourth wheel 40, the escape wheel 51 and the balance 52 have the center axes C1, C2, C3, C4 and C5, respectively. And rotatable around C6.

なお、二番車20の軸部すなわち筒状の二番真ないし二番胴23内には秒かな真24が回転自在に嵌合されている。秒かな真24は、三番歯車32に噛合した秒かな25を備える。   A second kana true 24 is rotatably fitted in the shaft portion of the center wheel & pinion 20, that is, in the cylindrical second or second cylinder 23. The second pinion true 24 includes a second pinion 25 meshed with the third gear 32.

より詳しくは、二番車20は、二番胴23と同軸の秒かな真24の表側(裏蓋側(以下同))の端部のほぞ部26において、一番受62に嵌着されたほぞ受(受石)27によって、また、裏側(文字板側(以下同))に延びた二番胴23において、地板61に嵌着された軸受ないしほぞ受(受石)28によって、中心軸線C2のまわりで回転自在に支持されている。四番車40は、四番真43の表側端部のほぞ部44において、一番受62のほぞ受(受石)45によって、また、裏側端部のほぞ部46において、地板61のほぞ受(受石)47によって、中心軸線C4のまわりで回転自在に支持されている。なお、ガンギ車51も、同様に、がんきかな51の形成されたガンギ真55の表側のほぞ部55Aで一番受62のほぞ受(受石)55Bによって、裏側のほぞ部55Cで地板61のほぞ受(受石)55Dによって、中心軸線C5のまわりで回転自在に支持されている。   More specifically, the center wheel & pinion 20 is fitted to the first receiver 62 at the tenon portion 26 on the front side (back cover side (hereinafter the same)) of the second kana true 24 coaxial with the second barrel 23. A central axis line is provided by a tenon support (stone receiving) 27 and a bearing or tenon support (receiving stone) 28 fitted to the base plate 61 in the second cylinder 23 extending to the back side (the dial side (hereinafter the same)). It is rotatably supported around C2. The fourth wheel 40 receives the tenon of the base plate 61 by a tenon receiver (stone) 45 of the first receiver 62 at the tenon portion 44 of the front end of the fourth stem 43 and at the tenon portion 46 of the rear end. A (stone) 47 is rotatably supported around the central axis C4. Similarly, the escape wheel 51 also has a ground plate at the tenon portion 55C on the back side by the tenon receiving (stone) 55B of the first receiving portion 62A in the tenon portion 55A on the front side of the escape gear 55 in which the hook 51 is formed. 61 is supported by a tenon receiver (stone) 55D so as to be rotatable around the central axis C5.

三番車30は、三番真33の表側端部のほぞ部34において軸受としてのほぞ受構造体35によって、裏側端部のほぞ部36において軸受としてのほぞ受構造体37によって、中心軸線C3のまわりで回転自在に支持されている。   The third wheel 30 has a central axis C3 by a tenon receiving structure 35 serving as a bearing at a tenon portion 34 at the front end of the third wheel 33 and a tenon receiving structure 37 serving as a bearing at a tenon portion 36 at the rear end. Is supported so that it can rotate freely.

ほぞ受構造体35は、ほぞ枠35Aと受石35Bとを有する。ほぞ枠35Aは、円筒状胴部35Cと該胴部35Cの端部のフランジ状突出部35Dとを有する。35Eは止め輪である。受石35Bはほぞ枠35Aの円筒状胴部35Cの穴内に嵌着され、ほぞ穴で三番真33のほぞ部34を回転自在に支持する。ほぞ受構造体37は、ほぞ受構造体35と同様に、ほぞ枠37Aと受石37Bとを有する。ほぞ枠37Aは、円筒状胴部37Cと該胴部37Cの端部のフランジ状突出部37Dとを有する。37Eは止め輪である。受石37Bはほぞ枠37Aの円筒状胴部37Cの穴内に嵌着され、ほぞ穴で三番真33のほぞ部36を回転自在に支持する。   The tenon receiving structure 35 includes a tenon frame 35A and a receiving stone 35B. The tenon frame 35A has a cylindrical body portion 35C and a flange-like protrusion portion 35D at the end of the body portion 35C. 35E is a retaining ring. The receiving stone 35B is fitted into the hole of the cylindrical body portion 35C of the tenon frame 35A, and the tenon portion 34 of the third truer 33 is rotatably supported by the tenon hole. The tenon receiving structure 37 includes a tenon frame 37A and a receiving stone 37B, similarly to the tenon receiving structure 35. The tenon frame 37A has a cylindrical trunk portion 37C and a flange-like protrusion 37D at the end of the trunk portion 37C. 37E is a retaining ring. The receiving stone 37B is fitted into the hole of the cylindrical body portion 37C of the tenon frame 37A, and the tenon portion 36 of the third truer 33 is rotatably supported by the tenon hole.

なお、一番受62及び地板61には、開口63及び64が形成され、ほぞ受構造体35及び37のほぞ枠35A及び37Aの円筒状胴部35C及び37Cは、夫々、対応する開口63及び64に遊嵌され、一番受62及び地板61の延在面に沿って、該開口63及び64内で変位可能である。   Openings 63 and 64 are formed in the first receptacle 62 and the base plate 61, and the cylindrical body portions 35C and 37C of the tenon frames 35A and 37A of the tenon receiving structures 35 and 37 respectively correspond to the corresponding openings 63 and 64 and freely displaceable within the openings 63 and 64 along the extending surfaces of the first support 62 and the base plate 61.

次に、時計輪列構造体5の軸受機構すなわち時計輪列用軸受機構6について、該輪列を構成する車の具体的な配置(図2)に基づいて、詳しく説明する。なお、時計輪列用軸受機構6のレバーの構造及びその支持構造は、図1に示したものと同様である。従って、以下では、二つのレバーの交差角度が異なる点を除いて、レバー及びその支持部等の平面形状や構造等については、図1及びこれに基づいた前述の説明から理解可能であることを前提にして、主として図3の断面図に基づいてその構造の一例を説明する。   Next, the bearing mechanism of the timepiece wheel train structure 5, that is, the bearing mechanism 6 for the timepiece wheel train will be described in detail based on the specific arrangement (FIG. 2) of the cars constituting the wheel train. The structure of the lever of the watch wheel train bearing mechanism 6 and the support structure thereof are the same as those shown in FIG. Therefore, in the following, except for the fact that the crossing angle of the two levers is different, the planar shape and structure of the lever and its supporting part can be understood from FIG. 1 and the above description based on this. Based on the premise, an example of the structure will be described mainly based on the sectional view of FIG.

以下において、レバー支持体70A,70Bが、図1のレバー支持体A6に該当し、レバー80,80A,80Bが図1のレバーA40又はA50に対応し、レバー90,90A,90Bが図1のレバーA50又はA40に対応する。また、ほぞ受構造体35,37が、図1のほぞ受A31に対応する。   In the following, the lever supports 70A and 70B correspond to the lever support A6 in FIG. 1, the levers 80, 80A and 80B correspond to the lever A40 or A50 in FIG. 1, and the levers 90, 90A and 90B in FIG. Corresponds to lever A50 or A40. Further, the tenon receiving structures 35 and 37 correspond to the tenon receiver A31 of FIG.

一番受62には、板状の表側レバー支持体70Aが止めねじ71A等で固定され、地板61には板状の裏側レバー支持体70Bが同様に固定されている。   A plate-like front lever support 70A is fixed to the first receiver 62 with a set screw 71A and the like, and a plate-like back lever support 70B is similarly fixed to the base plate 61.

表側レバー支持体70Aは、一番受62の開口63と同様な位置に同様な大きさの開口72Aを備えると共に、中心軸線C2のまわり及び中心軸線C4の付近にも円形穴73A1,73A2を備え、更に、ピン押えブシュ用の穴74A1,74A2を備える。   The front lever support 70A includes an opening 72A having the same size at the same position as the opening 63 of the first receiver 62, and also includes circular holes 73A1 and 73A2 around the central axis C2 and in the vicinity of the central axis C4. Furthermore, holes 74A1 and 74A2 for pin presser bushings are provided.

裏側レバー支持体70Bも、表側レバー支持体70Aと同様に、地板61の開口64と同様な位置に同様な大きさの開口72Bを備えると共に、中心軸線C2のまわり及び中心軸線C4の付近にも円形穴73B1,73B2を備え、更に、ピン押えブシュ用の穴74B1,74B2を備える。   Similarly to the front lever support 70A, the back lever support 70B has an opening 72B of the same size at the same position as the opening 64 of the main plate 61, and also around the center axis C2 and in the vicinity of the center axis C4. Circular holes 73B1 and 73B2 are provided, and further, pin holding bush holes 74B1 and 74B2.

時計3は、表側に、図1の第一及び第二の軸受支持レバーA40,A50と同様な第一及び第二の軸受支持レバー80A,90Aを有し、裏側にも、図1の第一及び第二の軸受支持レバーA40,A50と同様な第一及び第二の軸受支持レバー80B,90Bを有する。表側の第一及び第二の軸受支持レバー80A,90Aと裏側の第一及び第二の軸受支持レバー80B,90Bとは、鏡映対称で、表側と裏側とを区別しないとき又は総称するときは、添字A,Bを省いて、80,90で表す。このレバー80,90の各要素についても同様である。   The timepiece 3 has first and second bearing support levers 80A and 90A similar to the first and second bearing support levers A40 and A50 of FIG. 1 on the front side, and the first side of FIG. The first and second bearing support levers 80B and 90B are the same as the second bearing support levers A40 and A50. When the first and second bearing support levers 80A and 90A on the front side and the first and second bearing support levers 80B and 90B on the back side are mirror-symmetrical, and when the front side and the back side are not distinguished, or collectively The subscripts A and B are omitted, and expressed by 80 and 90. The same applies to each element of the levers 80 and 90.

表側レバー支持体70Aの円形穴73A1及び73A2には、夫々、表側の第一及び第二の軸受支持レバー80A,90Aを回転可能に支持する回動中心軸部となる中心ピン75A1,75A2がその大径胴部で嵌着されている。中心ピン75A1,75A2は、嵌着状態において、フランジ状部で表側レバー支持体70Aの裏面に密接している。同様に、裏側レバー支持体70Bの円形穴73B1及び73B2には、夫々、裏側の第一及び第二の軸受支持レバー80B,90Bを回転可能に支持する回動中心軸部となる中心ピン75B1,75B2がその大径胴部で嵌着されている。中心ピン75B1,75B2は、嵌着状態において、フランジ状部で裏側レバー支持体70Bの裏面(表側面)に密接している。   In the circular holes 73A1 and 73A2 of the front lever support 70A, there are center pins 75A1 and 75A2 that serve as rotation center shaft portions for rotatably supporting the first and second bearing support levers 80A and 90A on the front side, respectively. It is fitted with a large diameter body. The center pins 75A1 and 75A2 are in close contact with the back surface of the front lever support 70A at the flange-like portion in the fitted state. Similarly, in the circular holes 73B1 and 73B2 of the back side lever support body 70B, the center pins 75B1 serving as the rotation center shaft portions for rotatably supporting the first and second bearing support levers 80B and 90B on the back side, respectively. 75B2 is fitted in the large-diameter trunk. The center pins 75B1 and 75B2 are in close contact with the back surface (front side surface) of the back lever support 70B at the flange-like portion in the fitted state.

表側レバー支持体70Aの穴74A1,74A2には、ピン押えブシュ76A1,76A2が嵌着され、裏側レバー支持体70Bの穴74B1,74B2には、ピン押えブシュ76B1,76B2が嵌着されている。   Pin presser bushings 76A1 and 76A2 are fitted into the holes 74A1 and 74A2 of the front side lever support 70A, and pin presser bushings 76B1 and 76B2 are fitted into the holes 74B1 and 74B2 of the back side lever support 70B.

表側の第一の軸受支持レバー80Aは、中間に支点となる軸受孔81Aを備え、該軸受孔81Aにおいて中心ピン75A1の小径軸部に嵌合されている。従って、表側の第一の軸受支持レバー80Aは、中心軸線C2のまわりで回動可能である。軸受支持レバー80Aは、軸受孔81Aの両側に腕部82A,83Aを備える。先端側腕部82Aは、フォーク状であって、先端縁から長手方向に延びた長穴としてのスリットないし溝部84Aと、その両側の一対の弾性腕部85A,85A(一方は図示せず)とを有する。スリットないし溝部84Aの幅は、ほぞ枠35Aの胴部35Cの外径に一致するかそれより僅かに大きく、該ほぞ枠35Aの胴部35Cに溝部84Aで遊嵌されている。従って、ほぞ枠35Aは、表側の第一の軸受支持レバー80Aの溝部84Aの長手方向に沿って摺動可能である。   The first bearing support lever 80A on the front side includes a bearing hole 81A serving as a fulcrum in the middle, and is fitted to the small diameter shaft portion of the center pin 75A1 in the bearing hole 81A. Therefore, the first bearing support lever 80A on the front side can be rotated around the central axis C2. The bearing support lever 80A includes arm portions 82A and 83A on both sides of the bearing hole 81A. The distal arm portion 82A has a fork shape, and is a slit or groove 84A as a long hole extending in the longitudinal direction from the distal edge, and a pair of elastic arm portions 85A and 85A (one not shown) on both sides thereof. Have The width of the slit or groove portion 84A matches or is slightly larger than the outer diameter of the body portion 35C of the tenon frame 35A, and is loosely fitted to the body portion 35C of the tenon frame 35A by the groove portion 84A. Accordingly, the tenon frame 35A is slidable along the longitudinal direction of the groove 84A of the first bearing support lever 80A on the front side.

一方、基端側腕部83Aは、基端縁にほぼ正方形状の凹部86Aを備える。軸受76A1には、表側の第一の軸受支持レバー80Aの回動位置を調整するための表側第一レバー回動調整偏心ピン87Aが装着されている。偏心ピン87Aは、ピン押えブシュ76A1に摺動回転可能に嵌合された円柱状軸部87A1と該軸部87A1に対して偏心した大径円板状頭部87A2とを有する。偏心ピン87Aの頭部87A2の外径は、表側の第一の軸受支持レバー80Aの基端側腕部83Aの基端凹部86Aの幅に一致するかそれより僅かに小さく、偏心ピン87Aの頭部87A2には、表側の第一の軸受支持レバー80Aの基端側腕部83Aが基端凹部86Aで遊嵌されている。   On the other hand, the base end side arm portion 83A includes a substantially square-shaped recess 86A at the base end edge. A front-side first lever rotation adjusting eccentric pin 87A for adjusting the rotation position of the front-side first bearing support lever 80A is attached to the bearing 76A1. The eccentric pin 87A has a cylindrical shaft portion 87A1 that is fitted to the pin presser bushing 76A1 so as to be slidable and rotatable, and a large-diameter disk-shaped head portion 87A2 that is eccentric with respect to the shaft portion 87A1. The outer diameter of the head 87A2 of the eccentric pin 87A is equal to or slightly smaller than the width of the proximal recess 86A of the proximal arm portion 83A of the first bearing support lever 80A on the front side, and the head of the eccentric pin 87A. The base end side arm portion 83A of the first bearing support lever 80A on the front side is loosely fitted to the portion 87A2 by a base end recess 86A.

表側の第二の軸受支持レバー90Aも、第一の軸受支持レバー80Aと実際上同様に構成されている。即ち、表側の第二の軸受支持レバー90Aは、中間に位置し支点となる軸受孔91Aにおいて回動中心軸部となる中心ピン75A2の小径軸部に嵌合され、中心軸線C4のまわりで回動可能である。なお、詳細には、図3で例示したように、中心ピン75A2の中心軸線は四番車40の回転中心軸線C4からズレていてもよい。以下では、説明の簡明化のために、中心ピン75A2の中心軸線が四番車40の回転中心軸線C4に一致するとして説明する。軸受支持レバー90Aは、軸受孔91Aの両側に先端側及び基端側の腕部92A,93Aを備え、フォーク状の先端側腕部92Aは、先端縁から長手方向に延びた長穴としてのスリットないし溝部94Aと、その両側の一対の弾性腕部95A,95A(一方は図示せず)とを有する。溝部94Aの幅は、第一の軸受支持レバー80Aの溝部84Aの幅と同一で、第二の軸受支持レバー90Aは、その先端側腕部92Aが第一の軸受支持レバー80Aの先端側腕部82Aに対して交差状態で重なるように、該ほぞ受構造体35のほぞ枠35Aの胴部35Cに溝部94Aで遊嵌されている。ほぞ受構造体35のほぞ枠35Aは、表側の第二の軸受支持レバー90Aの溝部94Aの長手方向に沿って摺動可能である。ここで、レバー80A,90Aの先端側腕部82A,92Aは、ほぞ枠35Aのフランジ部35Dと止め輪35Eとの間において相互に摺動可能に重なり合っている。   The second bearing support lever 90A on the front side is also configured in the same manner as the first bearing support lever 80A. That is, the second bearing support lever 90A on the front side is fitted to the small diameter shaft portion of the center pin 75A2 serving as the rotation center shaft portion in the bearing hole 91A located in the middle and serving as the fulcrum, and rotates around the center axis C4. It is possible to move. In detail, as illustrated in FIG. 3, the center axis of the center pin 75 </ b> A <b> 2 may be shifted from the rotation center axis C <b> 4 of the fourth wheel & pinion 40. In the following, for the sake of simplicity of explanation, it is assumed that the center axis of the center pin 75A2 coincides with the rotation center axis C4 of the fourth wheel & pinion 40. The bearing support lever 90A is provided with arm portions 92A and 93A on both sides of the bearing hole 91A on the front end side and the base end side. Or it has the groove part 94A and a pair of elastic arm parts 95A and 95A (one is not shown) of the both sides. The width of the groove portion 94A is the same as the width of the groove portion 84A of the first bearing support lever 80A, and the second bearing support lever 90A has its distal arm portion 92A at the distal arm portion of the first bearing support lever 80A. The groove portion 94A is loosely fitted to the body portion 35C of the tenon frame 35A of the tenon receiving structure 35 so as to overlap with 82A in an intersecting state. The tenon frame 35A of the tenon receiving structure 35 is slidable along the longitudinal direction of the groove 94A of the second bearing support lever 90A on the front side. Here, the distal end side arm portions 82A and 92A of the levers 80A and 90A are slidably overlapped with each other between the flange portion 35D and the retaining ring 35E of the tenon frame 35A.

基端側腕部93Aは、基端縁にほぼ正方形状の凹部96Aを備える。ピン押えブシュ76A2には、表側の第二の軸受支持レバー90Aの回動位置を調整するための表側第二レバー回動調整偏心ピン97Aが装着されている。偏心ピン97Aは、ピン押えブシュ76A2に摺動回転可能に嵌合された円柱状軸部97A1と該軸部97A1に対して偏心した大径円板状頭部97A2とを有する。偏心ピン97Aの頭部97A2の外径は、表側の第二の軸受支持レバー90Aの基端側腕部93Aの基端凹部96Aの幅に一致するかそれより僅かに小さく、偏心ピン97Aの頭部97A2には、表側の第二の軸受支持レバー90Aの基端側腕部93Aが基端凹部96Aで遊嵌されている。   The proximal arm 93A includes a substantially square recess 96A at the proximal edge. A front-side second lever rotation adjusting eccentric pin 97A for adjusting the rotation position of the front-side second bearing support lever 90A is attached to the pin presser bushing 76A2. The eccentric pin 97A has a cylindrical shaft portion 97A1 that is fitted to the pin presser bushing 76A2 so as to be slidable and rotatable, and a large-diameter disk-shaped head portion 97A2 that is eccentric with respect to the shaft portion 97A1. The outer diameter of the head portion 97A2 of the eccentric pin 97A is equal to or slightly smaller than the width of the proximal recess portion 96A of the proximal end arm portion 93A of the second bearing support lever 90A on the front side, and the head of the eccentric pin 97A. The base end side arm portion 93A of the second bearing support lever 90A on the front side is loosely fitted to the portion 97A2 by a base end recess 96A.

裏側の第一の軸受支持レバー80Bは、表側の第一の軸受支持レバー80Aと鏡映対称な状態で裏側のレバー支持体70Bに取付けられている。   The back side first bearing support lever 80B is attached to the back side lever support body 70B in a mirror-symmetrical state with the front side first bearing support lever 80A.

即ち、裏側の第一の軸受支持レバー80Bは、中間に位置し支点となる軸受孔81Bにおいて回動中心軸部となる中心ピン75B1の小径軸部に嵌合され、中心軸線C2のまわりで回動可能である。軸受支持レバー80Bは、軸受孔81Bの両側に腕部82B,83Bを備える。先端側腕部82Bは、フォーク状であって、先端縁から長手方向に延びた長穴としてのスリットないし溝部84Bと、一対の弾性腕部85B,85B(一方は図示せず)とを有する。溝部84Bの幅は、ほぞ受構造体37のほぞ枠37Aの胴部37Cの外径に一致するかそれより僅かに大きく、ほぞ受構造体37のほぞ枠37Aの胴部37Cに溝部84Bで遊嵌されている。従って、ほぞ受構造体37のほぞ枠37Aは、裏側の第一の軸受支持レバー80Bの溝部84Bの長手方向に沿って摺動可能である。   That is, the first bearing support lever 80B on the back side is fitted to the small diameter shaft portion of the center pin 75B1 serving as the rotation center shaft portion in the bearing hole 81B serving as the fulcrum located in the middle, and rotates around the center axis C2. It is possible to move. The bearing support lever 80B includes arm portions 82B and 83B on both sides of the bearing hole 81B. The distal end side arm portion 82B has a fork shape, and has a slit or groove portion 84B as a long hole extending in the longitudinal direction from the distal end edge, and a pair of elastic arm portions 85B and 85B (one is not shown). The width of the groove portion 84B is equal to or slightly larger than the outer diameter of the body portion 37C of the tenon frame 37A of the tenon receiving structure 37, and the groove portion 84B is free to play in the body portion 37C of the tenon frame 37A of the tenon receiving structure 37. It is fitted. Therefore, the tenon frame 37A of the tenon receiving structure 37 can slide along the longitudinal direction of the groove 84B of the first bearing support lever 80B on the back side.

一方、基端側腕部83Bは、基端縁にほぼ正方形状の凹部86Bを備える。ピン押えブシュ76B1には、裏側の第一の軸受支持レバー80Bの回動位置を調整するための裏側第一レバー回動調整偏心ピン87Bが装着されている。偏心ピン87Bは、ピン押えブシュ76B1に摺動回転可能に嵌合された円柱状軸部87B1と該軸部87B1に対して偏心した大径円板状頭部87B2とを有する。偏心ピン87Bの頭部87B2の外径は、裏側の第一の軸受支持レバー80Bの基端側腕部83Bの基端凹部86Bの幅に一致するかそれより僅かに小さく、偏心ピン87Bの頭部87B2には、裏側の第一の軸受支持レバー80Bの基端側腕部83Bが基端凹部86Bで遊嵌されている。   On the other hand, the base end side arm part 83B includes a substantially square-shaped recess 86B at the base end edge. A back-side first lever rotation adjustment eccentric pin 87B for adjusting the rotation position of the back-side first bearing support lever 80B is mounted on the pin presser bushing 76B1. The eccentric pin 87B has a cylindrical shaft portion 87B1 fitted to the pin presser bushing 76B1 so as to be slidable and rotatable, and a large-diameter disk-shaped head portion 87B2 which is eccentric with respect to the shaft portion 87B1. The outer diameter of the head 87B2 of the eccentric pin 87B is equal to or slightly smaller than the width of the proximal recess 86B of the proximal arm portion 83B of the first bearing support lever 80B on the back side, and the head of the eccentric pin 87B. The base end side arm portion 83B of the first bearing support lever 80B on the back side is loosely fitted to the portion 87B2 at the base end concave portion 86B.

裏側の第二の軸受支持レバー90Bも、第一の軸受支持レバー80Bと実際上同様に構成されている。即ち、裏側の第二の軸受支持レバー90Bは、中間に位置し支点となる軸受孔91Bにおいて回動中心軸部である中心ピン75B2の小径軸部に嵌合され、中心軸線C4のまわりで回動可能である。なお、詳細には、図3で例示したように、中心ピン75B2の中心軸線は四番車40の回転中心軸線C4からズレていてもよいが、ここでは、前述の通り、説明の簡明化のために、中心ピン75B2の中心軸線が四番車40の回転中心軸線C4に一致するとして説明する。軸受支持レバー90Bは、軸受孔91Bの両側に先端側及び基端側の腕部92B,93Bを備え、フォーク状の先端側腕部92Bは、先端縁から長手方向に延びた長穴としてのスリットないし溝部94Bと、一対の弾性腕部95B,95B(一方は図示せず)とを有する。溝部94Bの幅は、第一の軸受支持レバー80Bの溝部84Bの幅と同一で、第二の軸受支持レバー90Bは、その先端側腕部92Bが第一の軸受支持レバー80Bの先端側腕部82Bに対して交差状態で重なるように、ほぞ受構造体37のほぞ枠37Aの胴部37Cに溝部94Bで遊嵌されている。ほぞ受構造体37のほぞ枠37Aは、裏側の第二の軸受支持レバー90Bの溝部94Bの長手方向に沿って摺動可能である。ここで、レバー80B,90Bの先端側腕部82B,92Bは、ほぞ枠37Aのフランジ部37Dと止め輪37Eとの間において相互に摺動可能に重なり合っている。   The second bearing support lever 90B on the back side is also configured in the same manner as the first bearing support lever 80B. That is, the second bearing support lever 90B on the back side is fitted to the small diameter shaft portion of the center pin 75B2 that is the rotation center shaft portion in the bearing hole 91B that is located in the middle and serves as a fulcrum, and rotates around the center axis C4. It is possible to move. In detail, as illustrated in FIG. 3, the center axis of the center pin 75B2 may be shifted from the rotation center axis C4 of the fourth wheel & pinion 40, but here, as described above, the explanation is simplified. Therefore, description will be made assuming that the center axis of the center pin 75B2 coincides with the rotation center axis C4 of the fourth wheel & pinion 40. The bearing support lever 90B includes distal and proximal arm portions 92B and 93B on both sides of the bearing hole 91B. The fork-shaped distal arm portion 92B is a slit as a long hole extending in the longitudinal direction from the distal edge. Or it has a groove part 94B and a pair of elastic arm parts 95B and 95B (one is not shown). The width of the groove portion 94B is the same as the width of the groove portion 84B of the first bearing support lever 80B. The second bearing support lever 90B has a distal arm portion 92B having a distal arm portion of the first bearing support lever 80B. The groove portion 94B is loosely fitted to the trunk portion 37C of the tenon frame 37A of the tenon receiving structure 37 so as to overlap with 82B in an intersecting state. The tenon frame 37A of the tenon receiving structure 37 is slidable along the longitudinal direction of the groove 94B of the second bearing support lever 90B on the back side. Here, the distal side arm portions 82B and 92B of the levers 80B and 90B overlap with each other between the flange portion 37D of the tenon frame 37A and the retaining ring 37E so as to be slidable with each other.

基端側腕部93Bは、基端縁にほぼ正方形状の凹部96Bを備える。軸受としてのピン押えブシュ76B2には、裏側の第二の軸受支持レバー90Bの回動位置を調整するための裏側第二レバー回動調整偏心ピン97Bが装着されている。偏心ピン97Bは、ピン押えブシュ76B2に摺動回転可能に嵌合された円柱状軸部97B1と該軸部97B1に対して偏心した大径円板状頭部97B2とを有する。偏心ピン97Bの頭部97B2の外径は、裏側の第二の軸受支持レバー90Bの基端側腕部93Bの基端凹部96Bの幅に一致するかそれより僅かに小さく、偏心ピン97Bの頭部97B2には、裏側の第二の軸受支持レバー90Bの基端側腕部93Bが基端凹部96Bで遊嵌されている。   The proximal end arm portion 93B includes a substantially square recess 96B at the proximal end edge. A back-side second lever rotation adjusting eccentric pin 97B for adjusting the rotation position of the back-side second bearing support lever 90B is attached to the pin presser bushing 76B2 as a bearing. The eccentric pin 97B has a cylindrical shaft portion 97B1 fitted to the pin presser bushing 76B2 so as to be slidable and rotatable, and a large-diameter disk-shaped head portion 97B2 which is eccentric with respect to the shaft portion 97B1. The outer diameter of the head portion 97B2 of the eccentric pin 97B is equal to or slightly smaller than the width of the proximal recess portion 96B of the proximal arm portion 93B of the second bearing support lever 90B on the back side, and the head of the eccentric pin 97B. The base end side arm portion 93B of the second bearing support lever 90B on the back side is loosely fitted to the portion 97B2 at the base end concave portion 96B.

以上の如く構成された時計3の本体4の輪列構造5の時計輪列用軸受機構6では、偏心ピン87を回転させることにより、第一の軸受支持レバー80をその回動中心軸線C2のまわりで回動させて、軸受構造体35,37を溝94に沿って第二の軸受支持レバー90の長手方向に移動させ得、且つ偏心ピン97を回転させることにより、第二の軸受支持レバー90をその回動中心軸線C4のまわりで回動させて、軸受構造体35,37を溝84に沿って第一の軸受支持レバー80の長手方向に移動させ得る。従って、偏心ピン87,97を回すことにより、レバー80,90を回動させて、三番車30の軸受構造体35,37を二次元面内の任意の位置に位置調整し得る。   In the timepiece wheel train bearing mechanism 6 of the train wheel structure 5 of the main body 4 of the timepiece 3 configured as described above, the first bearing support lever 80 is moved along the rotation center axis C2 by rotating the eccentric pin 87. By rotating around, the bearing structures 35 and 37 can be moved along the groove 94 in the longitudinal direction of the second bearing support lever 90, and by rotating the eccentric pin 97, the second bearing support lever The bearing structure 35, 37 can be moved along the groove 84 in the longitudinal direction of the first bearing support lever 80 by rotating 90 around the rotation center axis C4. Therefore, by turning the eccentric pins 87 and 97, the levers 80 and 90 can be rotated, and the bearing structures 35 and 37 of the third wheel & pinion 30 can be adjusted to arbitrary positions in the two-dimensional plane.

従って、時計3の本体4の輪列構造5の時計輪列用軸受機構6では、無視し難い誤差があったり使用によってほぞ部等の磨耗が進行して、二番車20から三番車30を介して四番車40に至る又はその逆方向の回転又は回転力の伝達が効果的に行われにくい場合でも、三番車30に中心軸線C3と二番車20及び四番車40の中心軸線C2,C4との距離が、両方とも適切な大きさになるように、調整され得、二番車20から三番車30を介して四番車40に至る又はその逆方向の回転又は回転力の伝達が効果的に行われ得る状態に調整され得る。   Accordingly, in the watch train wheel bearing mechanism 6 of the train wheel structure 5 of the main body 4 of the watch 3, there is an error that cannot be ignored or the wear of the tenon portion or the like proceeds due to use, and the second wheel 20 to the third wheel 30. Even if it is difficult to effectively transmit rotation or rotational force in the reverse direction or to the fourth wheel 40 via the center wheel C3, the center axis C3 and the center of the second wheel 20 and the fourth wheel 40 are connected to the third wheel 30. The distance between the axes C2 and C4 can be adjusted so that both are appropriately sized, and the rotation or rotation from the second wheel 20 to the fourth wheel 40 through the third wheel 30 or in the opposite direction. It can be adjusted to a state where force transmission can be performed effectively.

なお、図3に示した時計3の本体4の輪列構造5の時計輪列用軸受機構6では、レバー80,90は、夫々、表側レバー80A,90A及び裏側レバー80B,90Bを含むから、典型的には、三番車30の表側のほぞ部34を支える表側軸受構造体35の位置調整と三番車30の裏側のほぞ部36を支える裏側軸受構造体37の位置調整とを交互に行うことが好ましい。但し、所望ならば、例えば、一方の位置調整を複数回行った後、他方の位置調整を複数回行うことを繰返してもよい。   In the watch train wheel bearing mechanism 6 of the train wheel structure 5 of the main body 4 of the watch 3 shown in FIG. 3, the levers 80 and 90 include front levers 80A and 90A and back levers 80B and 90B, respectively. Typically, the position adjustment of the front bearing structure 35 that supports the tenon 34 on the front side of the third wheel 30 and the position adjustment of the rear bearing structure 37 that supports the tenon 36 on the back side of the third wheel 30 are alternately performed. Preferably it is done. However, if desired, for example, after one position adjustment is performed a plurality of times, the other position adjustment may be performed a plurality of times.

勿論、所望ならば、表側及び裏側の両方にレバー80,90を設ける代わりに、一方の側だけにレバーを設けてもよい。   Of course, if desired, instead of providing the levers 80 and 90 on both the front side and the back side, the lever may be provided only on one side.

表側及び裏側の第一の軸受支持レバー80A,80Bは、二番車20の回転中心軸線C2と三番車30の回転中心軸線C3との間の距離L2が調整可能なように、二つの中心軸線C2,C3を結ぶ方向に延びる。従って、この軸受支持レバー80を、図4の(b)では、模式的に直線80で表す。一方、表側及び裏側の第二の軸受支持レバー90A,90Bは、四番車40の回転中心軸線C4と三番車30の回転中心軸線C3との間の距離L4が調整可能なように、二つの中心軸線C4,C3を結ぶ方向に延びる。従って、この軸受支持レバー90を、図4の(b)では、模式的に直線90で表す。なお、図4の(b)では、見易さのために、第一及び第二のレバー80,90のうち先端側腕部82,92が実線で示され、基端側腕部83,93が想像線で示されている。   The first bearing support levers 80A and 80B on the front side and the back side have two centers so that the distance L2 between the rotation center axis C2 of the second wheel 20 and the rotation center axis C3 of the third wheel 30 can be adjusted. It extends in the direction connecting the axes C2 and C3. Therefore, this bearing support lever 80 is schematically represented by a straight line 80 in FIG. On the other hand, the second bearing support levers 90A and 90B on the front side and the back side are arranged so that the distance L4 between the rotation center axis C4 of the fourth wheel 40 and the rotation center axis C3 of the third wheel 30 can be adjusted. It extends in a direction connecting the two central axes C4 and C3. Therefore, this bearing support lever 90 is schematically represented by a straight line 90 in FIG. In FIG. 4B, for ease of viewing, the distal arm portions 82 and 92 of the first and second levers 80 and 90 are indicated by solid lines, and the proximal arm portions 83 and 93 are shown. Is shown with imaginary lines.

図4の(b)において、二番車20の中心軸線C2を中心とした三つの円Q21,Q22,Q23は、二番車20の中心が中心軸線C2の位置にある場合に、公差などを考慮して、三番車30が二番車20と適切な噛合状態になる可能性のある最小軸間距離R21を半径とする円、基準軸間距離R22を半径とする円、及び最大軸間距離R23を半径とする円を示す。同様に、四番車40の中心軸線C4を中心とした三つの円Q41,Q42,Q43は、四番車40の中心が中心軸線C4の位置にある場合に、公差などを考慮して、三番車30が四番車40と適切な噛合状態になる可能性のある最小軸間距離R41を半径とする円、基準軸間距離R42を半径とする円、及び最大軸間距離R43を半径とする円を示す。なお、各種公差を考慮すると、厳密には、一定の円Q21,Q23,Q41,Q43等が同種の時計に対して一般的に確定されるわけではなく、特定の部品からなる特定の輪列構造5における特定の時計に当てはまるだけである。   In FIG. 4B, three circles Q21, Q22, and Q23 centered on the center axis C2 of the center wheel & pinion 20 have tolerances and the like when the center of the center wheel & pinion 20 is at the position of the center axis C2. In consideration, the circle with the radius of the minimum inter-axis distance R21, the circle with the radius R22 being the reference inter-axis distance, and the maximum axis between the third wheel 30 and the second wheel 20 may be properly engaged. A circle whose radius is the distance R23 is shown. Similarly, the three circles Q41, Q42, and Q43 centered on the central axis C4 of the fourth wheel 40 are three in consideration of tolerances when the center of the fourth wheel 40 is at the position of the central axis C4. A circle whose radius is a minimum inter-axis distance R41, a circle whose radius is a reference inter-axis distance R42, and a maximum inter-axis distance R43 which is likely to be in an appropriate meshing state with the fourth wheel 40. Indicates the circle to be. In consideration of various tolerances, strictly speaking, certain circles Q21, Q23, Q41, Q43, etc. are not generally determined for the same type of timepiece, but a specific train wheel structure composed of specific parts. It only applies to the specific clock in 5.

図4の(a)は、円Q21,Q22,Q23及び円Q41,Q42,Q43の交差領域を拡大して示したものである。三番車30の回転中心軸線C3は、円Q21,Q23と円Q41,Q43との交点により規定される円Q21,Q23の円弧P21,P23及び円Q41,Q43の円弧P41,P43によって囲まれた領域S(図4の(a)においてハッチングを付した領域)内で、位置調整されるべきことになる。   FIG. 4A shows an enlarged view of the intersection region of the circles Q21, Q22, Q23 and the circles Q41, Q42, Q43. The rotation center axis C3 of the third wheel & pinion 30 is surrounded by the arcs P21 and P23 of the circles Q21 and Q23 and the arcs P41 and P43 of the circles Q41 and Q43 defined by the intersections of the circles Q21 and Q23 and the circles Q41 and Q43. Position adjustment should be performed within the area S (the area hatched in FIG. 4A).

三番車30の中心軸線C3が、例えば、図4の(a)の領域S内の位置T1(初期位置ないし現在位置)にある場合、軸受支持レバー80が中心軸線C2のまわりで回動されると、三番車30の軸受構造体35,37が、レバー80の先端側腕部82によって回動されつつレバー90の延在方向すなわち該レバー90の長穴(溝)94の延在方向U90に沿って変位される。一方、三番車30の中心軸線C3が、位置T1にある場合、軸受支持レバー90が中心軸線C4のまわりで回動されると、三番車30の軸受構造体35,37は、レバー90の先端側腕部92によって回動されつつレバー80の延在方向すなわち該レバー80の長穴(溝)84の延在方向U80に沿って変位される。   For example, when the center axis C3 of the third wheel & pinion 30 is at a position T1 (initial position or current position) in the region S in FIG. 4A, the bearing support lever 80 is rotated around the center axis C2. Then, the bearing structures 35, 37 of the third wheel & pinion 30 are rotated by the tip side arm portion 82 of the lever 80, and the extending direction of the lever 90, that is, the extending direction of the elongated hole (groove) 94 of the lever 90. Displaced along U90. On the other hand, when the center axis C3 of the third wheel & pinion 30 is at the position T1, when the bearing support lever 90 is rotated around the center axis C4, the bearing structures 35 and 37 of the third wheel & pinion 30 are moved to the lever 90. It is displaced along the extending direction of the lever 80, that is, along the extending direction U 80 of the elongated hole (groove) 84 of the lever 80 while being rotated by the distal end side arm portion 92.

それ故、例えば、領域S内の初期位置T1から目標位置T2に三番車30の中心C3すなわち軸受構造体35,37の中心C3を移動させようとする場合、上記のような操作を複数回繰返して、典型的には、領域S内でジグザグ経路に沿って三番車30の軸受構造体35,37を移動させる。なお、この時計輪列用軸受機構6では、レバー80,90により交差する二方向に三番車30の中心軸線C3が移動され得るから、領域S内の任意の所望領域に三番車30の中心軸線C3が移動されて、輪列5を構成する二番車20、三番車30及び四番車40の噛合関係が最適になるように、三番車30の位置が調整され得る。   Therefore, for example, when moving the center C3 of the third wheel & pinion 30, that is, the center C3 of the bearing structures 35 and 37, from the initial position T1 in the region S to the target position T2, the above operation is performed a plurality of times. Repeatedly, typically, the bearing structures 35 and 37 of the third wheel & pinion 30 are moved in the region S along the zigzag path. In this watch wheel train bearing mechanism 6, the central axis C3 of the third wheel & pinion 30 can be moved in two directions intersected by the levers 80 and 90. Therefore, the third wheel & pinion 30 can be moved to any desired region in the region S. The position of the third wheel & pinion 30 can be adjusted such that the center axis C <b> 3 is moved and the meshing relationship between the second wheel 20, the third wheel 30 and the fourth wheel 40 configuring the wheel train 5 is optimized.

ここで、例えば、時計3が長期間使用した時計である場合、現在位置T1にある時計本体4の一日当りの歩度の観測により得られる歩度の安定性ないし変動の程度や関連する車のほぞ部の観察により確認される磨耗の程度等に応じて、目標位置T2が決定される。なお、位置T1から別の所望の位置に中心軸線C3を試行的に移動させた場合の歩度の安定性の変化等を一種の感度分析として観測しこれを参考にして、移動方向や距離又は目標位置を決定してもよい。   Here, for example, when the watch 3 is a watch that has been used for a long time, the stability or variation of the rate obtained by observing the daily rate of the watch body 4 at the current position T1, and the related tenon of the car The target position T2 is determined according to the degree of wear or the like confirmed by the observation. It should be noted that a change in the stability of the rate when the center axis C3 is moved from the position T1 to another desired position on a trial basis is observed as a kind of sensitivity analysis, and is used as a reference to determine the moving direction, distance, or target. The position may be determined.

図4の(a)では、例えば、長期間使用された時計3では、各車20,30,40のほぞ部が磨耗し、且つ二番車20のほぞ部よりも四番車40のほぞ部の方がより大きく磨耗している場合に、両方の車20,40に近接させるように且つ二番車20に近接させる程度よりも四番車40に近接させる程度が大きいような状況で、三番車30の中心を位置T1から目標位置T2に移動させるように、輪列用軸受機構6が調整される例を示している。   4A, for example, in the timepiece 3 that has been used for a long time, the tenon portion of each of the cars 20, 30, 40 is worn, and the tenon portion of the fourth wheel 40 is more than the tenon portion of the second wheel 20. In the situation where the vehicle is more worn away, the vehicle is closer to both the cars 20 and 40 and closer to the fourth wheel 40 than to the second wheel 20. In this example, the train wheel bearing mechanism 6 is adjusted so that the center of the wheel 30 is moved from the position T1 to the target position T2.

なお、公差の状況次第では、領域S内における三番車30の中心軸線C3の移動を妨げるような噛み合い状態もあり得、位置調整に対する負荷が過度に高い場合、それを考慮して、経路を変更すればよい。勿論、位置調整が困難になる向きに三番車30の中心軸線C3を変位させようとすること自体、通常は、本来調整されるべき向きと逆向きである可能性が高いことから、当然ながら、この情報を参考にして、調整すべき目標位置自体を変更してもよい。   Depending on the situation of tolerance, there may be a meshing state that hinders the movement of the central axis C3 of the third wheel 30 in the region S. If the load for position adjustment is excessively high, the route should be Change it. Of course, trying to displace the central axis C3 of the third wheel & pinion 30 in a direction that makes position adjustment difficult is naturally likely to be in a direction opposite to the direction that should be adjusted. The target position itself to be adjusted may be changed with reference to this information.

軸受支持レバー80,90の回動中心軸線は、中心軸線C3の位置を調整しようとする車(この例では三番車)30に噛合している車(この例では二番車及び四番車)20,40の回転中心軸線C2,C4とは異なる位置にあっていてもよい。例えば、図2〜図4に示した例の場合、二番車20、三番車30及び四番車40が一直線に近い相対位置にあり、二番車20の中心C2と三番車30の中心C3とを結ぶ線と、三番車30の中心C3と四番車40の中心C4とを結ぶ線とのなす角が比較的大きな鈍角になっていることから、図1に示したように実際上直角にレバーA40,A50が延びる場合と比較して、軸受支持レバー80,90による位置調整に時間を要する。   The rotation center axis of the bearing support levers 80, 90 is a vehicle (second wheel and fourth wheel in this example) meshing with a vehicle (third wheel in this example) 30 whose position is to be adjusted. ) It may be in a position different from the rotation center axes C2 and C4 of 20,40. For example, in the example shown in FIGS. 2 to 4, the second wheel 20, the third wheel 30, and the fourth wheel 40 are in a relative position close to a straight line, and the center C <b> 2 of the second wheel 20 and the third wheel 30 are Since the angle formed by the line connecting the center C3 and the line connecting the center C3 of the third wheel 30 and the center C4 of the fourth wheel 40 is a relatively large obtuse angle, as shown in FIG. Compared with the case where the levers A40 and A50 extend in a substantially right angle, the position adjustment by the bearing support levers 80 and 90 takes time.

従って、例えば、三番車30の軸受構造体35,37(図3)を支える二つのレバーとして、図5の(a)に示したように、想像線90Wで示した位置に配置したレバー90Wをレバー90の代わりに用いて、中心軸線C2,C3間のレバー80と組合わせて時計輪列用軸受機構6Wを形成しても、想像線90Yで示した位置に配置したレバー80Yをレバー80の代わりに用いて、中心軸線C3,C4間のレバー90と組合わせて時計輪列用軸受機構6Yを形成してもよい。ここで、レバー90Wは、支点WC4の周りで回動可能で且つレバー80に対して実際上直交する状態の近傍で回動されるものである。なお、レバー90Wの形状、構造及びその支持部の構造等は全て前述のレバー90についてのものと同じでよい。同様に、レバー80Yは、支点YC2の周りで回動可能で且つレバー90に対して実際上直交する状態の近傍で回動されるものである。なお、レバー80Yの形状、構造及びその支持部の構造等は全て前述のレバー80についてのものと同じでよい。   Therefore, for example, as shown in FIG. 5A, the lever 90W disposed at the position indicated by the imaginary line 90W as two levers supporting the bearing structures 35 and 37 (FIG. 3) of the third wheel 30. Is used in place of the lever 90 and combined with the lever 80 between the central axes C2 and C3 to form the watch wheel train bearing mechanism 6W, the lever 80Y disposed at the position indicated by the imaginary line 90Y is the lever 80 Alternatively, the watch wheel train bearing mechanism 6Y may be formed in combination with the lever 90 between the central axes C3 and C4. Here, the lever 90 </ b> W can be rotated around the fulcrum WC <b> 4 and is rotated in the vicinity of a state that is actually orthogonal to the lever 80. Note that the shape and structure of the lever 90W, the structure of the supporting portion thereof, and the like may all be the same as those of the lever 90 described above. Similarly, the lever 80 </ b> Y is rotatable around the fulcrum YC <b> 2 and is rotated in the vicinity of a state that is substantially orthogonal to the lever 90. It should be noted that the shape and structure of the lever 80Y and the structure of the supporting portion thereof may all be the same as those for the lever 80 described above.

また、二つの車20,40に対して同等な状態を採ること等が望まれるような場合、所望ならば、図5の(b)に示したような位置に配置したレバー180,190を用いた時計輪列用軸受機構106にしてもよい。ここで、各レバー180,190の構造は、例えば、夫々、レバー80,90の構造と同様であり、レバー80,90の回転中心軸線C2,C4に対応する夫々の回動中心軸線は、符号1C2,1C4で示す位置にある。この場合、レバー180,190が相互に直角に近い向きを取るので、夫々のレバー180,190の回動により、三番車30の軸受構造体を、他方のレバー190,180の長手方向に変位させ易い。また、各レバー180,190が各車20,40と三番車30とを結ぶ方向に対して、0度又は180度から十分にズレた角度を有するので、三番車30の中心軸線C3が位置調整されるべき方向への移動量を大きくし得る。   Further, when it is desired to take the same state for the two cars 20 and 40, the levers 180 and 190 disposed at the positions shown in FIG. The watch wheel train bearing mechanism 106 may be used. Here, the structures of the levers 180 and 190 are, for example, the same as the structures of the levers 80 and 90, respectively, and the respective rotation center axes corresponding to the rotation center axes C2 and C4 of the levers 80 and 90 are denoted by reference numerals. It is in a position indicated by 1C2 and 1C4. In this case, since the levers 180 and 190 are oriented substantially perpendicular to each other, the bearing structure of the third wheel 30 is displaced in the longitudinal direction of the other levers 190 and 180 by the rotation of the levers 180 and 190. Easy to do. In addition, since each lever 180, 190 has an angle sufficiently shifted from 0 degree or 180 degrees with respect to the direction connecting each car 20, 40 and the third wheel 30, the central axis C3 of the third wheel 30 is The amount of movement in the direction to be adjusted can be increased.

また、以上においては、輪列を構成する多数の車のうち一つの車30の位置のみを調整する例について説明したけれども、所望ならば、例えば、図2に示した輪列において、三番車30の中心軸線C3の位置だけでなく、たとえば、四番車40の中心軸線C4の位置を調整すべく、レバー80,90と同様な別の一対のレバーを設けて、四番車40の三番車30及びガンギ車51に対する軸間距離を調整し、これにより、四番車40と三番車30及びガンギ車51の夫々との噛合状態を調整するようにしてもよい。   In the above description, an example in which only the position of one vehicle 30 among a large number of vehicles constituting the train wheel is adjusted has been described. If desired, for example, in the train wheel shown in FIG. For example, in order to adjust not only the position of the central axis C3 of the 30th but also the position of the central axis C4 of the fourth wheel & pinion 40, another pair of levers similar to the levers 80 and 90 is provided. The inter-axis distance with respect to the number wheel 30 and the escape wheel 51 may be adjusted, and thereby the meshing state between the fourth wheel 40, the third wheel 30 and the escape wheel 51 may be adjusted.

本発明による好ましい一実施例の時計輪列用軸受機構の平面説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 本発明による好ましい一実施例の時計輪列用軸受機構が適用される本発明による好ましい一実施例の時計の本体の輪列を示した平面説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory plan view showing a train wheel of a main body of a watch according to a preferred embodiment of the present invention to which a bearing mechanism for a watch train wheel according to a preferred embodiment of the present invention is applied. 図3の時計本体のIII-III線断面説明図。III-III sectional view explanatory drawing of the timepiece main body of FIG. 図2の輪列の一部を拡大して示したもので、(a)は三番車の中心軸線位置の調整を説明するために(b)の一部を拡大して示した拡大平面説明図、(b)は二番車、三番車および四番車を拡大して示した平面説明図。FIG. 3 is an enlarged view of a part of the train wheel of FIG. 2, and (a) is an enlarged plan view showing an enlarged part of (b) in order to explain the adjustment of the center axis position of the third wheel & pinion. FIG. 4B is an explanatory plan view showing the second wheel, the third wheel and the fourth wheel in an enlarged manner. 変形例の時計輪列用軸受機構の配置を模式的に示したもので、(a)は二つのレバーが実際上直交する位置を採るようにした例の平面説明図、(b)は二つのレバーが0度又は180度から十分にズレた角度を採るようにした例の平面説明図。The arrangement of the bearing mechanism for the watch wheel train of the modified example is schematically shown. (A) is an explanatory plan view of an example in which two levers are actually orthogonal to each other. (B) Plane explanatory drawing of the example which took the angle which shifted | deviated sufficiently from 0 degree | times or 180 degree | times.

符号の説明Explanation of symbols

1,6,6W,6Y,106 時計輪列用軸受機構
2,5 時計輪列構造体
3 時計
4 時計本体
10 一番車(香箱車)
11 ぜんまい
12 香箱歯車
20 二番車(分車)
21 二番かな
22 二番歯車
23 二番真
24 秒かな真
25 秒かな
26 ほぞ部
27,28 ほぞ受(受石)
30 三番車
31 三番かな
32 三番歯車
33 三番真
34,36 ほぞ部
35,37 ほぞ受構造体
35A,37A ほぞ枠
35B,37B 受石
35C,37C 円筒状胴部
35D,37D フランジ状突出部
40 四番車(秒車)
41 四番かな
42 四番歯車
43 四番真
44,46 ほぞ部
45,47 ほぞ受(受石)
50 調速脱進機構
51 ガンギ車
52 テンプ
53 アンクル
54 ガンギかな
55 ガンギ真
55A,55C ほぞ部
55B,55D ほぞ受(受石)
58 筒車(時車)
61 地板
62 一番受(輪列受)
63,64 開口
65 二番受(輪列受)
70A 表側レバー支持体
70B 裏側レバー支持体
72A,72B 開口
73A1,73A2,73B1,73B2 円形穴
74A1,74A2,74B1,74B2 ピン押えブシュ用の穴
75A1,75A2,75B1,75B2 中心ピン
76A1,76A2,76B1,76B2 ピン押えブシュ
80,80A,80B 第一の軸受支持レバー
81A,81B,91A,91B 軸受孔
82,82A,82B,92,92A,92B 先端側腕部
83,83A,83B,93,93A,93B 基端側腕部
84A,84B,94A,94B 溝部(長穴)
85A,85B,95A,95B 弾性腕部
86A,86B,96A,96B 凹部
87,87A,87B,97A,97B レバー回動調整偏心ピン
87A1,87B1,97A1,97B1 円柱状軸部
87A2,87B2,97A2,97B2 大径円板状頭部(偏心頭部)
90,90A,90B 第二の軸受支持レバー
A6 レバー支持体
A7 時計輪列支持体
A10 第一の車
A11 第一のほぞ受
A12,A22,A32 ほぞ部
A15,A25 中心ピン
A20 第二の車
A21 第二のほぞ受
A30 第三の車
A31 第三のほぞ受
A34 受石
A35 ほぞ枠
A36 円筒状軸部(胴部)
A37 フランジ状部
A33 第三のほぞ受の胴部
A40 第一のレバー
A41,A51 取付け部
A42,A52 バネ部
A43,A53 先端側腕部(フォーク状腕部)
A43A 先端縁
A44,A54 基端側腕部
A44A,A54A 基端縁
A45,A55 溝部
A46,A56 弾性腕部
A47,A57 凹部
A48,A58 偏心ピン
A49,A59 偏心ピンの偏心頭部
A50 第二のレバー
AC1,AC2 レバーの回動中心軸線
AP1,AP2,AP3 ほぞ受の位置
B,F 溝部の長手方向
B1,B2,F1,F2 移動方向
C1,C2,C3,C4,C5,C6 車の回転中心軸船
D1,D2,H1,H2 レバーの回動方向
E1,E2,G1,G2 偏心ピンの回動方向
J 一対のレバーの先端側腕部の交差部
S 位置調整可能領域
T1 初期位置(現在位置)
T2 目標位置
1, 6, 6W, 6Y, 106 Clock train wheel bearing mechanism 2, 5 Clock train wheel structure 3 Clock 4 Clock body 10 First car (barrel car)
11 Mainspring 12 Incense box gear 20 Second wheel (minute wheel)
21 Kana 22 Second gear 23 Second 24 seconds Kana 25 seconds 26 Mortise 27, 28
30 Third wheel 31 Third wheel 32 Third gear 33 Third gear 34, 36 Tenon portion 35, 37 Tenon receiving structure 35A, 37A Tenon frame 35B, 37B Stone 35C, 37C Cylindrical body 35D, 37D Flange shape Protrusion 40 Fourth wheel (second wheel)
41 4th Kana 42 4th Gear 43 4th Truth 44, 46 Mortise 45, 47 Mortise (Stone)
50 speed control escapement mechanism 51 escape wheel 52 balance 53 ankle 54 escape gear 55 escape gear 55A, 55C mortise 55B, 55D mortise receiving (stone)
58 hour wheel
61 Ground plate 62 First ring (ring train holder)
63, 64 Opening 65 Second receiver (ring train receiver)
70A Front lever support body 70B Rear lever support bodies 72A, 72B Openings 73A1, 73A2, 73B1, 73B2 Circular holes 74A1, 74A2, 74B1, 74B2 Pin holding bush holes 75A1, 75A2, 75B1, 75B2 Center pins 76A1, 76A2, 76B1 76B2 Pin holding bushes 80, 80A, 80B First bearing support levers 81A, 81B, 91A, 91B Bearing holes 82, 82A, 82B, 92, 92A, 92B Tip side arm portions 83, 83A, 83B, 93, 93A, 93B Proximal arm part 84A, 84B, 94A, 94B Groove part (long hole)
85A, 85B, 95A, 95B Elastic arm portions 86A, 86B, 96A, 96B Recesses 87, 87A, 87B, 97A, 97B Lever rotation adjustment eccentric pins 87A1, 87B1, 97A1, 97B1 Cylindrical shaft portions 87A2, 87B2, 97A2, 97B2 Large-diameter disk-shaped head (eccentric head)
90, 90A, 90B Second bearing support lever A6 Lever support A7 Clock train wheel support A10 First car A11 First tenon receiver A12, A22, A32 Tenon part A15, A25 Center pin A20 Second car A21 Second tenon receiver A30 Third car A31 Third tenon receiver A34 Receiving stone A35 Tenon frame A36 Cylindrical shaft (body)
A37 Flange-shaped part A33 Third mortise trunk A40 First lever A41, A51 Mounting part A42, A52 Spring part A43, A53 Tip side arm part (fork-like arm part)
A43A Front edge A44, A54 Base end side arm A44A, A54A Base end edge A45, A55 Groove A46, A56 Elastic arm A47, A57 Recess A48, A58 Eccentric pin A49, A59 Eccentric pin eccentric head A50 Second lever AC1, AC2 lever rotation center axis AP1, AP2, AP3 Tenon receiving position B, F Longitudinal direction B1, B2, F1, F2 Movement direction C1, C2, C3, C4, C5, C6 Ship D1, D2, H1, H2 Lever rotation direction E1, E2, G1, G2 Eccentric pin rotation direction J Intersection of tip side arm of pair of levers S Position adjustable region T1 Initial position (current position)
T2 target position

Claims (12)

時計用輪列を構成し、相互に異なる回転中心軸線のまわりで回転される一連の二つの車のうち一方の車を回転自在に支持する時計輪列用軸受機構であって、
先端側に第一の軸受支持用長穴を備えた第一の先端側腕部を有し時計輪列支持体に取付けられた第一の軸受支持レバーと、
前記第一の軸受支持用長穴に交差する方向に延び且つ該第一の軸受支持用長穴に重なる第二の軸受支持用長穴を備えた第二の先端側腕部を先端側に有し、該先端と基端との中間部で前記時計輪列支持体に回動可能に取付けられた第二の軸受支持レバーと、
前記第一及び第二の軸受支持用長穴の交差部において、第一及び第二の軸受支持用長穴に嵌合され支持された前記一方の車用の軸受部と
を有する時計輪列用軸受機構。
A watch wheel train bearing mechanism that constitutes a watch train wheel and rotatably supports one of a series of two vehicles that rotate around different rotation center axes,
A first bearing support lever having a first distal arm provided with a first bearing support slot on the distal end side and attached to the watch train wheel support;
A second distal arm having a second bearing support slot extending in a direction intersecting the first bearing support slot and overlapping the first bearing support slot is provided on the distal end side. A second bearing support lever pivotally attached to the watch train wheel support at an intermediate portion between the distal end and the proximal end;
For a watch wheel train having a bearing portion for one of the vehicles fitted and supported in the first and second bearing support slots at the intersection of the first and second bearing support slots. Bearing mechanism.
前記一方の車が、時計用輪列を構成し相互に異なる回転中心軸線のまわりで回転される一連の三つの車のうち第一及び第二の車の間に位置し該第一及び第二の車に噛合する第三の車であり、前記一連の二つの車のうち他方の車が前記第一又は第二の車である請求項1に記載の時計輪列用軸受機構。   The one car is located between the first and second cars of a series of three cars that constitute a watch train wheel and rotate around mutually different rotation center axes. 2. The watch wheel train bearing mechanism according to claim 1, wherein the second wheel is the first wheel or the second wheel of the series of two wheels. 前記第一の軸受支持レバーが、その前記先端と基端との中間部で前記時計輪列支持体に回動可能に取付けられている請求項2に記載の時計輪列用軸受機構。   3. The timepiece wheel train bearing mechanism according to claim 2, wherein the first bearing support lever is rotatably attached to the timepiece wheel train support body at an intermediate portion between the front end and the base end. 前記第一の軸受支持レバーの回動中心軸が前記第一の車の回転中心軸と同軸である請求項3に記載の時計輪列用軸受機構。   4. The timepiece wheel train bearing mechanism according to claim 3, wherein a rotation center axis of the first bearing support lever is coaxial with a rotation center axis of the first vehicle. 前記第二の軸受支持レバーの回動中心軸が前記第二の車の回転中心軸と同軸である請求項3又は4に記載の時計輪列用軸受機構。   The bearing mechanism for a watch wheel train according to claim 3 or 4, wherein a rotation center axis of the second bearing support lever is coaxial with a rotation center axis of the second vehicle. 前記第二の軸受支持レバーは、前記第二の軸受支持用長穴の延在方向が前記第一及び第三の車の回転中心を結ぶ方向に対して直角になり得るように前記時計輪列支持体に回動可能に取付られている請求項3又は4に記載の時計輪列用軸受機構。   The second bearing support lever is configured such that the extending direction of the second bearing support slot is perpendicular to the direction connecting the rotation centers of the first and third vehicles. The timepiece wheel train bearing mechanism according to claim 3 or 4, which is rotatably attached to the support body. 前記第一の軸受支持レバーがその前記基端側に該第一の軸受支持レバーの前記第一の軸受支持部の回動中心軸線のまわりでの回動位置を調整する第一の回動位置調整機構を備える請求項3から6までのいずれか一つの項に記載の時計輪列用軸受機構。   A first rotation position at which the first bearing support lever adjusts a rotation position of the first bearing support lever about the rotation center axis of the first bearing support portion on the base end side. The timepiece wheel train bearing mechanism according to any one of claims 3 to 6, further comprising an adjustment mechanism. 前記第二の軸受支持レバーがその前記基端側に該第二の軸受支持レバーの前記第二の軸受支持部の回動中心軸線のまわりでの回動位置を調整する第二の回動位置調整機構を備える請求項2から7までのいずれか一つの項に記載の時計輪列用軸受機構。   A second rotation position at which the second bearing support lever adjusts a rotation position of the second bearing support lever around the rotation center axis of the second bearing support portion on the base end side. The bearing mechanism for a watch wheel train according to any one of claims 2 to 7, further comprising an adjusting mechanism. 前記回動位置調整機構が、偏心ピンを含む請求項7又は8に記載の時計輪列用軸受機構。   The timepiece wheel train bearing mechanism according to claim 7 or 8, wherein the rotation position adjusting mechanism includes an eccentric pin. 請求項2から9までのいずれか一つの項に記載の前記時計輪列用軸受機構を第三の車の一端又は両端に備える時計輪列構造体。   A timepiece wheel train structure comprising the watch wheel train bearing mechanism according to any one of claims 2 to 9 at one end or both ends of a third wheel. 時計用輪列が四つ以上の一連の車を含み、該一連の車のうち少なくとも二組の一連の三つの車のうち中間の車が請求項2から9までのいずれか一つの項に記載の時計輪列用軸受機構を有する時計輪列構造体。   10. The timepiece wheel train includes a series of four or more cars, and an intermediate car of at least two of the series of three cars of the series of cars according to any one of claims 2 to 9. A watch wheel train structure having a bearing mechanism for a watch train wheel. 請求項1から9までのいずれか一つの項に記載の時計輪列用軸受機構又は請求項10若しくは11に記載の時計輪列構造体を具備する時計。   A timepiece comprising the timepiece wheel train bearing mechanism according to any one of claims 1 to 9, or the timepiece wheel train structure according to claim 10 or 11.
JP2006276430A 2006-10-10 2006-10-10 Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith Pending JP2008096192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276430A JP2008096192A (en) 2006-10-10 2006-10-10 Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276430A JP2008096192A (en) 2006-10-10 2006-10-10 Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith

Publications (1)

Publication Number Publication Date
JP2008096192A true JP2008096192A (en) 2008-04-24

Family

ID=39379197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276430A Pending JP2008096192A (en) 2006-10-10 2006-10-10 Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith

Country Status (1)

Country Link
JP (1) JP2008096192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672334A1 (en) * 2012-06-07 2013-12-11 Chopard Technologies SA Clock mechanism with gear backlash reduction
CN109932884A (en) * 2017-12-19 2019-06-25 奥米加股份有限公司 Adjustable clock and watch component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2672334A1 (en) * 2012-06-07 2013-12-11 Chopard Technologies SA Clock mechanism with gear backlash reduction
CN109932884A (en) * 2017-12-19 2019-06-25 奥米加股份有限公司 Adjustable clock and watch component
JP2019109230A (en) * 2017-12-19 2019-07-04 オメガ・エス アー Adjustable timepiece assembly
CN109932884B (en) * 2017-12-19 2021-07-16 奥米加股份有限公司 Adjustable timepiece assembly

Similar Documents

Publication Publication Date Title
RU2729625C2 (en) Clock resonator mechanism
JP5892526B2 (en) Grinding machine in which a grinding spindle unit is pivotally mounted and a method for pivoting a grinding spindle unit on a grinding machine
CN101438213B (en) Movement for timepiece with retrograde display
KR20170097550A (en) Retrograde timepiece display with a retractable hand
JP2008096192A (en) Bearing mechanism for timepiece gear train, timepiece gear train structure, and timepiece equipped therewith
JP2021515889A (en) Variable timekeeping display with elastic hands
CN102402175B (en) Detent escapement for timepiece and mechanical timepiece
CN104603500A (en) Actuator
KR101777490B1 (en) Pivot for a timepiece mechanism
US10599099B2 (en) Timepiece mechanism
CN104049519A (en) Swing wheels, clock movement and clock
JP7066803B2 (en) Timekeeping oscillator mechanism with inertial mass with inertia and / or unbalance adjustment
JP2006214822A (en) Mechanical timepiece including regulatable hairspring
CN104011609A (en) Method For Improving The Pivotal Movement Of A Mobile Body
JP2003508793A (en) clock
EP3144741A1 (en) Adjustable bridge for timepiece
CN105988359A (en) Striking mechanism comprising a hammer with an adjustable elastic stopper
JP3198072U (en) Micrometer level displacement mechanism for watches
CH715211A2 (en) Timepiece mechanism with variable geometry with elastic hand.
EP2138912B1 (en) Horological hairspring with concentric development
JP7417917B2 (en) Parallel link mechanism and link actuator
EP3740821B1 (en) Timepiece mechanism for the display of information
US9940913B1 (en) Rotational pivot structure within single reed woodwind ligature system
WO2022044584A1 (en) Wheel train holding structure and watch
CH706141B1 (en) A display device for a timepiece.