JP2008095722A - Sliding method - Google Patents

Sliding method Download PDF

Info

Publication number
JP2008095722A
JP2008095722A JP2006274981A JP2006274981A JP2008095722A JP 2008095722 A JP2008095722 A JP 2008095722A JP 2006274981 A JP2006274981 A JP 2006274981A JP 2006274981 A JP2006274981 A JP 2006274981A JP 2008095722 A JP2008095722 A JP 2008095722A
Authority
JP
Japan
Prior art keywords
sliding
recess
friction
moving speed
sliding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006274981A
Other languages
Japanese (ja)
Inventor
Toshikazu Nanbu
俊和 南部
Yoshiteru Yasuda
芳輝 保田
Yosuke Hizuka
洋輔 肥塚
Tokio Sakane
時夫 坂根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006274981A priority Critical patent/JP2008095722A/en
Publication of JP2008095722A publication Critical patent/JP2008095722A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding method having a high reducing effect of a friction coefficient. <P>SOLUTION: The sliding method provided for sliding a first member 11 and a second member 11 through a viscous fluid is constituted to slide the first member having fine recessed part 13 formed on a sliding surface with the second member so that the absolute value of moving speed of the first member is larger than the absolute value of moving speed of the second member when a contact part between the first member and the second member is viewed from a fixed coordinate system. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、第1部材と第2部材とを粘性流体を介して摺動させる摺動方法に関する。   The present invention relates to a sliding method for sliding a first member and a second member through a viscous fluid.

潤滑油を始めとする粘性流体を介して第1部材と第2部材とを摺動させるに際して、摩擦を低減するために、摺動面に微細な窪みや溝などの凹部を形成することが行われている(特許文献1、2参照)。凹部の形成は、凹部による油溜めの効果、凹部による接触部内の油の流れの制御、あるいは凹部によるマイクロ動圧の効果などを期待するものである。   In order to reduce friction when sliding the first member and the second member through a viscous fluid such as a lubricating oil, a concave portion such as a fine depression or groove is formed on the sliding surface. (See Patent Documents 1 and 2). The formation of the concave portion is expected to have an effect of oil sump by the concave portion, control of oil flow in the contact portion by the concave portion, or an effect of micro dynamic pressure by the concave portion.

このような微細な凹部を形成する技術は、例えば、回転摺動するクランクピンと軸受けメタルとの間の摩擦の低減や、往復摺動するピストンリングとボアとの間の摩擦の低減のために適用されている。
特開2002−213612号公報 特開2002−235852号公報
The technology for forming such fine recesses is applied, for example, to reduce the friction between the rotating and sliding crankpin and the bearing metal, and to reduce the friction between the reciprocatingly sliding piston ring and the bore. Has been.
JP 2002-213612 A JP 2002-235852 A

微細な凹部を形成することによって摩擦の低減を実現し得るものの、さらなる摩擦の低減が要請されている。また、従来の摺動方法においては、微細な凹部を、移動側もしくは固定側のいずれの部材に形成するのが良いかについて言及されていない。   Although it is possible to reduce friction by forming fine concave portions, further reduction of friction is required. Further, in the conventional sliding method, there is no mention as to which fine concave portion should be formed on the moving side or fixed side member.

そこで、本発明の目的は、摩擦の低減効果の高い摺動方法を提供することにある。   Therefore, an object of the present invention is to provide a sliding method having a high friction reducing effect.

上記目的を達成する請求項1に記載の本発明は、第1部材と第2部材とを粘性流体を介して摺動させる摺動方法において、
前記第2部材との摺動面に微細な凹部を形成した前記第1部材を、前記第1部材と前記第2部材との接触部を固定した座標系から見た場合に、前記第1部材の移動速度の絶対値が前記第2部材の移動速度の絶対値よりも大きくなるように摺動させることを特徴とする摺動方法である。
The present invention according to claim 1, which achieves the above object, comprises a sliding method of sliding the first member and the second member through a viscous fluid.
When the first member in which a fine recess is formed on the sliding surface with the second member is viewed from a coordinate system in which a contact portion between the first member and the second member is fixed, the first member The sliding method is characterized in that sliding is performed such that the absolute value of the moving speed of the second member becomes larger than the absolute value of the moving speed of the second member.

本発明によれば、微細な凹部を形成した第1部材を、第1部材と第2部材との接触部を固定した座標系から見た場合に、第1部材の移動速度の絶対値が第2部材の移動速度の絶対値よりも大きくなるように摺動させるようにしたので、摩擦の低減効果が高く、耐摩耗性や耐焼き付き性に優れた摺動方法を提供できる。   According to the present invention, when the first member in which the fine recess is formed is viewed from the coordinate system in which the contact portion between the first member and the second member is fixed, the absolute value of the moving speed of the first member is the first value. Since the sliding is performed so as to be larger than the absolute value of the moving speed of the two members, it is possible to provide a sliding method that is highly effective in reducing friction and excellent in wear resistance and seizure resistance.

以下、図面を参照して本発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1(A)は、回転摺動する第1と第2の部材11、12同士が接触する形態を模式的に示す図、図1(B)は、往復摺動する第1と第2の部材11、12同士が接触する形態を模式的に示す図である。   FIG. 1A is a diagram schematically showing a form in which the first and second members 11 and 12 that slide in rotation are in contact with each other, and FIG. 1B shows the first and second sliding in a reciprocating manner. It is a figure which shows typically the form with which members 11 and 12 contact.

本発明に係る摺動方法は、第1部材11と第2部材12とを粘性流体としての潤滑油を介して摺動させる摺動方法において、第2部材12との摺動面に微細な凹部13を形成した第1部材11を、第1部材11と第2部材12との接触部を固定した座標系から見た場合に、第1部材11の移動速度の絶対値が第2部材12の移動速度の絶対値よりも大きくなるように摺動させている。このことを、「第1部材11および第2部材12のいずれの側に微細な凹部13を形成すべきか」という点に着目して言い換えると、「第1部材11と第2部材12との接触部を固定した座標系から見た場合に、高速移動側の第1部材11に微細な凹部13を形成する。」ということである。接触部を固定した座標系から見た場合に、高速移動側の第1部材11に凹部13を形成することにより、低速移動側の第2部材12に凹部13を形成するよりも油膜厚さが増大し、その結果として、摩擦係数を低減できる。したがって、摩擦の低減効果が高く、耐摩耗性や耐焼き付き性に優れるという効果を得る。   The sliding method according to the present invention is a sliding method in which the first member 11 and the second member 12 are slid through lubricating oil as a viscous fluid. 13 is viewed from a coordinate system in which the contact portion between the first member 11 and the second member 12 is fixed, the absolute value of the moving speed of the first member 11 is It is slid so as to be larger than the absolute value of the moving speed. In other words, focusing on the point of “which side of the first member 11 and the second member 12 should the fine concave portion 13 be formed”, “the contact between the first member 11 and the second member 12”. When viewed from the coordinate system in which the portion is fixed, the fine concave portion 13 is formed in the first member 11 on the high-speed movement side. ” When viewed from the coordinate system in which the contact portion is fixed, by forming the recess 13 in the first member 11 on the high-speed movement side, the oil film thickness is smaller than when forming the recess 13 on the second member 12 on the low-speed movement side. As a result, the coefficient of friction can be reduced. Therefore, the effect of reducing friction is high, and the effects of excellent wear resistance and seizure resistance are obtained.

図1(A)(B)を参照して、「第1部材11と第2部材12との接触部を固定した座標系から見た場合に、高速移動側の第1部材11に微細な凹部13を形成する」点について説明する。   Referring to FIGS. 1A and 1B, “when the contact portion between the first member 11 and the second member 12 is viewed from a fixed coordinate system, the first member 11 on the high-speed movement side has a fine recess. Will be described.

図1(A)には、軸111と、その軸111を回転自在に保持する軸受けメタル112との間のように、回転摺動する部材同士が接触する形態が示されている。このような接触形態の場合には、軸受けメタル112の図中A点が常に軸111に接触している。したがって、「接触部を固定した座標系から見た場合に、高速移動側の部材に微細な凹部13を形成する」とは、軸111に微細な凹部13を形成することになる。よって、この場合には、軸111が第1部材11に相当し、軸受けメタル112が第2部材12に相当する。   FIG. 1A shows a form in which rotating and sliding members are in contact with each other, such as between a shaft 111 and a bearing metal 112 that rotatably holds the shaft 111. In the case of such a contact form, the point A in the drawing of the bearing metal 112 is always in contact with the shaft 111. Therefore, “when viewed from the coordinate system in which the contact portion is fixed, the minute concave portion 13 is formed in the member on the high-speed movement side” means that the minute concave portion 13 is formed in the shaft 111. Therefore, in this case, the shaft 111 corresponds to the first member 11, and the bearing metal 112 corresponds to the second member 12.

回転摺動する部材同士として、具体的には、クランクピンと軸受けメタルとを例示できる。この組み合わせに本発明を適用する場合には、クランクピンが第1部材11に相当し、軸受けメタルが第2部材12に相当し、クランクピンに微細な凹部13を形成する。クランクピンに凹部13を形成することにより、軸受けメタルに凹部13を形成するよりも油膜厚さが増大し、摩擦低減効果を十分に発現できる摺動方法を提供できる。   Specific examples of the members that rotate and slide include a crank pin and a bearing metal. When the present invention is applied to this combination, the crank pin corresponds to the first member 11, the bearing metal corresponds to the second member 12, and the minute recess 13 is formed in the crank pin. By forming the recess 13 in the crank pin, the oil film thickness can be increased as compared with the case where the recess 13 is formed in the bearing metal, and a sliding method that can sufficiently exhibit the friction reducing effect can be provided.

図1(B)には、プレート121とリング122との間のように、往復摺動する部材同士が接触する形態が示されている。このような接触形態の場合には、リング122の図中B点が常にプレート121に接触している。したがって、「接触部を固定した座標系から見た場合に、高速移動側の部材に微細な凹部13を形成する」とは、プレート121に微細な凹部13を形成することになる。よって、この場合には、プレート121が第1部材11に相当し、リング122が第2部材12に相当する。   FIG. 1B shows a form in which reciprocating members are in contact with each other, such as between the plate 121 and the ring 122. In the case of such a contact form, the point B in the figure of the ring 122 is always in contact with the plate 121. Therefore, “when viewed from the coordinate system in which the contact portion is fixed, the minute concave portion 13 is formed in the member on the high speed movement side” means that the minute concave portion 13 is formed in the plate 121. Therefore, in this case, the plate 121 corresponds to the first member 11 and the ring 122 corresponds to the second member 12.

往復摺動する部材同士として、具体的には、ボアとピストンリングとを例示できる。この組み合わせに本発明を適用する場合には、ボアが第1部材11に相当し、ピストンリングが第2部材12に相当し、ボアに微細な凹部13を形成する。ボアに凹部13を形成することにより、ピストンリングに凹部13を形成するよりも油膜厚さが増大し、摩擦低減効果を十分に発現できる摺動方法を提供できる。   Specific examples of the reciprocating members include a bore and a piston ring. When the present invention is applied to this combination, the bore corresponds to the first member 11, the piston ring corresponds to the second member 12, and the fine recess 13 is formed in the bore. By forming the recess 13 in the bore, it is possible to provide a sliding method in which the oil film thickness is increased and the friction reducing effect can be sufficiently exhibited as compared with the case where the recess 13 is formed in the piston ring.

第2部材12は、静止していることが好ましい。微細な凹部13を形成した第1部材11とは反対側の第2部材12の摺動面を静止させることにより、油膜厚さが増大する効果が大きくなり、より優れた摩擦低減効果を得ることができるからである。   The second member 12 is preferably stationary. By making the sliding surface of the second member 12 opposite to the first member 11 formed with the fine recesses 13 stationary, the effect of increasing the oil film thickness is increased, and a more excellent friction reducing effect is obtained. Because you can.

第1部材11の移動速度の方向と、第2部材12の移動速度の方向とが同じであることが好ましい。第1と第2の部材11、12の移動速度の方向を同じにすることにより、油膜厚さが増大する効果が大きくなり、より優れた摩擦低減効果を得ることができるからである。   The direction of the moving speed of the first member 11 and the direction of the moving speed of the second member 12 are preferably the same. This is because by making the moving speed directions of the first and second members 11 and 12 the same, the effect of increasing the oil film thickness is increased, and a more excellent friction reducing effect can be obtained.

第1部材11および第2部材12の材質には特に制限はなく、用途に応じて種々の材料が用いられる。例えば、ピストンおよびシリンダを備える内燃機関用の摺動部材にあっては、鉄やアルミニウムなどの金属から形成することが望ましい。また、形状についても特に制限はなく、あらゆる形状の摺動部材が採用され得る。   There is no restriction | limiting in particular in the material of the 1st member 11 and the 2nd member 12, A various material is used according to a use. For example, in a sliding member for an internal combustion engine having a piston and a cylinder, it is desirable that the sliding member be made of a metal such as iron or aluminum. Moreover, there is no restriction | limiting in particular about a shape, The sliding member of all shapes can be employ | adopted.

第1部材11に形成される凹部13は、その深さをtとし、摺動時の油膜厚さ(粘性流体膜厚さに相当する)をhとした場合に、その比h/tが0.04以上5以下となるように形成されているが望ましい。比h/tが0.04より小さい場合には、油膜を十分確保できず金属接触が生じるため、摩擦低減効果が十分発現しないばかりか、逆に摩擦係数が増加してしまうおそれがある。また、比h/tが5を超えると、凹部13の深さtに対して油膜厚さhが大きすぎるため、動圧効果が十分発揮できず、摩擦低減効果が十分発現しないおそれがある。したがって、比h/tを0.04以上5以下とすることにより、摩擦低減効果が効果的に発現できる。   The ratio h / t of the recess 13 formed in the first member 11 is 0, where t is the depth, and h is the oil film thickness (corresponding to the viscous fluid film thickness) when sliding. It is desirable that it be formed to be 0.04 or more and 5 or less. When the ratio h / t is smaller than 0.04, a sufficient oil film cannot be secured and metal contact occurs, so that not only the friction reduction effect is not sufficiently exhibited, but also the friction coefficient may increase. On the other hand, if the ratio h / t exceeds 5, the oil film thickness h is too large with respect to the depth t of the recess 13, so that the dynamic pressure effect cannot be sufficiently exhibited, and the friction reducing effect may not be sufficiently exhibited. Therefore, when the ratio h / t is set to 0.04 or more and 5 or less, the friction reduction effect can be effectively expressed.

凹部13は、摺動面における凹部13の占有面積率が0.5%以上10%以下であることが望ましい。占有面積率が0.5%より小さい場合には、凹部13の割合が少なすぎるため、動圧効果が十分発揮できず、摩擦低減効果が十分発現しないおそれがある。また、10%を超えると、平端部の割合が相対的に減少するため、負荷容量が減少し、結果として、金属同士の直接接触が生じるため、摩擦低減効果が十分発現しないばかりか、逆に摩擦が増加してしまうおそれがある。また、耐摩耗性や耐焼き付き性も低下してしまう懸念がある。したがって、凹部13の占有面積率を0.5%以上10%以下とすることにより、優れた摩擦低減効果が得られる。   As for the recessed part 13, it is desirable that the occupation area rate of the recessed part 13 in a sliding surface is 0.5% or more and 10% or less. When the occupied area ratio is smaller than 0.5%, the ratio of the concave portions 13 is too small, so that the dynamic pressure effect cannot be sufficiently exhibited, and the friction reducing effect may not be sufficiently exhibited. On the other hand, if it exceeds 10%, the ratio of the flat end portion is relatively reduced, so that the load capacity is reduced. As a result, direct contact between the metals occurs, and the friction reducing effect is not sufficiently exhibited. Friction may increase. Moreover, there is a concern that the wear resistance and the seizure resistance are also lowered. Therefore, an excellent friction reducing effect can be obtained by setting the occupied area ratio of the recess 13 to 0.5% or more and 10% or less.

凹部13は、最大径で500μm以下であることが望ましい。500μmを超えると、接触面に対する凹部13の大きさが大きすぎるため、例えば入り口部において、凹部13を通じて油が逆流し、金属接触を促進することになり、結果として、摩擦係数が増加してしまうおそれがある。したがって、凹部13を最大径で500μm以下とすることにより、接触面における凹部13の大きさが最適化されるため、摩擦低減効果が効果的に発現できる。   It is desirable that the recess 13 has a maximum diameter of 500 μm or less. If it exceeds 500 μm, the size of the recess 13 with respect to the contact surface is too large. For example, at the entrance, oil flows backward through the recess 13 to promote metal contact. As a result, the coefficient of friction increases. There is a fear. Therefore, since the size of the concave portion 13 on the contact surface is optimized by setting the concave portion 13 to a maximum diameter of 500 μm or less, a friction reducing effect can be effectively exhibited.

図2(A)は、摺動面に形成されている凹部13を示す斜視図、図2(B)は、図2(A)の2B−2B線に沿う断面図である。   2A is a perspective view showing the recess 13 formed on the sliding surface, and FIG. 2B is a cross-sectional view taken along line 2B-2B of FIG. 2A.

図2を参照して、凹部13の形状は、凹部13の滑り方向21の断面形状において、最表面の長さをL、滑り方向21前側から凹部13底面の極値を示す位置17までの長さをSとした場合に、S/Lが0.2以下であることが望ましい。図2における符号tは、凹部13の深さを示している。S/Lが0.2を超えると、凹部13壁面の油の流れが効果的に作用しないため、動圧効果が十分に得られず、摩擦低減効果が十分発現されない。したがって、S/Lを0.2以下とすることにより、動圧効果が十分発揮され、優れた摩擦低減効果が得られる。   Referring to FIG. 2, the shape of the recess 13 is the length from the front side of the slip direction 21 to the position 17 indicating the extreme value of the bottom surface of the recess 13 in the cross-sectional shape of the recess 13 in the slide direction 21. When S is S, it is desirable that S / L is 0.2 or less. The symbol t in FIG. 2 indicates the depth of the recess 13. If S / L exceeds 0.2, the oil flow on the wall surface of the recess 13 does not act effectively, so that the dynamic pressure effect is not sufficiently obtained and the friction reducing effect is not sufficiently exhibited. Therefore, when S / L is 0.2 or less, the dynamic pressure effect is sufficiently exhibited, and an excellent friction reducing effect is obtained.

図2(A)に示されるように、凹部13の形状は、滑り方向21に対して直交する方向22に扁平していることが望ましい。滑り方向21に対して直交する方向22に扁平な形状とは、直交方向22の最大長さが、滑り方向21の最大長さよりも大きくなる形状である。扁平な形状は、矩形に限られず、楕円形状、多角形状、円形状であってもかまわない。凹部13の形状が、直交方向22に扁平していることにより、摺動部に多くの潤滑油を流入させることができ、摩擦の低減が図られる。   As shown in FIG. 2A, the shape of the recess 13 is preferably flat in a direction 22 orthogonal to the sliding direction 21. The shape flat in the direction 22 orthogonal to the sliding direction 21 is a shape in which the maximum length in the orthogonal direction 22 is larger than the maximum length in the sliding direction 21. The flat shape is not limited to a rectangle, and may be an elliptical shape, a polygonal shape, or a circular shape. Since the shape of the recess 13 is flat in the orthogonal direction 22, a large amount of lubricating oil can be caused to flow into the sliding portion, and friction can be reduced.

上述した第1と第2の部材11、12は、内燃機関や変速機の摺動部に使用するものであることが望ましい。十分な摩擦低減を発現する第1と第2の部材11、12を適用することによって、内燃機関や変速機の摺動部における摩擦を減少することができ、摺動部の耐摩耗性や耐焼き付き性を向上させることができる。   The above-described first and second members 11 and 12 are preferably used for sliding portions of an internal combustion engine or a transmission. By applying the first and second members 11 and 12 that exhibit a sufficient friction reduction, it is possible to reduce the friction in the sliding portion of the internal combustion engine or the transmission, and to reduce the wear resistance and resistance of the sliding portion. The seizure property can be improved.

(実施例)
内接2円筒試験、および、ピストンリング/ボア模擬試験の2種類の試験により、摩擦低減効果を確認した。
(Example)
The friction reducing effect was confirmed by two types of tests, an inscribed two-cylinder test and a piston ring / bore simulation test.

図3は、内接2円筒試験機30を一部切り欠いて示す斜視図、図4(A)〜(D)は、摺動面に形成される凹部13の断面形状を示す断面図、図5〜図8は、実施例1〜7における、摺動面上における凹部13の配置形態を示す平面図である。   FIG. 3 is a perspective view showing the inscribed two-cylinder testing machine 30 with a part cut away, and FIGS. 4A to 4D are cross-sectional views showing the cross-sectional shape of the recess 13 formed on the sliding surface. 5-8 is a top view which shows the arrangement | positioning form of the recessed part 13 on the sliding surface in Examples 1-7.

内接2円筒試験は、クランクピンと軸受けメタルとの間のように、回転摺動する部材同士における摩擦低減効果を確認するために行った。図3を参照して、内接2円筒試験機30は、粘性流体としての潤滑油33を介して摺動する内円筒31と外円筒32とを含んでいる。図中に点線によって示される接触領域34において、内円筒31の外表面と外円筒32の内表面とが摺動接触している。図中矢印Wは、内円筒31に作用するラジアル荷重を示している。   The inscribed two-cylinder test was performed in order to confirm the effect of reducing friction between members that slidably rotate, such as between a crankpin and a bearing metal. Referring to FIG. 3, the inscribed two-cylinder testing machine 30 includes an inner cylinder 31 and an outer cylinder 32 that slide through a lubricating oil 33 as a viscous fluid. In the contact region 34 indicated by a dotted line in the figure, the outer surface of the inner cylinder 31 and the inner surface of the outer cylinder 32 are in sliding contact. An arrow W in the figure indicates a radial load acting on the inner cylinder 31.

外円筒32は外径φ60mmの鋼製円筒に内径φ45mmのアルミメタルを圧入したものである。一方、内円筒31は外径がφ43mm、鋼鉄(SCM440H鋼)の焼き入れ焼き戻し材である。   The outer cylinder 32 is obtained by press-fitting aluminum metal having an inner diameter of 45 mm into a steel cylinder having an outer diameter of 60 mm. On the other hand, the inner cylinder 31 is a quenching and tempering material of steel (SCM440H steel) having an outer diameter of φ43 mm.

内円筒31および外円筒32にはそれぞれACサーボモータ(不図示)を取り付け独立に回転制御できるようにしている。そして、5W30の油を入れた油浴内にこの内円筒31および外円筒32を浸すことで、内円筒31および外円筒32の間に油膜を形成させた。   An AC servomotor (not shown) is attached to each of the inner cylinder 31 and the outer cylinder 32 so that the rotation can be controlled independently. Then, an oil film was formed between the inner cylinder 31 and the outer cylinder 32 by immersing the inner cylinder 31 and the outer cylinder 32 in an oil bath containing 5 W 30 of oil.

実験は、ラジアル荷重20kg、油温度80℃、相対すべり速度6m/s、平均速度を2m/sにおいて、内円筒軸に取り付けたトルクセンサにより回転トルクを計測して接線力を算出し、ラジアル荷重で除することにより摩擦係数を求めた。   In the experiment, a radial load of 20 kg, an oil temperature of 80 ° C., a relative sliding speed of 6 m / s, an average speed of 2 m / s, a rotational torque is measured by a torque sensor attached to the inner cylindrical shaft, and a tangential force is calculated. The coefficient of friction was determined by dividing by.

実施例1〜7では、凹部13を、内円筒31の外表面にのみ形成した。各実施例1〜7において、(1)凹部13を形成した内円筒31を回転し外円筒32を固定した場合、つまり、移動側の部材に凹部13を形成した場合の摩擦係数μ1、(2)凹部13を形成した内円筒31を固定し外円筒32を回転した場合、つまり、固定側の部材に凹部13を形成した場合の摩擦係数μ2、(3)内円筒31および外円筒32の両者を、同じ方向に向けて、内円筒31の移動速度が外円筒32の移動速度よりも大きくなるように回転した場合の摩擦係数μ3を測定した。そして、各実施例1〜7において、固定側の部材に凹部13を形成した場合に対する移動側の部材に凹部13を形成した場合の摩擦係数比α(μ1/μ2)と、内円筒31および外円筒32の両者を回転させた場合に対する外円筒32を静止させた場合の摩擦係数比β(μ1/μ3)を求めた。   In Examples 1 to 7, the recess 13 was formed only on the outer surface of the inner cylinder 31. In each of Examples 1 to 7, (1) Friction coefficient μ1 when the inner cylinder 31 formed with the recess 13 is rotated and the outer cylinder 32 is fixed, that is, when the recess 13 is formed on the moving member, (2 ) When the inner cylinder 31 formed with the recess 13 is fixed and the outer cylinder 32 is rotated, that is, when the recess 13 is formed on the fixed member, (3) Both the inner cylinder 31 and the outer cylinder 32 Were measured in the same direction to measure the friction coefficient μ3 when the inner cylinder 31 was rotated so that the moving speed of the inner cylinder 31 was larger than the moving speed of the outer cylinder 32. In each of the first to seventh embodiments, the friction coefficient ratio α (μ1 / μ2) when the concave portion 13 is formed on the moving member with respect to the concave portion 13 formed on the fixed member, the inner cylinder 31 and the outer cylinder 31 The friction coefficient ratio β (μ1 / μ3) when the outer cylinder 32 was stationary with respect to the case where both the cylinders 32 were rotated was obtained.

凹部微細形状は、マスクブラスト加工により形成した。マスクブラスト加工では、光リソグラフィ技術を利用し、樹脂製マスクに凹部微細形状を形成し、その樹脂マスクを内円筒31の外表面に貼り付けた後、平均粒径25μmのセラミックス粒子を、投射ノズルから投射圧0.5MPaの条件下で投射し、凹部微細形状を得た。凹部微細形状を形成した後、凹部形状周辺に形成されたエッジ部の盛り上がりを粒径9μmのテープラップフィルムにより除去し、試験に供した。凹部13の深さは3μmとした。   The concave fine shape was formed by mask blasting. In mask blasting, optical lithography technology is used to form a concave fine shape on a resin mask, the resin mask is affixed to the outer surface of the inner cylinder 31, and then ceramic particles having an average particle diameter of 25 μm are applied to the projection nozzle. Were projected under the condition of a projection pressure of 0.5 MPa to obtain a concave fine shape. After forming the fine shape of the concave portion, the bulge of the edge portion formed around the concave shape was removed with a tape wrap film having a particle size of 9 μm and used for the test. The depth of the recess 13 was 3 μm.

凹部13の断面形状は、半円弧形状(図4(A))、矩形形状(図4(B))、2列三角形状(図4(C))、三角形状(図4(D))とした。下記の表1には、断面形状を、「U」、「R」、「W4」および「T3」の記号にて表す。   The cross-sectional shape of the recess 13 includes a semicircular arc shape (FIG. 4A), a rectangular shape (FIG. 4B), a two-row triangular shape (FIG. 4C), and a triangular shape (FIG. 4D). did. In Table 1 below, the cross-sectional shape is represented by the symbols “U”, “R”, “W4”, and “T3”.

凹部13の配置形態は、実施例1はジグザグ配置(図5(A))、実施例2はジグザグ配置(図5(B))、実施例3は六角形配置(図6(A))、実施例4は千鳥格子配置(図6(B))、実施例5は千鳥格子配置(図7(A))、実施例6は千鳥格子配置(図7(B))、実施例7は千鳥格子配置(図8)とした。   As for the arrangement form of the recesses 13, the zigzag arrangement (FIG. 5 (A)) in the first embodiment, the zigzag arrangement (FIG. 5 (B)) in the second embodiment, the hexagon arrangement (FIG. 6 (A)) in the third embodiment, Example 4 is a houndstooth arrangement (FIG. 6B), Example 5 is a houndstooth arrangement (FIG. 7A), and Example 6 is a houndstooth arrangement (FIG. 7B). 7 is a houndstooth arrangement (FIG. 8).

実験結果を下記の表1に示す。   The experimental results are shown in Table 1 below.

Figure 2008095722
Figure 2008095722

表1に示すように、固定側の部材に凹部13を形成した場合に対する移動側の部材に凹部13を形成した場合の摩擦係数比αは、いずれの場合も1より小さい。固定側の部材に凹部13を形成するよりも移動側の部材に凹部13を形成することによって、油膜厚さが増大して摩擦を低減できるという本発明の効果を確認した。さらに、内円筒31および外円筒32の両者を回転させた場合に対する外円筒32を静止させた場合の摩擦係数比βは、いずれの場合も1より小さい。凹部13を形成した部材とは反対側の部材を静止させることによって、油膜厚さが増大して摩擦を低減できるという本発明の効果を確認した。   As shown in Table 1, the friction coefficient ratio α in the case where the concave portion 13 is formed in the moving member with respect to the case where the concave portion 13 is formed in the fixed member is smaller than 1 in any case. The effect of the present invention was confirmed that the oil film thickness can be increased and the friction can be reduced by forming the recess 13 in the moving member rather than forming the recess 13 in the fixed member. Further, the friction coefficient ratio β when the outer cylinder 32 is stationary with respect to the case where both the inner cylinder 31 and the outer cylinder 32 are rotated is smaller than 1 in any case. The effect of the present invention that the oil film thickness can be increased and friction can be reduced by resting the member opposite to the member on which the recess 13 is formed was confirmed.

図9は、ピストンリング/ボア模擬試験機40を示す斜視図、図10は、凹部13の配置形態を示す図である。   FIG. 9 is a perspective view showing the piston ring / bore simulation test machine 40, and FIG. 10 is a view showing the arrangement of the recesses 13.

ピストンリング/ボア模擬試験は、ピストンリングとボアとの間のように、往復摺動する部材同士における摩擦低減効果を確認するために行った。図9を参照して、ピストンリング/ボア模擬試験機40は、粘性流体としての潤滑油を介して摺動するリング41とプレート42とを含んでいる。実験では、リング41を固定し、プレート42のみを往復摺動させた。図中の両矢印は滑り方向21を、片矢印は荷重方向を示す。往復摺動運動は、クランク機構を用いて、回転運動を往復運動に変換することにより行った。摺動距離つまり滑り方向21に沿う長さHは、1工程あたり30mmとした。リング41とプレート42との接触部の幅Bは、40mmとした。   The piston ring / bore simulation test was performed in order to confirm the effect of reducing friction between the reciprocating members such as between the piston ring and the bore. Referring to FIG. 9, the piston ring / bore simulation tester 40 includes a ring 41 and a plate 42 that slide through lubricating oil as a viscous fluid. In the experiment, the ring 41 was fixed and only the plate 42 was slid back and forth. The double arrow in the figure indicates the sliding direction 21 and the single arrow indicates the load direction. The reciprocating sliding motion was performed by converting the rotational motion into the reciprocating motion using a crank mechanism. The sliding distance, that is, the length H along the sliding direction 21 was 30 mm per process. The width B of the contact portion between the ring 41 and the plate 42 was 40 mm.

リング41の材料には、SCM435浸炭焼入れ焼き戻し材を用いた。リング41の先端は曲率半径30mmの円弧状に形成した。アール30mmの表面にはCrメッキを100μm施し、リング41の摺動面を算術平均粗さRa0.2μmに仕上げた。一方、プレート42の材料には、40mm×60mm×5mm厚のオーステナイト鋳鉄(FCA)の板材を用いた。平坦部の粗さをRa0.05μm以下に仕上げた。   As a material for the ring 41, an SCM435 carburizing and tempering material was used. The tip of the ring 41 was formed in an arc shape with a curvature radius of 30 mm. The surface of 30 mm radius was Cr plated with 100 μm, and the sliding surface of the ring 41 was finished with an arithmetic average roughness Ra of 0.2 μm. On the other hand, a plate material of austenitic cast iron (FCA) having a thickness of 40 mm × 60 mm × 5 mm was used as the material of the plate 42. The roughness of the flat part was finished to Ra 0.05 μm or less.

実験は、押し付け荷重を250N、一往復あたりの摺動距離を30mm、摺動速度を600回/min、5W30の油(油供給温度25℃)を摺動面に0.8cc/minで滴下して行った。リング41に取り付けたロードセルを用いて、せん断力成分の荷重を検出し、押し付け荷重で除することにより摩擦係数を求めた。   In the experiment, the pressing load was 250 N, the sliding distance per reciprocation was 30 mm, the sliding speed was 600 times / min, and 5 W30 oil (oil supply temperature 25 ° C.) was dropped onto the sliding surface at 0.8 cc / min. I went. Using a load cell attached to the ring 41, the load of the shear force component was detected, and the friction coefficient was obtained by dividing by the pressing load.

実施例8、9においては、移動側であるプレート42に凹部微細形状を形成した。凹部13の占有面積率は、実施例8は2.5%、実施例9は5%とした。   In Examples 8 and 9, a concave concave shape was formed on the plate 42 on the moving side. The occupation area ratio of the recess 13 was 2.5% in Example 8 and 5% in Example 9.

比較例1においては、固定側であるリング41に凹部微細形状を形成した。凹部13の占有面積率は、5%とした。比較例2においては、リング41およびプレート42のいずれにも凹部を形成していない。凹部13の形状は、80×320μmの矩形状のものを、千鳥格子状に規則的に配置した(図10参照)。   In Comparative Example 1, a concave concave shape was formed on the ring 41 on the fixed side. The occupation area ratio of the recess 13 was set to 5%. In Comparative Example 2, no recess is formed in either the ring 41 or the plate 42. The concave portions 13 were regularly arranged in a rectangular pattern with a size of 80 × 320 μm (see FIG. 10).

凹部微細形状は、マスクブラスト加工により形成した。マスクブラスト加工では、光リソグラフィ技術を利用し、樹脂製マスクに凹部微細形状を形成し、その樹脂マスクをプレートやリング表面に貼り付けた後、平均粒径20μmのアルミナ砥粒を、投射ノズルからワ−クまでの距離を100mmとし、投射流量100g/min、投射圧0.4MPaの条件下で投射し、凹部微細形状を得た。凹部微細形状を形成した後、凹部形状周辺に形成されたエッジ部の盛り上がりを粒径9μmのテープラップフィルムにより除去し、試験に供した。凹部13の深さは3μmとした。   The concave fine shape was formed by mask blasting. In mask blasting, optical microlithography is used to form a concave fine shape on a resin mask, and after the resin mask is attached to a plate or ring surface, alumina abrasive grains having an average particle diameter of 20 μm are applied from a projection nozzle. The distance to the workpiece was set to 100 mm, and projection was performed under the conditions of a projection flow rate of 100 g / min and a projection pressure of 0.4 MPa to obtain a concave fine shape. After forming the fine shape of the concave portion, the bulge of the edge portion formed around the concave shape was removed with a tape wrap film having a particle size of 9 μm and used for the test. The depth of the recess 13 was 3 μm.

実験結果を下記の表2に示す。   The experimental results are shown in Table 2 below.

Figure 2008095722
Figure 2008095722

表2に示すように、比較例1の摩擦係数に対する各実施例8、9の摩擦係数の比は、いずれの場合も1より小さい。比較例1、2より、固定側の部材(リング41)に凹部13を形成した場合においても摩擦低減効果を得ることはできるものの、内接2円筒試験の場合と同様に、固定側の部材(リング41)に凹部13を形成するよりも移動側の部材(プレート42)に凹部13を形成することによって、油膜厚さが増大して摩擦をより一層低減できるという本発明の効果を確認した。   As shown in Table 2, the ratio of the friction coefficients of Examples 8 and 9 to the friction coefficient of Comparative Example 1 is smaller than 1 in any case. Although the friction reduction effect can be obtained even when the concave portion 13 is formed in the fixed side member (ring 41) from Comparative Examples 1 and 2, as in the case of the inscribed two-cylinder test, the fixed side member ( The effect of the present invention that the oil film thickness is increased and the friction can be further reduced by forming the recess 13 in the member (plate 42) on the moving side rather than forming the recess 13 in the ring 41) was confirmed.

図1(A)は、回転摺動する第1と第2の部材同士が接触する形態を模式的に示す図、図1(B)は、往復摺動する第1と第2の部材同士が接触する形態を模式的に示す図である。FIG. 1A is a diagram schematically showing a form in which the first and second members that are rotating and sliding contact each other, and FIG. 1B is a diagram in which the first and second members that are reciprocatingly sliding are illustrated. It is a figure which shows typically the form which contacts. 図2(A)は、摺動面に形成されている凹部を示す斜視図、図2(B)は、図2(A)の2B−2B線に沿う断面図である。2A is a perspective view showing a recess formed in the sliding surface, and FIG. 2B is a cross-sectional view taken along line 2B-2B in FIG. 2A. 図3は、内接2円筒試験機を一部切り欠いて示す斜視図である。FIG. 3 is a perspective view showing a part of the inscribed two-cylinder testing machine. 図4(A)〜(D)は、摺動面に形成される凹部の断面形状を示す断面図である。4A to 4D are cross-sectional views showing the cross-sectional shape of the recesses formed on the sliding surface. 図5(A)(B)は、実施例1、2における、摺動面上における凹部の配置形態を示す平面図である。5A and 5B are plan views showing the arrangement of the recesses on the sliding surface in Examples 1 and 2. FIG. 図6(A)(B)は、実施例3、4における、摺動面上における凹部の配置形態を示す平面図である。6A and 6B are plan views showing the arrangement of the recesses on the sliding surface in Examples 3 and 4. FIG. 図7(A)(B)は、実施例5、6における、摺動面上における凹部の配置形態を示す平面図である。FIGS. 7A and 7B are plan views showing the arrangement of the recesses on the sliding surface in Examples 5 and 6. FIG. 実施例7における、摺動面上における凹部の配置形態を示す平面図である。In Example 7, it is a top view which shows the arrangement | positioning form of the recessed part on a sliding surface. ピストンリング/ボア模擬試験機を示す斜視図である。It is a perspective view which shows a piston ring / bore simulation tester. 凹部の配置形態を示す図である。It is a figure which shows the arrangement | positioning form of a recessed part.

符号の説明Explanation of symbols

11 第1部材、
12 第2部材、
13 凹部、
17 凹部底面の極値を示す位置、
21 滑り方向、
30 内接2円筒試験機、
31 内円筒、
32 外円筒、
33 潤滑油、
40 ピストンリング/ボア模擬試験機、
41 リング、
42 プレート、
111 軸(第1部材)、
112 軸受けメタル(第2部材)、
121 プレート(第1部材)、
122 リング(第2部材)。
11 first member,
12 Second member,
13 recess,
17 Position indicating the extreme value of the bottom of the recess,
21 Sliding direction,
30 Inscribed 2 cylinder testing machine,
31 inner cylinder,
32 outer cylinder,
33 Lubricating oil,
40 Piston ring / bore simulation tester,
41 rings,
42 plates,
111 shaft (first member),
112 bearing metal (second member),
121 plate (first member),
122 Ring (second member).

Claims (7)

第1部材と第2部材とを粘性流体を介して摺動させる摺動方法において、
前記第2部材との摺動面に微細な凹部を形成した前記第1部材を、前記第1部材と前記第2部材との接触部を固定した座標系から見た場合に、前記第1部材の移動速度の絶対値が前記第2部材の移動速度の絶対値よりも大きくなるように摺動させることを特徴とする摺動方法。
In the sliding method of sliding the first member and the second member through the viscous fluid,
When the first member in which a fine recess is formed on the sliding surface with the second member is viewed from a coordinate system in which a contact portion between the first member and the second member is fixed, the first member A sliding method characterized by sliding so that the absolute value of the moving speed of the second member becomes larger than the absolute value of the moving speed of the second member.
前記第2部材は、静止していることを特徴とする請求項1に記載の摺動方法。   The sliding method according to claim 1, wherein the second member is stationary. 前記第1部材の移動速度の方向と、前記第2部材の移動速度の方向とが同じであることを特徴とする請求項1または請求項2に記載の摺動方法。   The sliding method according to claim 1 or 2, wherein the direction of the moving speed of the first member and the direction of the moving speed of the second member are the same. 前記凹部は、その深さをtとし、摺動時の粘性流体膜厚さをhとした場合に、その比h/tが0.04以上5以下であることを特徴とする請求項1〜3のいずれか1つに記載の摺動方法。   The ratio of h / t is 0.04 or more and 5 or less, where t is the depth of the recess and h is the thickness of the viscous fluid film during sliding. 4. The sliding method according to any one of 3 above. 前記凹部は、前記摺動面における前記凹部の占有面積率が0.5%以上10%以下であることを特徴とする請求項1〜4のいずれか1つに記載の摺動方法。   The sliding method according to any one of claims 1 to 4, wherein the recessed portion has an area ratio of the recessed portion on the sliding surface of 0.5% or more and 10% or less. 前記凹部は、最大径で500μm以下であることを特徴とする請求項1〜5のいずれか1つに記載の摺動方法。   The sliding method according to claim 1, wherein the recess has a maximum diameter of 500 μm or less. 前記凹部の滑り方向の断面形状において、最表面の長さをL、滑り方向前側から凹部底面の極値を示す位置までの長さをSとした場合に、S/Lが0.2以下であることを特徴とする請求項1〜6のいずれか1つに記載の摺動方法。   In the cross-sectional shape of the concave portion in the sliding direction, when the length of the outermost surface is L and the length from the front side of the sliding direction to the position showing the extreme value of the bottom surface of the concave portion is S, S / L is 0.2 or less. The sliding method according to claim 1, wherein the sliding method is provided.
JP2006274981A 2006-10-06 2006-10-06 Sliding method Pending JP2008095722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006274981A JP2008095722A (en) 2006-10-06 2006-10-06 Sliding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006274981A JP2008095722A (en) 2006-10-06 2006-10-06 Sliding method

Publications (1)

Publication Number Publication Date
JP2008095722A true JP2008095722A (en) 2008-04-24

Family

ID=39378794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006274981A Pending JP2008095722A (en) 2006-10-06 2006-10-06 Sliding method

Country Status (1)

Country Link
JP (1) JP2008095722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150090007A (en) * 2015-07-21 2015-08-05 두산인프라코어 주식회사 Sliding motion assembly
JP2018189103A (en) * 2017-04-28 2018-11-29 マツダ株式会社 Reciprocating piston engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150090007A (en) * 2015-07-21 2015-08-05 두산인프라코어 주식회사 Sliding motion assembly
KR101587383B1 (en) * 2015-07-21 2016-01-22 두산인프라코어 주식회사 Sliding motion assembly
JP2018189103A (en) * 2017-04-28 2018-11-29 マツダ株式会社 Reciprocating piston engine

Similar Documents

Publication Publication Date Title
TW444101B (en) Sliding members and the piston used for the combustion engine
JP2008095721A (en) Sliding member
US7104240B1 (en) Internal combustion engine with localized lubrication control of combustion cylinders
JP4779841B2 (en) Internal combustion engine
WO2012067084A1 (en) Piston ring
JP2010236444A (en) Combination of cylinder and piston
JP2007002989A (en) Slide member, cylinder using the slide member, and internal combustion engine using the cylinder
JP2002213612A (en) Sliding part for internal combustion engine and internal combustion engine using the sliding part
JP4710263B2 (en) Sliding device
JP6473335B2 (en) piston ring
JP5155924B2 (en) Cylinder
JP2007046660A (en) Slide receiving member
JP2008095722A (en) Sliding method
JP2007321860A (en) Low-friction sliding member
EP1717487B1 (en) Rolling sliding part
JP4655609B2 (en) Sliding member
JP6894879B2 (en) Internal combustion engine cylinder and manufacturing method
JP4956769B2 (en) Low friction sliding member
JP4702186B2 (en) Low friction sliding member
WO2009084072A1 (en) Sliding device including sliding bearing
JP7045383B2 (en) piston ring
JP2008025828A (en) Sliding member
JP2005249127A (en) Shaft of low friction sliding device, crank shaft, cam shaft, and engine
JP2006017259A (en) Sliding device
JP2006138329A (en) Low-friction sliding mechanism