JP2008092746A - Capacitor charging device - Google Patents

Capacitor charging device Download PDF

Info

Publication number
JP2008092746A
JP2008092746A JP2006273525A JP2006273525A JP2008092746A JP 2008092746 A JP2008092746 A JP 2008092746A JP 2006273525 A JP2006273525 A JP 2006273525A JP 2006273525 A JP2006273525 A JP 2006273525A JP 2008092746 A JP2008092746 A JP 2008092746A
Authority
JP
Japan
Prior art keywords
charging
capacitor
voltage
circuit
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006273525A
Other languages
Japanese (ja)
Other versions
JP4984801B2 (en
Inventor
Masao Azuma
征男 東
Eiji Sasamoto
栄二 笹本
Junichi Arakawa
淳一 荒川
Toshihiro Osada
俊宏 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006273525A priority Critical patent/JP4984801B2/en
Publication of JP2008092746A publication Critical patent/JP2008092746A/en
Application granted granted Critical
Publication of JP4984801B2 publication Critical patent/JP4984801B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To sequentially correct a coarse charging voltage of a capacitor to an appropriate value during operating a charging device or even in the case of fluctuations in a capacitance C or a reactor value L due to the operating ratio of the device. <P>SOLUTION: The voltage control circuit 8 of a DC chopper type quick charging circuit calculates the changes of quick charging voltage by the capacity fluctuations of the capacitor 7 from the measured temperature value of the capacitor itself or the ambient measured temperature value to correct the fluctuations of the calculated capacitance C by control of output current i. This includes application to an LC resonance type quick charging circuit. The changes of the quick charging voltage due to the capacity fluctuations of the capacitor or the reactor value fluctuations of a reactor installed with the quick charging circuit are obtained by an arithmetic operation of which arithmetical elements are temperature, a circuit constant, voltage, current, and an operation period, thereby controlling the output current and the target voltage of the quick charging circuit from the arithmetic result. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力用コンデンサを直流電源として高電圧・大電流のパルスを発生させるパルス電源において、コンデンサを設定電圧まで高い精度で繰り返し充電するコンデンサ充電装置に関する。   The present invention relates to a capacitor charging device that repeatedly charges a capacitor to a set voltage with high accuracy in a pulse power source that uses a power capacitor as a DC power source to generate a pulse of high voltage and large current.

この種のパルス電源の使用用途としては、エキシマレーザーやオソナイザなどがあり、充電電圧の設定値に対する充電精度が特に高精度を要求される(例えば0.1%以下の精度)。充電装置は、決められた時間内で負荷コンデンサを充電電圧指令値によって与えられる電圧に充電する。この動作は例えば1秒間に4000回繰り返される。   Applications of this type of pulse power supply include excimer lasers and ozonizers, and particularly high accuracy is required for the charging voltage setting value (for example, accuracy of 0.1% or less). The charging device charges the load capacitor to a voltage given by the charging voltage command value within a predetermined time. This operation is repeated 4000 times per second, for example.

図7は従来の充電回路例であり、充電電圧指令値に対し、高速で高精度な充電精度を得るため、1回の充電期間に急速充電期間と微調整期間を設け、先ず急速充電期間で負荷コンデンサを指令値より数%低い電圧(目標電圧)まで急速に充電し、次に微調整期間で電圧指令値V*まで追加充電する。この追加充電は、急速充電回路のみでは指令値に対する高精度充電が困難なため、急速充電回路で負荷コンデンサを僅かに低く充電し、微調整回路の追加充電によって高精度充電を実現している(例えば、特許文献1参照)。この回路構成と動作を以下に説明する(波形は図8参照)。   FIG. 7 shows an example of a conventional charging circuit. In order to obtain high-speed and high-precision charging accuracy with respect to the charging voltage command value, a quick charging period and a fine adjustment period are provided in one charging period. The load capacitor is rapidly charged to a voltage (target voltage) that is several percent lower than the command value, and then additionally charged to the voltage command value V * in the fine adjustment period. In this additional charging, it is difficult to perform high-accuracy charging with respect to the command value only by the quick charging circuit, so the high-accuracy charging is realized by charging the load capacitor slightly low in the quick charging circuit and by additional charging of the fine adjustment circuit ( For example, see Patent Document 1). The circuit configuration and operation will be described below (see FIG. 8 for waveforms).

<急速充電期間の動作>
図7において、急速充電回路は、直流電源1を電源とし、半導体スイッチ2、リアクトル3、半導体スイッチ4およびフライホイールダイオード5,6によって直流チョッパ型に構成され、その出力電流で負荷コンデンサ7を急速充電する。
<Operation during the quick charge period>
In FIG. 7, the quick charging circuit is configured as a DC chopper type using a DC power source 1 as a power source and a semiconductor switch 2, a reactor 3, a semiconductor switch 4 and flywheel diodes 5, 6. Charge.

電圧制御回路8は、まず、スイッチ2とスイッチ4を同時にオン制御し、回路には矢印Aの経路で電流を流し、リアクトル3にエネルギーを蓄積する。次に、スイッチ2とスイッチ4を同時にオフ制御し、回路には矢印Bの経路で電流を流し、リアクトル3に蓄えられたエネルギーをコンデンサ7へすべて移行させ、コンデンサ7を充電する。このときの充電電圧は、充電電圧指令に係数回路9の係数(ゲインG:1以下)を乗じた値を制御回路8の電圧指令値とし、この電圧指令値を基にした制御回路8による演算結果としてスイッチ2,4のオフタイミングを求める。   The voltage control circuit 8 first turns on the switch 2 and the switch 4 at the same time, passes a current through the path of the arrow A, and accumulates energy in the reactor 3. Next, the switch 2 and the switch 4 are simultaneously turned off, and a current is passed through the circuit along the path indicated by the arrow B to transfer all the energy stored in the reactor 3 to the capacitor 7, thereby charging the capacitor 7. The charging voltage at this time is a value obtained by multiplying the charging voltage command by a coefficient (gain G: 1 or less) of the coefficient circuit 9 as a voltage command value of the control circuit 8, and is calculated by the control circuit 8 based on this voltage command value. As a result, the OFF timing of the switches 2 and 4 is obtained.

この演算は、リアクトル3のリアクトル値をL、コンデンサ7のコンデンサ容量をC、スイッチ2及びスイッチ4をオフした時の電流(矢印A)をI、矢印Bの電流が流れ終わった時のコンデンサ7の電圧をV(以下、粗充電電圧と呼ぶ)とすると、エネルギー保存の法則より、   In this calculation, the reactor value of the reactor 3 is L, the capacitor capacity of the capacitor 7 is C, the current when the switch 2 and the switch 4 are turned off (arrow A) is I, and the capacitor 7 when the current of the arrow B finishes flowing. If V is V (hereinafter referred to as coarse charge voltage), the law of conservation of energy

Figure 2008092746
Figure 2008092746

が成り立つ。急速充電では上式を基に、コンデンサ7を目標電圧(指令値より数%低い電圧)Vまで充電する。つまり、常にリアクトル3の電流iを検出し、以下の式、 Holds. In the quick charge, the capacitor 7 is charged to the target voltage (a voltage that is several percent lower than the command value) V based on the above equation. That is, the current i of the reactor 3 is always detected, and the following equation:

Figure 2008092746
Figure 2008092746

が成立した時にスイッチ2及びスイッチ4をオフする。 When the above is established, the switch 2 and the switch 4 are turned off.

<微調整期間の動作>
図7において、微調整充電回路は、直流電源1を電源とするインバータ10で交流電圧を得、これをパルストランス11で昇圧し、整流回路12と直流リアクトル13と半導体スイッチ14とダイオード15からなる定電流回路によって、コンデンサ7の微調整充電電流を出力する。定電流充電回路16は、常時はスイッチ14をオンしておき、インバータ10の運転によって、整流回路12とリアクトル13およびスイッチ14の経路で定電流指令によって設定された(一定の直流)電流を流しておく。次に、スイッチ14をオフ制御し、コンデンサ7に充電電流を流し続け、コンデンサ7を微調整充電する。
<Operation during the fine adjustment period>
In FIG. 7, the fine adjustment charging circuit obtains an AC voltage by an inverter 10 using a DC power source 1 as a power source, boosts this voltage by a pulse transformer 11, and includes a rectifier circuit 12, a DC reactor 13, a semiconductor switch 14, and a diode 15. The fine adjustment charging current of the capacitor 7 is output by the constant current circuit. The constant current charging circuit 16 always keeps the switch 14 turned on, and the operation of the inverter 10 causes a current (a constant direct current) set by a constant current command to flow through the path of the rectifier circuit 12, the reactor 13, and the switch 14. Keep it. Next, the switch 14 is turned off, the charging current continues to flow through the capacitor 7, and the capacitor 7 is finely charged.

この微調整期間制御は、充電電圧指令値V*とコンデンサ7の電圧をコンパレータ17で常に比較しておき、コンデンサ7の電圧が設定値V*と一致するまでスイッチ14をオフする。   In this fine adjustment period control, the charging voltage command value V * and the voltage of the capacitor 7 are always compared by the comparator 17, and the switch 14 is turned off until the voltage of the capacitor 7 matches the set value V *.

図9は、他の充電回路例を示し、図7と異なる部分は、急速充電回路をLC振動電流として供給する場合である(例えば、特許文献2参照)。このLC共振型の急速充電回路は、インバータ構成のパルス発生回路18とパルストランス19と整流回路20およびリアクトル21によって構成し、電圧制御回路8はパルス発生回路18に正負逆極性のパルスを交互に発生させ、この各パルス発生毎にリアクトル21を通してコンデンサ7に半周期の振動電流を流し、1発のパルス発生毎にコンデンサ7を目標電圧まで充電する(波形は図10参照)。この充電回路は、等価的には、パルス発生回路18とパルストランス19および整流回路20を図7のスイッチ2とダイオード5に置換し、ダイオード6とスイッチ4を省いた構成になる。   FIG. 9 shows another example of the charging circuit, and a different part from FIG. 7 is a case where the quick charging circuit is supplied as the LC oscillation current (see, for example, Patent Document 2). This LC resonance type quick charging circuit is composed of an inverter-structured pulse generation circuit 18, a pulse transformer 19, a rectifier circuit 20 and a reactor 21, and the voltage control circuit 8 alternately applies positive and negative polarity pulses to the pulse generation circuit 18. Each time the pulse is generated, a half-cycle oscillating current is passed through the capacitor 21 through the reactor 21, and the capacitor 7 is charged to the target voltage every time one pulse is generated (see FIG. 10 for waveforms). This charging circuit is equivalently configured by replacing the pulse generation circuit 18, the pulse transformer 19, and the rectification circuit 20 with the switch 2 and the diode 5 of FIG. 7 and omitting the diode 6 and the switch 4.

このLC共振型の充電電圧制御には、コンデンサ7の電圧Vcを検出しながらパルス発生期間を制御する。すなわち、パルス発生回路18から1発のパルス電圧を発生したときの電流をI、コンデンサ7の充電電圧をV0、パルス停止時のコンデンサ7の電圧をVとすると、エネルギー保存の法則より以下の式(1−1)が成り立つ。この式からコンデンサ7を目標電圧Vまで充電するために、電圧制御回路8では充電電流iについて以下の式(2−1)の演算を行い、この式が成立するときにパルス発生回路18のパルス発生動作を停止する。 In this LC resonance type charging voltage control, the pulse generation period is controlled while detecting the voltage Vc of the capacitor 7. That is, assuming that the current when one pulse voltage is generated from the pulse generation circuit 18 is I, the charging voltage of the capacitor 7 is V 0 , and the voltage of the capacitor 7 when the pulse is stopped is V, the following is given from the law of energy conservation. Expression (1-1) is established. In order to charge the capacitor 7 to the target voltage V from this equation, the voltage control circuit 8 calculates the following equation (2-1) for the charging current i, and when this equation holds, the pulse of the pulse generation circuit 18 Stop generating operation.

Figure 2008092746
Figure 2008092746

Figure 2008092746
Figure 2008092746

以上のような急速充電と微調整充電によるコンデンサ充電装置において、コンデンサ7は周囲温度の変化や装置の稼働率により、内部温度の変化で静電容量が変動し、またリアクトル3のリアクトル値も周囲温度の変化や装置の稼働率により変動することがあり、粗充電電圧が指令値V(V*にゲインGを乗じた値)からずれてくる場合がある。   In the capacitor charging device using the rapid charging and fine adjustment charging as described above, the capacitance of the capacitor 7 varies due to the change of the internal temperature due to the change of the ambient temperature and the operating rate of the device, and the reactor value of the reactor 3 is also the surroundings. The coarse charge voltage may vary from the command value V (a value obtained by multiplying V * by the gain G) in some cases due to a change in temperature or the operating rate of the apparatus.

例えば、前記の式(1)を変形すると、   For example, when the equation (1) is modified,

Figure 2008092746
Figure 2008092746

であるから、コンデンサ7の静電容量がCからC’に変動すると、粗充電電圧は、 Therefore, when the capacitance of the capacitor 7 varies from C to C ′, the coarse charge voltage is

Figure 2008092746
Figure 2008092746

となり、リアクトル3のリアクトル値がLからL’に変動すると、粗充電電圧は、 When the reactor value of reactor 3 fluctuates from L to L ′, the coarse charge voltage is

Figure 2008092746
Figure 2008092746

に変動する。 Fluctuates.

また、前記の式(1−1)を変形すると、   Further, when the above equation (1-1) is modified,

Figure 2008092746
Figure 2008092746

であるから、コンデンサ7の静電容量がCからC’に変動すると、粗充電電圧は、 Therefore, when the capacitance of the capacitor 7 varies from C to C ′, the coarse charge voltage is

Figure 2008092746
Figure 2008092746

となり、リアクトル3のリアクトル値がLからL’に変動すると、粗充電電圧は、 When the reactor value of reactor 3 fluctuates from L to L ′, the coarse charge voltage is

Figure 2008092746
Figure 2008092746

に変動する。 Fluctuates.

したがって、温度変化等でコンデンサ7の静電容量が減った場合は式(4−1)、式(4−3)より、同じくリアクトル3のリアクトル値が増えた場合は式(4−2)、式(4−4)より粗充電電圧が増大し、粗充電電圧が設定値V*を超えてしまい(図11のa参照)、微調整充電回路による微調整ができなくなり、結果、充電精度が悪化する。   Therefore, when the capacitance of the capacitor 7 decreases due to a temperature change or the like, from the equation (4-1) and the equation (4-3), when the reactor value of the reactor 3 increases, the equation (4-2) From equation (4-4), the coarse charge voltage increases, the coarse charge voltage exceeds the set value V * (see a in FIG. 11), and fine adjustment by the fine adjustment charging circuit cannot be performed. As a result, the charging accuracy is improved. Getting worse.

逆に、コンデンサ7の静電容量が増えた場合は式(4−1)、式(4−3)より、同じくリアクトル3のリアクトル値が減った場合は式(4−2)、式(4−4)より粗充電電圧が減少し(図11のb参照)、以下の不都合がおきる。   On the contrary, when the capacitance of the capacitor 7 is increased, from the equations (4-1) and (4-3), when the reactor value of the reactor 3 is similarly decreased, the equations (4-2) and (4) -4) The coarse charging voltage is reduced (see b in FIG. 11), and the following inconvenience occurs.

・微調整充電回路の充電電流容量の余裕度を高くする必要があり、装置の大型化に繋がる。   -It is necessary to increase the margin of the charging current capacity of the fine adjustment charging circuit, leading to an increase in the size of the device.

・粗充電電圧が下がり、充電の繰り返し周期で決まる微調整期間内に設定値V*まで追加充電しきれなくなる場合が生じる。   The coarse charge voltage drops, and there are cases where additional charge cannot be fully achieved up to the set value V * within the fine adjustment period determined by the charge repetition cycle.

・これらの不都合を防止する目的で微調整充電電流を大きくすると、微調整充電電圧のdV/dtが増え、充電精度が悪化する。   If the fine adjustment charging current is increased for the purpose of preventing these inconveniences, the fine adjustment charging voltage dV / dt increases and the charging accuracy deteriorates.

なお、上記のコンデンサ容量Cの変動やリアクトル値Lの変動は、これらの温度変化に限らず、装置ユニット単位の交換や回路要素の交換による回路定数の変化によっても起きる。この場合の対策として、特許文献2ではパルス電流エネルギーの変化に対して、電圧制御回路の演算定数の値を変更することで補償している。
特開2005−086970号公報 特開2005−108910号公報
The above-described fluctuation of the capacitor capacity C and the fluctuation of the reactor value L are caused not only by these temperature changes but also by changes in circuit constants due to replacement of unit units or replacement of circuit elements. As a countermeasure in this case, Patent Document 2 compensates for a change in pulse current energy by changing a value of an operation constant of the voltage control circuit.
Japanese Patent Laying-Open No. 2005-086970 JP 2005-108910 A

前記の特許文献2の手法は、充電装置のコンデンサ容量Cの変動やリアクトル値Lの変動を回路定数の入力設定値変更で補償するものであり、装置ユニット単位の交換や回路要素の交換時に回路定数を変更することになる。   The method of Patent Document 2 described above compensates for fluctuations in the capacitor capacity C and the reactor value L of the charging device by changing the input setting values of the circuit constants. The constant will be changed.

このため、充電装置の運転時の周囲温度の変化や装置の稼働率による温度変化等で、静電容量やリアクトル値が変動した場合には補償できない。すなわち、充電装置の運転時や装置の稼働率による静電容量やリアクトル値の変動に対する補償ができない。   For this reason, compensation cannot be made if the capacitance or reactor value fluctuates due to a change in ambient temperature during operation of the charging device or a temperature change due to the operating rate of the device. In other words, it is not possible to compensate for fluctuations in capacitance and reactor value due to the operation of the charging device and the operating rate of the device.

本発明の目的は、充電装置の運転時や装置の稼働率によるコンデンサ容量Cまたはリアクトル値Lの変動にも、コンデンサの粗充電電圧を適切な値に逐次補正できるコンデンサ充電装置を提供することにある。   An object of the present invention is to provide a capacitor charging device that can sequentially correct the coarse charging voltage of the capacitor to an appropriate value even when the capacitor capacity C or the reactor value L varies due to the operation of the charging device or the operating rate of the device. is there.

本発明は、前記の課題を解決するため、直流チョッパ型またはLC共振型の急速充電回路と、微調整充電回路とによるコンデンサ充電装置において、負荷コンデンサの容量変動または急速充電回路がもつリアクトルのリアクトル値変動による急速充電電圧の変化を、温度や回路定数、電圧や電流、動作期間を演算要素とする演算によって求め、この演算結果から急速充電回路の出力電流や目標電圧を制御するものであり、以下の構成を特徴とする。   In order to solve the above-described problems, the present invention provides a capacitor charging device including a DC chopper type or LC resonance type quick charging circuit and a fine adjustment charging circuit. The change of the quick charge voltage due to the value fluctuation is obtained by calculation using the temperature, circuit constant, voltage, current, and operation period as calculation elements, and the output current and target voltage of the quick charge circuit are controlled from the calculation result. It is characterized by the following configuration.

(1)直流チョッパ回路の出力でコンデンサを充電電圧指令値に近い目標電圧まで急速充電する直流チョッパ型の急速充電回路と、前記急速充電後に前記コンデンサを定電流充電で充電電圧指令値まで充電する微調整充電回路とを備えたコンデンサ充電装置において、
前記急速充電回路の電圧制御回路は、前記コンデンサの容量変動または前記急速充電回路がもつリアクトルのリアクトル値変動による前記急速充電電圧の変化を補正する制御手段を備えたことを特徴とする。
(1) A DC chopper type quick charging circuit that rapidly charges a capacitor to a target voltage close to the charging voltage command value by the output of the DC chopper circuit, and charging the capacitor to a charging voltage command value by constant current charging after the rapid charging. In a capacitor charging device with a fine adjustment charging circuit,
The voltage control circuit of the quick charge circuit includes control means for correcting a change in the quick charge voltage due to a change in capacitance of the capacitor or a change in reactor value of the reactor of the quick charge circuit.

(2)パルス電圧出力を直流リアクトルを通してコンデンサに振動電流を流して該コンデンサを充電電圧指令値に近い目標電圧まで急速充電するLC共振型の急速充電回路と、前記急速充電後に前記コンデンサを定電流充電で充電電圧指令値まで充電する微調整充電回路とを備えたコンデンサ充電装置において、
前記急速充電回路の電圧制御回路は、前記コンデンサの容量変動または前記急速充電回路がもつリアクトルのリアクトル値変動による前記急速充電電圧の変化を補正する制御手段を備えたことを特徴とする。
(2) An LC resonance type quick charging circuit that rapidly charges the capacitor to a target voltage close to a charging voltage command value by flowing an oscillating current through the DC voltage reactor to the capacitor, and a constant current after the rapid charging. In a capacitor charging device with a fine adjustment charging circuit that charges up to a charging voltage command value by charging,
The voltage control circuit of the quick charge circuit includes control means for correcting a change in the quick charge voltage due to a change in capacitance of the capacitor or a change in reactor value of the reactor of the quick charge circuit.

(3)前記制御手段は、前記コンデンサ自体またはリアクトル自体の温度計測値、または急速充電回路の周囲の温度計測値から前記コンデンサ容量Cまたはリアクトル値Lを算出し、この算出したコンデンサ容量Cまたはリアクトル値Lの変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする。   (3) The control means calculates the capacitor capacity C or the reactor value L from the temperature measurement value of the capacitor itself or the reactor itself, or the temperature measurement value around the quick charging circuit, and calculates the calculated capacitor capacity C or reactor. A change in the rapid charging voltage due to the fluctuation of the value L is corrected by the output current control of the rapid charging circuit.

(4)前記制御手段は、前記コンデンサの粗充電電圧V1、微調整電圧V2、微調整電流Iおよび微調整充電時間Tの計測結果から前記コンデンサ容量C’を算出し、この算出したコンデンサ容量C’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする。   (4) The control means calculates the capacitor capacity C ′ from the measurement results of the coarse charge voltage V1, fine adjustment voltage V2, fine adjustment current I, and fine adjustment charge time T of the capacitor, and the calculated capacitor capacity C The change in the quick charge voltage due to the fluctuation of 'is corrected by the output current control of the quick charge circuit.

(5)前記制御手段は、前記微調整電圧V2、微調整電流I、微調整充電時間Tの計測結果およびこれら計測結果から予測した粗充電電圧V1’から前記コンデンサ容量C’を算出し、この算出したコンデンサ容量C’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正、または前記目標電圧Vの制御で補正することを特徴とする。   (5) The control means calculates the capacitor capacitance C ′ from the measurement result of the fine adjustment voltage V2, the fine adjustment current I, the fine adjustment charging time T, and the rough charge voltage V1 ′ predicted from these measurement results. A change in the quick charge voltage due to the fluctuation of the calculated capacitor capacity C ′ is corrected by output current control of the quick charge circuit or by control of the target voltage V.

(6)前記制御手段は、前記リアクトルに電流を流す時間T2と、そのときの電流I2および前記直流チョッパ回路の直流電源電圧Eから前記リアクトルのリアクトル値L’を算出し、この算出したリアクトル値L’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする。   (6) The control means calculates a reactor value L ′ of the reactor from a time T2 during which a current flows through the reactor, a current I2 at that time, and a DC power supply voltage E of the DC chopper circuit, and the calculated reactor value The quick charge voltage change due to the variation of L ′ is corrected by the output current control of the quick charge circuit.

(7)前記制御手段は、微調整充電時間Tが予め設定された時間T2を超えた場合、前記微調整電流I、微調整充電時間Tの計測結果およびコンデンサ容量Cと充電電圧指令値V*から求める比率で次回以降の前記目標電圧Vを切換え、微調整充電期間内に充電電圧指令値V*まで充電することを特徴とする。   (7) When the fine adjustment charging time T exceeds a preset time T2, the control means determines the fine adjustment current I, the measurement result of the fine adjustment charging time T, the capacitor capacity C, and the charging voltage command value V *. The target voltage V after the next time is switched at a ratio obtained from the following, and charging is performed up to the charging voltage command value V * within the fine adjustment charging period.

(8)前記制御手段は、前記コンデンサ容量Cまたはリアクトル値Lの変動を予め算出しておき、急速充電開始直前に、算出した容量Cとリアクトル値Lと、前記急速充電回路の直流電源電圧Eと前記目標電圧Vから該急速充電回路のオン期間TONを制御して急速充電電圧の変化を補正することを特徴とする。 (8) The control means calculates the fluctuation of the capacitor capacity C or the reactor value L in advance, and immediately before the start of the quick charge, the calculated capacity C, the reactor value L, and the DC power supply voltage E of the quick charge circuit. And the target voltage V is used to control the on-period T ON of the quick charge circuit to correct the change in the quick charge voltage.

(9)前記制御手段は、前記コンデンサの容量Cと、前記リアクトルに電流を流す時間T2と、そのときの電流I2および前記急速充電回路の直流電源電圧Eから前記リアクトルのリアクトル値L’を算出し、この算出したリアクトル値L’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする。   (9) The control means calculates the reactor value L ′ of the reactor from the capacitance C of the capacitor, the time T2 during which the current flows to the reactor, the current I2 at that time and the DC power supply voltage E of the quick charging circuit. The change in the rapid charging voltage due to the fluctuation of the calculated reactor value L ′ is corrected by the output current control of the rapid charging circuit.

(10)前記制御手段は、前記コンデンサ容量Cと、リアクトル値Lと、急速充電開始直前の直流電源電圧Eと充電電圧指令値V*から前記急速充電回路のオン期間TONを制御して急速充電電圧の変化を補正することを特徴とする。 (10) wherein, said capacitance C, the reactor value L and rapidly by controlling the ON period T ON of the rapid charging circuit quick charge immediately before the start of the DC power supply voltage E and the charge voltage command value V * It is characterized by correcting a change in charging voltage.

以上のとおり、本発明によれば、直流チョッパ型またはLC共振型の急速充電回路と、微調整充電回路とによるコンデンサ充電装置において、負荷コンデンサの容量変動または急速充電回路がもつリアクトルのリアクトル値変動による急速充電電圧の変化を、温度や回路定数、電圧や電流、動作期間を演算要素とする演算によって求め、この演算結果から急速充電回路の出力電流や目標電圧を制御するため、充電装置の運転時や装置の稼働率によるコンデンサ容量Cまたはリアクトル値Lの変動にもコンデンサの粗充電電圧を適切な値に逐次補正できる効果がある。   As described above, according to the present invention, in the capacitor charging device using the DC chopper type or LC resonance type quick charging circuit and the fine adjustment charging circuit, the capacity fluctuation of the load capacitor or the reactor value fluctuation of the reactor of the quick charging circuit In order to control the output current and target voltage of the quick charging circuit based on the calculation result of the temperature, circuit constant, voltage, current, and operation period as the calculation elements, The fluctuation of the capacitor capacity C or the reactor value L due to the time or the operating rate of the apparatus also has an effect that the coarse charging voltage of the capacitor can be corrected to an appropriate value successively.

(実施形態1)
図1は、本実施形態を示す充電装置の要部構成図であり、図7と異なる部分は電圧制御回路8による急速充電演算に、温度によるコンデンサ7の容量変動を補正する点にある。
(Embodiment 1)
FIG. 1 is a configuration diagram of a main part of the charging apparatus according to the present embodiment, and a different part from FIG. 7 is that a quick charge calculation by the voltage control circuit 8 is corrected for a capacitance variation of the capacitor 7 due to temperature.

コンデンサ7の静電容量Cはその内部温度を計測することで推定が可能であるため、充電開始直前にコンデンサ7の内部温度を温度検出器31で計測し、この温度計測値から温度補正回路32によりコンデンサ7の静電容量を算出し、この算出したコンデンサ7の静電容量C’を変数として、電圧制御回路8では前記の式(2)へ代入することで、コンデンサ7を目標電圧Vにまで充電するのに必要な電流iを求め、この電流iに達したときにスイッチ2,4をオフ制御する。   Since the capacitance C of the capacitor 7 can be estimated by measuring its internal temperature, the internal temperature of the capacitor 7 is measured by the temperature detector 31 immediately before the start of charging, and the temperature correction circuit 32 is calculated from this temperature measurement value. And the voltage control circuit 8 substitutes the calculated capacitance C ′ of the capacitor 7 as a variable into the above-described equation (2), thereby setting the capacitor 7 to the target voltage V. The current i required for charging up to 2 is obtained, and when this current i is reached, the switches 2 and 4 are turned off.

したがって、周囲温度の変化や装置の稼働率により、コンデンサ7の静電容量が変動した場合にも、コンデンサ7の粗充電電圧を逐次補正して充電精度を高めることができ、前記のような課題を解消できる。   Therefore, even when the capacitance of the capacitor 7 fluctuates due to a change in the ambient temperature or the operating rate of the apparatus, the coarse charging voltage of the capacitor 7 can be sequentially corrected to improve the charging accuracy. Can be eliminated.

なお、温度補正は、充電装置の運転開始時に限らず、一定回数の充電動作毎に補正することで粗充電精度を一層高めることができる。また、温度補正回路32は温度−コンデンサ容量特性の関数演算回路とした構成または関数をテーブルデータ化した構成とすることで済む。また、温度検出器31は、コンデンサ7の温度を直接に計測するに限らず、充電装置の周囲温度計測から推定することもできる。   Note that the temperature correction is not limited to when the operation of the charging device is started, and the coarse charging accuracy can be further improved by correcting the temperature every fixed number of charging operations. Further, the temperature correction circuit 32 may be configured as a function calculation circuit of temperature-capacitance characteristics or a configuration in which a function is converted into table data. Further, the temperature detector 31 is not limited to directly measuring the temperature of the capacitor 7 but can also be estimated from the ambient temperature measurement of the charging device.

また、温度補正は、コンデンサ7の容量のほか、リアクトル3のリアクトル値についても同様に補正できる。この場合、温度補正回路32と同等のリアクトルの値を補正する回路を追加することで済む。   Further, the temperature correction can be similarly performed for the reactor value of the reactor 3 in addition to the capacitance of the capacitor 7. In this case, a circuit for correcting the reactor value equivalent to the temperature correction circuit 32 may be added.

(実施形態2)
図2は、本実施形態を示す充電装置の要部構成図であり、図7と異なる部分は電圧制御回路8による急速充電演算に、コンデンサ7の粗充電電圧V1、微調整電圧V2、微調整電流I、微調整充電時間(スイッチ26のオフ時間)Tの計測結果から、コンデンサ7の静電容量の変動を算出し、この算出したコンデンサ7の静電容量C’を使って実施形態1と同様に式(2)へ代入することで、コンデンサ7を目標電圧Vにまで充電するのに必要な電流iを求め、この電流iに達したときにスイッチ2,4をオフ制御する点にある。
(Embodiment 2)
FIG. 2 is a configuration diagram of the main part of the charging apparatus according to the present embodiment. The parts different from FIG. 7 are the quick charge calculation performed by the voltage control circuit 8 and the coarse charge voltage V1, fine adjustment voltage V2, and fine adjustment of the capacitor 7. From the measurement result of the current I and the fine adjustment charging time (off time of the switch 26) T, the fluctuation of the capacitance of the capacitor 7 is calculated, and the calculated capacitance C ′ of the capacitor 7 is used as in the first embodiment. Similarly, by substituting into the equation (2), a current i required to charge the capacitor 7 to the target voltage V is obtained, and when this current i is reached, the switches 2 and 4 are controlled to be turned off. .

前回充電時のコンデンサ7の静電容量Cは、スイッチ26のオフ時間をT、粗充電電圧をV1、微調電圧をV2、微調整電流値をIとすると、下記の演算式より算出される。   The capacitance C of the capacitor 7 at the time of the previous charging is calculated by the following arithmetic expression, where T is the off time of the switch 26, V1 is the coarse charge voltage, V2 is the fine adjustment voltage, and I is the fine adjustment current value.

Figure 2008092746
Figure 2008092746

電圧制御回路8は、式(6)を基にして算出した静電容量Cを式(2)の静電容量C’に代入した演算を行い、この演算結果に検出電流iが一致したときにスイッチ2,4をオフ制御する。   The voltage control circuit 8 performs a calculation by substituting the capacitance C calculated based on the equation (6) into the capacitance C ′ of the equation (2), and when the detected current i matches the calculation result. The switches 2 and 4 are turned off.

したがって、周囲温度の変化や装置の稼働率により、コンデンサ7の静電容量が変動した場合にも、コンデンサ7の粗充電電圧を逐次補正して充電精度を高めることができ、前記のような課題を解消できる。   Therefore, even when the capacitance of the capacitor 7 fluctuates due to a change in the ambient temperature or the operating rate of the apparatus, the coarse charging voltage of the capacitor 7 can be sequentially corrected to improve the charging accuracy. Can be eliminated.

なお、静電容量補正は、充電動作毎に計算する必要はなく、一定回数の充電動作毎に補正することで済む。   The capacitance correction does not need to be calculated for each charging operation, and may be corrected for each certain number of charging operations.

(実施形態3)
図3は、本実施形態を示す充電装置の要部構成図であり、図2と異なる部分は電圧制御回路8による急速充電演算に、粗充電電圧V1を測定することなしに、微調整充電時間(スイッチ26のオフ時間)から粗充電電圧V1を推定し、目標値Vとの誤差を次回の設定値に反映させる点にある。
(Embodiment 3)
FIG. 3 is a configuration diagram of a main part of the charging apparatus according to the present embodiment. A portion different from FIG. 2 is a fine adjustment charging time without measuring the rough charging voltage V1 in the quick charging calculation by the voltage control circuit 8. The rough charge voltage V1 is estimated from the (off time of the switch 26), and an error from the target value V is reflected in the next set value.

前回充電時の粗充電電圧の推定値V1’はスイッチ26のオフ時間をT、充電電圧指令16(指令値)をV*とすると、前記の式(6)から、   The estimated value V1 'of the rough charge voltage at the previous charge is T from the switch 26 off time and V * from the charge voltage command 16 (command value).

Figure 2008092746
Figure 2008092746

として求めることができる。 Can be obtained as

また、電圧制御回路8に入力される粗充電電圧の指令値Vは、充電電圧指令V*に係数回路9の係数(ゲインG)を掛けた値であるから、ゲインGの値を式(7)で求めた推定値V1’の値を元に変化させることで、次回の粗充電電圧を制御することができる。   The command value V of the coarse charging voltage input to the voltage control circuit 8 is a value obtained by multiplying the charging voltage command V * by the coefficient (gain G) of the coefficient circuit 9, so that the value of the gain G is expressed by the equation (7). The next rough charging voltage can be controlled by changing the estimated value V1 ′ obtained in (1).

ゲインGを、   Gain G

Figure 2008092746
Figure 2008092746

ただし、gは変数で初期値は例えば1、G0は変更前のゲインGの値(初期値)で、コンデンサ7を充電電圧指令値V*よりもΔVだけ低く充電するための値であり、以下の式の関係になる。   However, g is a variable, for example, the initial value is 1, for example, G0 is the value (initial value) of the gain G before the change, and is a value for charging the capacitor 7 by ΔV lower than the charge voltage command value V *. It becomes the relation of the expression of.

Figure 2008092746
Figure 2008092746

次に、前回充電時の目標電圧V、前記充電時の変数gの値をg1とすると、次回充電時に用いる変数gの値g2を、以下の式(8−2)から求め、   Next, assuming that the target voltage V at the time of previous charging and the value of the variable g at the time of charging is g1, the value g2 of the variable g used at the next charging is obtained from the following equation (8-2):

Figure 2008092746
Figure 2008092746

次回充電時に用いるゲインGを、以下の式(8−3)から求め、これを次回充電時のゲインGの値とする。   The gain G used at the next charging is obtained from the following equation (8-3), and this is set as the value of the gain G at the next charging.

Figure 2008092746
Figure 2008092746

なお、V*−ΔV=V*’なる粗充電の目標電圧Vが予め設定入力されるシステムにおいては、G0=1で、以下の式(8−4)で算出される。   In a system in which a rough charging target voltage V of V * −ΔV = V * ′ is set and inputted in advance, G0 = 1 and the following equation (8-4) is used.

Figure 2008092746
Figure 2008092746

本実施形態による演算を具体例で説明すると、前回、電圧制御回路8の入力値V*×G0×g1に対し、実際の粗充電電圧値はV1’となり、次回の充電電圧指令V*も同じの場合、電圧制御回路8の入力値は、   The calculation according to the present embodiment will be described with a specific example. The actual coarse charge voltage value is V1 ′ last time with respect to the input value V * × G0 × g1 of the voltage control circuit 8, and the next charge voltage command V * is the same. In this case, the input value of the voltage control circuit 8 is

Figure 2008092746
Figure 2008092746

となることから、粗充電電圧値は、 Therefore, the rough charge voltage value is

Figure 2008092746
Figure 2008092746

となり、粗充電電圧を目標電圧Vに制御することができる。ただし、コンデンサ7の静電容量Cは固定定数としているため誤差は生ずる。 Thus, the rough charge voltage can be controlled to the target voltage V. However, since the capacitance C of the capacitor 7 is a fixed constant, an error occurs.

したがって、本実施形態においては、粗充電電圧V1の検出を不要にして、周囲温度の変化や装置の稼働率により、コンデンサ7の静電容量が変動した場合にも、コンデンサ7の粗充電電圧を逐次補正して充電精度を高めることができ、前記のような課題を解消できる。   Therefore, in the present embodiment, the detection of the coarse charge voltage V1 is not required, and the coarse charge voltage of the capacitor 7 is changed even when the capacitance of the capacitor 7 fluctuates due to a change in ambient temperature or the operating rate of the apparatus. Correction can be made sequentially to improve charging accuracy, and the above-mentioned problems can be solved.

(実施形態4)
図4は、本実施形態を示す充電装置の要部構成図であり、図7と異なる部分は電圧制御回路8による急速充電演算に、リアクトル3のリアクトル値Lの変動を補正して急速充電電圧を制御する点にある。
(Embodiment 4)
FIG. 4 is a configuration diagram of a main part of the charging apparatus according to the present embodiment. A portion different from FIG. 7 is a quick charging operation performed by the voltage control circuit 8 to correct fluctuations in the reactor value L of the reactor 3 and to perform a quick charging voltage. The point is to control.

電圧制御回路8は、スイッチ2及びスイッチ4のオン時間と、その時の検出電流とからリアクトル3のリアクトル値を算出し、算出したリアクトル3のリアクトル値を変数として前記の式(2)に代入することで、コンデンサ7を目標電圧Vにまで充電するのに必要な電流iを求め、この電流iに達したときにスイッチ2,4をオフ制御する。   The voltage control circuit 8 calculates the reactor value of the reactor 3 from the ON time of the switch 2 and the switch 4 and the detected current at that time, and substitutes the calculated reactor value of the reactor 3 into the equation (2) as a variable. Thus, the current i necessary to charge the capacitor 7 to the target voltage V is obtained, and when this current i is reached, the switches 2 and 4 are controlled to be turned off.

スイッチ2及びスイッチ4のオン時間をT2、その時のリアクトル3の電流値をI2、直流電圧をE(=VDC)とすると、リアクトル3のリアクトル値Lは、下記の式(9)より求めることができる。 When the on time of the switch 2 and the switch 4 is T2, the current value of the reactor 3 at that time is I2, and the DC voltage is E (= V DC ), the reactor value L of the reactor 3 is obtained from the following equation (9). Can do.

Figure 2008092746
Figure 2008092746

したがって、周囲温度の変化や装置の稼働率により、リアクトル3のリアクトル値Lが変動した場合にも、コンデンサ7の粗充電電圧を逐次補正して充電精度を高めることができ、前記のような課題を解消できる。   Therefore, even when the reactor value L of the reactor 3 fluctuates due to a change in the ambient temperature or the operating rate of the apparatus, the charging accuracy can be improved by sequentially correcting the coarse charging voltage of the capacitor 7, and the above-described problem Can be eliminated.

(実施形態5)
図5は、本実施形態を示す充電装置の要部構成図であり、図3と異なる部分は電圧制御回路8による急速充電演算に、乗算回路9におけるゲインGをステップ状に切換える点にある。
(Embodiment 5)
FIG. 5 is a configuration diagram of a main part of the charging apparatus according to the present embodiment. A different part from FIG. 3 is that the gain G in the multiplier circuit 9 is switched in a stepped manner for the quick charge calculation by the voltage control circuit 8.

電圧制御回路8は、前回微調整充電時の時間T(スイッチ26のオフ時間)が要求される時間を超えた場合、次回以降の充電に用いる粗充電目標電圧設定用の乗算回路9のゲインGをステップ状に変化させることで、コンデンサ7の充電電圧を制御する。   When the time T (off time of the switch 26) at the previous fine adjustment charging exceeds the required time, the voltage control circuit 8 gains the gain G of the multiplier 9 for setting the rough charging target voltage used for the subsequent charging. Is changed stepwise to control the charging voltage of the capacitor 7.

微調整充電時間(スイッチ26のオフ時間)Tは前記の式(6)より求まるが、この時間Tよりも実際の微調整充電時間が長くなることは、粗充電電圧が下がったことを意味し、前記のように、充電の繰り返し周期で決まる微調整期間内に設定値V*まで追加充電しきれなくなるという問題が生じる。   The fine adjustment charging time (off time of the switch 26) T is obtained from the above equation (6), but the actual fine adjustment charging time longer than this time T means that the coarse charging voltage has decreased. As described above, there arises a problem that additional charging cannot be performed up to the set value V * within the fine adjustment period determined by the repetition cycle of charging.

したがって、要求される微調整充電時間Tよりも短い適当な時間T2を設定し、スイッチ26のオフ時間TがT2を超えたとき、次回以降に用いるゲインGを式(8−3)に代えて、以下の式(10)に従って求める係数(比率)を乗じた値に切換える。   Therefore, when an appropriate time T2 shorter than the required fine adjustment charging time T is set and the off time T of the switch 26 exceeds T2, the gain G used for the next time is changed to the equation (8-3). Then, the value is switched to a value multiplied by a coefficient (ratio) obtained according to the following equation (10).

Figure 2008092746
Figure 2008092746

とする。ただし、前回までのゲインGをG0×g1とする。 And However, the gain G up to the previous time is set to G0 × g1.

したがって、本実施形態においては、コンデンサ容量Cの変動またはリアクトル値Lの変動を補正するのに、ゲインGの切換えのみで、充電の繰り返し周期から要求される微調整充電期間内に充電電圧指令値V*まで充電することができる。これにより、実施形態3等によるCやLの変動を演算で求める場合に比べて、式(8−3)によるゲインGを予め求めておくことができ、電圧制御回路8ではゲインGの演算が不要になる。   Therefore, in the present embodiment, in order to correct the fluctuation of the capacitor capacitance C or the fluctuation of the reactor value L, only the gain G is switched, and the charging voltage command value is within the fine adjustment charging period required from the charging repetition cycle. Can charge up to V *. Thereby, compared with the case where the fluctuation | variation of C and L by Embodiment 3 etc. is calculated | required by calculation, the gain G by Formula (8-3) can be calculated | required previously, and the calculation of the gain G is carried out in the voltage control circuit 8. It becomes unnecessary.

(実施形態6)
図6は、本実施形態を示す充電装置の要部構成図である。前記までの実施形態1〜5では、急速充電期間の制御は電流iを検出しながらリアルタイムで前記の式(2)の演算を行うものであるが、急速充電開始直前に直流電源1の電圧VDCを検出すれば、目標電圧Vまでの充電に必要なスイッチ2及びスイッチ4のオン時間TONを予め算出することができる。例えば、直流電圧VDCの値をEとすると、
(Embodiment 6)
FIG. 6 is a main part configuration diagram of the charging apparatus according to the present embodiment. In the first to fifth embodiments described above, the control of the quick charge period is to perform the calculation of the above formula (2) in real time while detecting the current i, but the voltage V of the DC power supply 1 immediately before the start of the quick charge. If DC is detected, the ON time T ON of the switch 2 and the switch 4 necessary for charging up to the target voltage V can be calculated in advance. For example, if the value of the DC voltage V DC is E,

Figure 2008092746
Figure 2008092746

であるから、前記の式(1)へ代入して、 Therefore, substituting into the above equation (1),

Figure 2008092746
Figure 2008092746

で算出可能である。 Can be calculated.

そこで、電圧制御回路8は、上記の式(11)により算出する時間TONでスイッチ2,4をオフ制御し、この時間TONの算出に使用するコンデンサ容量Cまたはリアクトル値Lの変動を前記までの実施形態1〜5における演算によって補正しておく構成とする。これにより、リアクトル電流iの検出による急速充電電圧の補正を不要にする。 Therefore, the voltage control circuit 8 controls the switches 2 and 4 to be turned off at the time T ON calculated by the above equation (11), and the fluctuation of the capacitor capacity C or the reactor value L used for the calculation of the time T ON is described above. It is set as the structure corrected by the calculation in the first to fifth embodiments. This eliminates the need for quick charge voltage correction by detecting the reactor current i.

(実施形態7)
本実施形態は、図9に示すLC共振型の急速充電回路に、前記までの実施形態1〜6と同様の急速充電制御を適用する場合である。
(Embodiment 7)
The present embodiment is a case where the same rapid charging control as in the first to sixth embodiments is applied to the LC resonance type rapid charging circuit shown in FIG.

具体的には、前記の実施形態3または実施形態5におけるゲインGの調整または切換えは、図9のLC共振型の急速充電回路にそのまま適用できる。また、前記の式(2)による電流iの演算に代えて、LC共振型の急速充電回路に適した前記の式(2−1)形のものにすれば実施形態1〜実施形態5と同様の補正ができる。   Specifically, the adjustment or switching of the gain G in the third or fifth embodiment can be applied as it is to the LC resonance type quick charging circuit of FIG. Further, in place of the calculation of the current i by the equation (2), if the equation (2-1) type suitable for the LC resonance type quick charging circuit is used, the same as in the first to fifth embodiments. Can be corrected.

さらに、前記の式(9)をLC共振型の急速充電回路に適した形のものにすれば実施形態4(図4)と同様にして補正できる。この場合、コンデンサ7の静電容量C、パルス発生回路18のパルス発生時間をT2、そのときのリアクトル21の電流値をI2、パルストランス19で昇圧した直流電圧をEとすると、リアクトル21の値Lは以下の式(9−1)より求めることができる。   Further, if Equation (9) is changed to a form suitable for an LC resonance type quick charging circuit, it can be corrected in the same manner as in the fourth embodiment (FIG. 4). In this case, assuming that the capacitance C of the capacitor 7, the pulse generation time of the pulse generation circuit 18 is T2, the current value of the reactor 21 at that time is I2, and the DC voltage boosted by the pulse transformer 19 is E, the value of the reactor 21 L can be obtained from the following equation (9-1).

Figure 2008092746
Figure 2008092746

また、式(11)をLC共振型の急速充電回路に適した形のものにすれば実施形態6(図6)と同様にして補正できる。この場合、パルストランス19で昇圧した直流電圧をEとすると、以下の式(11−1)より、パルス発生回路18のパルス発生時間TONを求めることができる。 Further, if Equation (11) is changed to a form suitable for an LC resonance type quick charging circuit, it can be corrected in the same manner as in the sixth embodiment (FIG. 6). In this case, assuming that the DC voltage boosted by the pulse transformer 19 is E, the pulse generation time T ON of the pulse generation circuit 18 can be obtained from the following equation (11-1).

Figure 2008092746
Figure 2008092746

本発明の実施形態1を示す充電装置の要部回路図。The principal part circuit diagram of the charging device which shows Embodiment 1 of this invention. 本発明の実施形態2を示す充電装置の要部回路図。The principal part circuit diagram of the charging device which shows Embodiment 2 of this invention. 本発明の実施形態3を示す充電装置の要部回路図。The principal part circuit diagram of the charging device which shows Embodiment 3 of this invention. 本発明の実施形態4を示す充電装置の要部回路図。The principal part circuit diagram of the charging device which shows Embodiment 4 of this invention. 本発明の実施形態5を示す充電装置の要部回路図。The principal part circuit diagram of the charging device which shows Embodiment 5 of this invention. 本発明の実施形態6を示す充電装置の要部回路図。The principal part circuit diagram of the charging device which shows Embodiment 6 of this invention. 急速充電と微調整充電の回路例(その1)。Circuit example of quick charge and fine adjustment charge (part 1). 直流チョッパ型の電流・電圧波形。DC / Chopper current / voltage waveform. 急速充電と微調整充電の回路例(その2)。Circuit example of quick charge and fine adjustment charge (part 2). LC共振型の電流・電圧波形。LC resonance type current / voltage waveform. 充電電圧の変化の例。An example of a change in charging voltage.

符号の説明Explanation of symbols

1 直流電源
2、4 半導体スイッチ
3 リアクトル
7 負荷コンデンサ
8 電圧制御回路
9 乗算回路
31 温度検出器
32 温度補正回路
DESCRIPTION OF SYMBOLS 1 DC power supply 2, 4 Semiconductor switch 3 Reactor 7 Load capacitor 8 Voltage control circuit 9 Multiplication circuit 31 Temperature detector 32 Temperature correction circuit

Claims (10)

直流チョッパ回路の出力でコンデンサを充電電圧指令値に近い目標電圧まで急速充電する直流チョッパ型の急速充電回路と、前記急速充電後に前記コンデンサを定電流充電で充電電圧指令値まで充電する微調整充電回路とを備えたコンデンサ充電装置において、
前記急速充電回路の電圧制御回路は、前記コンデンサの容量変動または前記急速充電回路がもつリアクトルのリアクトル値変動による前記急速充電電圧の変化を補正する制御手段を備えたことを特徴とするコンデンサ充電装置。
DC chopper type quick charging circuit that quickly charges the capacitor to the target voltage close to the charging voltage command value by the output of the DC chopper circuit, and fine adjustment charging that charges the capacitor to the charging voltage command value by constant current charging after the rapid charging In a capacitor charging device comprising a circuit,
The voltage control circuit of the quick charge circuit includes a control unit that corrects a change in the quick charge voltage due to a change in capacitance of the capacitor or a change in reactor value of the reactor of the quick charge circuit. .
パルス電圧出力を直流リアクトルを通してコンデンサに振動電流を流して該コンデンサを充電電圧指令値に近い目標電圧まで急速充電するLC共振型の急速充電回路と、前記急速充電後に前記コンデンサを定電流充電で充電電圧指令値まで充電する微調整充電回路とを備えたコンデンサ充電装置において、
前記急速充電回路の電圧制御回路は、前記コンデンサの容量変動または前記急速充電回路がもつリアクトルのリアクトル値変動による前記急速充電電圧の変化を補正する制御手段を備えたことを特徴とするコンデンサ充電装置。
An LC resonance type quick charge circuit that rapidly charges the capacitor to a target voltage close to the charge voltage command value by passing an oscillating current through the DC reactor through the DC voltage reactor, and charging the capacitor with constant current charging after the rapid charge In a capacitor charging device with a fine adjustment charging circuit that charges to a voltage command value,
The voltage control circuit of the quick charge circuit includes a control unit that corrects a change in the quick charge voltage due to a change in capacitance of the capacitor or a change in reactor value of the reactor of the quick charge circuit. .
前記制御手段は、前記コンデンサ自体またはリアクトル自体の温度計測値、または急速充電回路の周囲の温度計測値から前記コンデンサ容量Cまたはリアクトル値Lを算出し、この算出したコンデンサ容量Cまたはリアクトル値Lの変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする請求項1または2に記載のコンデンサ充電装置。   The control means calculates the capacitor capacity C or the reactor value L from the temperature measurement value of the capacitor itself or the reactor itself, or the temperature measurement value around the quick charging circuit, and determines the calculated capacitor capacity C or the reactor value L. The capacitor charging device according to claim 1, wherein a change in the rapid charging voltage due to fluctuation is corrected by output current control of the rapid charging circuit. 前記制御手段は、前記コンデンサの粗充電電圧V1、微調整電圧V2、微調整電流Iおよび微調整充電時間Tの計測結果から前記コンデンサ容量C’を算出し、この算出したコンデンサ容量C’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする請求項1または2に記載のコンデンサ充電装置。   The control means calculates the capacitor capacitance C ′ from the measurement results of the coarse charge voltage V1, fine adjustment voltage V2, fine adjustment current I, and fine adjustment charge time T of the capacitor, and the fluctuation of the calculated capacitor capacitance C ′. The capacitor charging device according to claim 1, wherein a change in the rapid charging voltage due to the output is corrected by an output current control of the rapid charging circuit. 前記制御手段は、前記微調整電圧V2、微調整電流I、微調整充電時間Tの計測結果およびこれら計測結果から予測した粗充電電圧V1’から前記コンデンサ容量C’を算出し、この算出したコンデンサ容量C’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正、または前記目標電圧Vの制御で補正することを特徴とする請求項1または2に記載のコンデンサ充電装置。   The control means calculates the capacitor capacitance C ′ from the measurement result of the fine adjustment voltage V2, the fine adjustment current I, the fine adjustment charging time T, and the rough charge voltage V1 ′ predicted from these measurement results, and calculates the calculated capacitor 3. The capacitor charging device according to claim 1, wherein a change in the rapid charging voltage due to a change in the capacity C ′ is corrected by controlling the output current of the rapid charging circuit or by controlling the target voltage V. 4. 前記制御手段は、前記リアクトルに電流を流す時間T2と、そのときの電流I2および前記直流チョッパ回路の直流電源電圧Eから前記リアクトルのリアクトル値L’を算出し、この算出したリアクトル値L’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする請求項1に記載のコンデンサ充電装置。   The control means calculates a reactor value L ′ of the reactor from a time T2 during which a current flows through the reactor, a current I2 at that time and a DC power supply voltage E of the DC chopper circuit, and the calculated reactor value L ′ The capacitor charging device according to claim 1, wherein a change in the rapid charging voltage due to fluctuation is corrected by output current control of the rapid charging circuit. 前記制御手段は、微調整充電時間Tが予め設定された時間T2を超えた場合、前記微調整電流I、微調整充電時間Tの計測結果およびコンデンサ容量Cと充電電圧指令値V*から求める比率で次回以降の前記目標電圧Vを切換え、微調整充電期間内に充電電圧指令値V*まで充電することを特徴とする請求項1または2に記載のコンデンサ充電装置。   When the fine adjustment charging time T exceeds a preset time T2, the control means obtains the ratio obtained from the fine adjustment current I, the measurement result of the fine adjustment charging time T, the capacitor capacity C, and the charge voltage command value V *. 3. The capacitor charging device according to claim 1, wherein the target voltage V after the next time is switched and charging is performed up to a charging voltage command value V * within a fine adjustment charging period. 前記制御手段は、前記コンデンサ容量Cまたはリアクトル値Lの変動を予め算出しておき、急速充電開始直前に、算出した容量Cとリアクトル値Lと、前記急速充電回路の直流電源電圧Eと前記目標電圧Vから該急速充電回路のオン期間TONを制御して急速充電電圧の変化を補正することを特徴とする請求項1に記載のコンデンサ充電装置。 The control means calculates in advance the fluctuation of the capacitor capacity C or the reactor value L, and immediately before the start of the quick charge, the calculated capacity C, the reactor value L, the DC power supply voltage E of the quick charge circuit, and the target 2. The capacitor charging device according to claim 1, wherein a change in a rapid charging voltage is corrected by controlling an ON period T ON of the rapid charging circuit from the voltage V. 3. 前記制御手段は、前記コンデンサの容量Cと、前記リアクトルに電流を流す時間T2と、そのときの電流I2および前記急速充電回路の直流電源電圧Eから前記リアクトルのリアクトル値L’を算出し、この算出したリアクトル値L’の変動による急速充電電圧の変化を前記急速充電回路の出力電流制御で補正することを特徴とする請求項2に記載のコンデンサ充電装置。   The control means calculates the reactor value L ′ of the reactor from the capacitance C of the capacitor, the time T2 during which the current flows to the reactor, the current I2 at that time and the DC power supply voltage E of the quick charging circuit, 3. The capacitor charging apparatus according to claim 2, wherein a change in the rapid charging voltage due to the fluctuation of the calculated reactor value L 'is corrected by output current control of the rapid charging circuit. 前記制御手段は、前記コンデンサ容量Cと、リアクトル値Lと、急速充電開始直前の直流電源電圧Eと充電電圧指令値V*から前記急速充電回路のオン期間TONを制御して急速充電電圧の変化を補正することを特徴とする請求項2に記載のコンデンサ充電装置。 The control means controls the on-time period T ON of the quick charge circuit from the capacitor capacity C, the reactor value L, the DC power supply voltage E immediately before the start of quick charge, and the charge voltage command value V *, thereby adjusting the rapid charge voltage. The capacitor charging device according to claim 2, wherein the change is corrected.
JP2006273525A 2006-10-05 2006-10-05 Capacitor charger Active JP4984801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273525A JP4984801B2 (en) 2006-10-05 2006-10-05 Capacitor charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273525A JP4984801B2 (en) 2006-10-05 2006-10-05 Capacitor charger

Publications (2)

Publication Number Publication Date
JP2008092746A true JP2008092746A (en) 2008-04-17
JP4984801B2 JP4984801B2 (en) 2012-07-25

Family

ID=39376292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273525A Active JP4984801B2 (en) 2006-10-05 2006-10-05 Capacitor charger

Country Status (1)

Country Link
JP (1) JP4984801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126197A (en) * 2018-01-17 2019-07-25 住友重機械工業株式会社 Power supply device and laser apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084742A (en) * 2000-09-04 2002-03-22 Sharp Corp Control method for overcurrent protecting operation of step-down dc-dc converter, judging integrated circuit for overcurrent protecting operation of step-down dc-dc converter, judging circuit module for overcurrent protecting operation of step-down dc-dc converter, control integrated circuit of step-down dc-dc converter, and board for computer
JP2002218743A (en) * 2001-01-23 2002-08-02 Meidensha Corp Charger for capacitor
JP2005354763A (en) * 2004-06-08 2005-12-22 Toyota Motor Corp Voltage converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084742A (en) * 2000-09-04 2002-03-22 Sharp Corp Control method for overcurrent protecting operation of step-down dc-dc converter, judging integrated circuit for overcurrent protecting operation of step-down dc-dc converter, judging circuit module for overcurrent protecting operation of step-down dc-dc converter, control integrated circuit of step-down dc-dc converter, and board for computer
JP2002218743A (en) * 2001-01-23 2002-08-02 Meidensha Corp Charger for capacitor
JP2005354763A (en) * 2004-06-08 2005-12-22 Toyota Motor Corp Voltage converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019126197A (en) * 2018-01-17 2019-07-25 住友重機械工業株式会社 Power supply device and laser apparatus
JP7132718B2 (en) 2018-01-17 2022-09-07 住友重機械工業株式会社 power supply, laser equipment

Also Published As

Publication number Publication date
JP4984801B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP6561612B2 (en) Switching power supply control device
KR100999257B1 (en) Discharge lamp lighting apparatus
US20090267583A1 (en) Switching power supply apparatus with current output limit
US20080231247A1 (en) Semiconductor device
CN111431414B (en) Flyback converter and operation method thereof
KR20160070710A (en) Modulation mode control circuit, switch control circuit comprising the same, and power supply device comprising the switch control circuit
KR20110045219A (en) Power factor correction circuit and driving method thereof
JP4630165B2 (en) DC-DC converter
US8811037B2 (en) Adaptive driver delay compensation
JP2015045553A (en) Secondary battery charge/discharge device equipped with switching power supply
JP2003244953A (en) Dc-dc converter
US9647546B2 (en) Dual-mode voltage doubling buck converter with smooth mode transition
KR102260998B1 (en) Pulse power compensating apparatus and High-voltage pulse power supply system
JP4984801B2 (en) Capacitor charger
JP2014064367A (en) Power supply device and lighting device
JP3536683B2 (en) High voltage power supply
US20120032659A1 (en) Power supply device
JP4835056B2 (en) Capacitor charger
JP6029540B2 (en) Solar cell control device and solar cell control method
US10181843B2 (en) Adaptive control of the non-overlap time of power switches
JP5794006B2 (en) Capacitor charger
JP3806025B2 (en) Gas laser device
JP2009142134A (en) Capacitor-charging device
JP2008154330A (en) Charger for power capacitor
JP5642625B2 (en) Switching power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4984801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3