JP2008095862A - Moving mechanism - Google Patents

Moving mechanism Download PDF

Info

Publication number
JP2008095862A
JP2008095862A JP2006279326A JP2006279326A JP2008095862A JP 2008095862 A JP2008095862 A JP 2008095862A JP 2006279326 A JP2006279326 A JP 2006279326A JP 2006279326 A JP2006279326 A JP 2006279326A JP 2008095862 A JP2008095862 A JP 2008095862A
Authority
JP
Japan
Prior art keywords
screw shaft
screw
moving mechanism
motion
motion converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006279326A
Other languages
Japanese (ja)
Other versions
JP4993344B2 (en
Inventor
Kazuhisa Inoue
和久 井上
Hisatoshi Fujiwara
久利 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006279326A priority Critical patent/JP4993344B2/en
Publication of JP2008095862A publication Critical patent/JP2008095862A/en
Application granted granted Critical
Publication of JP4993344B2 publication Critical patent/JP4993344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw-structure moving mechanism comprising a screw shaft, and a motion converting part to be moved with the rotation of the screw shaft in the axial direction of the screw shaft, for improving the constant velocity property of the motion converting part. <P>SOLUTION: The moving mechanism 1 comprises the screw shaft 5 rotatably journaled to a non-movable member 11, and the motion converting part 6 threaded to the screw shaft so as to be moved with the rotation of the screw shaft in the axial direction of the screw shaft herein, a spring member 8 is provided which has one end 8a locked to the outer face of the motion converting part and the other end 8b locked to the non-movable member, for giving energizing force to the motion converting part in the axial direction of the screw part. One side face of a female screw formed on the motion converting part in its moving range and one side face of a male screw formed on the screw shaft in opposition to one side face of the female screw hold good contact with each other at all times with thrust generated in the direction of operating the energizing force during moving the motion converting part to actualize high running accuracy of a sliding unit independently of the direction of moving the motion converting part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ねじ軸と該ねじ軸の回転に応じてねじ軸の軸線方向に移動する運動変換部とにより構成されるねじ構造の移動機構に関する。   The present invention relates to a screw structure moving mechanism including a screw shaft and a motion conversion unit that moves in the axial direction of the screw shaft in accordance with the rotation of the screw shaft.

送りねじ(滑りねじ)やボールねじ等のねじ構造を利用し、ねじ軸を回転させたときの回転運動を運動変換部(ナット)により変換して直線的な運動を得る移動機構が広く利用されている。このようなねじ構造においては、ねじ軸の雄ねじ(ねじ山)と運動変換部の雌ねじ(ねじ溝)とのかみ合いの状態により、バックラッシュという移動位置誤差要因が発生することが知られている。このバックラッシュという現象は、位置決め精度を要求されない機器では問題にならないが、工作機械、光学機器等において精密な位置決め、速度安定性を要求される場合は、低減しなければならない誤差要因になる。   A moving mechanism that uses a screw structure such as a feed screw (sliding screw) or a ball screw, and obtains a linear motion by converting the rotational motion when the screw shaft is rotated by a motion conversion unit (nut) is widely used. ing. In such a screw structure, it is known that a movement position error factor called backlash occurs depending on the state of engagement between the male screw (screw thread) of the screw shaft and the female screw (thread groove) of the motion converting portion. This phenomenon of backlash does not pose a problem in equipment that does not require positioning accuracy, but becomes an error factor that must be reduced when precise positioning and speed stability are required in machine tools, optical equipment, and the like.

図11は、従来の予圧無し構造の移動機構における送りねじ軸31と運動変換部(ナット)32との間に発生するバックラッシュの説明図であり、送りねじ軸31の回転運動を直線運動に変換する運動変換部32に予圧を掛けないと、各部の加工精度のばらつきにより、同図(a)に示すように送りねじ軸31の雄ねじ(ねじ山)31aの左側面に運動変換部32の雌ねじ(ねじ溝)32aの雄ねじ31aの左側面と対向する右側面が接触する場合、又は同図(b)に示すように雄ねじ31aの右側面に運動変換部32の雌ねじ(ねじ溝)32aの雄ねじ31aの右側面と対向する左側面が接触する場合にバックラッシュが発生し、送りねじ軸31に対し、運動変換部32が不安定な接触を繰り返すことにより、等速性が低下する。尚、送りねじ軸31は、一部のみ図示してある。   FIG. 11 is an explanatory diagram of backlash that occurs between the feed screw shaft 31 and the motion converting portion (nut) 32 in the conventional moving mechanism having no preload structure, and the rotational motion of the feed screw shaft 31 is changed to a linear motion. If no preload is applied to the motion converting portion 32 to be converted, due to variations in machining accuracy of each portion, the motion converting portion 32 of the feed screw shaft 31 on the left side of the male screw (thread) 31a as shown in FIG. When the right side facing the left side of the male screw 31a of the female screw (thread groove) 32a contacts, or as shown in FIG. 5B, the female screw (thread groove) 32a of the motion converter 32 is placed on the right side of the male screw 31a. When the left side surface opposite to the right side surface of the male screw 31a comes into contact, backlash occurs, and the motion converting portion 32 repeats unstable contact with the feed screw shaft 31, thereby reducing the constant velocity. Only a part of the feed screw shaft 31 is shown.

図12は、従来の予圧無し構造の移動機構におけるボールねじ軸33と運動変換部(ナット)34との間に発生するバックラッシュの説明図であり、ボールねじ軸33の回転運動を直線運動に変換する運動変換部34に予圧を掛けないと、各部の加工精度のばらつきにより、同図(a)に示すようにボールねじ軸33のB点に対して、運動変換部34の雌ねじ(ねじ溝)34aが左にずれた場合のA1点の位置と、又は同図(b)に示すようにボールねじ軸33のB点に対して、運動変換部34の雌ねじ(ねじ溝)34aが右にずれた場合のA2点の位置との差を生じ、バックラッシュとなる。この為、ボールねじ軸33、ボール35、運動変換部(ナット)34の間で、不安定な接触を繰り返すことになり、等速性が低下する。尚、ボールねじ軸33は、一部のみ図示してある。   FIG. 12 is an explanatory view of backlash that occurs between the ball screw shaft 33 and the motion converting portion (nut) 34 in the conventional moving mechanism having no preload structure, and the rotational motion of the ball screw shaft 33 is changed to a linear motion. If no preload is applied to the motion converting portion 34 to be converted, due to variations in processing accuracy of each portion, the female screw (thread groove) of the motion converting portion 34 is pointed with respect to the point B of the ball screw shaft 33 as shown in FIG. ) With respect to the position of point A1 when 34a is shifted to the left, or the point B of the ball screw shaft 33 as shown in FIG. A difference from the position of point A2 in the case of deviation occurs, resulting in backlash. For this reason, unstable contact is repeated among the ball screw shaft 33, the ball 35, and the motion converting portion (nut) 34, and the constant velocity is lowered. Only a part of the ball screw shaft 33 is shown.

そこで、上記構成の移動機構において等速性、即ち運動変換部の移動速度の安定性を要求される場合、通常運動変換部に予圧を与え、バックラッシュを抑制し機械的剛性を高めることで対応している。予圧を与える方法として、主に定位置予圧方式と定圧予圧方式の2種類があり、定位置予圧方式には、2個のナットの間に間座を介在させて予圧を与えるダブルナット方式、間座を使用せずにナットの溝ピッチを変えることにより予圧を与えるオフセット予圧方式がある。   Therefore, when the moving mechanism of the above configuration requires constant velocity, that is, stability of the moving speed of the motion conversion unit, it is possible to deal with it by applying a preload to the normal motion converting unit to suppress backlash and increase mechanical rigidity. is doing. There are two types of preloading methods, the fixed position preloading method and the constant pressure preloading method. The fixed position preloading method includes a double nut method in which a spacer is interposed between two nuts, There is an offset preload system that applies preload by changing the groove pitch of the nut without using a seat.

また、定圧予圧方式には、ナットの略中央位置にばね構造(弾性体)を設け、ナットの中央での溝ピッチを変えることにより予圧を与える方式で、1個のボールねじナットの中央で左右のねじに位相を与え、軸方向隙間をゼロ以下(予圧状態)にしたシンプルナットオフセット予圧タイプ、2個のナット間に間座を入れるダブルナットオフセット予圧タイプ、ナット単体の隙間が負になるような寸法の剛球を使用して予圧を与えるオーバーサイズボール予圧タイプ等がある。バックラッシュに対する対応策について一般に使用されているボールねじは、代表的な方式として定圧予圧方式が採用されている。   The constant pressure preload system is a system in which a spring structure (elastic body) is provided at the approximate center position of the nut and the preload is applied by changing the groove pitch at the center of the nut. A simple nut offset preload type in which a phase is applied to the screw and the axial clearance is less than or equal to zero (preload state), a double nut offset preload type in which a spacer is inserted between two nuts, so that the gap between the nuts is negative There are oversize ball preload types that apply preload using hard balls of various dimensions. About a countermeasure against backlash, a constant pressure preload system is adopted as a typical system for a ball screw that is generally used.

また、移動機構として、テーブルにステッピングモータにより回転駆動されるリードスクリューと噛み合うねじ部が形成されたねじ孔(第1のナット)が一体形成され、このねじ孔と同軸状に形成されたナット収納孔にはリードスクリューと噛み合うナット(第2のナット)が軸線方向にのみ移動可能に差し込まれ、ナットは、コイルばねによってねじ孔から離れる方向に付勢されて運動変換部が形成されており、テーブルからリードスクリューが外れることなく、また、双方の部材のかみ合い部分にはバックラッシュがないので、テーブルの高速移動が及びテーブルの位置決めを高い精度で行うことを可能としたテーブル送り機構が提案されている(例えば、特許文献1参照)。
特開2000−149467号公報(3―4頁、図2)
Further, as a moving mechanism, a screw hole (first nut) in which a threaded portion that meshes with a lead screw that is rotationally driven by a stepping motor is formed integrally with a table, and a nut housing that is formed coaxially with the screw hole. A nut (second nut) that meshes with the lead screw is inserted into the hole so as to be movable only in the axial direction, and the nut is urged in a direction away from the screw hole by a coil spring to form a motion conversion portion. A table feed mechanism has been proposed that does not remove the lead screw from the table and that there is no backlash in the meshing part of both members, so that the table can be moved at high speed and the table can be positioned with high accuracy. (For example, refer to Patent Document 1).
Japanese Unexamined Patent Publication No. 2000-149467 (page 3-4, FIG. 2)

運動変換部に予圧を掛けると等速性は確保できるが運動変換部の構造が複雑で形状が大きくなる。また、ボールねじ軸においてはボールの差動滑り、スピン現象により回転トルクが増大し、モータの負荷が増して効率が低下する。運動変換部接触面に常時過大な荷重が作用するため、短期間で、ナット、ねじ、ボールの摩耗が進行して、予圧量の減少、バックラッシュの増大、等速性の低下及び早期寿命となる。潤滑油は強いせん断を繰り返し受けることになり、摩耗粉混入により劣化が早期に進み、頻繁なメンテナンスが必要である等の問題があり、運動変換部予圧量(等速性)と摩耗量(寿命)は、相関関係にあり両立が難しい。   If a preload is applied to the motion converter, the constant velocity can be ensured, but the structure of the motion converter is complicated and the shape becomes large. Further, in the ball screw shaft, the rotational torque increases due to the differential slip and spin phenomenon of the ball, the load on the motor increases, and the efficiency decreases. Since excessive load always acts on the contact surface of the motion converter, wear of nuts, screws, and balls progresses in a short period of time, reducing the amount of preload, increasing backlash, decreasing constant velocity and shortening the service life. Become. Lubricating oil is subject to repeated repeated shearing, and there are problems such as deterioration that progresses early due to contamination of wear powder and frequent maintenance is required. ) Is correlated and difficult to achieve.

また、光学的な形状計測を行う例えば半導体デバイス装置における撮像機構としてねじ構造の移動機構が採用され、基準信号として運動変換部(テーブル)のスピード(移動速度)を使用する場合がある。この場合、運動変換部の移動速度の安定性(等速性)が最も重要になる。これは、停止位置における位置決め精度ではなく、定速移動時の速度が安定した一定値になるという意味での精度であるため、上記従来技術では移動速度の安定性(等速性)が不十分になることがある。   In addition, for example, a moving mechanism having a screw structure is employed as an imaging mechanism in a semiconductor device that performs optical shape measurement, and the speed (moving speed) of a motion conversion unit (table) may be used as a reference signal. In this case, the stability (constant velocity) of the moving speed of the motion converting unit is the most important. This is not the positioning accuracy at the stop position, but the accuracy in the sense that the speed during constant speed movement is a stable and constant value, so the above-mentioned prior art has insufficient stability (constant speed) of the movement speed. May be.

また、特許文献1に開示されている技術は、位置決め精度に対しては向上しているが、等速性(安定性)について考慮された内容ではなく、等速性の性能としては不十分である。即ち、等速性が不十分になるメカニズムは、精密に製造されたねじであっても、雄ねじと雌ねじのピッチが完全に一定になるわけではなく、微小な寸法誤差、接触状態の変化は避けられない。   In addition, the technique disclosed in Patent Document 1 is improved with respect to positioning accuracy, but is not a content that takes into consideration constant velocity (stability), and is insufficient as constant velocity performance. is there. In other words, the mechanism that makes the constant speed insufficient is that the pitch between the male screw and the female screw is not completely constant even if the screw is precisely manufactured, and minute dimensional errors and changes in the contact state should be avoided. I can't.

しかも、特許文献1に開示されている技術は、実質的に2つに分割された構造体、即ちテーブルに一体に形成された第1のナットとリードスクリューと噛み合う第2のナットが、微小なピッチ誤差を含むねじ構造に対して特定の距離をもって異なる2箇所で噛み合う形になるため、双方の相対速度が微妙に変化し、接触面での引っ掛かりや不均等な摩耗を生じ、回転トルクに変動を与え、等速性が損なわれることになる。特にこの微小な変化がばねの弾性による振動現象として増幅されるような状態になると更に等速性に悪影響が現れる。更に、運動変換部の内部にばねが収容されている為、ねじの破損を容易に確認することも出来ない。   In addition, the technique disclosed in Patent Document 1 has a structure that is substantially divided into two parts, that is, a first nut integrally formed with a table and a second nut that meshes with a lead screw are very small. Since the screw structure including pitch error meshes with two different places at a specific distance, the relative speed of both changes slightly, causing contact surface contact and uneven wear, resulting in fluctuations in rotational torque. And the isokineticity is impaired. In particular, when the minute change is amplified as a vibration phenomenon due to the elasticity of the spring, the constant velocity property is further adversely affected. Furthermore, since the spring is accommodated in the motion conversion part, it is not possible to easily confirm the breakage of the screw.

本発明の目的は、ねじ軸と該ねじ軸の回転に応じてねじ軸の軸線方向に移動する運動変換部とにより構成されたねじ構造の移動機構において運動変換部の等速性を向上させるようにした移動機構を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to improve the constant velocity of a motion converting portion in a moving mechanism of a screw structure including a screw shaft and a motion converting portion that moves in the axial direction of the screw shaft according to the rotation of the screw shaft. It is to provide a moving mechanism.

上述した課題を解決するために、本発明に係る移動機構は、
非可動部材に回転自在に軸支されたねじ軸と、前記ねじ軸に螺合されかつ該ねじ軸の回転に応じて該ねじ軸の軸線方向に移動する運動変換部により構成される移動機構において、
一端が前記運動変換部の外面に係止され、他端が前記非可動部材に係止されて前記運動変換部に対してねじ軸の軸線方向に付勢力を及ぼすように配置されたばね部材を備え、
前記ばね部材は前記運動変換部の移動範囲において前記付勢力を保つことにより、前記運動変換部に形成された雌ねじの一側面と前記ねじ軸の前記雌ねじの一側面と対向する雄ねじの一側面が、前記運動変換部の移動中に前記付勢力が作用する方向に生じる押し付け力により前記運動変換部の移動方向に拘わらず常に良好な接触を保つようにしたことを特徴としている。
In order to solve the above-described problems, the moving mechanism according to the present invention is:
In a moving mechanism comprising a screw shaft rotatably supported by a non-movable member, and a motion conversion unit that is screwed to the screw shaft and moves in the axial direction of the screw shaft according to the rotation of the screw shaft. ,
A spring member is disposed so that one end is locked to the outer surface of the motion converting portion and the other end is locked to the non-movable member to exert a biasing force in the axial direction of the screw shaft with respect to the motion converting portion. ,
The spring member maintains the urging force in the movement range of the motion conversion portion, so that one side surface of the female screw formed on the motion conversion portion and one side surface of the male screw facing the one side surface of the female screw of the screw shaft are The contact force is always maintained regardless of the movement direction of the motion conversion portion by the pressing force generated in the direction in which the urging force acts during the movement of the motion conversion portion.

移動機構のねじ軸を軸支する非可動部材とねじ軸の回転に応じてねじ軸方向に移動する運動変換部との間に運動変換部に対してねじ軸方向に付勢力を及ぼすようにばね部材を設け、運動変換部の移動範囲において付勢力を保つことにより、運動変換部に形成された雌ねじの一側面とねじ軸の雌ねじの一側面と対向する雄ねじの一側面が、運動変換部の移動中に付勢力が作用する方向に生じる押し付け力により運動変換部の移動方向に拘わらず常に良好な接触を保つ。また、強固に固定された保持部材13,14によってばね部材を保持し、運動変換部に対してねじ軸方向に付勢力を与えることで、スライドユニット16の走り精度が向上する。これらにより、ねじ軸の雄ねじと運動変換部の雌ねじとの間におけるバックラッシュの発生を防止して運動変換部の高い等速性を実現することができる。   A spring that exerts an urging force in the screw shaft direction on the motion conversion portion between the non-movable member that supports the screw shaft of the moving mechanism and the motion conversion portion that moves in the screw shaft direction according to the rotation of the screw shaft. By providing a member and maintaining a biasing force in the movement range of the motion conversion unit, one side surface of the female screw formed on the motion conversion unit and one side surface of the male screw facing the female screw side of the screw shaft are The pressing force generated in the direction in which the urging force is applied during movement always maintains good contact regardless of the moving direction of the motion conversion unit. Further, the holding accuracy of the slide unit 16 is improved by holding the spring member by the holding members 13 and 14 that are firmly fixed and applying an urging force to the motion conversion portion in the screw shaft direction. As a result, it is possible to prevent the occurrence of backlash between the male screw of the screw shaft and the female screw of the motion converting portion, and to realize high constant velocity of the motion converting portion.

また、本発明の請求項2に記載の移動機構は、請求項1に記載の移動機構において、前記ねじ軸は送りねじ軸又はボールねじ軸であることを特徴としている。   A moving mechanism according to a second aspect of the present invention is the moving mechanism according to the first aspect, wherein the screw shaft is a feed screw shaft or a ball screw shaft.

ねじ軸として送りねじ軸又はボールねじ軸の何れを使用した場合でもねじ軸と運動変換部との間のバックラッシュ発生の防止とスライドユニットの走り精度を向上させることができる。   Even when either a feed screw shaft or a ball screw shaft is used as the screw shaft, it is possible to prevent the occurrence of backlash between the screw shaft and the motion converting portion and to improve the running accuracy of the slide unit.

また、本発明の請求項3に記載の移動機構は、請求項1又は請求項2に記載の移動機構において、前記ばね部材は圧縮ばね又は引っ張りばねであることを特徴としている。   A moving mechanism according to claim 3 of the present invention is the moving mechanism according to claim 1 or 2, wherein the spring member is a compression spring or a tension spring.

ばね部材として圧縮ばねを使用して運動変換部をねじ軸の移動方向に対して押し付けるように付勢力を付与しても良く、或いは引っ張りばねを使用して運動変換部をねじ軸の移動方向に対して引っ張る方向にばね力を付与するようにしても良い。何れの場合においてもねじ軸と運動変換部との間のバックラッシュの発生を防止することができる。   A compression spring may be used as a spring member to apply a biasing force so as to press the motion conversion unit against the moving direction of the screw shaft, or a tension spring may be used to move the motion converting unit in the moving direction of the screw shaft. On the other hand, a spring force may be applied in the pulling direction. In any case, the occurrence of backlash between the screw shaft and the motion conversion unit can be prevented.

本発明によると、移動機構のねじ軸を軸支する非可動部材とねじ軸の回転に応じてねじ軸方向に移動する運動変換部との間に運動変換部に対してねじ軸方向に付勢力を及ぼすようにばね部材を設けることで、ねじ軸と運動変換部との間のバックラッシュの発生を防止することができ、運動変換部の高い等速性を実現することができる。   According to the present invention, the biasing force in the screw shaft direction with respect to the motion conversion unit between the non-movable member that supports the screw shaft of the moving mechanism and the motion conversion unit that moves in the screw shaft direction according to the rotation of the screw shaft. By providing the spring member so as to exert a backlash, the occurrence of backlash between the screw shaft and the motion conversion portion can be prevented, and high constant velocity of the motion conversion portion can be realized.

また、運動変換部の内部構造を変更する必要が無く、構造が単純で変更が容易かつ安価である。また、回転トルクへの影響を小さくすることができると共に運動変換部に適度な荷重を与えるため等速性が安定し、摩耗が少なく、長寿命となる。更に、潤滑油の劣化が少なくて済み、メンテナンスフリー又はメンテナンスを軽減することができるなど等速性と寿命(メンテナンス性)の両立が可能となる。   In addition, there is no need to change the internal structure of the motion converter, the structure is simple, easy to change and inexpensive. In addition, since the influence on the rotational torque can be reduced and an appropriate load is applied to the motion converting portion, the constant velocity is stabilized, wear is reduced, and the life is prolonged. Further, the deterioration of the lubricating oil can be reduced, and it is possible to achieve both constant speed and life (maintenance) such as maintenance-free or reduction of maintenance.

以下、本発明の実施形態に係る移動機構について図面に基づいて説明する。移動機構1は、図1及び図2に示すように、ベース2、ベース2の上面の左右両端部に垂設された保持部材3,4、ねじ軸5、移動体としての運動変換部6、レール7、ばね部材8、及び駆動用モータ9等により構成されている。そして、ベース2と保持部材3,4により非可動部材11が構成されている。   Hereinafter, a moving mechanism according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the moving mechanism 1 includes a base 2, holding members 3 and 4 that are suspended from the left and right ends of the upper surface of the base 2, a screw shaft 5, a motion conversion unit 6 as a moving body, The rail 7, the spring member 8, and the drive motor 9 are configured. The base 2 and the holding members 3 and 4 constitute a non-movable member 11.

ベース2は、図1及び図2に示すように、上面から見て横長の長方形状をなす厚肉の板体で上面の両端部に保持部材3,4の下面が載置されて垂直にかつ対向して固定されている。これらの保持部材3,4には上部略中央位置に点線で示すようにねじ軸保持部材13,14が同一直線上にかつ水平に対向して設けられている。また、ベース2の上面には保持部材3,4の間にかつ幅方向の中央位置に長手方向に沿ってレール7が設けられている。   As shown in FIGS. 1 and 2, the base 2 is a thick plate body that is horizontally long when viewed from the upper surface, and the lower surfaces of the holding members 3 and 4 are placed vertically at both ends of the upper surface and Opposed and fixed. These holding members 3 and 4 are provided with screw shaft holding members 13 and 14 on the same straight line and horizontally facing each other as indicated by a dotted line at a substantially upper central position. Further, a rail 7 is provided on the upper surface of the base 2 between the holding members 3 and 4 and along the longitudinal direction at the center position in the width direction.

ねじ軸5は、例えば送りねじ軸(滑りねじ軸)で一端部(先端部)5aが保持部材3のねじ軸保持部材13に回転自在に軸支され、他端部(基端部)5bが保持部材4のねじ軸保持部材14に回転自在に軸支されかつ当該保持部材4から外側に突出している(以下「送りねじ軸5」という)。   The screw shaft 5 is, for example, a feed screw shaft (sliding screw shaft), one end portion (tip portion) 5a is rotatably supported by the screw shaft holding member 13 of the holding member 3, and the other end portion (base end portion) 5b is supported. It is rotatably supported by the screw shaft holding member 14 of the holding member 4 and protrudes outward from the holding member 4 (hereinafter referred to as “feed screw shaft 5”).

運動変換部6は、例えば円筒状のナットで、真鍮等の厚肉金属円筒部材からなり、図3に示すように、外周面の上部及び下部(直径上の上部及び下側)が長手方向に沿って平面状に切り欠かれて平行な上側平面部6a、下側平面部6bとされ、内周面に送りねじ軸5の雄ねじ(ねじ山)5cと螺合する雌ねじ(ねじ溝)6cが刻設されている。そして、運動変換部6の上側平面部6aに平板状のテーブル15が載置されて図示しないねじで固定されている。   The motion conversion unit 6 is, for example, a cylindrical nut and is made of a thick metal cylindrical member such as brass. As shown in FIG. 3, the upper and lower portions (upper and lower diameters) of the outer peripheral surface are in the longitudinal direction. The upper flat surface portion 6a and the lower flat surface portion 6b are cut out in a flat shape along the flat surface, and an internal thread (thread groove) 6c that engages with an external thread (thread) 5c of the feed screw shaft 5 on the inner peripheral surface. It is engraved. And the flat table 15 is mounted in the upper side plane part 6a of the motion conversion part 6, and is fixed with the screw which is not shown in figure.

スライドユニット16は、図2及び図3に示すように、厚肉の底板16aの両側部に側板16bが長手方向に沿ってかつ上方に向けて垂設され、これらの側板16bが運動変換部6の両側部を覆うように下方から装着されてその上端面がテーブル15の下面に図示しないねじで固定されている。また、底板16aの下面中央位置に長手方向に沿ってレール7の上部と摺動自在に嵌合する嵌合凹部16cが形成されている。そして、スライドユニット16の左右両端部に端板17,18が図示しないねじで固定されている。これらの端板17,18には送りねじ軸5が僅かな隙間を存して回転自在に遊貫する孔17a,18aが形成されている。   As shown in FIGS. 2 and 3, the slide unit 16 has side plates 16 b vertically suspended along the longitudinal direction on both sides of the thick bottom plate 16 a, and these side plates 16 b serve as the motion conversion unit 6. The upper end surface of the table 15 is fixed to the lower surface of the table 15 with a screw (not shown). Further, a fitting recess 16c is formed at the center of the bottom surface of the bottom plate 16a so as to be slidably fitted to the upper portion of the rail 7 along the longitudinal direction. End plates 17 and 18 are fixed to both left and right ends of the slide unit 16 with screws (not shown). The end plates 17 and 18 are formed with holes 17a and 18a through which the feed screw shaft 5 can freely rotate with a slight gap.

尚、テーブル15は、単板17、18を一体に形成してブロック状に形成しても良い。また、テーブル15の基本構成としては、ブロック、運動変換部、スライドユニットからなる構成とし、ブロックの一部を彫って、運動変換部をはめ込み固定、ブロックをスライドユニットに固定するようにしても良い。   The table 15 may be formed in a block shape by integrally forming the single plates 17 and 18. The basic configuration of the table 15 may be a block, a motion conversion unit, and a slide unit. A part of the block may be carved to fix the motion conversion unit and fix the block to the slide unit. .

この運動変換部6は、保持部材3,4の間に配置されて送りねじ軸5が螺合貫通し、かつスライドユニット16の嵌合凹部16cがレール7の上部に嵌合している。このスライドユニット16は、運動変換部6が送りねじ軸5に沿って移動する際の回転及び横揺れを防止する。これにより、運動変換部6は、送りねじ軸5の回転に応じてスライドユニット16を介してレール7上を長手方向に沿って水平かつ円滑に移動可能とされている。   The motion converting portion 6 is disposed between the holding members 3 and 4, the feed screw shaft 5 is screwed through, and the fitting recess 16 c of the slide unit 16 is fitted to the upper portion of the rail 7. The slide unit 16 prevents rotation and roll when the motion conversion unit 6 moves along the feed screw shaft 5. Thereby, the motion conversion unit 6 can move horizontally and smoothly along the longitudinal direction on the rail 7 via the slide unit 16 according to the rotation of the feed screw shaft 5.

ばね部材8は、圧縮コイルばね(以下「圧縮ばね」という)で内径が送りねじ軸5の外径よりも僅かに大径をなし、送りねじ軸5の外側であって運動変換部6に固定されている端板18と保持部材4との間に送りねじ軸5と同心となるように縮んだ状態で取り付けられている。そして、圧縮ばね8は、図3に示すように、一端部8aが端板18の外面に送りねじ軸5と同心となるように形成された円形状の凹部(以下「座ぐり」という)18bに嵌合係止され、他端部8bが保持部材4の内側面4aに送りねじ軸5と同心となるように形成された円形状の凹部(以下「座ぐり」という)4bに嵌合係止されている。   The spring member 8 is a compression coil spring (hereinafter referred to as “compression spring”) having an inner diameter slightly larger than the outer diameter of the feed screw shaft 5, and is fixed to the motion conversion unit 6 outside the feed screw shaft 5. The end plate 18 and the holding member 4 are attached in a contracted state so as to be concentric with the feed screw shaft 5. As shown in FIG. 3, the compression spring 8 has a circular recess (hereinafter referred to as “counterbore”) 18 b formed so that one end 8 a is concentric with the feed screw shaft 5 on the outer surface of the end plate 18. The other end portion 8b is fitted to a circular concave portion (hereinafter referred to as “counterbore”) 4b formed on the inner side surface 4a of the holding member 4 so as to be concentric with the feed screw shaft 5. It has been stopped.

圧縮ばね8は、両端部8a,8bが座ぐり18b,4bに保持されることで、ばねの座りが安定化して中心ずれ、胴曲がりが防止される。この圧縮ばね8は、運動変換部6に常時図中左方向の軸方向にばね力(付勢力)を付与する。尚、端板18、保持部材4の座ぐり18b,4bに代えてそれぞれ送りねじ軸5と同心的な円筒状のボス部を形成し、これらのボス部の外周に圧縮コイルばね8の両端部8a,8bを嵌合して係止するようにしても良い。   Since both ends 8a and 8b of the compression spring 8 are held by the counterbore 18b and 4b, the seat of the spring is stabilized and the center deviation and the body bending are prevented. The compression spring 8 always applies a spring force (biasing force) to the motion conversion unit 6 in the left axial direction in the drawing. In addition, instead of the end plate 18 and the counterbore 18b, 4b of the holding member 4, cylindrical boss portions concentric with the feed screw shaft 5 are formed, and both end portions of the compression coil spring 8 are formed on the outer periphery of these boss portions. 8a and 8b may be fitted and locked.

送りねじ軸5の保持部材4から突出した端部5bは、図1及び図2に示すように、軸継手19を介して駆動用のモータ9のモータ軸10に連結されている。そして、駆動用のモータ9の回転に伴い送りねじ軸5が回転し、該送りねじ軸5の回転に応じて運動変換部6がレール7上を送りねじ軸5の軸方向に沿って水平に移動する。このようにして移動機構1が構成されている。そして、テーブル15には例えば特開2004−125652号公報に示すようなモアレ縞を利用した被測定物の三次元計測等の光学的な形状計測を行う半導体デバイス装置等の図示しない撮像機構が取り付けられる。   As shown in FIGS. 1 and 2, the end 5 b protruding from the holding member 4 of the feed screw shaft 5 is connected to the motor shaft 10 of the driving motor 9 through the shaft coupling 19. Then, the feed screw shaft 5 rotates with the rotation of the drive motor 9, and the motion conversion unit 6 moves horizontally on the rail 7 along the axial direction of the feed screw shaft 5 according to the rotation of the feed screw shaft 5. Moving. In this way, the moving mechanism 1 is configured. An imaging mechanism (not shown) such as a semiconductor device device that performs optical shape measurement such as three-dimensional measurement of an object to be measured using moire fringes as shown in, for example, Japanese Patent Application Laid-Open No. 2004-125652 is attached to the table 15. It is done.

このように、モータ9側の送りねじ軸5に圧縮ばね8を設置することで、モータ9方向へ適当な軸方向荷重が与えられ、かつ圧縮ばね8の中心軸がずれたり、胴曲がりや脱落することが防止される。そして、運動変換部6の予圧は無く、運動変換部6のストローク、ばねレート、自由長から最適な軸方向荷重を設定することができる。   Thus, by installing the compression spring 8 on the feed screw shaft 5 on the motor 9 side, an appropriate axial load is applied in the direction of the motor 9, and the central axis of the compression spring 8 is deviated, bent or dropped off. Is prevented. And there is no preload of the motion converter 6, and the optimal axial load can be set from the stroke, spring rate, and free length of the motion converter 6.

図1に戻り、運動変換部6の−側移動限界点P1(mm)、+側移動限界点P2(mm)、運動変換部6の端面位置T1,T2、−側最大ストロークでのT1位置P3(mm)、+側最大ストロークでのT1位置P4(mm)、圧縮ばね8の許容最大撓み率Fw、圧縮ばね8の自由長Lf(mm)、端板18の座ぐり18bの深さX1、保持部材4の座ぐり4bの深さX2(mm)、圧縮ばね8のばね定数Cs(N/mm)、初期撓み量010Lw(mm)、運動変換部6の座標系原点をP1とすると、
モータ9側移動ストロークにおいて、式(Lf×Fw<P3−P1+X1+X2)により圧縮ばね8の許容撓み率Fwを超えないことを確認する(以下「式1」という)。
Returning to FIG. 1, the -side movement limit point P1 (mm) of the motion conversion unit 6, the + side movement limit point P2 (mm), the end face positions T1, T2 of the motion conversion unit 6, and the T1 position P3 at the-side maximum stroke. (Mm), T1 position P4 (mm) at the + side maximum stroke, allowable maximum deflection rate Fw of compression spring 8, free length Lf (mm) of compression spring 8, depth X1 of counterbore 18b of end plate 18, If the depth X2 (mm) of the counterbore 4b of the holding member 4, the spring constant Cs (N / mm) of the compression spring 8, the initial deflection amount 010 Lw (mm), and the coordinate system origin of the motion conversion unit 6 are P1,
It is confirmed that the allowable deflection rate Fw of the compression spring 8 is not exceeded by the equation (Lf × Fw <P3−P1 + X1 + X2) in the motor 9 side moving stroke (hereinafter referred to as “Equation 1”).

反モータ9側移動ストロークにおいて、式(Lf>P4−P1+X1+X2+Lw)により初期撓み量Lwを確保するための圧縮ばね8の自由長Lfを確認する(以下「式2」という)。   In the non-motor 9 side moving stroke, the free length Lf of the compression spring 8 for securing the initial deflection Lw is confirmed by the equation (Lf> P4−P1 + X1 + X2 + Lw) (hereinafter referred to as “Equation 2”).

圧縮ばね8が運動変換部6を押すことによって発生する送りねじ軸5方向のばね荷重Fb(N)は、式「Fb=(Lf−(T1−P1+X1+X2)×Cs」により算出する(以下「式3」という)。   The spring load Fb (N) in the direction of the feed screw shaft 5 generated when the compression spring 8 pushes the motion conversion unit 6 is calculated by the expression “Fb = (Lf− (T1−P1 + X1 + X2) × Cs” (hereinafter, “expression”). 3 ”).

図4は、停止時の送りねじ軸5と運動変換部6の断面図で、運動変換部6の雌ねじ(ねじ溝)6cが送りねじ軸5の雄ねじ(ねじ山)5cを反モータ方向(保持部材3方向)にばね荷重Fbで押している状態を表している。尚、送りねじ軸5は、一部のみを図示している。図4において、接触面A2では、雄ねじ(ねじ山)5cの摺動面と雌ねじ(ねじ溝)6cの摺動面が密着し、接触面A1では雄ねじ(ねじ山)5cの摺動面と雌ねじ(ナット)6cの摺動面が離れている。ねじ5が回転し、雌ねじ(ナット)6cがP1方向へ定速で移動する場合、雌ねじ(ねじ溝)6cが雄ねじ(ねじ山)5cにP1方向に引かれるように動作するため、雄ねじ(ねじ)5cの右面と雌ねじ(ねじ溝)6cの左面が接触した状態で移動する。   FIG. 4 is a cross-sectional view of the feed screw shaft 5 and the motion converting portion 6 at the time of stop. The female screw (thread groove) 6c of the motion converting portion 6 holds the male screw (thread) 5c of the feed screw shaft 5 in the direction opposite to the motor (holding). This represents a state where the spring load Fb is pressed in the direction of the member 3). Only a part of the feed screw shaft 5 is shown. In FIG. 4, on the contact surface A2, the sliding surface of the male screw (thread) 5c and the sliding surface of the female screw (thread groove) 6c are in close contact, and on the contact surface A1, the sliding surface of the male screw (thread) 5c and the female screw The sliding surface of the (nut) 6c is separated. When the screw 5 rotates and the female screw (nut) 6c moves at a constant speed in the P1 direction, the female screw (screw groove) 6c operates so as to be pulled by the male screw (thread) 5c in the P1 direction. ) It moves with the right surface of 5c and the left surface of the female screw (thread groove) 6c in contact.

反対に、雌ねじ(ねじ溝)6cがP2方向へ定速で移動する場合、雌ねじ(ねじ溝)6cが雄ねじ(ねじ山)5cにP2方向に引かれるように動作する。接触面A2では、雄ねじ(ねじ山)5cの摺動面と雌ねじ(ねじ溝)6cの摺動面が離れ、接触面A1では雄ねじ(ねじ山)5cの摺動面と雌ねじ(ナット)6cの摺動面が密着し移動しようとするが、運動変換部6の雌ねじ(ねじ溝)6cを反モータ方向(保持部材3方向)にばね荷重Fbで押している為、接触面A2では、雄ねじ(ねじ山)5cの摺動面と雌ねじ(ねじ溝)6cの摺動面が密着し、接触面A1では雄ねじ(ねじ山)5cの摺動面と雌ねじ(ナット)6cの摺動面が離れた状態を保持する。   On the contrary, when the female screw (screw groove) 6c moves at a constant speed in the P2 direction, the female screw (screw groove) 6c operates so as to be pulled by the male screw (screw thread) 5c in the P2 direction. On the contact surface A2, the sliding surface of the male screw (thread) 5c and the sliding surface of the female screw (thread groove) 6c are separated from each other, and on the contact surface A1, the sliding surface of the male screw (thread) 5c and the female screw (nut) 6c. Although the sliding surface is in close contact with each other, the female screw (screw groove) 6c of the motion converting portion 6 is pushed in the anti-motor direction (direction of the holding member 3) with the spring load Fb. The sliding surface of the thread 5c and the sliding surface of the female screw (thread groove) 6c are in close contact with each other, and the sliding surface of the male screw (screw thread) 5c and the sliding surface of the female screw (nut) 6c are separated at the contact surface A1. Hold.

十分な等速性を得るためには、スライドユニット16が一定速度で移動するときに、摩擦、抵抗等の外乱の影響を受けた場合においても、全ての接触面が常時図4の状態になっていることが重要である。   In order to obtain sufficient constant velocity, all contact surfaces are always in the state shown in FIG. 4 even when the slide unit 16 is moved at a constant speed, even when it is affected by disturbances such as friction and resistance. It is important that

即ち、運動変換部6の雌ねじ(ねじ溝)6cの一側の面と、送りねじ軸5の雌ねじ6cと対向する雄ねじ(ねじ山)5cの摺動面が、運動変換部6の移動中に圧縮ばね8の付勢力が作用する方向に生じる押し付け力により運動変換部6の移動方向に拘わらず常に良好な接触を保つようにされている。   That is, the surface on one side of the internal thread (screw groove) 6c of the motion conversion section 6 and the sliding surface of the external thread (thread) 5c facing the internal thread 6c of the feed screw shaft 5 are moved during the movement of the motion conversion section 6. The pressing force generated in the direction in which the urging force of the compression spring 8 acts is always kept in good contact regardless of the moving direction of the motion conversion unit 6.

スライドユニット16を水平往復させる場合、定速移動時の軸方向荷重Faは、搬送重量m(kg)、案内面(レール7との摺動面)の摩擦係数μ、重力加速度g、案内面の抵抗(無負荷時)f(N)、外乱荷重N(N)とすると、
P2方向定速時の軸方向荷重Fa2(N)は、(Fa2(N)=μ×m×g+f+N−Fb)で表される(以下「式4」という)。
When the slide unit 16 is reciprocated horizontally, the axial load Fa when moving at a constant speed is the conveyance weight m (kg), the friction coefficient μ of the guide surface (sliding surface with the rail 7), the gravitational acceleration g, and the guide surface. If resistance (no load) f (N) and disturbance load N (N),
The axial load Fa2 (N) at the constant speed in the P2 direction is represented by (Fa2 (N) = μ × m × g + f + N−Fb) (hereinafter referred to as “Expression 4”).

P1方向定速時の軸方向荷重Fa1(N)は、(Fa1(N)=−μ×m×g−f+N−Fb)で表される(以下「式5」という)。尚、外乱荷重Nは、振動や衝撃によって発生するランダムな荷重を想定している。   The axial load Fa1 (N) at the constant speed in the P1 direction is expressed by (Fa1 (N) = − μ × m × g−f + N−Fb) (hereinafter referred to as “Formula 5”). The disturbance load N is assumed to be a random load generated by vibration or impact.

上記「式4」において、軸方向荷重Fa2≧0の条件で、軸方向荷重Fa2が小さく、摩擦、抵抗の変動や外乱荷重の影響を受けた場合、一時的に雄ねじ(ねじ山)5cの左面と雌ねじ(ねじ溝)6cの右面が接触し、図4の状態を連続的に維持できないことがある。この状態では十分な等速性を満たすことができない。これを防止するため、P2方向への移動に関してはFbの設定は、Fa2<0の場合、(μ×m×g+f+N<Fb)であることを条件とする(以下「式6」という)。   In the above “Expression 4”, if the axial load Fa2 is small under the condition of the axial load Fa2 ≧ 0 and is affected by friction, resistance fluctuations or disturbance load, the left surface of the male screw (thread) 5c is temporarily 4 may contact the right surface of the female screw (thread groove) 6c, and the state of FIG. 4 may not be continuously maintained. In this state, sufficient constant velocity cannot be satisfied. In order to prevent this, regarding the movement in the P2 direction, the setting of Fb is made on condition that (μ × m × g + f + N <Fb) when Fa2 <0 (hereinafter referred to as “Expression 6”).

P1方向の移動でのFbの設定は、Fa1<0の場合、(−μ×m×g−f+N<Fb)であることを条件とする(以下「式7」という)。Fa1は、雄ねじ(ねじ山)5cの右面と雌ねじ(ねじ溝)6cの左面が接触する方向の移動でFa1を大きくするようにFbが作用するため、異常な外乱荷重が入らない限り図4の状態を維持することが容易である。   The setting of Fb in the movement in the P1 direction is conditional on (−μ × m × g−f + N <Fb) when Fa1 <0 (hereinafter referred to as “Expression 7”). Since Fa1 acts so as to increase Fa1 by the movement in the direction in which the right surface of male screw (thread) 5c and the left surface of female screw (thread groove) 6c contact, Fa1 acts as shown in FIG. 4 unless an abnormal disturbance load is applied. It is easy to maintain the state.

また、運動変換部6(テーブル15)の位置により、送りねじ軸方向ばね荷重Fb(N)は異なってくるため、最大ストローク(P3〜P4)内で、「式6」、「式7」を満たす必要がある。そして、必要最低限のねじ軸方向のばね荷重Fb(N)を設定することで、送りねじ軸5と運動変換部6、即ち雄ねじ(ねじ山)5cと雌ねじ(ねじ溝)6cの摩耗、摩擦抵抗の低減が可能となる。   In addition, since the feed screw axial spring load Fb (N) varies depending on the position of the motion conversion unit 6 (table 15), “Expression 6” and “Expression 7” are determined within the maximum stroke (P3 to P4). It is necessary to satisfy. Then, by setting the minimum necessary spring load Fb (N) in the direction of the screw shaft, the wear and friction of the feed screw shaft 5 and the motion converting portion 6, that is, the male screw (screw thread) 5c and the female screw (screw groove) 6c. Resistance can be reduced.

図5は、上記構成の移動機構における等速性、即ち運動変換部6(テーブル15)の位置(μm)と速度(μm/s)との関係を表したグラフ、図6は、図11に示す予圧無しの構造の移動機構における等速性、即ち運動変換部32の位置(μm)と速度(μm/s)との関係を表したグラフである。尚、何れの場合も指令速度は、1(mm/s)である。   FIG. 5 is a graph showing the constant velocity in the moving mechanism configured as described above, that is, the relationship between the position (μm) and the speed (μm / s) of the motion conversion unit 6 (table 15), and FIG. It is a graph showing the constant velocity in the moving mechanism of the structure without preload shown, that is, the relationship between the position (μm) and the speed (μm / s) of the motion conversion unit 32. In any case, the command speed is 1 (mm / s).

図1乃至図3に示した本発明に係る移動機構の構成では、図11に示した従来構造の移動機構に比べて運動変換部6の速度変動(大きな波の振幅)が大幅に低減し、かつ運動変換部6の位置の僅かな変化量(短距離の移動時)における速度変動(トゲ状の細い波の振幅)も大幅に低減した。このような構成の移動機構は、小型で比較的短いストロークの移動機構に好適であり、前述したように半導体デバイス装置等の撮像機構を搭載する移動機構に好適である。   In the configuration of the moving mechanism according to the present invention shown in FIGS. 1 to 3, the speed variation (amplitude of a large wave) of the motion converting unit 6 is significantly reduced as compared with the moving mechanism having the conventional structure shown in FIG. In addition, the speed variation (amplitude of thorn-like thin waves) in a slight change amount (during short distance movement) of the position of the motion conversion unit 6 is also greatly reduced. The moving mechanism having such a configuration is suitable for a moving mechanism that is small and has a relatively short stroke, and is suitable for a moving mechanism that includes an imaging mechanism such as a semiconductor device device as described above.

図7は、ねじ軸として送りねじ軸5に代えてボールねじ軸33を使用した場合の運動変換部34の断面図である。ボールねじ軸33も基本的な考え方は送りねじ軸5の場合と同じで、前記「式1」から「式7」を適用することが可能である。また、作用・効果も送りねじ軸5の場合と同様である。また、何れの場合においてもばね8は、圧縮ばねに代えて引っ張りばねを使用しても良い。   FIG. 7 is a cross-sectional view of the motion converter 34 when a ball screw shaft 33 is used instead of the feed screw shaft 5 as a screw shaft. The basic concept of the ball screw shaft 33 is the same as that of the feed screw shaft 5, and it is possible to apply “Formula 1” to “Formula 7”. The operation and effect are the same as in the case of the feed screw shaft 5. In any case, the spring 8 may be a tension spring instead of the compression spring.

上述したように運動変換部6の外側(外部)に同心となるように圧縮ばね8を配置し、当該圧縮ばね8の一端部8aを運動変換部6の外面に、他端部8bを非可動部としての保持部材4に夫々係止又は固定する構成としたことにより、送りねじ軸5のねじ部が外側から目視できる箇所に配置することができ、ねじ部の破損が容易に確認できる。また、送りねじ軸5の外側に同心となるように圧縮ばね8を配置することで、当該圧縮ばね8の破損時にばねが脱落しないようにすることができる。   As described above, the compression spring 8 is arranged so as to be concentric on the outer side (outside) of the motion conversion unit 6, one end 8 a of the compression spring 8 is on the outer surface of the motion conversion unit 6, and the other end 8 b is not movable. By being configured to be locked or fixed to the holding member 4 as a portion, the screw portion of the feed screw shaft 5 can be disposed at a place where the screw portion can be seen from the outside, and breakage of the screw portion can be easily confirmed. In addition, by arranging the compression spring 8 so as to be concentric outside the feed screw shaft 5, it is possible to prevent the spring from falling off when the compression spring 8 is damaged.

更に、特許文献1に開示されている構造に比べて圧縮ばね8の交換が容易である。そして、バックラッシュを十分に低減し、かつねじ部の摩擦を低く抑えるばねを概算設計した後に数種類のばねを試験的に交換しながら、より適当なばねを選択することの手間が大幅に低減されるので、運動変換部6の等速性が安定しかつ摩耗が少なくなるような機構を実現することが容易になる。   Furthermore, the compression spring 8 can be easily replaced as compared with the structure disclosed in Patent Document 1. Then, after roughly designing a spring that sufficiently reduces backlash and keeps the friction of the screw part low, the labor of selecting a more appropriate spring while testing several types of springs is greatly reduced. Therefore, it becomes easy to realize a mechanism in which the constant velocity of the motion conversion unit 6 is stable and wear is reduced.

図8乃至図10は、本発明に係る移動機構の第2の実施形態を示す。尚、図1及び図2に示す部材と同一の部材には同一の符号を付して詳細な説明は省略する。移動機構21は、図8及び図9に示すように、送りねじ軸5のモータと反対側にばねガイド24を介してばね部材としての圧縮ばね25を設置した構造とされている。即ち、移動機構21は、ベース2の上面一側(図中左側)端部にストッパ部材(保持部材)23が保持部材4と対向して垂設されており、保持部材4のねじ軸保持部材14と対向して当該ねじ軸保持部材14よりも大径の孔23aが形成されている。送りねじ軸5は、片持ち構造とされ図10に点線で示すように一端部(先端部)5a側がばねガイド24に挿入され、他端部(基端部)5bがねじ軸保持部材14により回転自在に軸支されている。   8 to 10 show a second embodiment of the moving mechanism according to the present invention. In addition, the same code | symbol is attached | subjected to the member same as the member shown in FIG.1 and FIG.2, and detailed description is abbreviate | omitted. As shown in FIGS. 8 and 9, the moving mechanism 21 has a structure in which a compression spring 25 as a spring member is installed on a side opposite to the motor of the feed screw shaft 5 via a spring guide 24. That is, the moving mechanism 21 has a stopper member (holding member) 23 that is suspended from one end (left side in the figure) of the upper surface of the base 2 so as to face the holding member 4, and the screw shaft holding member of the holding member 4. A hole 23 a having a diameter larger than that of the screw shaft holding member 14 is formed so as to be opposed to the screw shaft 14. The feed screw shaft 5 has a cantilever structure, and as shown by a dotted line in FIG. 10, one end (front end) 5 a side is inserted into the spring guide 24, and the other end (base end) 5 b is inserted by the screw shaft holding member 14. It is pivotally supported.

図10に示すようにばねガイド24は、有底円筒形状をなし、筒部24aの内径が送りねじ軸5の外径よりも僅かに大径とされ、開口端部にばね座としてのフランジ24bが全周に亘り形成されている。このばねガイド24は、送りねじ軸5の先端部側に被された状態で装着され、フランジ24bがスライドユニット16の左側端部に固定されている端板17に当接し、先端部側がストッパ部材23の孔23aに挿通されている。そして、送りねじ軸5がばねガイド24内を僅かな隙間を存して回転可能とされている。   As shown in FIG. 10, the spring guide 24 has a bottomed cylindrical shape, the inner diameter of the cylindrical portion 24a is slightly larger than the outer diameter of the feed screw shaft 5, and a flange 24b as a spring seat at the open end. Is formed over the entire circumference. The spring guide 24 is mounted in a state where it is covered on the tip end side of the feed screw shaft 5, the flange 24 b comes into contact with the end plate 17 fixed to the left end portion of the slide unit 16, and the tip end side is a stopper member. 23 is inserted through the hole 23a. The feed screw shaft 5 is rotatable in the spring guide 24 with a slight gap.

圧縮ばね25は、内径がばねガイド24の外径よりも僅かに大径とされており、ストッパ部材23とばねガイド24のフランジ24bとの間にかつ当該ばねガイド24の外側に同心をなして縮んだ状態で配置され、一端部25aがストッパ部材23に係止され、他端部25bがばねガイド24のフランジ24bに係止されている。ばねガイド24は、圧縮ばね25の中心ずれや胴曲がりを防止するためのものである。   The compression spring 25 has an inner diameter slightly larger than the outer diameter of the spring guide 24, and is concentric between the stopper member 23 and the flange 24 b of the spring guide 24 and outside the spring guide 24. Arranged in a contracted state, one end 25 a is locked to the stopper member 23, and the other end 25 b is locked to the flange 24 b of the spring guide 24. The spring guide 24 is for preventing the center deviation and the bending of the compression spring 25.

このように、送りねじ軸5のモータと反対側に圧縮ばね25を設置することで、モータ9方向へ適当な軸方向荷重が与えられ、かつばねガイド24により圧縮ばね25の中心軸がずれたり、胴曲がりや脱落することが防止される。そして、運動変換部6の予圧は無く、運動変換部6のストローク、ばねレート、自由長から最適な軸方向荷重を設定することができる。そして、作用・効果は、前述した第1の実施形態の場合と同様である。   Thus, by installing the compression spring 25 on the side opposite to the motor of the feed screw shaft 5, an appropriate axial load is applied in the direction of the motor 9, and the center axis of the compression spring 25 is displaced by the spring guide 24. , Torso bending and falling off are prevented. And there is no preload of the motion converter 6, and the optimal axial load can be set from the stroke, spring rate, and free length of the motion converter 6. The actions and effects are the same as in the case of the first embodiment described above.

尚、圧縮ばね25の適用条件は、前記第1の実施形態における圧縮ばね8の場合と同様に考えることができる。また、この場合ばね25は、圧縮ばねに限るものではなく引っ張りばねを使用しても良い。   The application conditions of the compression spring 25 can be considered in the same manner as in the case of the compression spring 8 in the first embodiment. In this case, the spring 25 is not limited to the compression spring, and a tension spring may be used.

本発明に係る移動機構の第1の実施形態を示す上面図である。It is a top view which shows 1st Embodiment of the moving mechanism which concerns on this invention. 図1に示した移動機構の正面図である。It is a front view of the moving mechanism shown in FIG. 図2に示した移動機構の運動変換部の拡大断面図である。It is an expanded sectional view of the motion conversion part of the moving mechanism shown in FIG. 図1に示した移動機構の動作時におけるねじ軸と運動変換部との関係を示す説明図である。It is explanatory drawing which shows the relationship between the screw shaft at the time of operation | movement of the moving mechanism shown in FIG. 1, and a motion conversion part. 図1に示した移動機構の運動変換部の位置と速度(等速性)との関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the position of the motion conversion part of the moving mechanism shown in FIG. 1, and speed (constant velocity). 図11に示した従来の予圧無し構造の移動機構における運動変換部の位置と速度(等速性)との関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the position and speed (constant velocity property) of the motion conversion part in the moving mechanism of the conventional no preload structure shown in FIG. 図1に示した移動機構において送りねじ軸に代えてボールねじ軸を使用した場合の動作時におけるボールねじ軸と運動変換部との関係を示す説明図である。It is explanatory drawing which shows the relationship between a ball screw shaft at the time of operation | movement at the time of operation | movement at the time of using a ball screw shaft instead of a feed screw shaft in the moving mechanism shown in FIG. 本発明に係る移動機構の第2の実施形態を示す上面図である。It is a top view which shows 2nd Embodiment of the moving mechanism which concerns on this invention. 図8に示した移動機構の正面図である。It is a front view of the moving mechanism shown in FIG. 図8に示した移動機構の運動変換部とばねとの関係を示す要部拡大図である。It is a principal part enlarged view which shows the relationship between the motion conversion part of the moving mechanism shown in FIG. 8, and a spring. 従来の予圧無し構造の移動機構における送りねじと運動変換部との間に発生するバックラッシュの説明図であり、図11(a)は、送りねじ軸の雄ねじの左面に運動変換部の雌ねじが接触する場合を示す説明図、図11(b)は、送りねじ軸の雄ねじの右面に運動変換部の雌ねじが接触する場合を示す説明図である。It is explanatory drawing of the backlash which generate | occur | produces between the feed screw and the motion conversion part in the moving mechanism of the conventional no preload structure, Fig.11 (a) is a female screw of the motion conversion part on the left surface of the external thread of a feed screw axis | shaft. FIG. 11B is an explanatory diagram showing a case of contact, and FIG. 11B is an explanatory diagram showing a case where the female screw of the motion conversion unit contacts the right surface of the male screw of the feed screw shaft. 従来の予圧無し構造の移動機構におけるボールねじ軸と運動変換部との間に発生するバックラッシュの説明図であり、図12(a)は、ボールねじ軸に対して運動変換部の雌ねじが左にずれる場合を示す説明図、図12(b)は、ボールねじ軸に対して運動変換部の雌ねじが右にずれる場合を示す説明図である。It is explanatory drawing of the backlash which generate | occur | produces between the ball screw axis | shaft and the motion conversion part in the movement mechanism of the conventional no preload structure, Fig.12 (a) is a female screw of a motion conversion part on the left with respect to a ball screw axis. FIG. 12B is an explanatory diagram showing a case where the female screw of the motion converting portion is shifted to the right with respect to the ball screw shaft.

符号の説明Explanation of symbols

1 移動機構
2 ベース
3 保持部材
4 保持部材
4a 内側面
4b 座ぐり
5 送りねじ軸(ねじ軸)
5a 一端部(先端部)
5b 他端部(基端部)
5c 雄ねじ(ねじ山)
6 運動変換部
6a 上側平面部
6b 下側平面部
6c 雌ねじ(ねじ溝)
7 レール
8 圧縮ばね(ばね部材)
8a 一端部
8b 他端部
9 駆動用モータ
10 モータ軸
11 非可動部材
13,14 ねじ軸保持部材
15 テーブル
16 スライドユニット
16a 底板
16b 側板
16c 嵌合凹部
17 端板
17a 孔
18 端板
18a 孔
18b 座ぐり
19 軸継手
21 移動機構
23 ストッパ部材(保持部材)
23a 孔
24 ばねガイド
24a 筒部
24b フランジ(ばね座)
25 圧縮ばね
25a 一端部
25b 他端部
31 送りねじ軸
31a 雄ねじ(ねじ山)
32 運動変換部(ナット)
32a 雌ねじ(ねじ溝)
33 ボールねじ軸
34 運動変換部(ナット)
34a 雌ねじ(ねじ溝)
35 ボール
P1 −側移動限界点
P2 +側移動限界点
P3 −側最大ストロークでのT1位置
P4 +側最大ストロークでのT1位置
Fw 圧縮ばねの許容最大撓み率
Lf 圧縮ばねの自由長
X1 端板の座ぐりの深さ
X2 保持部材の座ぐりの深さ
Cs 圧縮ばねのばね定数
Lw 圧縮ばねの初期撓み量
Fa 定速移動時の軸方向荷重
Fb ねじ軸方向のばね荷重
m 搬送重量
μ 案内面の摩擦係数
g 重力加速度
f 案内面の抵抗(無負荷時)
N 外乱荷重
Fa1 P1方向定速時の軸方向荷重
Fa2 P2方向定速時の軸方向荷重
A1 接触面
A2 接触面
T1 運動変換部の端面位置
T2 運動変換部の端面位置
│A−B│ バックラッシュ
DESCRIPTION OF SYMBOLS 1 Movement mechanism 2 Base 3 Holding member 4 Holding member 4a Inner side surface 4b Counterbore 5 Feed screw shaft (screw shaft)
5a One end (tip)
5b The other end (base end)
5c Male thread (thread)
6 motion conversion part 6a upper plane part 6b lower plane part 6c female thread (thread groove)
7 Rail 8 Compression spring (spring member)
8a one end 8b other end 9 driving motor 10 motor shaft 11 non-movable member 13, 14 screw shaft holding member 15 table 16 slide unit 16a bottom plate 16b side plate 16c fitting recess 17 end plate 17a hole 18 end plate 18a hole 18b seat Boring 19 Shaft coupling 21 Moving mechanism 23 Stopper member (holding member)
23a hole 24 spring guide 24a tube portion 24b flange (spring seat)
25 compression spring 25a one end 25b other end 31 feed screw shaft 31a male screw (thread)
32 Motion conversion part (nut)
32a Female thread (thread groove)
33 Ball screw shaft 34 Motion converter (nut)
34a Female thread (thread groove)
35 Ball P1-Side movement limit point P2 + Side movement limit point P3-T1 position with maximum side stroke P4 + T1 position with maximum side stroke Fw Allowable maximum deflection of compression spring Lf Free length of compression spring X1 End plate Counterbore depth X2 Depth of counterbore of holding member Cs Spring constant of compression spring Lw Initial deflection of compression spring Fa Axial load during constant speed movement Fb Spring load in screw shaft direction m Conveyance weight μ Coefficient of friction of guide surface g Gravitational acceleration f Guide surface resistance (no load)
N Disturbance load Fa1 Axial load at P1 direction constant speed Fa2 Axial load at P2 direction constant speed A1 Contact surface A2 Contact surface T1 End face position of motion converter T2 End face position of motion converter │AB│ Backlash

Claims (3)

非可動部材に回転自在に軸支されたねじ軸と、前記ねじ軸に螺合されかつ該ねじ軸の回転に応じて該ねじ軸の軸線方向に移動する運動変換部により構成される移動機構において、
一端が前記運動変換部の外面に係止され、他端が前記非可動部材に係止されて前記運動変換部に対してねじ軸の軸線方向に付勢力を及ぼすように配置されたばね部材を備え、
前記ばね部材は前記運動変換部の移動範囲において前記付勢力を保つことにより、前記運動変換部に形成された雌ねじの一側面と前記ねじ軸の前記雌ねじの一側面と対向する雄ねじの一側面が、前記運動変換部の移動中に前記付勢力が作用する方向に生じる押し付け力により前記運動変換部の移動方向に拘わらず常に良好な接触を保つようにしたことを特徴とする移動機構。
In a moving mechanism comprising a screw shaft rotatably supported by a non-movable member, and a motion conversion unit that is screwed to the screw shaft and moves in the axial direction of the screw shaft according to the rotation of the screw shaft. ,
A spring member is disposed so that one end is locked to the outer surface of the motion converting portion and the other end is locked to the non-movable member and exerts a biasing force on the motion converting portion in the axial direction of the screw shaft. ,
The spring member maintains the urging force in the movement range of the motion conversion portion, so that one side surface of the female screw formed on the motion conversion portion and one side surface of the male screw facing the one side surface of the female screw of the screw shaft are A moving mechanism characterized in that a good contact is always maintained regardless of the moving direction of the motion converting portion by a pressing force generated in a direction in which the urging force acts during the movement of the motion converting portion.
前記ねじ軸は送りねじ軸又はボールねじ軸であることを特徴とする、請求項1に記載の移動機構。   The moving mechanism according to claim 1, wherein the screw shaft is a feed screw shaft or a ball screw shaft. 前記ばね部材は圧縮ばね又は引っ張りばねであることを特徴とする、請求項1又は請求項2に記載の移動機構。   The moving mechanism according to claim 1, wherein the spring member is a compression spring or a tension spring.
JP2006279326A 2006-10-12 2006-10-12 Movement mechanism Expired - Fee Related JP4993344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279326A JP4993344B2 (en) 2006-10-12 2006-10-12 Movement mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279326A JP4993344B2 (en) 2006-10-12 2006-10-12 Movement mechanism

Publications (2)

Publication Number Publication Date
JP2008095862A true JP2008095862A (en) 2008-04-24
JP4993344B2 JP4993344B2 (en) 2012-08-08

Family

ID=39378921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279326A Expired - Fee Related JP4993344B2 (en) 2006-10-12 2006-10-12 Movement mechanism

Country Status (1)

Country Link
JP (1) JP4993344B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159374A (en) * 2015-02-27 2016-09-05 株式会社日立メタルプレシジョン Sheet material cutting device
CN107716758A (en) * 2017-10-30 2018-02-23 安徽德系重工科技有限公司 The flexible feed device and its bending machine of a kind of bending machine
JP2018030214A (en) * 2016-08-26 2018-03-01 日立金属株式会社 Sheet material cutting device and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0165974U (en) * 1987-10-22 1989-04-27
JPH0565948A (en) * 1991-09-06 1993-03-19 Copal Co Ltd Reciprocating drive mechanism
JP2000149467A (en) * 1998-11-04 2000-05-30 Sankyo Seiki Mfg Co Ltd Table feeding mechanism
JP2004084880A (en) * 2002-08-28 2004-03-18 Makino Milling Mach Co Ltd Feeder of machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0165974U (en) * 1987-10-22 1989-04-27
JPH0565948A (en) * 1991-09-06 1993-03-19 Copal Co Ltd Reciprocating drive mechanism
JP2000149467A (en) * 1998-11-04 2000-05-30 Sankyo Seiki Mfg Co Ltd Table feeding mechanism
JP2004084880A (en) * 2002-08-28 2004-03-18 Makino Milling Mach Co Ltd Feeder of machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159374A (en) * 2015-02-27 2016-09-05 株式会社日立メタルプレシジョン Sheet material cutting device
JP2018030214A (en) * 2016-08-26 2018-03-01 日立金属株式会社 Sheet material cutting device and manufacturing method of the same
CN107716758A (en) * 2017-10-30 2018-02-23 安徽德系重工科技有限公司 The flexible feed device and its bending machine of a kind of bending machine
CN107716758B (en) * 2017-10-30 2023-08-01 安徽德系重工科技有限公司 Flexible feeding device of pipe bending machine and pipe bending machine thereof

Also Published As

Publication number Publication date
JP4993344B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US5448438A (en) Head actuator having spring loaded split nut
US6311576B1 (en) Anti-backlash nut for lead screw
WO2017098663A1 (en) Flat strain wave gearing device
KR20060045740A (en) Geared transmission apparatus
KR101219499B1 (en) Cylinder device
JP4993344B2 (en) Movement mechanism
JP4967036B2 (en) Rotational linear motion conversion mechanism and lift device
CN103688084A (en) Seal for rolling screw and rolling screw
JP6007953B2 (en) Method for suppressing change in axial rigidity of feed screw device
JP2005069430A (en) Linear movement device
JPH06341506A (en) Positioning device
JP4690858B2 (en) Rotational linear motion conversion mechanism
JP4542970B2 (en) Rotational linear motion conversion mechanism
JP2008307966A (en) Rack guide device
JP2006189129A (en) Axially inching mechanism provided with rotary mechanism and positioning device in which the axially inching mechanism is used
CN109027161B (en) Mechanical nanometer-level high-precision linear driving device
JP2013130276A (en) Tapered snap ring and fixing structure thereof
JP2004084880A (en) Feeder of machine
CN114110127B (en) Double deep groove ball bearing pretension eccentric cam follower
JP2004197864A (en) Frictional driving device
KR20020012438A (en) Transferring Apparatus With Piezo-actuator and Micro-minute Transferring System Using The Same
JP2006101605A (en) Motor with parallel gear reducer
JP2001336599A (en) Mounting structure of seal in ball screw device
JP5273270B2 (en) Axial fine movement mechanism with rotation mechanism and positioning device using the same
JP5067487B2 (en) Positioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120427

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees