JP2008092111A - Inspection method for temperature compensation piezoelectric oscillator - Google Patents
Inspection method for temperature compensation piezoelectric oscillator Download PDFInfo
- Publication number
- JP2008092111A JP2008092111A JP2006268403A JP2006268403A JP2008092111A JP 2008092111 A JP2008092111 A JP 2008092111A JP 2006268403 A JP2006268403 A JP 2006268403A JP 2006268403 A JP2006268403 A JP 2006268403A JP 2008092111 A JP2008092111 A JP 2008092111A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- piezoelectric oscillator
- sensor element
- inspected
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000007689 inspection Methods 0.000 title claims abstract description 22
- 230000006870 function Effects 0.000 claims abstract description 11
- 230000010355 oscillation Effects 0.000 claims description 38
- 238000012888 cubic function Methods 0.000 claims description 20
- 238000001514 detection method Methods 0.000 claims description 6
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Abstract
Description
本発明は、ある温度範囲内における出力信号周波数をほぼ一定とすることが可能な温度補償型圧電発振器の検査方法であり、特に温度補償型圧電発振器における温度補償動作の検査方法に関する。 The present invention relates to a temperature-compensated piezoelectric oscillator inspection method capable of making the output signal frequency substantially constant within a certain temperature range, and more particularly to a temperature-compensated operation inspection method in a temperature-compensated piezoelectric oscillator.
電子機器における動作周波数あるいは時間の基準として、従来から、圧電振動子と、その圧電振動子の動作を制御する様々な電子回路が組み込まれた集積回路素子とにより構成された圧電発振器が用いられている。特に近年は、携帯電話をはじめとする移動体通信用における圧電発振器の需要がますます増加している。最近の電子機器では、高安定かつ高精度であることが望まれており、例えば圧電振動子を用いた圧電発振器の発振周波数についても、使用環境の変化に対し高度に安定であることが望まれ、特に温度変化に対して発振周波数が安定なことが要求されている。その対策として、温度センサ素子の検出温度に対して非線形関数を発生し、この関数を制御信号として、圧電振動子に直列に接続された可変容量素子の静電容量を調整することで、使用温度により変化する圧電振動子の発振周波数の補償を行う温度補償型圧電発振器が用いられている。一般的に圧電材としてATカットで形成された水晶を用いた圧電振動子の発振周波数の温度特性は3次関数で近似することができ、それを補償するための補償データもまた3次関数で与えられる。 Conventionally, a piezoelectric oscillator composed of a piezoelectric vibrator and an integrated circuit element incorporating various electronic circuits for controlling the operation of the piezoelectric vibrator has been used as a reference for operating frequency or time in electronic equipment. Yes. In particular, in recent years, the demand for piezoelectric oscillators for mobile communications including mobile phones has been increasing. In recent electronic devices, high stability and high accuracy are desired. For example, the oscillation frequency of a piezoelectric oscillator using a piezoelectric vibrator is also highly stable against changes in the usage environment. In particular, the oscillation frequency is required to be stable with respect to temperature changes. As a countermeasure, a nonlinear function is generated for the temperature detected by the temperature sensor element, and this function is used as a control signal to adjust the capacitance of the variable capacitance element connected in series to the piezoelectric vibrator. A temperature-compensated piezoelectric oscillator that compensates for the oscillation frequency of the piezoelectric vibrator that changes due to the above is used. In general, the temperature characteristics of the oscillation frequency of a piezoelectric vibrator using a crystal formed by AT cut as a piezoelectric material can be approximated by a cubic function, and compensation data for compensating the temperature characteristic is also a cubic function. Given.
このような3次関数を発生する回路は、半導体集積回路等により容易に実現できる。圧電発振器および圧電振動子の温度特性のバラツキに対しては、温度補償のための補償データの各次数の係数および定数をメモリ素子に格納しておき、このメモリ素子に格納する値を変更することで対応している。 A circuit that generates such a cubic function can be easily realized by a semiconductor integrated circuit or the like. For variations in the temperature characteristics of piezoelectric oscillators and piezoelectric vibrators, the coefficients and constants of each order of compensation data for temperature compensation are stored in a memory element, and the value stored in this memory element is changed. It corresponds with.
従来の温度補償型圧電発振器の構成は、発振回路と、この発振回路の入力に接続された圧電振動子とを備え、これらで圧電発振回路部が構成されている。この圧電発振回路部の入力端には、圧電振動子に直列に、制御電圧の印加により容量が変化してこの圧電発振回路部の発振周波数を調整する可変容量素子を備えている。この可変容量素子としては、例えば可変容量ダイオードが用いられる。この温度補償型圧電発振器には更に、可変容量素子に周囲温度に応じた制御電圧を印加して温度変化による発振回路の発振周波数の変動を補償するため、この圧電発振回路部の入力端に3次関数発生回路及びメモリ素子により構成される温度補償回路部が接続されており、又、3次関数発生回路には温度センサ素子が接続した構成となっている。 The configuration of a conventional temperature compensated piezoelectric oscillator includes an oscillation circuit and a piezoelectric vibrator connected to the input of the oscillation circuit, and these constitute a piezoelectric oscillation circuit unit. At the input end of the piezoelectric oscillation circuit unit, a variable capacitance element is provided in series with the piezoelectric vibrator to adjust the oscillation frequency of the piezoelectric oscillation circuit unit by changing the capacitance by applying a control voltage. For example, a variable capacitance diode is used as the variable capacitance element. This temperature-compensated piezoelectric oscillator further includes a control voltage according to the ambient temperature applied to the variable capacitance element to compensate for fluctuations in the oscillation frequency of the oscillation circuit due to temperature changes. A temperature compensation circuit unit composed of a quadratic function generation circuit and a memory element is connected, and a temperature sensor element is connected to the cubic function generation circuit.
3次関数発生回路は、接続された温度センサ素子により検出された周囲温度に対し、同じく接続されたメモリ素子から与えられる3次関数の各次数の項の係数および定数に応じた3次関数を発生し、前述した可変容量素子に制御信号として与える。 The cubic function generation circuit generates a cubic function corresponding to the coefficient and constant of each order term of the cubic function given from the memory element connected to the ambient temperature detected by the connected temperature sensor element. Generated and provided as a control signal to the variable capacitance element described above.
上述したような温度補償型圧電発振器については以下のような先行技術文献に開示がある。
尚、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。 In addition, the applicant has not found any prior art documents related to the present invention by the time of filing of the present application other than the prior art documents specified by the above prior art document information.
上述したような温度補償型圧電発振器において、圧電振動子の発振周波数の温度特性がメモリ素子内の補償データにより正常に補償されるかどうかを検査する方法として、従来、複数個の検査対象の温度補償型圧電発振器を用意して、その温度補償型圧電発振器を、槽内温度を一定の範囲内で変化させることが可能な恒温槽内に配置し、槽内温度を所定の温度範囲で可変させつつ温度補償型圧電発振器を実際に動作させ、そのときの出力信号周波数を測定し、温度補償動作が正常に機能しているがどうかを検査する方法が用いられているが、この検査方法では、恒温槽内の温度を複数の所定温度に可変させ、且つ槽内をその所定温度に一定時間保持することに非常に時間がかかってしまい、検査工程を含む温度補償型圧電発振器の製造工程の長時間化の原因となっている。特に数多くの温度補償型圧電発振器を同時に検査するために大型の恒温槽を用いた場合、槽内空間が広くなるため温度維持に更に時間を要してしまい、工程の長時間化が顕著になってしまう虞がある。 In the temperature-compensated piezoelectric oscillator as described above, as a method for inspecting whether the temperature characteristic of the oscillation frequency of the piezoelectric vibrator is normally compensated by the compensation data in the memory element, conventionally, a plurality of temperatures to be inspected are used. Prepare a compensated piezoelectric oscillator, and place the temperature compensated piezoelectric oscillator in a thermostatic chamber that can change the temperature in the tank within a certain range, and vary the temperature in the tank within the specified temperature range. While the temperature compensated piezoelectric oscillator is actually operated, the output signal frequency at that time is measured, and a method of inspecting whether the temperature compensation operation is functioning normally is used, but in this inspection method, It takes a very long time to change the temperature in the thermostatic chamber to a plurality of predetermined temperatures, and to maintain the temperature in the bath at the predetermined temperature for a certain period of time. It is causing the time of. In particular, when a large-sized thermostatic chamber is used to inspect many temperature-compensated piezoelectric oscillators at the same time, it takes more time to maintain the temperature because the space in the chamber becomes wider, and the lengthening of the process becomes remarkable. There is a risk that.
因って、本発明の目的は、恒温槽を使うことなく温度補償動作が正常に機能しているがどうか確認することができる温度補償型圧電発振器の検査方法を提供することにある。 Therefore, an object of the present invention is to provide an inspection method for a temperature-compensated piezoelectric oscillator that can confirm whether or not the temperature-compensated operation is functioning normally without using a thermostat.
本発明の温度補償型圧電発振器の検査方法は、少なくとも、圧電振動子を組み込んだ発振回路と、この圧電振動子近傍に設置した温度センサ素子と、圧電振動子の発振周波数の温度特性を補償するための、関数の各次数の係数及び定数による補償データが書き込まれているメモリ素子と、温度センサ素子からの検出温度信号が入力され、その検出温度信号に応じて、圧電振動子の発振周波数の温度特性を補償する非線形関数信号を前記メモリ素子に書き込まれている各データに基づいて発生し、非線形関数信号を発振回路へ出力する3次関数発生回路とから構成された温度補償型圧電発振器における温度補償動作の検査方法において、
メモリ素子内に正しい補償データが入力されている基準温度補償型圧電発振器を用意し、基準温度補償型圧電発振器内に設けられた温度センサ素子に、この温度センサ素子から3次関数発生回路に入力される検出温度信号が任意の温度を検出したときと同じ値の信号を擬似的に出力するための電源電圧値を印加したときの、発振回路の補償済み出力信号の周波数値を取得する工程Aと、
少なくとも1つの被検査温度補償型圧電発振器を用意し、この被検査温度補償型圧電発振器内に設けられた温度センサ素子に、工程Aにおいて基準温度補償型圧電発振器の温度センサ素子から3次関数発生回路に入力される検出温度信号が任意の温度を検出したときと同じ値の信号を出力するために印加した電源電圧値と同じ値の電源電圧値を印加したときの、発振回路の出力信号周波数値を取得する工程Bと、
工程Aで取得した基準温度補償型圧電発振器の出力信号の周波数値と、工程Bで取得した被検査温度補償型圧電発振器の出力信号の周波数値とを比較し、両周波数値間の差異が誤差未満の被検査温度補償型圧電発振器と、両周波数値間の差異が誤差以上の値となった被検査温度補償型圧電発振器とを分類する工程Cと、
前述した差異が誤差未満となった被検査温度補償型圧電発振器は次の工程へ送り、又、差異が誤差以上となった被検査温度補償型圧電発振器は、再度メモリ素子へ補償データを書き込んだ後、工程B以降を繰り返す工程とを具備することを特徴とする。
The inspection method for a temperature-compensated piezoelectric oscillator according to the present invention compensates for at least an oscillation circuit incorporating a piezoelectric vibrator, a temperature sensor element installed in the vicinity of the piezoelectric vibrator, and temperature characteristics of the oscillation frequency of the piezoelectric vibrator. Therefore, a memory element in which compensation data based on coefficients and constants of each order of the function is written, and a detected temperature signal from the temperature sensor element are input, and the oscillation frequency of the piezoelectric vibrator is determined according to the detected temperature signal. A temperature-compensated piezoelectric oscillator comprising a cubic function generating circuit that generates a nonlinear function signal for compensating temperature characteristics based on each data written in the memory element and outputs the nonlinear function signal to an oscillation circuit. In the temperature compensation operation inspection method,
A reference temperature compensation type piezoelectric oscillator in which correct compensation data is input in a memory element is prepared, and the temperature sensor element provided in the reference temperature compensation type piezoelectric oscillator is input from this temperature sensor element to a cubic function generation circuit. Step A for obtaining the frequency value of the compensated output signal of the oscillation circuit when a power supply voltage value for pseudo-outputting a signal having the same value as when the detected temperature signal is detected at an arbitrary temperature is applied When,
Prepare at least one temperature compensated piezoelectric oscillator to be inspected, and generate a cubic function from the temperature sensor element of the reference temperature compensated piezoelectric oscillator in step A to the temperature sensor element provided in the temperature compensated piezoelectric oscillator to be inspected Output signal frequency of the oscillation circuit when a power supply voltage value that is the same as the power supply voltage value applied to output a signal with the same value as the detected temperature signal input to the circuit is detected. Step B for obtaining a value;
The frequency value of the output signal of the reference temperature compensated piezoelectric oscillator obtained in step A is compared with the frequency value of the output signal of the temperature compensated piezoelectric oscillator obtained in step B, and the difference between the two frequency values is an error. A process C for classifying the temperature compensated piezoelectric oscillator to be inspected below and the temperature compensated piezoelectric oscillator to be inspected whose difference between both frequency values is equal to or greater than an error;
The temperature-compensated piezoelectric oscillator to be inspected whose difference is less than the error is sent to the next step, and the temperature-compensated piezoelectric oscillator to be inspected whose difference is greater than or equal to the error writes compensation data to the memory element again. And a step of repeating step B and subsequent steps.
また、本発明の温度補償型圧電発振器の検査方法は、基準温度補償型圧電発振器及び被検査温度補償型圧電発振器における、温度センサ素子に印加する電源電圧値の想定検出温度が0℃であることを特徴とする。 Further, according to the inspection method of the temperature compensated piezoelectric oscillator of the present invention, the assumed detection temperature of the power supply voltage value applied to the temperature sensor element in the reference temperature compensated piezoelectric oscillator and the temperature compensated piezoelectric oscillator to be inspected is 0 ° C. It is characterized by.
本発明の温度補償型圧電発振器の検査方法によれば、温度補償型圧電発振器の温度補償動作が正常に機能しているかどうかの確認を、恒温槽を使用した検査方法を用いることなく、温度センサ素子に加わる電源電圧値を変えることで擬似的に温度センサ素子の検知温度を変化させることにより、検査対象の温度補償型圧電発振器の温度補償動作を確認することが可能となる。 According to the inspection method of the temperature compensated piezoelectric oscillator of the present invention, it is possible to check whether the temperature compensated operation of the temperature compensated piezoelectric oscillator is functioning normally without using an inspection method using a thermostat. By changing the detected voltage of the temperature sensor element by changing the power supply voltage applied to the element, it is possible to confirm the temperature compensation operation of the temperature compensated piezoelectric oscillator to be inspected.
因って、本発明により、簡便に且つ短時間で温度補償型圧電発振器の温度補償動作を確認することができる検査方法を提供できる効果を奏する。 Therefore, according to the present invention, it is possible to provide an inspection method capable of confirming the temperature compensation operation of the temperature compensated piezoelectric oscillator simply and in a short time.
以下に、本発明における温度補償型圧電発振器の検査方法の実施形態を、図面を参照しながら説明する。
図1は、本発明における温度補償型圧電発振器の概略構成を示したブロック図である。図2は、本発明における温度補償型圧電発振器の検査方法を示した工程フローチャート図である。図3は、図1に記載の温度センサ素子5における、検出温度−電源電圧値間の特性を示したグラフである。尚、各図では、説明を明りょうにするためブロック及びフローチャートの一部を図示していない。
Hereinafter, an embodiment of an inspection method for a temperature compensated piezoelectric oscillator according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a temperature compensated piezoelectric oscillator according to the present invention. FIG. 2 is a process flow chart showing a temperature-compensated piezoelectric oscillator inspection method according to the present invention. FIG. 3 is a graph showing characteristics between the detected temperature and the power supply voltage value in the temperature sensor element 5 shown in FIG. In each figure, a part of the block and the flowchart are not shown for clarity of explanation.
本発明における温度補償型圧電発振器100の構成は、発振回路101と、この発振回路101の入力に接続された圧電振動子102とを備え、これらで圧電発振回路部が構成されている。圧電発振回路部の入力には、圧電振動子102に直列に、制御電圧の印加により容量が変化してこの圧電発振回路部の発振周波数を調整する可変容量素子103を備えている。この可変容量素子103としては、例えば可変容量ダイオード等が用いられる。また、温度補償型圧電発振器100は、さらに、可変容量素子103に周囲温度に応じた制御電圧を印加して温度変化による発振回路101の発振周波数の変動を補償するため、3次関数発生回路104及びメモリ素子106により温度補償回路部107が設けられており、3次関数発生回路104には、圧電振動子102近傍に設けられた温度センサ素子105が接続されている。
The configuration of the temperature compensated
3次関数発生回路104は、温度センサ素子105により検出された圧電振動子102近傍の温度情報信号に対し、メモリ素子106から与えられる3次関数の各次数の項の係数および定数に応じた3次関数を発生し、可変容量素子103に制御信号として与える。
The cubic
ここで本発明の特徴部分は温度補償動作が正常に機能しているかどうかの確認を、温度センサ素子105に加わる電源電圧値(Vcc)を変えることで、擬似的に温度センサ素子105からの温度情報信号を発信させ、その信号に基づいて温度補償型圧電発振器の温度補償動作が正常に機能しているかを確認することにある。
Here, the characteristic part of the present invention is to confirm whether or not the temperature compensation operation is functioning normally. By changing the power supply voltage value (Vcc) applied to the
具体的な温度補償型圧電発振器における温度補償動作の検査方法は、図2に示す工程フローチャートのように、まず、工程Aとして、メモリ素子106内に正しい補償データが入力されている基準温度補償型圧電発振器を用意し、基準温度補償型圧電発振器内に設けられた温度センサ素子105に、温度センサ素子105から3次関数発生回路4に入力される検出温度信号が任意の温度を検出したときと同じ値の信号を擬似的に出力するための電源電圧値(Vcc)を印加したときの、発振回路101の補償済み出力信号の周波数値を取得する。
A specific method for inspecting a temperature compensation operation in a temperature compensated piezoelectric oscillator is a reference temperature compensation type in which correct compensation data is input into the memory element 106 as step A as shown in the process flowchart of FIG. A piezoelectric oscillator is prepared, and when a detected temperature signal input from the
次に、工程Bとして、少なくとも1つの被検査温度補償型圧電発振器を用意し、被検査温度補償型圧電発振器内に設けられた温度センサ素子105に、前述した工程Aにおいて基準温度補償型圧電発振器の温度センサ素子5から3次関数発生回路104に入力される検出温度信号が任意の温度を検出したときと同じ値の信号を出力するために印加した電源電圧値(Vcc)と同じ値の電源電圧値(Vcc)を印加したときの、発振回路101の出力信号周波数値を取得する。
Next, as step B, at least one temperature compensated piezoelectric oscillator to be inspected is prepared, and the
次に、工程Cとして、前述した工程Aで取得した基準温度補償型圧電発振器の出力信号の周波数値と、前述した工程Bで取得した被検査温度補償型圧電発振器の出力信号の周波数値とを比較し、両周波数値間の差異が誤差未満の前記被検査温度補償型圧電発振器と、両周波数値間の差異が誤差以上の値となった被検査温度補償型圧電発振器とを分類する。 Next, as step C, the frequency value of the output signal of the reference temperature compensated piezoelectric oscillator acquired in step A above and the frequency value of the output signal of the temperature compensated piezoelectric oscillator acquired in step B described above are obtained. In comparison, the temperature-compensated piezoelectric oscillator to be inspected whose difference between both frequency values is less than the error and the temperature-compensated piezoelectric oscillator to be inspected in which the difference between both frequency values is equal to or greater than the error are classified.
その後、前述した工程Cにおいて、周波数値間の差異が誤差未満となった被検査温度補償型圧電発振器は合格品として次の工程へ送り、又、差異が誤差以上となった被検査温度補償型圧電発振器は、再度メモリ素子106へ補償データを書き込んだ後、工程B以降を繰り返す。 After that, in the above-mentioned process C, the temperature compensated piezoelectric oscillator to be inspected whose difference between the frequency values is less than the error is sent to the next process as an acceptable product, and the temperature compensated inspected type in which the difference is equal to or greater than the error The piezoelectric oscillator again writes the compensation data to the memory element 106 and then repeats the process B and subsequent steps.
例えば、任意の温度を0℃とした場合を例にとり、検査工程の流れを説明する。まず、メモリ素子106内に正しい補償データが入力されている基準温度補償型圧電発振器に検出温度信号が0℃の温度を検出したときと同じ値の信号を擬似的に出力するための電源電圧値(Vcc)を印加したときの、発振回路101の補償済み出力信号の周波数値(f0)を測定する(工程A)。
For example, the flow of the inspection process will be described using an example in which an arbitrary temperature is 0 ° C. First, a power supply voltage value for artificially outputting a signal having the same value as when a detected temperature signal is detected at a temperature of 0 ° C. to a reference temperature compensated piezoelectric oscillator in which correct compensation data is input in the memory element 106 The frequency value (f0) of the compensated output signal of the
次に、少なくとも1つの被検査温度補償型圧電発振器を用意し、被検査温度補償型圧電発振器内に設けられた温度センサ素子105に、工程Aにおいて基準温度補償型圧電発振器の温度センサ素子105から3次関数発生回路104に入力される検出温度信号が0℃の温度を検出したときと同じ値の信号を出力するために印加した電源電圧値(Vcc)と同じ値の電源電圧値(図3におけるV1)を印加したときの、発振回路101の出力信号周波数値(f1)を測定し(工程B)、最後に工程Aで測定した基準温度補償型圧電発振器の出力信号の周波数値(f0)と、工程Bで測定した被検査温度補償型圧電発振器の出力信号の周波数値(f1)とを比較し、両周波数値間の差異が誤差未満の被検査温度補償型圧電発振器と、両周波数値間の差異が誤差以上の値となった被検査温度補償型圧電発振器とを分類し差異が誤差未満となった被検査温度補償型圧電発振器は次の工程へ送り、又、差異が誤差以上となった被検査温度補償型圧電発振器は、再度メモリ素子106へ補償データを書き込んだ後、工程B以降を繰り返すこととなる。
Next, at least one temperature compensated piezoelectric oscillator to be inspected is prepared, and the
以上の本発明における温度補償型圧電発振器の検査方法によれば、温度補償動作が正常に機能しているかどうかの確認を、恒温槽を使用した検査方法を用いることなく、温度センサ素子に加わる電源電圧値(Vcc)を変えることで、擬似的に温度センサ素子からの温度情報信号を発信させ、その擬似的温度情報信号に基づいて温度補償型圧電発振器の温度補償動作が正常に動作するかどうかを確認することが可能となる。 According to the inspection method of the temperature compensated piezoelectric oscillator in the present invention described above, the power supply applied to the temperature sensor element can be confirmed without using the inspection method using a thermostatic bath to confirm whether the temperature compensation operation is functioning normally. By changing the voltage value (Vcc), a temperature information signal from the temperature sensor element is artificially transmitted, and whether or not the temperature compensation operation of the temperature compensated piezoelectric oscillator operates normally based on the pseudo temperature information signal Can be confirmed.
よって、温度補償型圧電発振器を槽内温度を一定の範囲内で変化させることが可能な恒温槽内に配置し、槽内温度を所定の温度範囲で可変させつつ温度補償型圧電発振器を実際に動作させ、そのときの出力信号周波数を測定し、温度補償動作が正常に機能しているがどうかを検査する従来の方法では、槽内をその所定温度に一定時間保持することに非常に時間がかかってしまい、検査工程を含む温度補償型圧電発振器の製造工程の長時間化につながっていたが、本発明の温度補償型圧電発振器の検査方法では、恒温槽を使うことなく温度補償動作の確認が可能となるので、恒温槽を用いることに起因する様々な問題点を解消でき、温度補償型圧電発振器の製造工程の短時間化が可能となる。 Therefore, the temperature-compensated piezoelectric oscillator is placed in a thermostatic chamber that can change the temperature in the tank within a certain range, and the temperature-compensated piezoelectric oscillator is actually operated while varying the temperature in the tank within a predetermined temperature range. In the conventional method of operating, measuring the output signal frequency at that time, and checking whether the temperature compensation operation is functioning normally, it takes a very long time to keep the inside of the tank at the predetermined temperature for a certain period of time. However, the temperature compensated piezoelectric oscillator manufacturing process including the inspection process has led to a long time, but the temperature compensated piezoelectric oscillator inspection method of the present invention confirms the temperature compensated operation without using a thermostat. Therefore, various problems caused by using the thermostatic bath can be solved, and the manufacturing process of the temperature compensated piezoelectric oscillator can be shortened.
100・・・温度補償型圧電発振器
101・・・発振回路
102・・・圧電振動子
103・・・可変容量素子
104・・・3次関数発生回路
105・・・温度センサ素子
106・・・メモリ素子
107・・・温度補償回路部
Vcc・・・電源電圧値
DESCRIPTION OF
Claims (2)
圧電振動子を組み込んだ発振回路と、
前記圧電振動子近傍に設置した温度センサ素子と、
前記圧電振動子の発振周波数の温度特性を補償するための、関数の各次数の係数及び定数による補償データが書き込まれているメモリ素子と、
前記温度センサ素子からの検出温度信号が入力され、その検出温度信号に応じて、前記圧電振動子の発振周波数の温度特性を補償する非線形関数信号を前記メモリ素子に書き込まれている各データに基づいて発生し、前記非線形関数信号を前記発振回路へ出力する3次関数発生回路とから構成された温度補償型圧電発振器における温度補償動作の検査方法において、
前記メモリ素子内に正しい補償データが入力されている基準温度補償型圧電発振器を用意し、前記基準温度補償型圧電発振器内に設けられた前記温度センサ素子に、前記温度センサ素子から前記3次関数発生回路に入力される検出温度信号が任意の温度を検出したときと同じ値の信号を擬似的に出力するための電源電圧値を印加したときの、前記発振回路の補償済み出力信号の周波数値を取得する工程Aと、
少なくとも1つの被検査温度補償型圧電発振器を用意し、前記被検査温度補償型圧電発振器内に設けられた前記温度センサ素子に、前記工程Aにおいて前記基準温度補償型圧電発振器の前記温度センサ素子から前記3次関数発生回路に入力される検出温度信号が任意の温度を検出したときと同じ値の信号を出力するために印加した電源電圧値と同じ値の電源電圧値を印加したときの、前記発振回路の出力信号周波数値を取得する工程Bと、
前記工程Aで取得した前記基準温度補償型圧電発振器の出力信号の周波数値と、前記工程Bで取得した前記被検査温度補償型圧電発振器の出力信号の周波数値とを比較し、両周波数値間の差異が誤差未満の前記被検査温度補償型圧電発振器と、両周波数値間の差異が誤差以上の値となった前記被検査温度補償型圧電発振器とを分類する工程Cと、
前記差異が誤差未満となった前記被検査温度補償型圧電発振器は次の工程へ送り、又、前記差異が誤差以上となった前記被検査温度補償型圧電発振器は、再度前記メモリ素子へ前記補償データを書き込んだ後、前記工程B以降を繰り返す工程とを
具備することを特徴とする温度補償型圧電発振器の検査方法。 at least,
An oscillation circuit incorporating a piezoelectric vibrator;
A temperature sensor element installed in the vicinity of the piezoelectric vibrator;
A memory element in which compensation data by coefficients and constants of each order of the function for compensating the temperature characteristics of the oscillation frequency of the piezoelectric vibrator is written;
A detection temperature signal from the temperature sensor element is input, and a nonlinear function signal that compensates for a temperature characteristic of the oscillation frequency of the piezoelectric vibrator according to the detection temperature signal is based on each data written in the memory element. In a method for inspecting a temperature compensation operation in a temperature compensated piezoelectric oscillator configured by a cubic function generation circuit that generates and outputs the nonlinear function signal to the oscillation circuit,
A reference temperature compensation type piezoelectric oscillator in which correct compensation data is input in the memory element is prepared, and the temperature sensor element provided in the reference temperature compensation type piezoelectric oscillator is transferred from the temperature sensor element to the cubic function. The frequency value of the compensated output signal of the oscillation circuit when applying a power supply voltage value for pseudo-outputting a signal having the same value as when the detection temperature signal input to the generation circuit detects an arbitrary temperature Step A for obtaining
At least one temperature compensated piezoelectric oscillator to be inspected is prepared, and the temperature sensor element provided in the temperature compensated piezoelectric oscillator to be inspected is moved from the temperature sensor element of the reference temperature compensated piezoelectric oscillator in the step A to the temperature sensor element. The detection temperature signal input to the cubic function generation circuit is applied with a power supply voltage value that is the same as the power supply voltage value applied to output a signal having the same value as that detected when an arbitrary temperature is detected. Step B for obtaining an output signal frequency value of the oscillation circuit;
The frequency value of the output signal of the reference temperature compensated piezoelectric oscillator acquired in the step A is compared with the frequency value of the output signal of the temperature compensated piezoelectric oscillator to be inspected acquired in the step B. Classifying the inspected temperature compensated piezoelectric oscillator whose difference is less than an error and the inspected temperature compensated piezoelectric oscillator in which the difference between both frequency values is equal to or greater than the error;
The temperature compensated piezoelectric oscillator to be inspected whose difference is less than an error is sent to the next step, and the temperature compensated piezoelectric oscillator to be inspected whose difference is equal to or more than an error is again supplied to the memory element as the compensation. A method for inspecting a temperature-compensated piezoelectric oscillator, comprising the steps of repeating the process B and subsequent steps after writing data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006268403A JP2008092111A (en) | 2006-09-29 | 2006-09-29 | Inspection method for temperature compensation piezoelectric oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006268403A JP2008092111A (en) | 2006-09-29 | 2006-09-29 | Inspection method for temperature compensation piezoelectric oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008092111A true JP2008092111A (en) | 2008-04-17 |
Family
ID=39375812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006268403A Pending JP2008092111A (en) | 2006-09-29 | 2006-09-29 | Inspection method for temperature compensation piezoelectric oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008092111A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009141792A (en) * | 2007-12-07 | 2009-06-25 | Mitsumi Electric Co Ltd | Temperature-compensated quartz oscillation circuit |
JP2015211335A (en) * | 2014-04-25 | 2015-11-24 | 京セラクリスタルデバイス株式会社 | Manufacturing method of piezoelectric device with thermostat, and piezoelectric oscillator with thermostat |
CN116577596A (en) * | 2023-07-13 | 2023-08-11 | 麦斯塔微电子(深圳)有限公司 | Measuring method and measuring system of oscillator |
-
2006
- 2006-09-29 JP JP2006268403A patent/JP2008092111A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009141792A (en) * | 2007-12-07 | 2009-06-25 | Mitsumi Electric Co Ltd | Temperature-compensated quartz oscillation circuit |
JP2015211335A (en) * | 2014-04-25 | 2015-11-24 | 京セラクリスタルデバイス株式会社 | Manufacturing method of piezoelectric device with thermostat, and piezoelectric oscillator with thermostat |
CN116577596A (en) * | 2023-07-13 | 2023-08-11 | 麦斯塔微电子(深圳)有限公司 | Measuring method and measuring system of oscillator |
CN116577596B (en) * | 2023-07-13 | 2024-05-07 | 麦斯塔微电子(深圳)有限公司 | Measuring method and measuring system of oscillator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9013244B2 (en) | Oscillating device, oscillating element and electronic apparatus | |
US20070075797A1 (en) | Method of manufacturing crystal oscillator and the crystal oscillator manufactured by the method | |
JP5429653B2 (en) | Oscillator and method of manufacturing oscillator | |
JP5205827B2 (en) | Oscillation frequency control method and oscillator | |
JP2008092111A (en) | Inspection method for temperature compensation piezoelectric oscillator | |
JP4044027B2 (en) | Function generation circuit and method for adjusting temperature characteristics of function generation circuit | |
JP4986575B2 (en) | Inspection method for temperature compensated piezoelectric oscillator | |
US11356057B2 (en) | Temperature control circuit, oscillation control circuit, and temperature control method | |
US20180102765A1 (en) | Apparatus and Method for Temperature Measurement and/or Calibration Via Resonant Peaks in an Oscillator | |
JP5291564B2 (en) | Oscillator | |
JP5082988B2 (en) | Method for adjusting temperature compensated piezoelectric oscillator and temperature compensated piezoelectric oscillator adjusted by the method | |
JP2005347929A (en) | Temperature compensating crystal oscillator and its adjustment method | |
JP5311545B2 (en) | Oscillator | |
JP5253318B2 (en) | Oscillator | |
JP2009182881A (en) | Temperature compensated crystal oscillator | |
JP5178457B2 (en) | Oscillator | |
JP2005295014A (en) | Method of compensating frequency- temperature characteristics of piezoelectric oscillator, temperature-compensated oscillator, and electronic apparatus using same | |
JP2002204127A (en) | Method and device for adjusting temperature compensating crystal oscillator | |
JP2011142444A (en) | Method for manufacturing piezoelectric oscillator, and piezoelectric oscillator | |
JP2013081031A (en) | Temperature compensation data creation method of electronic component and manufacturing method of electronic component | |
JP2006140726A (en) | Method and apparatus for adjusting frequency of piezoelectric oscillator, and piezoelectric oscillator | |
CN114136537B (en) | Pressure sensor | |
JP2022012963A (en) | Oscillation device | |
KR102375358B1 (en) | System and method for operating a mechanical resonator in an electronic oscillator | |
JP2022100204A (en) | Temperature control type and temperature compensation type oscillation device, and method thereof |