JP2008095986A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2008095986A
JP2008095986A JP2006274937A JP2006274937A JP2008095986A JP 2008095986 A JP2008095986 A JP 2008095986A JP 2006274937 A JP2006274937 A JP 2006274937A JP 2006274937 A JP2006274937 A JP 2006274937A JP 2008095986 A JP2008095986 A JP 2008095986A
Authority
JP
Japan
Prior art keywords
air passage
return
air
room
return air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274937A
Other languages
Japanese (ja)
Inventor
Kazuya Nakanishi
和也 中西
Kazuyuki Hamada
和幸 濱田
Hirokuni Imada
寛訓 今田
Kiyotaka Tahira
清隆 田平
Katsunori Horii
克則 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006274937A priority Critical patent/JP2008095986A/en
Publication of JP2008095986A publication Critical patent/JP2008095986A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator capable of properly controlling a temperature of a storage compartment by controlling generation of drawing flow in a plurality of joining return air trunks. <P>SOLUTION: In this refrigerator having the return air trunk composed of a return air trunk 130 where the returned cold air of a refrigerating compartment 102 flows, a return air trunk 131 for a vegetable compartment where the returned cold air of a vegetable compartment 103 flows, and a joining air trunk 132 for joining the return air trunk 130 for the refrigerating compartment and the return air trunk 131 for the vegetable compartment, the generation of drawing flow in the return air trunk 131 for the vegetable compartment is controlled by the returned cold air flowing in the return air trunk 130 for the refrigerating compartment under conditions that the returned cold air hardly flows in the return air trunk 131 for the vegetable compartment, and the returned cold air continuously flows in the return air trunk 130 for the refrigerating compartment by mounting a wind direction adjusting means 133 at a side of the return air trunk 130 for the refrigerating compartment, of an inlet portion of the joining air trunk 132, thus the temperature variation in the vegetable compartment 103 caused by induction of the air from a suction opening 129 of the vegetable compartment by the drawing flow into the vegetable compartment 103 can be controlled, and the temperature in the vegetable compartment 103 can be properly kept with the simple shape. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、戻り風路の配置構成により貯蔵室の温度適正化を図る冷蔵庫に関するものである。   The present invention relates to a refrigerator that optimizes the temperature of a storage room by the arrangement of return air passages.

近年、冷蔵庫は地球環境保護の観点から更なる省エネルギー化が進むと共に、住宅事情から設置スペースが限られ、その限られたスペースでいかに多くの食品を収納できるかという収納性の向上が求められる。一方、温度帯別に固有の貯蔵室を有する多ドアの冷蔵庫が主流であり、その貯蔵室数分の冷気循環用風路が必要となり、内容積が減少し収納性が低下する。よっていかに冷気循環用風路の構成を工夫し、内容積を減少させずに各室の温度制御を行うかが重要である。   In recent years, refrigerators have become more energy-saving from the viewpoint of protecting the global environment, and installation space is limited due to housing circumstances, and improvement in storage capacity is required for how much food can be stored in the limited space. On the other hand, a multi-door refrigerator having a storage room unique to each temperature zone is mainstream, and the air circulation path for the number of storage rooms is necessary, and the internal volume is reduced and the storage property is lowered. Therefore, it is important how to devise the structure of the air circulation path for cold air and control the temperature of each chamber without reducing the internal volume.

従来この種の冷蔵庫は、野菜室の冷却方法として冷蔵室を冷却した後の戻り冷気を野菜室に導くことにより、冷蔵室の戻り風路を有効活用し庫内容積を増加させる冷蔵庫が提案されている(例えば、特許文献1参照)。   Conventionally, this type of refrigerator has been proposed as a method for cooling a vegetable room by guiding the return cold air after cooling the refrigeration room to the vegetable room, thereby effectively utilizing the return air path of the refrigeration room and increasing the internal volume. (For example, refer to Patent Document 1).

図9は、特許文献1に記載された従来の冷蔵庫の正面断面図である。   FIG. 9 is a front sectional view of a conventional refrigerator described in Patent Document 1. As shown in FIG.

図9に示すように、冷蔵庫本体1は、上から順に、冷蔵室2、冷凍温度帯から冷蔵、野菜、チルド等の温度帯に切り替え可能な切替室3と切替室3に並列に設けられた貯氷室4、野菜室5、冷凍室6で構成され、冷気を生成する冷却器7と、冷気を各貯蔵室に供給するファン装置8を有している。また貯氷室4に冷気を供給するための貯氷室用送風路9、貯氷室4から冷気を冷却器7に戻すための貯氷室用帰還風路10と、切替室3に冷気を供給するための切替室用送風路11、切替室3から冷気を冷却器7に戻すための切替室用帰還風路12と、冷蔵室2に冷気を供給するための冷蔵室用送風路13、冷蔵室2に送られた冷気を野菜室5に戻すための冷蔵室用帰還風路14と、野菜室5に送られた冷気を冷却器7に戻すための野菜室用帰還風路15と、冷蔵室用帰還風路14の戻り冷気の一部を直接野菜室用帰還風路15に戻すための第二の冷蔵室用帰還風路16が備えられている。   As shown in FIG. 9, the refrigerator main body 1 is provided in parallel with the refrigerating chamber 2 and the switching chamber 3 which can be switched from a freezing temperature zone to a refrigerating temperature range such as refrigeration, vegetables, and chilled in order from the top. The ice storage room 4, the vegetable room 5, and the freezing room 6 are comprised, and it has the cooler 7 which produces | generates cold air, and the fan apparatus 8 which supplies cold air to each storage room. Also, an ice storage chamber air passage 9 for supplying cold air to the ice storage chamber 4, an ice storage chamber return air passage 10 for returning the cold air from the ice storage chamber 4 to the cooler 7, and a cooling chamber for supplying cold air to the switching chamber 3. The switching chamber air passage 11, the switching chamber return air passage 12 for returning cold air from the switching chamber 3 to the cooler 7, the refrigerating chamber air passage 13 for supplying cold air to the refrigerating chamber 2, and the refrigerating chamber 2 Refrigeration room return air passage 14 for returning the sent cool air to the vegetable compartment 5, vegetable room return air passage 15 for returning the cool air sent to the vegetable compartment 5 to the cooler 7, and return for the refrigerator compartment A second refrigerating room return air passage 16 is provided for returning a part of the return cold air of the air passage 14 directly to the vegetable room return air passage 15.

また、冷蔵室用帰還風路14、野菜室用帰還風路15、第二の冷蔵室用帰還風路16は冷却器7の横方向に配設されている。切替室3から冷気を冷却器7に戻すための切替室用帰還風路12は冷却器7の前後方向に配設されている。   Further, the return air passage 14 for the refrigerator compartment, the return air passage 15 for the vegetable compartment, and the return air passage 16 for the second refrigerator compartment are disposed in the lateral direction of the cooler 7. A switching chamber return air passage 12 for returning cold air from the switching chamber 3 to the cooler 7 is disposed in the front-rear direction of the cooler 7.

これにより冷蔵室2の戻り冷気で野菜室5を冷却し、更に冷蔵室2の戻り冷気の一部を直接野菜室用帰還風路15に戻しているため、野菜室5の温度制御を適正に行い冷蔵室2の冷却スピード等の冷却性能も向上させながら送風路の簡素化を図り、庫内容積を拡大、収納性を向上させている。
特開平11−325691号公報
As a result, the vegetable room 5 is cooled by the return cold air from the refrigerator compartment 2, and a part of the return cold air from the refrigerator compartment 2 is directly returned to the vegetable room return air passage 15, so that the temperature control of the vegetable compartment 5 is properly performed. While improving the cooling performance such as the cooling speed of the refrigerator compartment 2, the air passage is simplified, the internal volume is expanded, and the storage property is improved.
Japanese Patent Laid-Open No. 11-325691

しかしながら、上記従来の構成では、冷蔵室用帰還風路14、野菜室用帰還風路15、第二の冷蔵室用帰還風路16は冷却器7の横方向に配設されているものの、切替室用帰還風路12は冷却器7の前後方向に配設されているため、庫内容積の拡大に対しては切替室用帰還風路12の分、ロスしている。   However, in the above-described conventional configuration, the return air passage 14 for the refrigerator compartment, the return air passage 15 for the vegetable compartment, and the return air passage 16 for the second refrigerator compartment are disposed in the lateral direction of the cooler 7, but switching Since the room return air passage 12 is disposed in the front-rear direction of the cooler 7, a loss corresponding to the return air passage 12 for the switching room is lost with respect to the expansion of the internal volume.

そこで、冷凍室6以外のすべて貯蔵室の帰還風路を冷却器7の横方向に配設することにより庫内奥行き寸法を最大限拡大させることができる。更に切替室用帰還風路12と冷蔵室用帰還風路14、第二の冷蔵室用帰還風路16を合流させて一体の帰還風路とさせることにより、より簡素化が図れ、冷却器7の幅寸法も十分確保できる。   Therefore, by arranging the return air passages of all the storage rooms other than the freezer compartment 6 in the lateral direction of the cooler 7, the interior depth dimension can be maximized. Further, the return air passage 12 for the switching chamber, the return air passage 14 for the refrigerator compartment, and the return air passage 16 for the second refrigerator compartment are merged to form an integrated return air passage. The width dimension can be secured sufficiently.

しかし上記の場合のように複数の帰還風路を合流させると、例えば切替室3が冷凍温度帯に設定され、周囲温度が低い条件で運転した場合、切替室用帰還風路12には常に戻り冷気の流れがある一方、冷蔵室用帰還風路14、野菜室用帰還風路15、第二の冷蔵室用帰還風路16には戻り冷気の流れがないために、切替室用帰還風路12と冷蔵室用帰還風路14、第二の冷蔵室用帰還風路16が合流する付近において、切替室用帰還風路12の戻り冷気の流れによる冷蔵室用帰還風路14、第二の冷蔵室用帰還風路16からの引き込み流が発生し、引き込み流により野菜室用帰還風路15から野菜室5に切替室3の冷凍温度帯の戻り冷気が逆流し、野菜室5内が必要以上に冷却され、野菜室5の温度制御が不能となる。   However, when a plurality of return air passages are merged as in the above case, for example, when the switching chamber 3 is set in the freezing temperature zone and operated under conditions where the ambient temperature is low, the return air passage 12 is always returned to the switching chamber return air passage 12. While there is a flow of cold air, there is no return cold air flow in the return air passage 14 for the refrigerator compartment, the return air passage 15 for the vegetable compartment, and the return air passage 16 for the second refrigerator compartment. 12, the return air passage 14 for the refrigerator compartment, and the return air passage 16 for the second refrigerator compartment, in the vicinity where the return air passage 16 for the refrigerator compartment is joined, A pull-in flow from the return air passage 16 for the refrigerator compartment is generated, and the return cold air in the freezing temperature zone of the switching chamber 3 flows backward from the return air passage 15 for the vegetable compartment to the vegetable compartment 5 due to the draw-in flow, and the inside of the vegetable compartment 5 is necessary. As a result of the cooling, the temperature control of the vegetable compartment 5 becomes impossible.

以上のように、複数の帰還風路の配置構成を工夫し、複数の帰還風路を有し複数の帰還風路が合流する合流風路を備えると、戻り冷気の流れ方により複数の帰還風路が合流する付近において引き込み流が発生し、冷蔵庫の設置環境や運転状況により予め設定された温度制御ができなくなったり、意図した冷気の流れとは逆の流れ方により貯蔵室の温度制御が不能となる課題を有していた。   As described above, when the arrangement configuration of the plurality of return air passages is devised and a plurality of return air passages are provided and a confluence air passage where the plurality of return air passages merge is provided, a plurality of return air flows depending on how the return cold air flows. A draw-in flow occurs near the junction of the roads, and preset temperature control cannot be performed depending on the refrigerator installation environment and operation status, or storage room temperature control is impossible due to the reverse flow to the intended cold air flow Had the following problem.

本発明は、上記従来の課題を解決するもので、複数の帰還風路の配置構成を工夫し、収納性を高めつつ、貯蔵室の温度制御を適正に行える冷蔵庫を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the refrigerator which can control the temperature of a storage room appropriately, devising arrangement | positioning structure of several return air paths, improving storage property. .

上記従来の課題を解決するために、本発明の冷蔵庫は、断熱箱体内に複数の貯蔵室を区画形成し、冷気を生成する冷却器と、冷気を各室に供給する冷却ファンとを有し、前記冷却器の上方に位置する最上部の貯蔵室である第一の貯蔵室と前記第一の貯蔵室の下部に位置する第二の貯蔵室に冷気を供給するための第一の送風路と第二の送風路を設け、前記第一の貯蔵室と前記第二の貯蔵室から冷気を前記冷却器に戻すための第一の帰還風路と第二の帰還風路と、前記第一の帰還風路と前記第二の帰還風路が合流する合流風路と、前記合流風路入り口部に戻り冷気の流れの方向を変える風向調整手段を形成したものである。   In order to solve the above-described conventional problems, a refrigerator according to the present invention has a plurality of storage chambers in a heat insulating box, and has a cooler that generates cold air and a cooling fan that supplies the cold air to each chamber. A first air passage for supplying cold air to the first storage chamber, which is the uppermost storage chamber located above the cooler, and the second storage chamber located below the first storage chamber And a second air passage, a first return air passage and a second return air passage for returning cold air from the first storage chamber and the second storage chamber to the cooler, and the first The return air passage and the second return air passage join together, and a wind direction adjusting means for returning to the entrance of the confluence air passage and changing the direction of the flow of cold air is formed.

これにより、合流風路入り口部に設置した風向調整手段が第二の帰還風路を流れる戻り冷気の流れ方向を変え、合流風路入り口部付近での第一の帰還風路で発生する引き込み流を抑制し、適正な戻り冷気の流れを確保し、貯蔵室の温度制御を適正に行うことができる。   As a result, the wind direction adjusting means installed at the entrance of the confluence air passage changes the flow direction of the return cold air flowing through the second return air passage, and the entrainment flow generated in the first return air passage near the confluence air passage entrance. It is possible to control the temperature of the storage room and to ensure a proper flow of return cold air.

本発明の冷蔵庫は、収納性を高めつつ、貯蔵室の温度制御を適正に行うことができる。   The refrigerator of the present invention can appropriately control the temperature of the storage room while improving the storage property.

請求項1に記載の発明は、断熱箱体内に複数の貯蔵室を区画形成し、冷気を生成する冷却器と、冷気を各室に供給する冷却ファンとを有し、前記冷却器の上方に位置する最上部の貯蔵室である第一の貯蔵室と前記第一の貯蔵室の下部に位置する第二の貯蔵室に冷気を供給するための第一の送風路と第二の送風路を設け、前記第一の貯蔵室と前記第二の貯蔵室から冷気を前記冷却器に戻すための第一の帰還風路と第二の帰還風路と、前記第一の帰還風路と前記第二の帰還風路が合流する合流風路と、前記合流風路入り口部に戻り冷気の流れの方向を変える風向調整手段を形成したものであり、合流風路入り口部に設置した風向調整手段が第二の帰還風路を流れる戻り冷気の流れ方向を変え、合流風路入り口部付近での第一の帰還風路で発生する引き込み流を抑制し、適正な戻り冷気の流れを確保し、貯蔵室の温度制御を適正に行うことができる。   The invention according to claim 1 includes a cooler that forms a plurality of storage chambers in the heat insulation box and generates cool air, and a cooling fan that supplies the cool air to each chamber, and is provided above the cooler. A first air passage and a second air passage for supplying cold air to a first storage room which is the uppermost storage room located and a second storage room located below the first storage room. A first return air passage and a second return air passage for returning cold air from the first storage chamber and the second storage chamber to the cooler, the first return air passage and the first A converging air passage where two return air passages merge, and a wind direction adjusting means for returning to the confluence air passage entrance and changing the direction of the flow of cold air, and a wind direction adjusting means installed at the confluence air passage entrance. Change in the flow direction of the return cold air flowing through the second return air passage, which occurs in the first return air passage near the entrance of the confluence air passage The can included flow suppressing, to ensure the flow of proper return cold air can be properly control the temperature of the storage chamber.

請求項2に記載の発明は、断熱箱体内に複数の貯蔵室を区画形成し、冷気を生成する冷却器と、冷気を各室に供給する冷却ファンとを有し、前記冷却器の上方に位置する最上部の貯蔵室である第一の貯蔵室と前記第一の貯蔵室の下部に位置する第三の貯蔵室に冷気を供給するための第一の送風路と第三の送風路を設け、前記第一の貯蔵室と前記第三の貯蔵室から冷気を前記冷却器に戻すための第一の帰還風路と第三の帰還風路と、前記第一の帰還風路と前記第三の帰還風路が合流する合流風路と、前記第一の帰還風路に設けられ前記第一の貯蔵室の戻り冷気の一部を前記第三の貯蔵室の下部に位置する第二の貯蔵室に導く第二の貯蔵室用吐出口と、前記合流風路内に設けられた前記第二の貯蔵室の戻り冷気を吸入する第二の貯蔵室用吸入口で構成され、前記合流風路入り口部に戻り冷気の流れの方向を変える風向調整手段を形成したものであり、合流風路入り口部に設置した風向調整手段が第三の帰還風路を流れる戻り冷気の流れ方向を変え、合流風路入り口部付近での第一の帰還風路で発生する引き込み流を抑制し、適正な戻り冷気の流れを確保し、貯蔵室の温度制御を適正に行うことができる。   The invention according to claim 2 includes a cooler that forms a plurality of storage chambers in the heat insulation box and generates cool air, and a cooling fan that supplies the cool air to each chamber, and above the cooler. A first air passage and a third air passage for supplying cold air to the first storage chamber, which is the uppermost storage chamber, and the third storage chamber located below the first storage chamber. A first return air passage and a third return air passage for returning cold air from the first storage chamber and the third storage chamber to the cooler, the first return air passage and the first return air passage. A confluence air passage where the three return air passages merge, and a second return air that is provided in the first return air passage and is located at a lower part of the third storage chamber. A second storage chamber discharge port leading to the storage chamber, and a second storage chamber suction port for sucking the return cold air of the second storage chamber provided in the merging air passage And a wind direction adjusting means for changing the direction of the flow of cold air to the entrance of the confluence air passage is formed, and the air flow direction adjusting means installed at the entrance of the confluence air passage returns the return cold air flowing through the third return air passage. Change the flow direction of the air flow, suppress the entrainment flow generated in the first return air passage near the entrance of the confluence air passage, ensure the proper return air flow, and properly control the temperature of the storage room it can.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記風向調整手段は、前記合流風路入り口部に三角形状に形成され、合流しようとするいずれか一方の帰還風路の戻り冷気の流れ方向を変化させたものであり、合流風路入り口部付近の戻り冷気の流れ方向を変化させていない帰還風路で発生する引き込み流を抑制し、更にデフロスト時における各貯蔵室への暖気の上昇を抑制し、貯蔵室の温度上昇を防止することができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the wind direction adjusting means is formed in a triangular shape at the entrance portion of the merging air passage, and any one of the return air passages to be joined. The flow direction of the return cold air is changed, and the entrainment flow generated in the return air passage near the entrance of the confluence air passage is not changed, and further, each storage chamber at the time of defrosting is suppressed. It is possible to suppress the rise in warm air and prevent the temperature of the storage room from rising.

請求項4に記載の発明は、請求項1または2に記載の発明において、前記風向調整手段は、前記合流風路入り口部に台形状に形成され、合流しようとするいずれか一方の帰還風路の戻り冷気の流れ方向を変化させたものであり、合流風路入り口部付近の戻り冷気の流れ方向を変化させていない帰還風路で発生する引き込み流を抑制し、更にデフロスト時において合流風路入り口部付近の戻り冷気の流れ方向を変化させていない帰還風路への暖気の流入を促進させ、帰還風路内での着霜を防止することができる。   According to a fourth aspect of the present invention, in the first or second aspect of the present invention, the wind direction adjusting means is formed in a trapezoidal shape at the entrance portion of the merging air passage, and any one of the return air passages to be joined. The flow direction of the return cold air is changed, and the entrainment flow that occurs in the return air passage that does not change the flow direction of the return cold air near the entrance of the confluence air passage is suppressed, and further, the confluence air passage during defrosting It is possible to promote the inflow of warm air into the return air passage that does not change the flow direction of the return cold air near the entrance, and prevent frost formation in the return air passage.

請求項5に記載の発明は、請求項1または2に記載の発明において、前記合流風路に合流する複数の帰還風路のいずれか一方を、合流する直前に帰還風路面積を拡大させたものであり、各貯蔵室の風量を低下させることなく合流風路入り口部付近で発生する引き込み流を抑制することができる。   The invention according to claim 5 is the invention according to claim 1 or 2, wherein the area of the return air passage is enlarged immediately before joining any one of the plurality of return air passages that merge with the confluence air passage. Therefore, it is possible to suppress the entrainment flow generated in the vicinity of the entrance of the merged air passage without reducing the air volume of each storage chamber.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成について同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional example or the above-described embodiments, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図を示すものである。
(Embodiment 1)
FIG. 1 shows a longitudinal sectional view of a refrigerator in Embodiment 1 of the present invention.

図1において、例えば硬質発泡ウレタンなどの断熱材で周囲と断熱して構成されている断熱箱体101は複数の断熱区画に区分されており、最上部に第一の貯蔵室としての冷蔵室102、その冷蔵室102の下部に第二の貯蔵室としての野菜室103、そして最下部に冷凍室104が配置される構成となっている。   In FIG. 1, a heat insulating box 101 configured to be insulated from the surroundings with a heat insulating material such as hard foamed urethane is divided into a plurality of heat insulating compartments, and a refrigerator compartment 102 as a first storage room at the top. The vegetable compartment 103 as the second storage room is arranged at the bottom of the refrigerator compartment 102, and the freezer compartment 104 is arranged at the bottom.

冷蔵室102は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃で設定されている。また、野菜室103は冷蔵室102と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にするほど葉野菜の鮮度を長期間維持することが可能である。   The refrigerator compartment 102 is normally set at 1 ° C. to 5 ° C. with the temperature not frozen for refrigerated storage as the lower limit. In addition, the vegetable room 103 is often set to 2 ° C. to 7 ° C., which is the same or slightly higher temperature setting as the refrigerated room 102. The lower the temperature, the longer the freshness of the leafy vegetables can be maintained.

冷凍室104は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−18℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The freezer compartment 104 is set in a freezing temperature zone, and is usually set at −22 ° C. to −18 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature.

断熱箱体101の下部背面に圧縮機105、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの構成部品が収納されている。   Components of the refrigeration cycle such as the compressor 105 and a dryer (not shown) for removing moisture are accommodated in the lower back surface of the heat insulation box 101.

野菜室103と冷凍室104の背面にまたがって冷却室106が設けられ、冷却室106は断熱性能を有する第一の仕切り107により野菜室103と冷凍室104から仕切られている。また、野菜室103と冷凍室104は断熱性能を有する第二の仕切り108で仕切られている。第一の仕切り107および第二の仕切り108は断熱箱体101の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、更には高断熱性の真空断熱材を挿入して、仕切り構造の更なる薄型化を図ってもよい。   A cooling room 106 is provided across the back of the vegetable room 103 and the freezing room 104, and the cooling room 106 is partitioned from the vegetable room 103 and the freezing room 104 by a first partition 107 having heat insulation performance. The vegetable compartment 103 and the freezer compartment 104 are partitioned by a second partition 108 having heat insulation performance. Since the first partition 107 and the second partition 108 are parts assembled after foaming of the heat insulation box 101, foamed polystyrene is usually used as a heat insulation material. However, in order to improve heat insulation performance and rigidity, rigid foam urethane is used. It may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.

冷却室106内には、代表的なものとしてフィンアンドチューブ式の冷却器109が配設されており、冷却器109の上部空間には強制対流方式により冷蔵室102、野菜室103、冷凍室104に冷却器109で冷却した冷気を送風する冷却ファン110が配置され、冷却器109の下部空間には冷却時に冷却器109や冷却ファン110に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ111が設けられている。ラジアントヒータ111は冷却器109や冷却ファン110に付着する霜だけでなく、各貯蔵室を冷却した冷気が冷却器109に戻される帰還風路(図示せず)内に付着する霜を除去するために冷却器109の幅長さ以上にしてもよい。   In the cooling chamber 106, a fin-and-tube type cooler 109 is disposed as a representative, and in the upper space of the cooler 109, the refrigerator compartment 102, the vegetable compartment 103, and the freezer compartment 104 are formed by forced convection. A cooling fan 110 that blows the cool air cooled by the cooler 109 is disposed, and a glass tube as a defrosting device that defrosts the frost attached to the cooler 109 and the cooling fan 110 during cooling is disposed in a lower space of the cooler 109. A radiant heater 111 is provided. The radiant heater 111 removes not only the frost adhering to the cooler 109 and the cooling fan 110 but also the frost adhering to the return air passage (not shown) in which the cool air that has cooled each storage chamber is returned to the cooler 109. Alternatively, the width of the cooler 109 may be greater than the width.

図2は本発明の実施の形態1における冷蔵庫の風路の構成を示す正面断面図である。   FIG. 2 is a front sectional view showing the structure of the air passage of the refrigerator in the first embodiment of the present invention.

図2において、冷却ファン110により送風された冷気は、冷却ファン110の下方に冷凍室104を冷却するための冷凍室用送風路121が配設されている。また、冷却ファン110の上方には冷蔵室102と野菜室103に冷気を送風するための冷蔵室用送風路122と野菜室用送風路123が設けられ、冷蔵室用送風路122と野菜室用送風路123の途中経路にはそれぞれ冷気の流れを調節する冷蔵室用ダンパー124と野菜室用ダンパー125が設置されている。冷蔵室用ダンパー124と野菜室用ダンパー125をツインダンパーとすることにより省スペース化とコスト低減を図ることができる。冷蔵室102内には冷気が吐出される冷蔵室用吐出口126と冷気が吸い込まれる冷蔵室用吸入口127が設けられ、野菜室103内にも同様に野菜室用吐出口128と野菜室用吸入口129が設けられている。   In FIG. 2, the cold air blown by the cooling fan 110 is provided with a freezer compartment air passage 121 for cooling the freezer compartment 104 below the cooling fan 110. Also, above the cooling fan 110, there are provided a refrigeration room air passage 122 and a vegetable room air passage 123 for blowing cool air to the refrigeration room 102 and the vegetable room 103, and the refrigeration room air passage 122 and the vegetable room air passage. A refrigeration room damper 124 and a vegetable room damper 125 for adjusting the flow of cold air are installed in the middle of the air passage 123. Space saving and cost reduction can be achieved by making the damper 124 for refrigerator compartments and the damper 125 for vegetable compartments into a twin damper. The refrigerator compartment 102 is provided with a refrigerator outlet 126 for discharging cold air and an inlet 127 for the refrigerator compartment for sucking cold air. Similarly, the vegetable compartment outlet 128 and the vegetable compartment for the vegetable compartment 103 are also provided. A suction port 129 is provided.

冷蔵室用吸入口127の下方には冷蔵室用帰還風路130が設けられ、野菜室用吸入口129の下方に設けられた野菜室用帰還風路131と並列に設置され、更に冷蔵室用帰還風路130と野菜室用帰還風路131は合流風路132に連結され、合流風路132は冷却器109につながっている。ここで、冷蔵室用帰還風路130、野菜室用帰還風路131、合流風路132は冷却器109の側面に位置しており、野菜室103および冷凍室104の奥行き寸法を拡大させている。   A refrigerating room return air passage 130 is provided below the refrigerating room suction port 127, and is installed in parallel with the vegetable room return air passage 131 provided below the vegetable room suction port 129, and further for the refrigerating room. The return air passage 130 and the vegetable room return air passage 131 are connected to the confluence air passage 132, and the confluence air passage 132 is connected to the cooler 109. Here, the return air passage 130 for the refrigerator compartment, the return air passage 131 for the vegetable compartment, and the confluence air passage 132 are located on the side surface of the cooler 109, and the depth dimensions of the vegetable compartment 103 and the freezer compartment 104 are enlarged. .

合流風路132の入り口部に、冷蔵室用帰還風路130を流れる戻り冷気の流れ方向を変える風向調整手段133が形成されている。   A wind direction adjusting means 133 that changes the flow direction of the return cold air flowing through the refrigerating room return air passage 130 is formed at the entrance of the confluence air passage 132.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機105の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)にて放熱して凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機105への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器109に至る。冷却ファン110の動作により、各貯蔵室内の空気と熱交換されて冷却器109内の冷媒は蒸発気化し、低温の冷気をダンパーなどで供給制御することで各室の所望の冷却を行う。冷却器109を出た冷媒は吸入管を経て圧縮機105へと吸い込まれる。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 105 dissipates heat in a condenser (not shown), condenses and liquefies, and reaches a capillary tube (not shown). After that, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 105 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 109. By the operation of the cooling fan 110, heat is exchanged with the air in each storage chamber, the refrigerant in the cooler 109 evaporates, and supply of low-temperature cold air is controlled by a damper or the like to perform desired cooling of each chamber. The refrigerant exiting the cooler 109 is sucked into the compressor 105 through the suction pipe.

各貯蔵室内の空気と熱交換されて冷却器109には、各貯蔵室内空気と熱交換したときに水分が付着し霜となる。制御基板(図示せず)から定期的に信号が出力され圧縮機105を停止させ、ラジアントヒータ111に通電し冷却器109の除霜を行う。   Heat is exchanged with the air in each storage chamber, and moisture adheres to the cooler 109 when heat exchange with the air in each storage chamber results in frost. A signal is periodically output from a control board (not shown), the compressor 105 is stopped, the radiant heater 111 is energized, and the cooler 109 is defrosted.

次に断熱箱体101内の冷気の流れについて説明する。冷却ファン110から送風された冷気は、冷却ファン110の下方にある冷凍室用送風路121と冷却ファン110の上方にある冷蔵室用送風路122と野菜室用送風路123に送風される。冷凍室用送風路121を通り冷凍室104に送風された冷気は、冷凍室104内の空気と熱交換し冷却室106に戻る。   Next, the flow of cold air in the heat insulating box 101 will be described. The cool air blown from the cooling fan 110 is sent to the freezer compartment air passage 121 below the cooling fan 110, the refrigerator compartment air passage 122 above the cooling fan 110, and the vegetable compartment air passage 123. The cold air blown into the freezer compartment 104 through the freezer compartment air passage 121 exchanges heat with the air in the freezer compartment 104 and returns to the cooler chamber 106.

冷蔵室用送風路122に送風された冷気は、冷蔵室用ダンパー124、冷蔵室用吐出口126を経由し冷蔵室102に至る。また、野菜室用送風路123に送風された冷気は、野菜室用ダンパー125、野菜室用吐出口128を経由し野菜室103に至る。ここで制御基板(図示せず)から信号を出力し冷蔵室用ダンパー124と野菜室用ダンパー125をそれぞれ動作させ冷気の流れをコントロールさせ冷蔵室102と野菜室103の温度制御を行い所定の温度に設定される。   The cool air blown to the refrigerator compartment air passage 122 reaches the refrigerator compartment 102 via the refrigerator compartment damper 124 and the refrigerator outlet 126. The cool air blown to the vegetable room air passage 123 reaches the vegetable room 103 via the vegetable room damper 125 and the vegetable room discharge port 128. Here, a signal is output from a control board (not shown), and the cold room damper 124 and the vegetable room damper 125 are respectively operated to control the flow of cold air to control the temperature of the cold room 102 and the vegetable room 103 to a predetermined temperature. Set to

冷蔵室102に送風された冷気は、冷蔵室102内の空気と熱交換し冷蔵室用吸入口127から吸入され、冷蔵室用帰還風路130から合流風路132を通り冷却器109に戻る。野菜室103に送風された冷気は、野菜室103内の空気と熱交換し野菜室用吸入口129から吸入され、野菜室用帰還風路131から合流風路132を通り冷却器109に戻る。   The cold air blown into the refrigerator compartment 102 exchanges heat with the air in the refrigerator compartment 102 and is sucked from the refrigerator inlet suction port 127, and returns to the cooler 109 from the refrigerator return air passage 130 through the merged air passage 132. The cold air blown into the vegetable compartment 103 exchanges heat with the air in the vegetable compartment 103 and is sucked from the vegetable compartment suction port 129 and returns from the vegetable compartment return air passage 131 to the cooler 109 through the merging air passage 132.

以上より、冷凍室104を除く冷蔵室102、野菜室103の戻り冷気は、まず冷蔵室102の戻り冷気と野菜室103の戻り冷気が合流風路132にてミックスされ混合戻り冷気となり冷却器109に戻るものである。但し、このような戻り冷気の流れは、冷蔵室102が冷却されて冷蔵室用帰還風路130内に冷蔵室102の戻り冷気が流れており、加えて野菜室103が冷却されて野菜室用帰還風路131内に野菜室103の戻り冷気が流れている条件においてのものである。   As described above, the return cold air from the refrigerator compartment 102 and the vegetable compartment 103 excluding the freezer compartment 104 is first mixed with the return cold air from the refrigerator compartment 102 and the return cold air from the vegetable compartment 103 in the merged air passage 132 to become mixed return cold air, and the cooler 109 Return to. However, the flow of such return cold air is that the refrigerator compartment 102 is cooled and the return cold air from the refrigerator compartment 102 flows in the return air passage 130 for the refrigerator compartment, and the vegetable compartment 103 is cooled and used for the vegetable compartment. This is under the condition that the return cold air from the vegetable compartment 103 flows in the return air passage 131.

しかしながら、一般的に冷蔵室102は野菜室103と比較し、庫内容積が多く、また冷蔵庫使用環境下においては扉の開閉回数が多いため、冷蔵室102は野菜室103に比べ冷却負荷量が大きい。よって冷蔵室102は野菜室103に比べ冷却時間が長く、冷蔵室用帰還風路130内を戻り冷気が流れる時間が長いが、野菜室103は加えて野菜室103の背面は冷却室106であり下部は冷凍室104であるため熱収支で温度が低下することもあり、冷却負荷量が小さいため野菜室用帰還風路131内を戻り冷気が流れる時間が短い。このように野菜室用帰還風路131に戻り冷気の流れがほとんどなく、冷蔵室用帰還風路130に戻り冷気の流れが継続してある場合、冷蔵室用帰還風路130内を流れる戻り冷気により野菜室用帰還風路131に引き込み流が発生し、この引き込み流により野菜室用吸入口129から野菜室103内の空気が引っ張られ野菜室103内温度が変動し制御不能となる。   However, in general, the refrigerator compartment 102 has a larger internal volume than the vegetable compartment 103 and the doors are opened and closed more frequently in the refrigerator usage environment. large. Therefore, the refrigeration room 102 has a longer cooling time than the vegetable room 103 and a long time for the cold air to flow back through the return air passage 130 for the refrigeration room. In addition to the vegetable room 103, the back of the vegetable room 103 is the cooling room 106. Since the lower part is the freezer compartment 104, the temperature may decrease due to the heat balance, and since the amount of cooling load is small, the time for cooling air to return through the vegetable room return air passage 131 is short. In this way, when there is almost no flow of cold air returning to the vegetable room return air passage 131 and the flow of cold air continues to the return air passage 130 for the refrigerator compartment, the return cold air flowing in the return air passage 130 for the refrigerator compartment As a result, a draw-in flow is generated in the return air passage 131 for the vegetable room, and the air in the vegetable room 103 is pulled from the intake port 129 for the vegetable room by this draw-in flow, so that the temperature in the vegetable room 103 fluctuates and becomes uncontrollable.

この引き込み流の発生を抑制するために風向調整手段133を合流風路132入り口部の冷蔵室用帰還風路130側に形成し、冷蔵室102の戻り冷気の流れ方向を変えることにより引き込み流の発生を抑制することにより、野菜室103内温度の変動を抑え、安価で簡単な形状により野菜室103内の温度制御を適正化することができる。   In order to suppress the occurrence of this entrainment flow, the air direction adjusting means 133 is formed on the return air passage 130 side of the refrigeration chamber at the entrance of the confluence air passage 132, and the flow direction of the return cold air in the refrigerating chamber 102 is changed to change the flow direction of the entrainment flow. By suppressing the occurrence, it is possible to suppress the fluctuation of the temperature in the vegetable compartment 103 and to optimize the temperature control in the vegetable compartment 103 with an inexpensive and simple shape.

なお、第二貯蔵室として野菜室以外の例えば冷凍温度帯から冷蔵温度帯まで切り替えることができる切替室や冷凍室であっても同じ効果を得ることができるが、引き込み流を発生させる継続して戻り冷気の流れがある帰還風路側に風向調整手段133を設ける必要がある。   In addition, the same effect can be obtained even in a switching room or a freezing room that can be switched from the freezing temperature zone to the refrigeration temperature zone other than the vegetable room as the second storage room. It is necessary to provide the wind direction adjusting means 133 on the return air path side where the return cold air flows.

なお、実験により得られた結果として、冷気の流れ方向を変える効果を十分に発揮するためには、風向調整手段133の水平方向長さを冷蔵室用帰還風路130の幅方向とほぼ等しい長さとすることである
(実施の形態2)
図3は本発明の実施の形態2における冷蔵庫の縦断面図を示すものである。
As a result of the experiment, in order to sufficiently exhibit the effect of changing the flow direction of the cold air, the horizontal direction length of the air direction adjusting means 133 is substantially equal to the width direction of the refrigerating room return air passage 130. (Embodiment 2)
FIG. 3 shows a longitudinal sectional view of the refrigerator in the second embodiment of the present invention.

図3において、例えば硬質発泡ウレタンなどの断熱材で周囲と断熱して構成されている断熱箱体201は複数の断熱区画に区分されており、最上部に第一の貯蔵室としての冷蔵室202、冷蔵室202の下部に第三の貯蔵室としての切替室204、その切替室204の下部に第二の貯蔵室としての野菜室203、そして最下部に冷凍室205が配置される構成となっている。   In FIG. 3, a heat insulating box 201 configured to be insulated from the surroundings with a heat insulating material such as hard foam urethane is divided into a plurality of heat insulating sections, and a refrigerator compartment 202 as a first storage chamber is formed at the top. In the lower part of the refrigerator compartment 202, a switching room 204 as a third storage room, a vegetable room 203 as a second storage room in the lower part of the switching room 204, and a freezing room 205 in the lowermost part are arranged. ing.

冷蔵室202は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃で設定されている。また、野菜室203は冷蔵室202と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。低温にするほど葉野菜の鮮度を長期間維持することが可能である。   The refrigerator compartment 202 is normally set at 1 ° C. to 5 ° C. with the temperature not frozen for refrigerated storage as the lower limit. In addition, the vegetable room 203 is often set to a temperature setting of 2 ° C. to 7 ° C., which is equal to or slightly higher than that of the refrigerated room 202. The lower the temperature, the longer the freshness of the leafy vegetables can be maintained.

切替室204は冷凍温度帯から冷蔵温度帯にまで切り替え可能であり、例えば−22℃〜−18℃で設定された冷凍設定や、1℃〜5℃で設定された冷蔵設定、肉や魚等を部分的に微凍結状態にさせ生々食品の鮮度を維持することが可能なパーシャル設定等に任意に設定することができる貯蔵室である。   The switching chamber 204 can be switched from a freezing temperature zone to a refrigeration temperature zone, for example, a freezing setting set at −22 ° C. to −18 ° C., a refrigeration setting set at 1 ° C. to 5 ° C., meat, fish, etc. This is a storage room that can be arbitrarily set to a partial setting or the like that can be partially frozen in order to maintain the freshness of food.

冷凍室205は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−18℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The freezer compartment 205 is set in a freezing temperature zone, and is usually set at −22 ° C. to −18 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature.

断熱箱体201の下部背面に圧縮機206、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの構成部品が収納されている。   Components of the refrigeration cycle such as the compressor 206 and a dryer (not shown) for removing moisture are housed in the lower back surface of the heat insulation box 201.

野菜室203と冷凍室205の背面にまたがって冷却室207が設けられ、冷却室207は断熱性能を有する第一の仕切り208により野菜室203と冷凍室205から仕切られている。また、野菜室203と冷凍室205は断熱性能を有する第二の仕切り209で仕切られている。第一の仕切り208および第二の仕切り209は断熱箱体201の発泡後組み立てられる部品であるため、通常断熱材として発泡ポリスチレンが使われるが、断熱性能や剛性を向上させるために硬質発泡ウレタンを用いてもよく、更には高断熱性の真空断熱材を挿入して、仕切り構造の更なる薄型化を図ってもよい。冷蔵室202と切替室204との第三の仕切り210、切替室204と野菜室203との第四の仕切り211は硬質発泡ウレタンにて断熱され、第一の仕切り208および第二の仕切り209と同じく、高断熱性の真空断熱材を挿入して、仕切り構造の更なる薄型化を図ってもよい。   A cooling room 207 is provided across the back of the vegetable room 203 and the freezing room 205, and the cooling room 207 is partitioned from the vegetable room 203 and the freezing room 205 by a first partition 208 having heat insulation performance. The vegetable compartment 203 and the freezer compartment 205 are partitioned by a second partition 209 having heat insulation performance. Since the first partition 208 and the second partition 209 are parts that are assembled after foaming of the heat insulating box 201, foamed polystyrene is usually used as a heat insulating material, but hard foamed urethane is used to improve heat insulating performance and rigidity. It may be used, and furthermore, a highly heat insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure. A third partition 210 between the refrigerator compartment 202 and the switching chamber 204, and a fourth partition 211 between the switching chamber 204 and the vegetable compartment 203 are insulated with hard foamed urethane, and the first partition 208 and the second partition 209 Similarly, a highly heat-insulating vacuum heat insulating material may be inserted to further reduce the thickness of the partition structure.

冷却室207内には、代表的なものとしてフィンアンドチューブ式の冷却器212が配設されており、冷却器212の上部空間には強制対流方式により冷蔵室202、切替室204、野菜室203、冷凍室205に冷却器212で冷却した冷気を送風する冷却ファン213が配置され、冷却器212の下部空間には冷却時に冷却器212や冷却ファン213に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ214が設けられている。ラジアントヒータ214は冷却器212や冷却ファン213に付着する霜だけでなく、各貯蔵室を冷却した冷気が冷却器212に戻される帰還風路(図示せず)内に付着する霜を除去するために冷却器212の幅長さ以上にしてもよい。   In the cooling chamber 207, a fin-and-tube type cooler 212 is disposed as a representative, and in the upper space of the cooler 212, the refrigerator compartment 202, the switching chamber 204, the vegetable compartment 203 are formed by forced convection. The cooling fan 213 that blows the cool air cooled by the cooler 212 is disposed in the freezer compartment 205, and a defrosting device that defrosts frost attached to the cooler 212 and the cooling fan 213 during cooling in the lower space of the cooler 212. A radiant heater 214 made of a glass tube is provided. The radiant heater 214 removes not only frost adhering to the cooler 212 and the cooling fan 213 but also frost adhering in a return air passage (not shown) in which the cool air that has cooled each storage chamber is returned to the cooler 212. Alternatively, the width of the cooler 212 may be greater than the width.

図4は本発明の実施の形態2における冷蔵庫の風路の構成を示す正面断面図であり、図5は図4の帰還風路部を拡大した帰還風路部正面断面図である。   FIG. 4 is a front sectional view showing the structure of the air path of the refrigerator according to the second embodiment of the present invention, and FIG. 5 is a front sectional view of the return air path part enlarged from FIG.

図4において、冷却ファン213により送風された冷気は、冷却ファン213の下方に冷凍室205を冷却するための冷凍室用送風路221が配設されている。また、冷却ファン213の上方には冷蔵室202と切替室204に冷気を送風するための冷蔵室用送風路222と切替室用送風路223が設けられ、冷蔵室用送風路222と切替室用送風路223の途中経路にはそれぞれ冷気の流れを調節する冷蔵室用ダンパー224と切替室用ダンパー225が設置されている。冷蔵室用ダンパー224と切替室用ダンパー225をツインダンパーとすることにより省スペース化とコスト低減を図ることができる。冷蔵室202内には冷気が吐出される冷蔵室用吐出口226と冷気が吸い込まれる冷蔵室用吸入口227が設けられ、切替室204内にも同様に切替室用吐出口228と切替室用吸入口229が設けられている。   In FIG. 4, the cold air blown by the cooling fan 213 is provided with a freezer compartment air passage 221 for cooling the freezer compartment 205 below the cooling fan 213. In addition, a cooling room air passage 222 and a switching room air passage 223 for blowing cool air to the refrigerating room 202 and the switching room 204 are provided above the cooling fan 213. A cooler room damper 224 and a switching room damper 225 for adjusting the flow of the cold air are installed in the middle of the air passage 223. Space saving and cost reduction can be achieved by using a twin damper for the refrigerating room damper 224 and the switching room damper 225. The refrigerator compartment 202 is provided with a refrigerator outlet 226 through which cold air is discharged and a refrigerator inlet 227 through which cold air is sucked. Similarly, the switching chamber outlet 228 and the switching chamber are provided in the switching chamber 204. A suction port 229 is provided.

冷蔵室用吸入口227の下方には冷蔵室用帰還風路230が設けられ、切替室用吸入口229の下方に設けられた切替室用帰還風路231と並列に設置され、更に冷蔵室用帰還風路230と切替室用帰還風路231は合流風路232に連結され、合流風路232は冷却室207につながっている。ここで、冷蔵室用帰還風路230、切替室用帰還風路231、合流風路232は冷却室207の側面に位置しており、野菜室203および冷凍室205の奥行き寸法を拡大させている。   A refrigerating room return air passage 230 is provided below the refrigerating room suction port 227, is installed in parallel with the switching room return air passage 231 provided below the switching room suction port 229, and further for the refrigerating room. The return air path 230 and the switching room return air path 231 are connected to the merged air path 232, and the merged air path 232 is connected to the cooling chamber 207. Here, the return air path 230 for the refrigerator compartment, the return air path 231 for the switching room, and the merging air path 232 are located on the side surfaces of the cooling chamber 207, and the depth dimensions of the vegetable chamber 203 and the freezing chamber 205 are enlarged. .

また、野菜室203の後方にあたる冷蔵室用帰還風路230内には冷蔵室202からの戻り冷気の一部を野菜室203に流入させるための野菜室用吐出口233が設けられ、冷蔵室202の戻り冷気を野菜室203内に取り込むためのリブ234が形成されている。野菜室203の後方にあたる合流風路232内には冷気が吸い込まれる野菜室用吸入口235が設けられている。   Further, in the return air passage 230 for the refrigeration room behind the vegetable room 203, there is provided a vegetable room discharge port 233 for allowing a part of the return cold air from the refrigeration room 202 to flow into the vegetable room 203. Ribs 234 are formed for taking the return cold air into the vegetable compartment 203. A vegetable room suction port 235 through which cold air is sucked is provided in the confluence air passage 232 behind the vegetable room 203.

合流風路232の入り口部に、冷蔵室用帰還風路230を流れる戻り冷気の流れ方向を変える風向調整手段236が形成されている。   A wind direction adjusting means 236 that changes the flow direction of the return cold air flowing through the refrigerating room return air passage 230 is formed at the entrance of the confluence air passage 232.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。まず、冷凍サイクルの動作について説明する。庫内の設定された温度に応じて制御基板(図示せず)からの信号により冷凍サイクルが動作して冷却運転が行われる。圧縮機206の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)にて放熱して凝縮液化し、キャピラリーチューブ(図示せず)に至る。その後、キャピラリーチューブでは圧縮機206への吸入管(図示せず)と熱交換しながら減圧されて低温低圧の液冷媒となって冷却器212に至る。冷却ファン213の動作により、各貯蔵室内の空気と熱交換されて冷却器212内の冷媒は蒸発気化し、低温の冷気をダンパーなどで供給制御することで各室の所望の冷却を行う。冷却器212を出た冷媒は吸入管を経て圧縮機206へと吸い込まれる。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. First, the operation of the refrigeration cycle will be described. The refrigeration cycle is operated by a signal from a control board (not shown) according to the set temperature in the cabinet, and the cooling operation is performed. The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 206 dissipates heat in a condenser (not shown), condenses and liquefies, and reaches a capillary tube (not shown). Thereafter, the capillary tube is depressurized while exchanging heat with a suction pipe (not shown) to the compressor 206 to become a low-temperature and low-pressure liquid refrigerant and reaches the cooler 212. By the operation of the cooling fan 213, heat is exchanged with the air in each storage chamber, the refrigerant in the cooler 212 evaporates, and supply of low-temperature cold air is controlled by a damper or the like to perform desired cooling of each chamber. The refrigerant exiting the cooler 212 is sucked into the compressor 206 through the suction pipe.

各貯蔵室内の空気と熱交換されて冷却器212には、各貯蔵室内空気と熱交換したときに水分が付着し霜となる。制御基板(図示せず)から定期的に信号が出力され圧縮機206を停止させ、ラジアントヒータ214に通電し冷却器212の除霜を行う。   When the heat is exchanged with the air in each storage chamber and heat is exchanged with the air in each storage chamber, moisture adheres to the cooler 212 and becomes frost. A signal is periodically output from a control board (not shown), the compressor 206 is stopped, the radiant heater 214 is energized, and the cooler 212 is defrosted.

次に断熱箱体201内の冷気の流れについて説明する。冷却ファン213から送風された冷気は、冷却ファン213の下方にある冷凍室用送風路221と冷却ファン213の上方にある冷蔵室用送風路222と切替室用送風路223に送風される。冷凍室用送風路221を通り冷凍室205に送風された冷気は、冷凍室205内の空気と熱交換し冷却室207に戻る。   Next, the flow of cool air in the heat insulating box 201 will be described. The cool air blown from the cooling fan 213 is sent to the freezer compartment air passage 221 below the cooling fan 213, the refrigerating compartment air passage 222 above the cooling fan 213, and the switching room air passage 223. The cold air blown into the freezer compartment 205 through the freezer compartment air passage 221 exchanges heat with the air in the freezer compartment 205 and returns to the cooler room 207.

冷蔵室用送風路222に送風された冷気は、冷蔵室用ダンパー224、冷蔵室用吐出口226を経由し冷蔵室202に至る。また、切替室用送風路223に送風された冷気は、切替室用ダンパー225、切替室用吐出口228を経由し切替室204に至る。ここで制御基板(図示せず)から信号を出力し冷蔵室用ダンパー224と切替室用ダンパー225をそれぞれ動作させ冷気の流れをコントロールさせ冷蔵室202と切替室204の温度制御を行い所定の温度に設定される。   The cold air blown to the refrigerator compartment air passage 222 reaches the refrigerator compartment 202 through the refrigerator compartment damper 224 and the refrigerator compartment outlet 226. The cool air blown to the switching chamber air passage 223 reaches the switching chamber 204 via the switching chamber damper 225 and the switching chamber discharge port 228. Here, a signal is output from a control board (not shown), and the cold room damper 224 and the switching room damper 225 are respectively operated to control the flow of the cold air, thereby controlling the temperature of the cold room 202 and the switching room 204 to a predetermined temperature. Set to

冷蔵室202に送風された冷気は、冷蔵室202内の空気と熱交換し冷蔵室用吸入口227から吸入され、冷蔵室用帰還風路230から合流風路232を通り冷却室207に戻る。ここで冷蔵室202の戻り冷気の一部は、冷蔵室用帰還風路230内に設けられた野菜室用吐出口233とリブ234により野菜室203に流入し、野菜室203内の空気と熱交換し野菜室用吸入口235から合流風路232に吸入され冷却室207に戻る。よって野菜室203は冷蔵室202の戻り冷気を利用して冷却している。   The cold air blown into the refrigerating room 202 exchanges heat with the air in the refrigerating room 202 and is sucked from the refrigerating room suction port 227 and returns to the cooling room 207 from the refrigerating room return air passage 230 through the merged air passage 232. Here, part of the return cold air in the refrigerator compartment 202 flows into the vegetable compartment 203 through the vegetable compartment outlet 233 and the rib 234 provided in the refrigerator compartment return air passage 230, and the air and heat in the vegetable compartment 203 It is exchanged and sucked into the combined air passage 232 from the vegetable room suction port 235 and returned to the cooling chamber 207. Therefore, the vegetable compartment 203 is cooled using the return cold air of the refrigerator compartment 202.

切替室204に送風された冷気は、切替室204内の空気と熱交換し切替室用吸入口229から吸入され、切替室用帰還風路231から合流風路232を通り冷却室207に戻る。   The cool air blown into the switching chamber 204 exchanges heat with the air in the switching chamber 204, is sucked from the switching chamber suction port 229, and returns from the switching chamber return air passage 231 to the cooling chamber 207 through the merged air passage 232.

以上より、冷凍室205を除く冷蔵室202、切替室204、野菜室203の戻り冷気は、まず冷蔵室202の戻り冷気と切替室204の戻り冷気が合流風路232にてミックスされ混合戻り冷気となり、その後冷蔵室202の戻り冷気の一部によって野菜室203で熱交換された野菜室203の戻り冷気とさらにミックスされ冷却室207に戻るものである。但し、このような戻り冷気の流れは、冷蔵室202が冷却されて冷蔵室用帰還風路230内に冷蔵室202の戻り冷気が流れており、加えて切替室204が冷却されて切替室用帰還風路231内に切替室204の戻り冷気が流れている条件においてのものである。   As described above, the return cold air from the refrigeration room 202, the switching room 204, and the vegetable room 203 excluding the freezing room 205 is first mixed with the return cold air from the refrigerating room 202 and the return cold air from the switching room 204 in the combined air passage 232. Then, it is further mixed with the return cold air in the vegetable compartment 203 heat-exchanged in the vegetable compartment 203 by a part of the return cold air in the refrigerating compartment 202 and returns to the cooling compartment 207. However, the flow of the return cold air is such that the refrigerating chamber 202 is cooled and the return cold air of the refrigerating chamber 202 flows in the refrigerating chamber return air passage 230, and the switching chamber 204 is cooled and is used for the switching chamber. This is under the condition that the return cold air from the switching chamber 204 flows in the return air passage 231.

冷蔵庫が運転されている周囲温度が標準、もしくは夏場の暑い条件などにおいては上記の戻り冷気の流れとなるが、例えば冬場の周囲温度が低下した条件では、冷蔵室202の温度は1℃〜5℃で設定されているため冷蔵室202の冷却時間が短くほとんど冷蔵室用帰還風路230に戻り冷気が流れず、一方の切替室204が約−18℃に設定された冷凍設定の場合、切替室用帰還風路231には常に切替室204の戻り冷気が流れている。このように冷蔵室用帰還風路230に戻り冷気の流れがなく、切替室用帰還風路231に戻り冷気の流れがある場合、切替室用帰還風路231内を流れる戻り冷気により冷蔵室用帰還風路230に引き込み流が発生し、この引き込み流により冷蔵室用帰還風路230内に設けられた野菜室用吐出口233から野菜室203内の空気が引っ張られ野菜室203内の静圧が低下する。静圧が低下することにより、合流風路232内に設けられた野菜室用吸入口235から合流風路232を流れる切替室204の戻り冷気が野菜室203内に流入する。切替室204が約−18℃の冷凍温度帯に設定されているため、切替室204の戻り冷気は約−18℃のような冷凍温度帯の戻り冷気であるため野菜室203が過冷却されるため、野菜室203内に保存された野菜が凍結する。よってこのように冷蔵室用帰還風路230に戻り冷気の流れがほとんどなく、切替室用帰還風路231に戻り冷気の流れが常にある場合野菜室203内の空気の流れは、引き込み流の発生により冷蔵室用帰還風路230と切替室用帰還風路231に共に戻り冷気の流れがある場合とは反対の空気の流れが生じ、野菜室203内の温度制御が不能となる。   When the ambient temperature at which the refrigerator is operating is standard, or when the summer is hot, the above-described return cold air flows. For example, when the ambient temperature is reduced in winter, the temperature of the refrigerator compartment 202 is 1 ° C to 5 ° C. Since the cooling time of the refrigerating room 202 is short because the temperature is set at 0 ° C., the cooling air hardly returns to the refrigerating room return air passage 230, and the switching is performed when the one of the switching rooms 204 is set at about −18 ° C. The return cold air from the switching chamber 204 always flows through the room return air passage 231. As described above, when there is no flow of cool air returning to the return air path 230 for the refrigerating room and there is a flow of cool air returning to the return air path 231 for the switching room, the return cold air flowing in the return air path 231 for the switching room is used for the refrigerating room. An entrainment flow is generated in the return air passage 230, and the air in the vegetable compartment 203 is pulled from the discharge port 233 for the vegetable compartment provided in the return air passage 230 for the refrigeration room by this entrainment flow. Decreases. As the static pressure decreases, the return cold air from the switching chamber 204 flowing through the combined air passage 232 flows into the vegetable compartment 203 from the vegetable compartment inlet 235 provided in the confluent air passage 232. Since the switching chamber 204 is set to a refrigeration temperature zone of about −18 ° C., the return cold air in the switching chamber 204 is a return cold air in a freezing temperature zone such as about −18 ° C., so the vegetable chamber 203 is supercooled. Therefore, the vegetables stored in the vegetable compartment 203 are frozen. Therefore, when there is almost no flow of cool air returning to the return air path 230 for the refrigeration room and there is always a flow of cool air returning to the return air path 231 for the switching room, the air flow in the vegetable room 203 is caused by the drawing-in flow. As a result, an air flow opposite to the case where there is a flow of returning cold air to both the refrigerating room return air passage 230 and the switching room return air passage 231 is generated, and temperature control in the vegetable compartment 203 becomes impossible.

この引き込み流の発生を抑制するために風向調整手段236を合流風路232入り口部の切替室用帰還風路231側に形成し、切替室204の戻り冷気の流れ方向を変えることにより引き込み流の発生を抑制することにより、野菜室203内の静圧の低下を抑え、野菜室用吸入口235からの冷気の流れ込みを防止し、安価で簡単な形状により野菜室203内の温度制御を適正化することができる。   In order to suppress the generation of this entrainment flow, the air direction adjusting means 236 is formed on the switching chamber return air channel 231 side at the entrance of the merged air channel 232, and the flow direction of the return cold air in the switching chamber 204 is changed to change the entrainment flow. By suppressing the occurrence, the decrease in static pressure in the vegetable compartment 203 is suppressed, the flow of cold air from the vegetable compartment suction port 235 is prevented, and the temperature control in the vegetable compartment 203 is optimized by an inexpensive and simple shape. can do.

なお、野菜室203の戻り冷気は、野菜室用吸入口235から合流風路232に導かれ冷蔵室202の戻り冷気と切替室204の戻り冷気と合流する風路構成としているが、冷却器の横方向に合流風路232と並列に野菜室用帰還風路を構成し、冷蔵室202の戻り冷気と切替室204の戻り冷気と合流させずに冷却室207に野菜室203の戻り冷気を戻す風路構成とすることにより、温度の低い冷気が野菜室用吸入口235から野菜室203内に流入し難くなる。   Note that the return cold air in the vegetable compartment 203 is led from the vegetable compartment suction port 235 to the merged air passage 232 and is combined with the return cold air in the refrigerator compartment 202 and the return cold air in the switching chamber 204. A vegetable room return air path is formed in parallel with the merged air path 232 in the lateral direction, and the return cold air from the vegetable room 203 is returned to the cooling room 207 without being merged with the return cold air from the refrigerating room 202 and the return cold air from the switching room 204. By adopting the air passage configuration, it is difficult for cold air having a low temperature to flow into the vegetable compartment 203 from the vegetable compartment suction port 235.

なお、切替室204が冷凍温度帯のみである冷凍室の場合、冷気の調節を行うダンパーが不要となるが、この場合においても同じ効果を得ることができる。   In addition, when the switching chamber 204 is a freezer compartment which is only in a freezing temperature zone, a damper for adjusting cold air is not necessary, but the same effect can be obtained in this case.

なお、実験により得られた結果として、冷気の流れ方向を変える効果を十分に発揮するためには、風向調整手段236の水平方向長さを切替室用帰還風路231の幅方向とほぼ等しい長さとすることである。   As a result of the experiment, in order to sufficiently exhibit the effect of changing the flow direction of the cold air, the horizontal direction length of the wind direction adjusting means 236 is substantially equal to the width direction of the switching chamber return air path 231. That is to say.

(実施の形態3)
図6は本発明の実施の形態3における冷蔵庫の帰還風路部を拡大した帰還風路部正面断面図である。なお、実施の形態2と同一構成については同一符号を付して説明を省略する。
(Embodiment 3)
FIG. 6 is a front cross-sectional view of the return air passage portion in which the return air passage portion of the refrigerator according to Embodiment 3 of the present invention is enlarged. In addition, about the same structure as Embodiment 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図6において、風向調整手段236を合流風路232入り口部の切替室用帰還風路231側に形成し、風向調整手段236の形状を三角形状としたことにより、切替室204の戻り冷気の流れ方向を変えることにより引き込み流の発生を抑制し、野菜室203内の静圧の低下を抑え、野菜室用吸入口235からの冷気の流れ込みを防止し、野菜室203内の温度制御を適正化することができる。   In FIG. 6, the wind direction adjusting means 236 is formed on the switching chamber return air path 231 side at the entrance of the merged air path 232, and the shape of the air direction adjusting means 236 is triangular, so that the flow of the return cold air in the switching chamber 204 Changing the direction suppresses the generation of entrainment flow, suppresses the decrease in static pressure in the vegetable compartment 203, prevents the inflow of cold air from the vegetable compartment suction port 235, and optimizes the temperature control in the vegetable compartment 203 can do.

また冷却器212の除霜時にはラジアントヒータ214が通電され、暖まった空気が合流風路232内を上昇する。切替室204は冷凍温度に設定されているために暖まった空気が切替室用帰還風路231内を通り切替室204に流入すると、切替室204内の温度が上昇し、冷凍されている食品にダメージが及ぶ。また暖まった空気は切替室204内の着霜、着氷の原因にもつながる。   Further, when the cooler 212 is defrosted, the radiant heater 214 is energized, and the warm air rises in the merged air passage 232. Since the switching chamber 204 is set at the freezing temperature, when warm air flows through the switching chamber return air passage 231 and flows into the switching chamber 204, the temperature in the switching chamber 204 rises, and the frozen food becomes a frozen food. Damage is done. The warm air also causes frosting and icing in the switching chamber 204.

風向調整手段236の形状を三角形状としたことにより、引き込み流の発生を抑制し安価で簡単な形状により野菜室203内の温度制御を適正化することができる。更に暖まった空気の切替室204への流入が抑えられ、食品の保存性が高められ、着霜、着氷の防止も行うことができる。   By making the shape of the wind direction adjusting means 236 a triangular shape, the temperature control in the vegetable compartment 203 can be optimized by suppressing the generation of entrainment flow and using an inexpensive and simple shape. Furthermore, inflow of warm air into the switching chamber 204 is suppressed, food preservation is enhanced, and frost formation and icing can be prevented.

(実施の形態4)
図7は本発明の実施の形態4における冷蔵庫の帰還風路部を拡大した帰還風路部正面断面図である。なお、実施の形態2と同一構成については同一符号を付して説明を省略する。
(Embodiment 4)
FIG. 7 is a front cross-sectional view of the return air passage portion in which the return air passage portion of the refrigerator according to Embodiment 4 of the present invention is enlarged. In addition, about the same structure as Embodiment 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図7において、風向調整手段236を合流風路232入り口部の切替室用帰還風路231側に形成し、風向調整手段236の形状を台形状としたことにより、切替室204の戻り冷気の流れ方向を変えることにより引き込み流の発生を抑制し、野菜室203内の静圧の低下を抑え、野菜室用吸入口235からの冷気の流れ込みを防止し、安価で簡単な形状により野菜室203内の温度制御を適正化することができる。   In FIG. 7, the wind direction adjusting means 236 is formed on the switching room return air path 231 side at the entrance of the merged air path 232, and the shape of the air direction adjusting means 236 is trapezoidal so that the flow of the return cold air in the switching chamber 204 By changing the direction, the generation of entrainment flow is suppressed, the decrease in static pressure in the vegetable room 203 is suppressed, the flow of cold air from the vegetable room suction port 235 is prevented, and the inside of the vegetable room 203 has a cheap and simple shape. Temperature control can be optimized.

また冷却器212の除霜時にはラジアントヒータ214が通電され、暖まった空気が合流風路232内を上昇する。冷蔵室用帰還風路230を流れる冷蔵室202の戻り冷気は多くの水分を含んでおり、切替室204の背面部を通過するときに冷凍温度帯に設定された切替室204の温度影響を受けるため、冷蔵室用帰還風路230内に水分が着霜する。風向調整手段236の形状を台形状としたことにより除霜時に暖まった空気が冷蔵室用帰還風路230側に流れやすくなり、冷蔵室用帰還風路230内の霜を融解させ、冷蔵室用帰還風路230内の着霜を防止することができる。   Further, when the cooler 212 is defrosted, the radiant heater 214 is energized, and the warm air rises in the merged air passage 232. The return cold air of the refrigerating room 202 flowing through the refrigerating room return air passage 230 contains a large amount of moisture, and is affected by the temperature of the switching room 204 set in the freezing temperature zone when passing through the back surface of the switching room 204. Therefore, moisture frosts in the return air passage 230 for the refrigerator compartment. The trapezoidal shape of the wind direction adjusting means 236 makes it easy for air warmed during defrosting to flow toward the return air passage 230 for the refrigerator compartment, so that the frost in the return air passage 230 for the refrigerator compartment is melted and used for the refrigerator compartment. It is possible to prevent frost formation in the return air passage 230.

(実施の形態5)
図8は本発明の実施の形態5における冷蔵庫の帰還風路部を拡大した帰還風路部正面断面図である。なお、実施の形態2と同一構成については同一符号を付して説明を省略する。
(Embodiment 5)
FIG. 8 is a front cross-sectional view of the return air passage portion in which the return air passage portion of the refrigerator according to the fifth embodiment of the present invention is enlarged. In addition, about the same structure as Embodiment 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.

図8において、風向調整手段311として切替室用帰還風路231出口部の風路面積を冷蔵室用帰還風路230側に段階的に拡大させることにより、切替室204の戻り冷気に風路抵抗を付けずに切替室204の冷気風量を確保させながら、切替室204の戻り冷気の流れ方向を変えることにより引き込み流の発生を抑制し、野菜室203内の静圧の低下を抑え、野菜室用吸入口235からの冷気の流れ込みを防止し、切替室204の冷却スピードや扉開閉時、高負荷条件での冷却性能を確保しつつ、安価で簡単な形状により204内の温度制御を適正化することができる。   In FIG. 8, as the air direction adjusting means 311, the air passage area of the exit portion of the return air passage 231 for the switching chamber is gradually increased toward the return air passage 230 for the refrigerating chamber, thereby improving the air passage resistance against the return cold air of the switching chamber 204. While ensuring the amount of cool air flow in the switching chamber 204 without attaching, the flow direction of the return cold air in the switching chamber 204 is changed to suppress the generation of entrainment flow, and the decrease in static pressure in the vegetable chamber 203 is suppressed. Prevents the flow of cold air from the suction port 235, ensures the cooling performance of the switching chamber 204 and when the door is opened and closed, and ensures the cooling performance under high load conditions, while optimizing the temperature control within the 204 with an inexpensive and simple shape can do.

以上のように、本発明にかかる冷蔵庫は、戻り冷気の帰還風路内に簡単な風向調整手段を設けることにより戻り冷気の流れを適正化し所定の貯蔵室温度制御を行うことができ、多様な貯蔵室を複数有する冷蔵庫や冷凍庫等の用途に広く適用できる。   As described above, the refrigerator according to the present invention can perform a predetermined storage room temperature control by optimizing the flow of the return cold air by providing a simple air direction adjusting means in the return air path of the return cold air. It can be widely applied to uses such as refrigerators and freezers having a plurality of storage rooms.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における風路の構成を示す正面断面図Front sectional drawing which shows the structure of the air path in Embodiment 1 of this invention 本発明の実施の形態2における冷蔵庫の縦断面図Longitudinal sectional view of the refrigerator in the second embodiment of the present invention 本発明の実施の形態2における風路の構成を示す正面断面図Front sectional drawing which shows the structure of the air path in Embodiment 2 of this invention 本発明の実施の形態2における帰還風路部正面断面図Cross sectional front view of return air passage portion in embodiment 2 of the present invention 本発明の実施の形態3における帰還風路部正面断面図Cross section front view of return air passage portion in embodiment 3 of the present invention 本発明の実施の形態4における帰還風路部正面断面図Cross section front view of return air passage portion in embodiment 4 of the present invention 本発明の実施の形態5における帰還風路部正面断面図Cross section front view of return air passage in embodiment 5 of the present invention 従来の冷蔵庫の正面断面図Front sectional view of a conventional refrigerator

符号の説明Explanation of symbols

101,201 断熱箱体
102,202 冷蔵室(第一の貯蔵室)
103,203 野菜室(第二の貯蔵室)
109,212 冷却器
110,213 冷却ファン
122,222 冷蔵室用送風路(第一の送風路)
123 野菜室用送風路(第二の送風路)
128,233 野菜室用吐出口(第二の貯蔵室用吐出口)
129,235 野菜室用吸入口(第二の貯蔵室用吸入口)
130,230 冷蔵室用帰還風路(第一の帰還風路)
131 野菜室用帰還風路(第二の帰還風路)
132,232 合流風路
133,236,311 風向調整手段
204 切替室(第三の貯蔵室)
223 切替室用送風路(第三の送風路)
231 切替室用帰還風路(第三の帰還風路)
101,201 Insulated box 102,202 Refrigerated room (first storage room)
103,203 Vegetable room (second storage room)
109, 212 Cooler 110, 213 Cooling fan 122, 222 Refrigerating room air passage (first air passage)
123 Ventilation path for vegetable room (second ventilation path)
128,233 Vegetable room outlet (second outlet for storage room)
129,235 Vegetable room inlet (second storage room inlet)
130,230 Return air path for refrigeration room (first return air path)
131 Return airway for vegetable room (second return airway)
132,232 Combined air flow path 133,236,311 Wind direction adjusting means 204 Switching room (third storage room)
223 Switching room air passage (third air passage)
231 Return air path for switching room (third return air path)

Claims (5)

断熱箱体内に複数の貯蔵室を区画形成し、冷気を生成する冷却器と、冷気を各室に供給する冷却ファンとを有し、前記冷却器の上方に位置する最上部の貯蔵室である第一の貯蔵室と前記第一の貯蔵室の下部に位置する第二の貯蔵室に冷気を供給するための第一の送風路と第二の送風路を設け、前記第一の貯蔵室と前記第二の貯蔵室から冷気を前記冷却器に戻すための第一の帰還風路と第二の帰還風路と、前記第一の帰還風路と前記第二の帰還風路が合流する合流風路と、前記合流風路入り口部に戻り冷気の流れの方向を変える風向調整手段を形成したことを特徴とする冷蔵庫。   It is a top storage chamber located above the cooler, having a cooler for generating cool air and a cooling fan for supplying cool air to each chamber by partitioning a plurality of storage chambers in the heat insulation box. A first air passage and a second air passage for supplying cold air to the first storage chamber and a second storage chamber located below the first storage chamber; The first return air passage and the second return air passage for returning the cool air from the second storage chamber to the cooler, and the merge of the first return air passage and the second return air passage. A refrigerator characterized by forming an air passage and air direction adjusting means for changing the direction of the flow of cold air to the entrance portion of the merging air passage. 断熱箱体内に複数の貯蔵室を区画形成し、冷気を生成する冷却器と、冷気を各室に供給する冷却ファンとを有し、前記冷却器の上方に位置する最上部の貯蔵室である第一の貯蔵室と前記第一の貯蔵室の下部に位置する第三の貯蔵室に冷気を供給するための第一の送風路と第三の送風路を設け、前記第一の貯蔵室と前記第三の貯蔵室から冷気を前記冷却器に戻すための第一の帰還風路と第三の帰還風路と、前記第一の帰還風路と前記第三の帰還風路が合流する合流風路と、前記第一の帰還風路に設けられ前記第一の貯蔵室の戻り冷気の一部を前記第三の貯蔵室の下部に位置する第二の貯蔵室に導く第二の貯蔵室用吐出口と、前記合流風路内に設けられた前記第二の貯蔵室の戻り冷気を吸入する第二の貯蔵室用吸入口で構成され、前記合流風路入り口部に戻り冷気の流れの方向を変える風向調整手段を形成したことを特徴とする冷蔵庫。   It is a top storage chamber located above the cooler, having a cooler for generating cool air and a cooling fan for supplying cool air to each chamber by partitioning a plurality of storage chambers in the heat insulation box. A first air supply passage and a third air supply passage for supplying cold air to the first storage compartment and a third storage compartment located below the first storage compartment; A first return air passage and a third return air passage for returning cold air from the third storage chamber to the cooler, and a merge where the first return air passage and the third return air passage merge. And a second storage chamber that is provided in the first return air passage and guides a part of the return cold air of the first storage chamber to a second storage chamber located below the third storage chamber. And a second storage chamber suction port for sucking the return cold air of the second storage chamber provided in the merging air passage, and entering the merging air passage Refrigerator, characterized in that the formation of the wind direction adjusting means for changing the direction of the cool air flow back to the mouth portion. 前記風向調整手段は、前記合流風路入り口部に三角形状に形成したことを特徴とする請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the wind direction adjusting means is formed in a triangular shape at the entrance of the merging air passage. 前記風向調整手段は、前記合流風路入り口部に台形状に形成したことを特徴とする請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the wind direction adjusting means is formed in a trapezoidal shape at the entrance of the merging air passage. 前記合流風路に合流する複数の帰還風路のいずれか一方を、合流する直前に帰還風路面積を拡大させたことを特徴とする請求項1または2に記載の冷蔵庫。   The refrigerator according to claim 1 or 2, wherein the area of the return air passage is enlarged immediately before joining any one of the plurality of return air passages that merge with the confluence air passage.
JP2006274937A 2006-10-06 2006-10-06 Refrigerator Pending JP2008095986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274937A JP2008095986A (en) 2006-10-06 2006-10-06 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274937A JP2008095986A (en) 2006-10-06 2006-10-06 Refrigerator

Publications (1)

Publication Number Publication Date
JP2008095986A true JP2008095986A (en) 2008-04-24

Family

ID=39379016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274937A Pending JP2008095986A (en) 2006-10-06 2006-10-06 Refrigerator

Country Status (1)

Country Link
JP (1) JP2008095986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945583A (en) * 2019-03-13 2019-06-28 六安索伊电器制造有限公司 Temperature adjusts refrigerating chamber fruit and vegetable box
JP2022013045A (en) * 2020-07-03 2022-01-18 日立グローバルライフソリューションズ株式会社 refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945583A (en) * 2019-03-13 2019-06-28 六安索伊电器制造有限公司 Temperature adjusts refrigerating chamber fruit and vegetable box
JP2022013045A (en) * 2020-07-03 2022-01-18 日立グローバルライフソリューションズ株式会社 refrigerator

Similar Documents

Publication Publication Date Title
KR101715806B1 (en) Ice making system of refrigerator and ice making method thereof
KR101260277B1 (en) Refrigerator
JP5507511B2 (en) refrigerator
JP2005214622A (en) Refrigerator and cool air flow passage structure of refrigerator
JP6687384B2 (en) refrigerator
JP2013061089A (en) Refrigerator
US20080000242A1 (en) Refrigerator having a temperature controlled compartment
JP2006336946A (en) Stirling cooling box
JP2007010174A (en) Refrigerator
TWI716636B (en) refrigerator
KR100597300B1 (en) Cold air circulating structure for refrigerator
KR101659913B1 (en) Ice making duct of refrigerator and ice making method thereof
JP5838238B2 (en) refrigerator
JP2008095986A (en) Refrigerator
KR101696893B1 (en) Refrigerator and ice making method thereof
JP2021042865A (en) refrigerator
JP2019027649A (en) refrigerator
JP4924213B2 (en) refrigerator
JP2007315662A (en) Refrigerator
JP2017187246A (en) refrigerator
JP6282255B2 (en) refrigerator
JP2008138981A (en) Refrigerator
KR100597292B1 (en) Refrigerator
JP2008039247A (en) Refrigerator
JP2006153358A (en) Refrigerator