JP2008091380A - Organic photoelectric conversion element - Google Patents

Organic photoelectric conversion element Download PDF

Info

Publication number
JP2008091380A
JP2008091380A JP2006267257A JP2006267257A JP2008091380A JP 2008091380 A JP2008091380 A JP 2008091380A JP 2006267257 A JP2006267257 A JP 2006267257A JP 2006267257 A JP2006267257 A JP 2006267257A JP 2008091380 A JP2008091380 A JP 2008091380A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic photoelectric
group
polycyclic aromatic
condensed polycyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006267257A
Other languages
Japanese (ja)
Inventor
Makoto Shirakawa
真 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006267257A priority Critical patent/JP2008091380A/en
Publication of JP2008091380A publication Critical patent/JP2008091380A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an organic photoelectric conversion element capable of improving open circuit voltage and photoelectric conversion efficiency. <P>SOLUTION: The organic photoelectric conversion element includes a pair of electrodes, and an electron release layer and an electron receiving layer provided between the pair of electrodes. The electron release layer has a phenanthrene skeleton of a structure indicated in the formula and is formed of at least one kind selected among a condensed polycyclic aromatic system compound A having six to ten condensed rings having a benzene ring as a basic unit and a condensed polycyclic aromatic system compound B having four to seven condensed rings linearly arranged having the benzene ring as a basic unit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光電変換材料として有機材料を用いた有機光電変換素子に関するものである。   The present invention relates to an organic photoelectric conversion element using an organic material as a photoelectric conversion material.

大量の化石燃料の使用で引き起こされるCO濃度の増加による地球温暖化、さらに人口増加に伴うエネルギー需要の増大は、人類の存亡にまで関わる問題と認識されている。そのため近年、無限で有害物質を発生しない太陽光の利用が精力的に検討されている。このクリーンエネルギー源である太陽光利用として現在実用化されているものとしては、住宅用の単結晶シリコン、多結晶シリコン、アモルファスシリコン及びテルル化カドミウム等の無機系太陽電池が挙げられる。 Global warming due to the increase in CO 2 concentration caused by the use of a large amount of fossil fuel, and the increase in energy demand accompanying population increase are recognized as problems related to the existence of humankind. For this reason, in recent years, the use of sunlight that is infinite and does not generate harmful substances has been energetically studied. What is currently put into practical use as solar energy as a clean energy source includes inorganic solar cells such as residential single crystal silicon, polycrystalline silicon, amorphous silicon, and cadmium telluride.

これらの無機系太陽電池においては種々の問題がある。例えば、シリコン系太陽電池においては、非常に純度の高いシリコンが要求され、そのため精製の工程が複雑となり、プロセス数が多く、製造コストが高くなるという問題がある。また、軽量化等の要求があり、特にユーザーへのペイバックが長い点において不利な面もあり、さらなる普及には問題があった。   These inorganic solar cells have various problems. For example, silicon-based solar cells require extremely high-purity silicon, which causes a problem that the purification process is complicated, the number of processes is large, and the manufacturing cost is high. Further, there is a demand for weight reduction and the like, and there is a disadvantage in that the payback to the user is particularly long, and there is a problem in further spread.

一方、有機材料を用いた太陽電池も数多く提案されている。有機太陽電池としては、電子供与性のp型有機半導体と仕事関数の小さい金属を接合させるショットキー型光電変換素子、p型有機半導体と電子受容性のn型無機半導体、あるいはp型有機半導体と電子受容性のn型有機半導体を接合させるヘテロ接合型光電変換素子等がある。利用されるn型有機半導体としては、クロロフィル、ペリレン等の合成色素や顔料、ポリアセチレン等の導電性高分子材料またはそれらの複合材料等が挙げられる。これらを真空蒸着法、キャスト法、またはディッピング法等により、薄膜化し、電池材料が構成されている。有機材料は低コストや省プロセス等の長所があるが、変換効率が1%以下と低いものが多かった。   On the other hand, many solar cells using organic materials have been proposed. As an organic solar cell, a Schottky photoelectric conversion element that joins an electron-donating p-type organic semiconductor and a metal having a low work function, a p-type organic semiconductor and an electron-accepting n-type inorganic semiconductor, or a p-type organic semiconductor Examples include a heterojunction photoelectric conversion element that joins an electron-accepting n-type organic semiconductor. Examples of the n-type organic semiconductor used include synthetic dyes and pigments such as chlorophyll and perylene, conductive polymer materials such as polyacetylene, and composite materials thereof. These are thinned by a vacuum deposition method, a casting method, a dipping method, or the like to form a battery material. Organic materials have advantages such as low cost and process saving, but many have low conversion efficiency of 1% or less.

上記のような状況の中で、良好な特性を示す有機太陽電池として、アメリカのコダック社のタン博士らによって、以下のヘテロ接合型有機薄膜太陽電池(非特許文献1を参照)が報告されている。すなわち、電子供与性の銅フタロシアニン(CuPc)と電子受容性のペリレン誘導体を真空蒸着法により積層した薄膜が、高い効率で光電変換を行うことを報告している。変換効率は0.95%であるが、有機太陽電池のブレイクスルーとなった。   Under the circumstances as described above, the following heterojunction organic thin film solar cell (see Non-Patent Document 1) has been reported by Dr. Tan et al. Of Kodak, USA as an organic solar cell exhibiting good characteristics. Yes. That is, it has been reported that a thin film in which an electron-donating copper phthalocyanine (CuPc) and an electron-accepting perylene derivative are stacked by vacuum deposition performs photoelectric conversion with high efficiency. Although the conversion efficiency was 0.95%, it was a breakthrough of organic solar cells.

さらに励起子拡散長の長いフラーレンを用いることによって光電変換効率が3.4%まで向上することが報告されている(非特許文献2を参照)。   Furthermore, it has been reported that the photoelectric conversion efficiency is improved to 3.4% by using fullerene having a long exciton diffusion length (see Non-Patent Document 2).

上記の有機太陽電池をモジュール化したものは未だ市販に至っていないが、これらの素子をモジュール化する際には、所望の電圧まで直列接続をすることになる。現状では、素子1個あたりの開放電圧は約0.5Vであるから、他の種類の太陽電池と同等かあるいは少し劣る程度である。1つのアプローチとして、タンデム型にして、電子供与性材料−電子受容性材料単位を2回あるいはそれ以上繰り返し積層させる構造が提案されている(特許文献1を参照)。しかしながら、取り出せる電流が1つの単位のときよりも減少してしまうという問題がある。   A module obtained by modularizing the above-described organic solar cell has not yet been marketed, but when these elements are modularized, they are connected in series up to a desired voltage. At present, the open-circuit voltage per element is about 0.5 V, which is equivalent to or slightly inferior to other types of solar cells. As one approach, a structure in which an electron donating material-electron accepting material unit is laminated twice or more in a tandem type has been proposed (see Patent Document 1). However, there is a problem in that the current that can be taken out is smaller than in the case of one unit.

また、単一の素子では、電子供与性の銅フタロシアニン(CuPc)に代わって、ルブレンを使用した光電変換素子において、開放電圧0.91Vが得られている(非特許文献3を参照)。
特表2004−523129号公報 Appl.Phys.Lett., 48,183(1986) Appl.Phys.Lett., 79,126(2001) J.J.Appl.Phys.,45,L995(2006)
In a single device, an open circuit voltage of 0.91 V is obtained in a photoelectric conversion device using rubrene instead of electron donating copper phthalocyanine (CuPc) (see Non-Patent Document 3).
JP-T-2004-523129 Appl. Phys. Lett. , 48, 183 (1986) Appl. Phys. Lett. 79, 126 (2001) J. et al. J. et al. Appl. Phys. , 45, L995 (2006)

本発明の目的は、開放電圧及び光電変換効率を高めることができる有機光電変換素子を提供することにある。   The objective of this invention is providing the organic photoelectric conversion element which can raise an open circuit voltage and photoelectric conversion efficiency.

本発明は、一対の電極と、該一対の電極の間に配置される電子供与層及び電子受容層とを備える有機光電変換素子であって、電子供与層が、以下に示す構造のフェナントレン骨格を有し、かつベンゼン環を基本単位とした縮合環の数が6〜10の範囲である縮合多環芳香族系化合物A、及びベンゼン環を基本単位とした縮合環を4〜7の範囲で直線状に配置した構造を有する縮合多環芳香族系化合物Bから選ばれる少なくとも1種から形成されていることを特徴としている。   The present invention is an organic photoelectric conversion device comprising a pair of electrodes, an electron donating layer and an electron accepting layer disposed between the pair of electrodes, wherein the electron donating layer has a phenanthrene skeleton having the structure shown below. A condensed polycyclic aromatic compound A having a benzene ring as a basic unit and a number of condensed rings in the range of 6 to 10 and a condensed ring having a benzene ring as the basic unit in the range of 4 to 7 It is characterized by being formed of at least one selected from condensed polycyclic aromatic compounds B having a structure arranged in a shape.

Figure 2008091380
Figure 2008091380

縮合多環芳香族系化合物Aとしては、例えば、以下に示す一般式(1)で表されるものが挙げられる。   Examples of the condensed polycyclic aromatic compound A include those represented by the following general formula (1).

Figure 2008091380
Figure 2008091380

(式中、R〜Rは、アルキル基、アルケニル基、アリール基、アラルキル基、ヘテロ環基を表し、互いに異なっていてもよい。)
アルキル基としては、例えばメチル基、エチル基、イソプロピル基等が挙げられる。アルケニル基としては、ビニル基、シクロヘキセニル基等が挙げられる。アリール基としては、フェニル基、ナフチル基等が挙げられる。アラルキル基としては、ベンジル基、1−ナフチルメチル基等が挙げられる。ヘテロ環基としては、フリル基、チエニル基、インドリル基等が挙げられる。
(Wherein, R 1 to R 4 is an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a heterocyclic group, may be different from each other.)
Examples of the alkyl group include a methyl group, an ethyl group, and an isopropyl group. Examples of the alkenyl group include a vinyl group and a cyclohexenyl group. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the aralkyl group include a benzyl group and a 1-naphthylmethyl group. Examples of the heterocyclic group include a furyl group, a thienyl group, and an indolyl group.

また、上記のアルキル基、アルケニル基、アリール基、アラルキル基、ヘテロ環基は、置換基を有していてもよい。置換基の具体例としては、上述のアルキル基;メトキシ基、エトキシ基、n−ヘキシルオキシ基等のアルコキシ基;メチルチオ基、n−ヘキシルチオ基等のアルキルチオ基;フェノキシ基、1−ナフチルオキシ基等のアリールオキシ基;フェニルチオ基等のアリールチオ基;塩素、臭素等のハロゲン原子;ジメチルアミノ基、ジフェニルアミノ基等のジ置換アミノ基;上述のアリール基;上述のヘテロ環基;カルボキシル基;カルボキシメチル基のようなカルボキシアルキル基;スルホニルプロピル基のようなスルホニルアルキル基;リン酸基、ヒドロキサム酸基等の酸性基;シアノ基、ニトロ基、トリフルオロメチル基等の電子吸引性基などを挙げることができる。   Moreover, said alkyl group, alkenyl group, aryl group, aralkyl group, and heterocyclic group may have a substituent. Specific examples of the substituent include the above-mentioned alkyl groups; alkoxy groups such as methoxy group, ethoxy group and n-hexyloxy group; alkylthio groups such as methylthio group and n-hexylthio group; phenoxy group, 1-naphthyloxy group and the like An arylthio group such as a phenylthio group; a halogen atom such as chlorine or bromine; a disubstituted amino group such as a dimethylamino group or a diphenylamino group; an aryl group as described above; a heterocyclic group as described above; a carboxyl group; Carboxyalkyl groups such as sulfonyl groups; sulfonylalkyl groups such as sulfonylpropyl groups; acidic groups such as phosphoric acid groups and hydroxamic acid groups; electron withdrawing groups such as cyano groups, nitro groups, and trifluoromethyl groups. Can do.

縮合多環芳香族系化合物Bとしては、例えば、以下に示す一般式(2)で表されるものが挙げられる。   Examples of the condensed polycyclic aromatic compound B include those represented by the following general formula (2).

Figure 2008091380
Figure 2008091380

(式中、Ar〜Arは、アリール基を表し、これらの内少なくとも1つはナフチル基であり、互いに異なっていてもよい。)
Ar〜Arは、上述のR〜Rと同様に置換基を有していてもよい。
(In the formula, Ar 1 to Ar 4 represent an aryl group, and at least one of them is a naphthyl group, and may be different from each other.)
Ar 1 to Ar 4 may have a substituent similarly to R 1 to R 4 described above.

縮合多環芳香族系化合物Aの具体例としては、以下に示す式(3)の構造を有するものが挙げられる。   Specific examples of the condensed polycyclic aromatic compound A include those having the structure of the following formula (3).

Figure 2008091380
Figure 2008091380

縮合多環芳香族系化合物Bの具体例としては、以下に示す式(4)の構造を有するものが挙げられる。   Specific examples of the condensed polycyclic aromatic compound B include those having the structure of the following formula (4).

Figure 2008091380
Figure 2008091380

本発明における電子受容層は、有機光電変換素子において電子受容層として用いることができるものであれば特に限定されるものではなく、例えば、ナフタレン、カーボンナノチューブやペリレン等の材料を用いることができる。   The electron-accepting layer in the present invention is not particularly limited as long as it can be used as an electron-accepting layer in an organic photoelectric conversion element. For example, a material such as naphthalene, carbon nanotube, or perylene can be used.

本発明において、電子受容層と電極の間には励起子ブロック層が設けられていることが好ましい。励起子ブロック層は、光で生成した励起子を電荷分離界面の近くの領域に閉じ込め、電子受容層/電極の界面での励起子の失活を防ぐものとして機能する(特許文献1を参照)。本発明における励起子ブロック層は、励起子ブロック層として用いることができるものであれば特に限定されるものではなく、例えば、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)、PTCBI(3,4,9,10−ペリレンテトラカルボキシリックビス−ベンゾイミダゾール)、PTCDA(3,4,9,10−ペリレンテトラカルボン酸二無水物)、PTCDI(3,4,9,10−ペリレンテトラカルボキシリックジイミド)やNTCDA(1,4,5,8−ナフタレンテトラカルボン酸二無水物)、及びこれらの誘導体等の材料を用いることができる。   In the present invention, an exciton blocking layer is preferably provided between the electron accepting layer and the electrode. The exciton blocking layer functions to confine excitons generated by light in a region near the charge separation interface and prevent deactivation of the excitons at the electron accepting layer / electrode interface (see Patent Document 1). . The exciton blocking layer in the present invention is not particularly limited as long as it can be used as an exciton blocking layer. For example, BCP (2,9-dimethyl-4,7-diphenyl-1,10- Phenanthroline), PTCBI (3,4,9,10-perylenetetracarboxylic bis-benzimidazole), PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride), PTCDI (3,4,9, Materials such as 10-perylenetetracarboxylic diimide), NTCDA (1,4,5,8-naphthalenetetracarboxylic dianhydride), and derivatives thereof can be used.

本発明における電極は、有機光電変換素子の電極として用いることができるものであれば特に限定されるものではなく、例えば、金属材料としてAl、Au、Ag、Sb、Sn、Inや、MgとAgの混合物、あるいは金属の酸化物等を用いることができる。   The electrode in the present invention is not particularly limited as long as it can be used as an electrode of an organic photoelectric conversion element. For example, Al, Au, Ag, Sb, Sn, In, or Mg and Ag as metal materials. Or a metal oxide can be used.

本発明によれば、開放電圧を高めることができ、光電変換効率に優れた有機光電変換素子とすることができる。   ADVANTAGE OF THE INVENTION According to this invention, an open circuit voltage can be raised and it can be set as the organic photoelectric conversion element excellent in photoelectric conversion efficiency.

以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to the following examples.

(実施例1)
図1に示す構造を有する有機光電変換素子を作製した。図1に示すように、第1の電極1の上には、電子供与層2及び電子受容層3が形成されており、電子受容層3の上には励起子ブロック層4が形成されている。励起子ブロック層4の上には第2の電極5が形成されている。
(Example 1)
An organic photoelectric conversion device having the structure shown in FIG. 1 was produced. As shown in FIG. 1, an electron donating layer 2 and an electron accepting layer 3 are formed on the first electrode 1, and an exciton blocking layer 4 is formed on the electron accepting layer 3. . A second electrode 5 is formed on the exciton block layer 4.

ITO(インジウム錫酸化膜)膜が形成されたガラス基板を用い、第1の電極1となるITO膜の上に、以下のようにして有機材料膜を加熱蒸着させて形成した。蒸着条件としては、室温とし、圧力10−5Pa、堆積速度0.05〜0.2nm/秒とした。 Using a glass substrate on which an ITO (indium tin oxide film) film was formed, an organic material film was formed by heating and vapor deposition on the ITO film to be the first electrode 1 as follows. The vapor deposition conditions were room temperature, a pressure of 10 −5 Pa, and a deposition rate of 0.05 to 0.2 nm / second.

電子供与層2は、上記式(3)の構造を有する9,10,15,16−テトラフェニルジベンゾ〔a,c〕テトラセンを用い、20nmの膜厚で形成した。電子受容層3は、フラーレン(C60)を用い、膜厚40nmとなるように形成した。励起子ブロック層4は、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)を用い、膜厚10nmとなるように形成した。   The electron donating layer 2 was formed with a thickness of 20 nm using 9,10,15,16-tetraphenyldibenzo [a, c] tetracene having the structure of the above formula (3). The electron-accepting layer 3 was formed using fullerene (C60) so as to have a film thickness of 40 nm. The exciton blocking layer 4 was formed using BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) so as to have a film thickness of 10 nm.

第2の電極5は、0.03cmのシャドウマスクを用い、Al(アルミニウム)を堆積させることにより形成した。なお、各層の厚みは、例えば結晶振動子膜厚モニタを用いることにより制御することができる。 The second electrode 5 was formed by depositing Al (aluminum) using a shadow mask of 0.03 cm 2 . The thickness of each layer can be controlled by using, for example, a crystal oscillator film thickness monitor.

BCPは、以下の構造を有している。   BCP has the following structure.

Figure 2008091380
Figure 2008091380

以上のようにして作製した有機光電変換素子を、光源としてのソーラシミュレーター(エアマス1.5Gスペクトル、照射強度100mW/cm)から発生した疑似太陽光を照射してその特性を評価した。その結果、開放電圧1.02V、短絡電流密度2.47mA/cm、形状因子0.53、変換効率1.77%と良好な値が得られた。 The organic photoelectric conversion element produced as described above was irradiated with pseudo-sunlight generated from a solar simulator (air mass 1.5G spectrum, irradiation intensity 100 mW / cm 2 ) as a light source, and its characteristics were evaluated. As a result, an open circuit voltage of 1.02 V, a short-circuit current density of 2.47 mA / cm 2 , a shape factor of 0.53, and a conversion efficiency of 1.77% were obtained.

(実施例2)
電子供与層2を、上記式(4)の構造を有する5,6,11,12−テトラナフチルテトラセンを用い、膜厚30nmとなるように形成する以外は、上記実施例1と同様にして有機光電変換素子を作製した。
(Example 2)
The electron donating layer 2 is formed in the same manner as in Example 1 except that 5,6,11,12-tetranaphthyltetracene having the structure of the above formula (4) is used and the film thickness is 30 nm. A photoelectric conversion element was produced.

作製した有機光電変換素子について、上記実施例1と同様にしてその特性を評価した結果、開放電圧0.93V、短絡電流密度2.56mA/cm、形状因子0.50、変換効率1.57%と良好な値が得られた。 As a result of evaluating the characteristics of the produced organic photoelectric conversion element in the same manner as in Example 1, the open circuit voltage was 0.93 V, the short-circuit current density was 2.56 mA / cm 2 , the form factor was 0.50, and the conversion efficiency was 1.57. % And a good value were obtained.

(比較例1)
電子供与層2を、以下の構造を有するルブレンを用いて膜厚40nmとなるように形成する以外は、上記実施例1と同様にして有機光電変換素子を作製した。
(Comparative Example 1)
An organic photoelectric conversion element was produced in the same manner as in Example 1 except that the electron donor layer 2 was formed using rubrene having the following structure so as to have a film thickness of 40 nm.

Figure 2008091380
Figure 2008091380

実施例1と同様にして特性を評価した結果、開放電圧0.91V、短絡電流密度2.63mA/cm、形状因子0.53、変換効率1.48%の結果が得られた。 As a result of evaluating the characteristics in the same manner as in Example 1, a result with an open circuit voltage of 0.91 V, a short circuit current density of 2.63 mA / cm 2 , a form factor of 0.53, and a conversion efficiency of 1.48% was obtained.

以上のことから、本発明の縮合多環芳香族系化合物を電子供与層に用いた有機光電変換素子は、ルブレンを電子供与層に用いた従来の有機光電変換素子よりも高い開放電圧及び変換効率が得られることがわかる。   From the above, the organic photoelectric conversion element using the condensed polycyclic aromatic compound of the present invention for the electron donating layer has higher open-circuit voltage and conversion efficiency than the conventional organic photoelectric conversion element using rubrene for the electron donating layer. It can be seen that

<電子供与層材料の合成方法>
(9,10,15,16−テトラフェニルシベンゾ〔a,c〕テトラセンの合成方法)
<Method for synthesizing electron donating layer material>
(Method for synthesizing 9,10,15,16-tetraphenylcybenzo [a, c] tetracene)

Figure 2008091380
Figure 2008091380

フェンシクロン4.0g(10.4ミリモル、化合物1)、1,4−ナフトキノン1.7g(10.5ミリモル、化合物2)及びトリグリム50mlを混合し、200℃で一晩撹拌した。   Fencyclone 4.0 g (10.4 mmol, compound 1), 1,4-naphthoquinone 1.7 g (10.5 mmol, compound 2) and triglyme 50 ml were mixed and stirred at 200 ° C. overnight.

反応液をMeOHで1Lに希釈し、析出結晶をろ別した。粗精製品をトルエンとヘキサンで再沈殿し、黄色結晶4.0g(化合物3、収率75%)を得た。   The reaction solution was diluted to 1 L with MeOH, and the precipitated crystals were separated by filtration. The crude product was reprecipitated with toluene and hexane to obtain 4.0 g of yellow crystals (compound 3, yield 75%).

Figure 2008091380
Figure 2008091380

アルゴン気流下、化合物3の2.0g(3.9ミリモル)のジエチルエーテル20ml溶液にフェニルマグネシウムブロミド(1M THF溶液)16ml(16ミリモル)を5℃未満で添加した。室温で2時間撹拌した。   Under a stream of argon, 16 ml (16 mmol) of phenylmagnesium bromide (1M THF solution) was added to 2.0 g (3.9 mmol) of Compound 3 in 20 ml of diethyl ether at less than 5 ° C. Stir at room temperature for 2 hours.

反応液に水を加えてしばらく攪拌した後、溶媒を減圧濃縮した。析出結晶をろ別し、シリカゲルカラムクロマトグラフィーで精製し、白色結晶1.2g(化合物4、収率46%)を得た。   Water was added to the reaction solution and stirred for a while, and then the solvent was concentrated under reduced pressure. The precipitated crystals were separated by filtration and purified by silica gel column chromatography to obtain 1.2 g (compound 4, yield 46%) of white crystals.

Figure 2008091380
Figure 2008091380

化合物4の0.50g(0.75ミリモル)のTHF10ml溶液に、47%ヨウ化水素酸5gを添加し、室温で1時間攪拌した。   To a solution of 0.50 g (0.75 mmol) of Compound 4 in 10 ml of THF, 5 g of 47% hydroiodic acid was added and stirred at room temperature for 1 hour.

反応液に水300mlを加え、析出結晶をMeOHで洗浄した。シリカゲルカラムクロマトグラフィーで精製し、9,10,15,16−テトラフェニルジベンゾ〔a,c〕テトラセンの黄色結晶0.19g(化合物5、収率40%)を得た。   300 ml of water was added to the reaction solution, and the precipitated crystals were washed with MeOH. Purification by silica gel column chromatography gave 0.19 g of 9,10,15,16-tetraphenyldibenzo [a, c] tetracene yellow crystals (compound 5, yield 40%).

(5,6,11,12−テトラナフチルテトラセンの合成方法)   (Method for synthesizing 5,6,11,12-tetranaphthyltetracene)

Figure 2008091380
Figure 2008091380

化合物1:4g(11.1ミリモル)、1,2−ジブロモエチレン4.1g(22.1ミリモル)、p−トルエンスルホン酸50mg及びトルエン15mlを混合し、一晩還流した。   Compound 1: 4 g (11.1 mmol), 1,2-dibromoethylene 4.1 g (22.1 mmol), p-toluenesulfonic acid 50 mg and toluene 15 ml were mixed and refluxed overnight.

反応液にメタノールを添加し、析出結晶をろ過した。これをエタノール−トルエンから再結晶し、化合物2:0.5g(収率8.4%)を得た。   Methanol was added to the reaction solution, and the precipitated crystals were filtered. This was recrystallized from ethanol-toluene to obtain compound 2: 0.5 g (yield 8.4%).

化合物2:0.62g(1.15ミリモル)、化合物1:0.41g(1.11ミリモル)の無水THF10ml溶液に、1.6MBuLi(nヘキサン溶液)0.71ml(1.14ミリモル)を−78℃で添加し、一晩攪拌した。   Compound 2: 0.62 g (1.15 mmol), Compound 1: 0.41 g (1.11 mmol) in anhydrous THF 10 ml solution, 1.6 MBuLi (n hexane solution) 0.71 ml (1.14 mmol) − Added at 78 ° C. and stirred overnight.

反応液に水10mlを加え、析出結晶をろ別した。これをエタノール−トルエンから再結晶し、化合物3:0.50g(収率60.1%)を得た。   10 ml of water was added to the reaction solution, and the precipitated crystals were separated by filtration. This was recrystallized from ethanol-toluene to obtain 0.50 g (yield 60.1%) of Compound 3:

化合物3:0.51g(0.68ミリモル)とヨウ化セシウム0.53g(2.04ミリモル)のクロロホルム10ml溶液にAlBr(1.0Mジブロモメタン溶液)0.75ml(0.75ミリモル)を−75℃で添加した。 Compound 3: 0.75 ml (0.75 mmol) of AlBr 3 (1.0 M dibromomethane solution) was added to a solution of 0.51 g (0.68 mmol) and 0.53 g (2.04 mmol) of cesium iodide in 10 ml of chloroform. Added at -75 ° C.

反応液を室温まで加温し、水10mlを添加した。有機層を分液し、水10mlで2回洗浄した。硫酸マグネシウムで乾燥させた後減圧濃縮した。粗精製物をシリカゲルカラムクロマトグラフィー(シリカゲル100g、溶出液トルエン/ヘキサン=5/1)で精製した後、エタノール−トルエンで再結晶し、5,6,11,12−テトラナフチルテトラセン(化合物4:0.22g(収率44%))を得た。   The reaction was warmed to room temperature and 10 ml of water was added. The organic layer was separated and washed twice with 10 ml of water. The extract was dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (silica gel 100 g, eluent toluene / hexane = 5/1) and then recrystallized from ethanol-toluene to give 5,6,11,12-tetranaphthyltetracene (compound 4: 0.22 g (44% yield)) was obtained.

本発明に従う一実施例の有機光電変換素子を示す模式的断面図。The typical sectional view showing the organic photoelectric conversion element of one example according to the present invention.

符号の説明Explanation of symbols

1…第1の電極
2…電子供与層
3…電子受容層
4…励起子ブロック層
5…第2の電極
DESCRIPTION OF SYMBOLS 1 ... 1st electrode 2 ... Electron donation layer 3 ... Electron acceptance layer 4 ... Exciton block layer 5 ... 2nd electrode

Claims (6)

一対の電極と、該一対の電極の間に配置される電子供与層及び電子受容層とを備える有機光電変換素子であって、
前記電子供与層が、以下に示す構造のフェナントレン骨格を有し、かつベンゼン環を基本単位とした縮合環の数が6〜10の範囲である縮合多環芳香族系化合物A、及びベンゼン環を基本単位とした縮合環を4〜7の範囲で直線状に配置した構造を有する縮合多環芳香族系化合物Bから選ばれる少なくとも1種から形成されていることを特徴とする有機光電変換素子。
Figure 2008091380
An organic photoelectric conversion device comprising a pair of electrodes, and an electron donating layer and an electron accepting layer disposed between the pair of electrodes,
The electron donating layer has a phenanthrene skeleton having the structure shown below, and the condensed polycyclic aromatic compound A having a benzene ring as a basic unit and having a number of condensed rings in the range of 6 to 10, and a benzene ring. An organic photoelectric conversion element comprising at least one selected from condensed polycyclic aromatic compounds B having a structure in which a condensed ring as a basic unit is linearly arranged in a range of 4 to 7.
Figure 2008091380
前記縮合多環芳香族系化合物Aが、以下に示す一般式(1)で表されることを特徴とする請求項1に記載の有機光電変換素子。
Figure 2008091380
(式中、R〜Rは、アルキル基、アルケニル基、アリール基、アラルキル基、ヘテロ環基を表し、互いに異なっていてもよい。)
2. The organic photoelectric conversion device according to claim 1, wherein the condensed polycyclic aromatic compound A is represented by the following general formula (1).
Figure 2008091380
(Wherein, R 1 to R 4 is an alkyl group, an alkenyl group, an aryl group, an aralkyl group, a heterocyclic group, may be different from each other.)
前記縮合多環芳香族系化合物Bが、以下に示す一般式(2)で表されることを特徴とする請求項1に記載の有機光電変換素子。
Figure 2008091380
(式中、Ar〜Arは、アリール基を表し、これらの内少なくとも1つはナフチル基であり、互いに異なっていてもよい。)
2. The organic photoelectric conversion device according to claim 1, wherein the condensed polycyclic aromatic compound B is represented by the following general formula (2).
Figure 2008091380
(In the formula, Ar 1 to Ar 4 represent an aryl group, and at least one of them is a naphthyl group, and may be different from each other.)
前記縮合多環芳香族系化合物Aが、以下に示す式(3)の構造を有することを特徴とする請求項1に記載の有機光電変換素子。
Figure 2008091380
2. The organic photoelectric conversion device according to claim 1, wherein the condensed polycyclic aromatic compound A has a structure represented by the following formula (3).
Figure 2008091380
前記縮合多環芳香族系化合物Bが、以下に示す式(4)の構造を有することを特徴とする請求項1に記載の有機光電変換素子。
Figure 2008091380
2. The organic photoelectric conversion device according to claim 1, wherein the condensed polycyclic aromatic compound B has a structure represented by the following formula (4).
Figure 2008091380
前記電子受容層と前記電極の間に、励起子ブロック層が設けられていることを特徴とする請求項1〜5のいずれか1項に記載の有機光電変換素子。   The organic photoelectric conversion element according to claim 1, wherein an exciton blocking layer is provided between the electron accepting layer and the electrode.
JP2006267257A 2006-09-29 2006-09-29 Organic photoelectric conversion element Pending JP2008091380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267257A JP2008091380A (en) 2006-09-29 2006-09-29 Organic photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267257A JP2008091380A (en) 2006-09-29 2006-09-29 Organic photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2008091380A true JP2008091380A (en) 2008-04-17

Family

ID=39375276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267257A Pending JP2008091380A (en) 2006-09-29 2006-09-29 Organic photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2008091380A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013520A1 (en) 2008-07-30 2010-02-04 出光興産株式会社 Indenopyrene compound, organic thin film solar cell material using the same, and organic thin film solar cell
WO2011138935A1 (en) * 2010-05-07 2011-11-10 住友化学株式会社 Organic photoelectric conversion element
WO2012099376A2 (en) * 2011-01-17 2012-07-26 주식회사 엘지화학 Novel compound and organic light-emitting device comprising same
KR101512022B1 (en) 2012-03-05 2015-04-16 (주)씨에스엘쏠라 New dibenzotetracene-based organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2019203013A1 (en) * 2018-04-17 2019-10-24 ソニー株式会社 Photoelectric conversion element and imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523129A (en) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic device
JP2005268449A (en) * 2004-03-17 2005-09-29 Asahi Kasei Corp Method of reforming condensation polycyclic aromatic compound thin film, the compound thin film, and organic semiconductor device
WO2005119794A1 (en) * 2004-06-01 2005-12-15 Japan Science And Technology Agency Materials for photoelectric conversion devices and photoelectric conversion devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523129A (en) * 2001-06-11 2004-07-29 ザ、トラスティーズ オブ プリンストン ユニバーシティ Organic photovoltaic device
JP2005268449A (en) * 2004-03-17 2005-09-29 Asahi Kasei Corp Method of reforming condensation polycyclic aromatic compound thin film, the compound thin film, and organic semiconductor device
WO2005119794A1 (en) * 2004-06-01 2005-12-15 Japan Science And Technology Agency Materials for photoelectric conversion devices and photoelectric conversion devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013520A1 (en) 2008-07-30 2010-02-04 出光興産株式会社 Indenopyrene compound, organic thin film solar cell material using the same, and organic thin film solar cell
WO2011138935A1 (en) * 2010-05-07 2011-11-10 住友化学株式会社 Organic photoelectric conversion element
JP2011254071A (en) * 2010-05-07 2011-12-15 Sumitomo Chemical Co Ltd Organic photoelectric conversion element
WO2012099376A2 (en) * 2011-01-17 2012-07-26 주식회사 엘지화학 Novel compound and organic light-emitting device comprising same
WO2012099376A3 (en) * 2011-01-17 2012-11-29 주식회사 엘지화학 Novel compound and organic light-emitting device comprising same
US9065060B2 (en) 2011-01-17 2015-06-23 Lg Chem, Ltd. Compound and organic light-emitting device comprising same
KR101512022B1 (en) 2012-03-05 2015-04-16 (주)씨에스엘쏠라 New dibenzotetracene-based organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2019203013A1 (en) * 2018-04-17 2019-10-24 ソニー株式会社 Photoelectric conversion element and imaging device
CN112074964A (en) * 2018-04-17 2020-12-11 索尼公司 Photoelectric conversion element and imaging device

Similar Documents

Publication Publication Date Title
JP3204770U (en) Organic solar cell
CA2588113C (en) Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer
CN101803056B (en) Organic photosensitive optoelectronic devices with triplet harvesting
JP2008135540A (en) Organic photoelectric conversion element
JP5417039B2 (en) Indole derivatives and organic thin film solar cells using the same
JP2010073987A (en) Material for organic thin-film solar cell
JP5243891B2 (en) Material for photoelectric conversion element, photoelectric conversion element, organic solar cell and apparatus
TW201240948A (en) Organic photosensitive devices comprising aryl squaraines and methods of making the same
CN1981384A (en) Materials for photoelectric conversion devices and photoelectric conversion devices
US11744150B2 (en) Synthesis of aza-acenes as novel n-type materials for organic electronics
WO2013035303A1 (en) Organic thin film solar cell material
JP2008091380A (en) Organic photoelectric conversion element
JP5106361B2 (en) Organic photoelectric conversion device using benzophosphole compound
JP2008166558A (en) Material for photoelectric conversion element, and photoelectric conversion element using the same
JP5498674B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
EP2530070A1 (en) Dibenzofluoranthene compound and organic thin-film solar cell using same
JP2008166561A (en) Material for photoelectric conversion element, and photoelectric conversion element using the same
JP5525895B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
WO2012014460A1 (en) Indenoperylene compound, material for organic thin-film photovotaic cell containing indenoperylene derivative, and organic thin-film photovotaic cell using same
JP5658937B2 (en) Indenoperylene compound and organic thin film solar cell using the same
JP5283980B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JP2010182959A (en) Organic photoelectric conversion element using benzophosphore
JP5560132B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
JP2015218110A (en) Macrocyclic aromatic amino compound
JP2014077042A (en) Organic thin film solar cell material including dibenzopyrromethene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802