JP2008091259A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008091259A
JP2008091259A JP2006272471A JP2006272471A JP2008091259A JP 2008091259 A JP2008091259 A JP 2008091259A JP 2006272471 A JP2006272471 A JP 2006272471A JP 2006272471 A JP2006272471 A JP 2006272471A JP 2008091259 A JP2008091259 A JP 2008091259A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
negative electrode
aqueous electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006272471A
Other languages
Japanese (ja)
Inventor
Saori Tateishi
さお里 立石
Norihiro Yamamoto
典博 山本
Hiroaki Furuta
裕昭 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006272471A priority Critical patent/JP2008091259A/en
Publication of JP2008091259A publication Critical patent/JP2008091259A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery that is satisfactory in the cycle characteristics and reliability, by forming a satisfactory coating on a negative electrode at initial charging. <P>SOLUTION: In the nonaqueous electrolyte secondary battery comprising an electrode plate group containing a positive electrode plate that holds a positive electrode active material, a negative electrode plate that holds a negative electrode active material, and a separator; and a nonaqueous electrolyte containing 0.5-1.5 mol/l lithium salt containing lithium hexafluorophosphate (LiPF<SB>6</SB>) and a nonaqueous solvent, the initial charge of a charging current is carried out at a hour rate of 1.0 or lower, with respect to the rated capacity in an environment of -5 to 10°C, to form the satisfactory coating on a negative electrode surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解液二次電池の製造方法に関し、特に、その初回充電を好適に改良したものに関する。   The present invention relates to a method for producing a non-aqueous electrolyte secondary battery, and particularly relates to a method that suitably improves the initial charge.

近年、AV機器やパソコン等、電子機器のコードレス化やポータブル化に伴って、高エネルギー密度の非水電解液二次電池が多く採用されている。又、高容量化が進むにつれ電池の信頼性及びサイクル特性が懸念されている。一方、非水電解液二次電池の仕上げ工程において、正極と負極を活性化させ初回充電を行うことにより負極表面に固体電解質界面(SEI)が形成される。しかしながらこのSEIの被膜は、リチウムイオンと電解溶媒に大きく指示される。リチウムイオンの拡散が多ければ多いほど負極表面に形成されるSEIの量が多くなるため電解中に存在するリチウムイオンが不足し、サイクル特性が急激に劣化を起こす。このSEIの量を低減する方法として、初回充電を冷却雰囲気(−20℃〜20℃)で充電及び1C以下の低電流充電を行うことでSEI被膜量を安定させる方法が提案されている。(例えば特許文献1参照。)
特開平11−111267号公報
In recent years, non-aqueous electrolyte secondary batteries having a high energy density have been widely used as electronic devices such as AV devices and personal computers become cordless and portable. Moreover, as the capacity increases, there are concerns about the reliability and cycle characteristics of the battery. On the other hand, the solid electrolyte interface (SEI) is formed on the negative electrode surface by activating the positive electrode and the negative electrode and performing the initial charge in the finishing step of the nonaqueous electrolyte secondary battery. However, this SEI coating is highly directed to lithium ions and electrolytic solvents. As the diffusion of lithium ions increases, the amount of SEI formed on the negative electrode surface increases, so that the lithium ions present in the electrolysis are insufficient, and the cycle characteristics deteriorate rapidly. As a method for reducing the amount of SEI, a method of stabilizing the amount of SEI film by charging the initial charge in a cooling atmosphere (−20 ° C. to 20 ° C.) and charging at a low current of 1 C or less is proposed. (For example, refer to Patent Document 1.)
Japanese Patent Application Laid-Open No. 11-111267

しかしながら、特許文献1のような方法では、リチウム塩と電解液との反応性に対する検討がされていないため、例えば、LiBFを1.0M使用した場合、負極上での電解液との反応性が高くなり、フッ化リチウム(LiF)の生成物が大量に負極表面上に出来、そのため、低温時での充電受け入れ性が悪くなり、充放電を繰り返すことで極板が膨張し極板が切れるなどの問題が起こり、結果として信頼性が低下するという課題があった。また、−20℃での過度な充電を行うと、負極表面上にリチウム金属が析出し充放電を繰り返すことでデンドライド状に成長し、その結果セパレータを突き破り内部短絡を引き起こしたり、正極、負極活物質の劣化を引き起こしたりして、サイクル寿命特性が劣化するという課題が発生した。特に、この課題は、正極活物質にLiNiMnCoのようなニッケル、マンガンおよびコバルトをそれぞれ含むリチウム含有複合酸化物であると顕著である。 However, in the method as disclosed in Patent Document 1, since the reactivity between the lithium salt and the electrolytic solution is not studied, for example, when LiBF 4 is used at 1.0 M, the reactivity with the electrolytic solution on the negative electrode is reduced. As a result, a large amount of lithium fluoride (LiF) product can be formed on the surface of the negative electrode, so that the charge acceptability at low temperatures deteriorates, and the electrode plate expands by repeated charging and discharging and the electrode plate is cut. As a result, there was a problem that reliability was lowered. Further, when excessive charging at −20 ° C. is performed, lithium metal is deposited on the negative electrode surface and grows in a dendritic state by repeating charge and discharge. As a result, it breaks through the separator and causes an internal short circuit. There was a problem that cycle life characteristics deteriorated by causing deterioration of materials. In particular, this problem is remarkable when the lithium-containing composite oxide includes nickel, manganese, and cobalt, such as LiNi x Mn y Co z O 2 , in the positive electrode active material.

本発明は、前記従来の課題を解決し、サイクル特性および信頼性に優れた非水電解液二次電池の製造方法を提供することを目的とする。   An object of the present invention is to solve the conventional problems and to provide a method for manufacturing a non-aqueous electrolyte secondary battery excellent in cycle characteristics and reliability.

前記従来の課題を解決するために、本発明の非水電解液二次電池の製造方法は、正極活物質を保持した正極板と負極活物質を保持した負極板とセパレータとからなる極板群と、六フッ化リン酸リチウム(LiPF)からなるリチウム塩0.5mol/l〜1.5mol/lと非水溶媒とからなる非水電解質を備えた非水電解液二次電池を、−5℃から10℃の環境で初回充電の充電電流を定格容量に対する時間率で1.0It以下とするものである。 In order to solve the above-described conventional problems, the method for producing a non-aqueous electrolyte secondary battery of the present invention includes a positive electrode plate holding a positive electrode active material, a negative electrode plate holding a negative electrode active material, and a separator. And a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte composed of a lithium salt 0.5 mol / l to 1.5 mol / l composed of lithium hexafluorophosphate (LiPF 6 ) and a non-aqueous solvent, The charging current of the first charge in an environment of 5 ° C. to 10 ° C. is 1.0 It or less with respect to the rated capacity.

この定格容量に対する時間率とは、Cレートとも言われるもので、1Itは、1Cともいう。1Cの充電電流とは、1時間で定格容量に達する電流であり、2Cの充電電流とは、1/2時間つまり0.5時間で定格容量に達する電流である。   The time rate with respect to the rated capacity is also called C rate, and 1 It is also called 1C. The charging current of 1C is a current that reaches the rated capacity in 1 hour, and the charging current of 2C is a current that reaches the rated capacity in 1/2 hour, that is, 0.5 hours.

本発明によれば、リチウム塩の種類をLiPFのみとし、低温充電の温度をさらに好
適な範囲にすることで、負極上での電解液との反応を抑制し負極表面上に出来るLiFの生成物を低減する。
According to the present invention, only LiPF 6 is used as the type of lithium salt, and the reaction with the electrolyte on the negative electrode is suppressed and the LiF generated on the negative electrode surface by setting the temperature of the low-temperature charging to a more preferable range. Reduce things.

さらに、添加剤として、非水電解液に、C=Cを有する環状カーボネートを含ませると、リチウムイオンの拡散を抑制することができ、電解液中でのリチウムイオンの減少を防ぐとともに、負極表面上に良好な皮膜を形成することができる。   Furthermore, when a non-aqueous electrolyte includes a cyclic carbonate having C═C as an additive, diffusion of lithium ions can be suppressed, and a decrease in lithium ions in the electrolyte can be prevented. A good film can be formed on top.

このC=Cを有する環状カーボネートには、ビニレンカーボネート(VC)、ビニルエチルカーボネート(VEC)などがあるが、特にVCが、良好なSEIの皮膜を形成するため好ましい。   Examples of the cyclic carbonate having C═C include vinylene carbonate (VC) and vinyl ethyl carbonate (VEC). VC is particularly preferable because it forms a good SEI film.

また、本発明は、正極活物質がニッケル、マンガンおよびコバルトをそれぞれ含むリチウム含有複合酸化物であると効果がより顕著に現れる。   In the present invention, the effect is more prominent when the positive electrode active material is a lithium-containing composite oxide containing nickel, manganese, and cobalt.

本発明によれば、負極上での電解液との反応を抑制し、負極表面上に出来るLiFの生成物を低減することができる。また、添加剤にVCなどを用いると、電解液中のリチウムイオンの減少を防ぐため、負極表面に良好な被膜を形成させることでサイクル特性向上および信頼性に優れた非水電解液二次電池の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the reaction with the electrolyte solution on a negative electrode can be suppressed, and the product of LiF made on the negative electrode surface can be reduced. In addition, when VC or the like is used as an additive, a non-aqueous electrolyte secondary battery with improved cycle characteristics and excellent reliability is formed by forming a good coating on the negative electrode surface in order to prevent a decrease in lithium ions in the electrolyte. The manufacturing method of can be provided.

本発明の好ましい実施の形態について、図面を用い説明する。図1は本発明の製造方法に用いる充放電システムである。本発明の本旨は、好適な非水電解質を用いた非水電解液二次電池を、低温の環境下で、制御された電流で初充電を行なうことにある。
六フッ化リン酸リチウムからなるリチウム塩0.5mol/l〜1.5mol/lと非水溶媒とからなる非水電解質を備えた未充電の非水電解液二次電池10を、環境温度を一定に制御することのできる恒温槽11内に設置し、商用電源12から電力を取り込む充放電制御機13とコネクタ14で接続し、所定の電流値で充電を行なう。非水電解液二次電池10は、複数設置してもかまわない。また、非水電解液二次電池10の発熱を抑制したり、複数設置した非水電解液二次電池10間の充電条件を平均化するために、ファン15を恒温槽10内に設置して、非水電解液二次電池10に風を送ることにより、送風状態にて充電を行うのも好ましい。
A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a charge / discharge system used in the production method of the present invention. The gist of the present invention is to first charge a non-aqueous electrolyte secondary battery using a suitable non-aqueous electrolyte in a low temperature environment with a controlled current.
A non-charged non-aqueous electrolyte secondary battery 10 having a non-aqueous electrolyte composed of 0.5 mol / l to 1.5 mol / l of a lithium salt composed of lithium hexafluorophosphate and a non-aqueous solvent is set at an environmental temperature. It is installed in a constant temperature bath 11 that can be controlled to a constant level, and is connected by a charge / discharge controller 13 that takes in power from a commercial power source 12 and a connector 14, and is charged at a predetermined current value. A plurality of non-aqueous electrolyte secondary batteries 10 may be installed. Further, in order to suppress the heat generation of the non-aqueous electrolyte secondary battery 10 or to average the charging conditions between the plurality of non-aqueous electrolyte secondary batteries 10, a fan 15 is installed in the thermostat 10. It is also preferable to charge in a blown state by sending wind to the non-aqueous electrolyte secondary battery 10.

以下、本発明を、上記の充放電システムを使用した実施例および比較例を用いて詳細に説明するが、本発明はこれらの実施例に何ら限定されるものでもなく、その要旨を変更しない範囲において、適宜変更して実施することができる。   Hereinafter, the present invention will be described in detail using Examples and Comparative Examples using the above-described charge / discharge system, but the present invention is not limited to these Examples, and the scope does not change the gist thereof. However, it can be implemented with appropriate modifications.

(実施例1)
図2に本実施例で用いた円筒形の非水電解質二次電池(外径18mm、高さ65mm)を示す。この図より明らかなように、セパレータを介して、帯状正極板と負極板を複数回渦巻状に巻回して、極板群1が構成される。正極板と負極板にはそれぞれアルミニウム製正極リード2およびニッケル製負極リード3を溶接している。極板群の上、下部にポリエチレン樹脂製絶縁リングを装着し、電池ケース4内に収容する。正極リード2の他端を封口板5にスポット溶接し、また負極リード3の他端は電池ケースにスポット溶接する。所定量の非水電解質を注入した後電池を密封口することにより電池が完成する。
(Example 1)
FIG. 2 shows a cylindrical nonaqueous electrolyte secondary battery (outer diameter: 18 mm, height: 65 mm) used in this example. As is apparent from this figure, the electrode plate group 1 is configured by winding the belt-like positive electrode plate and the negative electrode plate a plurality of times in a spiral manner via a separator. An aluminum positive electrode lead 2 and a nickel negative electrode lead 3 are welded to the positive electrode plate and the negative electrode plate, respectively. An insulating ring made of polyethylene resin is attached to the upper and lower parts of the electrode plate group and accommodated in the battery case 4. The other end of the positive electrode lead 2 is spot welded to the sealing plate 5, and the other end of the negative electrode lead 3 is spot welded to the battery case. After injecting a predetermined amount of nonaqueous electrolyte, the battery is sealed to complete the battery.

まず、正極の作成について述べる。正極活物質にLiNi0.4Mn0.4Co0.2を用い、その導電材としてアセチレンブラック3重量部、結着剤としてポリフッ化ビニリデンが5重量部になるようにポリフッ化ビニリデンのN−メチルピロリジノン溶液を
調整し、撹拌混合してペースト状の正極合剤を得た。次に、厚さ15μmのアルミニウム箔を集電体とし、その両面に前記ペースト状正極合剤を塗布し、乾燥後圧延ローラーで圧延を行い、所定寸法に裁断して正極板とした。
First, preparation of the positive electrode will be described. LiNi 0.4 Mn 0.4 Co 0.2 O 2 is used as the positive electrode active material, and 3 parts by weight of acetylene black is used as the conductive material, and 5 parts by weight of polyvinylidene fluoride is used as the binder. An N-methylpyrrolidinone solution was prepared and mixed by stirring to obtain a paste-like positive electrode mixture. Next, an aluminum foil having a thickness of 15 μm was used as a current collector, the paste-like positive electrode mixture was applied to both surfaces thereof, dried and then rolled with a rolling roller, and cut into predetermined dimensions to obtain a positive electrode plate.

また、負極は以下のように作製した。まず、平均粒径が約20μm、比表面積が3m2/gになるように粉砕、分級した鱗片状黒鉛と結着剤のスチレン/ブタジエンゴム3重量部を混合した後、黒鉛に対しカルボキシメチルセルロースが1重量%となるようにカルボキシメチルセルロ−ス水溶液を加え、撹拌混合しペースト状負極合剤とした。厚さ12μmの銅箔を集電体とし、その両面にペースト状の負極合剤を塗布し、乾燥後圧延ローラーを用いて圧延を行い、所定寸法に裁断して負極板とした。非水電解質にはエチレンカーボネートとエチルメチルカーボネートを20℃において30:70の体積割合で調整した溶媒に1.0mol/lのLiPFを溶解したものを用い、これを注液した後、密封口した。 Moreover, the negative electrode was produced as follows. First, flaky graphite pulverized and classified so as to have an average particle size of about 20 μm and a specific surface area of 3 m 2 / g and 3 parts by weight of styrene / butadiene rubber as a binder are mixed, and then carboxymethyl cellulose is added to the graphite. A carboxymethyl cellulose aqueous solution was added so as to be in weight percent, and the mixture was stirred and mixed to obtain a paste-like negative electrode mixture. A copper foil having a thickness of 12 μm was used as a current collector, a paste-like negative electrode mixture was applied to both surfaces thereof, dried and then rolled using a rolling roller, and cut into a predetermined size to obtain a negative electrode plate. As the non-aqueous electrolyte, a solution prepared by dissolving 1.0 mol / l LiPF 6 in a solvent prepared by mixing ethylene carbonate and ethyl methyl carbonate at a volume ratio of 30:70 at 20 ° C. did.

このようにして組立てた未充電の電池について、実施例1として、以下のような初期充電を行う。
5℃の環境で初回の充電を、充電電流660mAで1時間の定電流充電を行い、次いで1200mAの放電電流で規定の放電終止電圧まで放電を行った後、規定の充電終止電圧まで充電を行い、リチウム二次電池を作製した。
For the uncharged battery assembled in this way, as Example 1, the following initial charging is performed.
First charge in an environment of 5 ° C, constant current charge for 1 hour at a charge current of 660 mA, then discharge to a specified end-of-discharge voltage with a discharge current of 1200 mA, then charge to the specified end-of-charge voltage A lithium secondary battery was produced.

また、(表1)に示すようなリチウム塩(LiBF )1.0Mに変更した以外は、実施例1の場合と同様にして初回充電時での処理を行う比較例1の非水電解液二次電池を作成した。 Further, (Table 1) lithium salts such as shown in (LiBF 4) was changed to 1.0M, the non-aqueous electrolyte of Comparative Example 1 that performs processing at the time of initial charging in the same manner as in Example 1 A secondary battery was prepared.

Figure 2008091259
Figure 2008091259

比較例1においては、LiBFを1.0M使用したことにより、負極上での電解液との反応性が高くなり、フッ化リチウム(LiF)の生成物が大量に負極表面上に出来たことにより、低温時での充電受け入れ性が悪くなり、充放電を繰り返すことで極板が膨張し極板が切れる問題が起こった。 In Comparative Example 1, the use of 1.0M LiBF 4 increased the reactivity with the electrolyte on the negative electrode, and a large amount of lithium fluoride (LiF) product was formed on the negative electrode surface. As a result, the charge acceptability at low temperatures deteriorates, and the electrode plate expands and the electrode plate breaks due to repeated charge and discharge.

Figure 2008091259
Figure 2008091259

(表2)においては、六フッ化リン酸リチウム(LiPF)の濃度を変えた以外は実施例1同様にして実施例2〜5と比較例2〜3を非水電解液二次電池を作成した。 In (Table 2), the non-aqueous electrolyte secondary batteries Comparative Examples 2-3 and Examples 2-5 in the same manner as in Example 1 except for changing the concentration of lithium hexafluorophosphate (LiPF 6) Created.

また、図3は、(表1)に示すそれぞれの非水電解液二次電池について、電池電圧4.2VのCVCC充電を行い最大電流1540mAとし、電流終止が100mAの充電を行い、放電電流2200mA、放電終止電圧が3.0Vの定電流放電を行う条件で繰り返し500サイクルまで充放電を行った時の45℃サイクル特性図を示し、縦軸は500サイクル目の電池容量維持率、横軸はLiPFの濃度を示している。 In addition, FIG. 3 shows that each non-aqueous electrolyte secondary battery shown in (Table 1) is charged with a battery voltage of 4.2 V by CVCC charging to a maximum current of 1540 mA, charging with a current termination of 100 mA, and a discharge current of 2200 mA. , Shows a 45 ° C. cycle characteristic diagram when charging and discharging are repeated up to 500 cycles under the condition of performing a constant current discharge with a discharge end voltage of 3.0 V, the vertical axis is the battery capacity maintenance rate of the 500th cycle, and the horizontal axis is The concentration of LiPF 6 is shown.

図3からわかるように実施例1〜5において比較例2〜3に比べサイクル寿命特性の劣化が小さいことがわかる。比較例3においては、有機電解液の電気伝導率が小さいため、電解液中でのリチウムイオンの移動が低下する。そのため有機電解液においては、0.5mol/l以上の濃度が必要といえる。比較例2においては、粘度が高くなればなるほど電気伝導度も増加する上、リチウムイオンも増加することにより、リチウムイオンの移動が低下するためサイクル特性が急激に劣化したと考えられる。そのため有機電解液においては、1.5mol/l以下の濃度である必要がある。   As can be seen from FIG. 3, in Examples 1-5, the deterioration of the cycle life characteristics is small compared to Comparative Examples 2-3. In Comparative Example 3, since the electric conductivity of the organic electrolytic solution is small, the movement of lithium ions in the electrolytic solution is reduced. Therefore, it can be said that the concentration of 0.5 mol / l or more is necessary in the organic electrolyte. In Comparative Example 2, it is considered that as the viscosity increases, the electrical conductivity increases and the lithium ions also increase, so that the movement of lithium ions decreases, so that the cycle characteristics deteriorate rapidly. Therefore, in the organic electrolytic solution, the concentration needs to be 1.5 mol / l or less.

Figure 2008091259
Figure 2008091259

(表3)においては、初回充電時の温度と充電電流(mA)を変えた以外は実施例1同様にして実施例6〜11と比較例4〜7を非水電解液二次電池を作成した。   In (Table 3), non-aqueous electrolyte secondary batteries were prepared for Examples 6 to 11 and Comparative Examples 4 to 7 in the same manner as Example 1 except that the temperature and charging current (mA) at the time of initial charge were changed. did.

また、図4は、(表3)に示すそれぞれの非水電解液二次電池について、電池電圧4.2VのCVCC充電を行い最大電流1540mAとし、電流終止が100mAの充電を行い、放電電流2200mA、放電終止電圧が3.0Vの定電流放電を行う条件で繰り返し500サイクルまで充放電を行った時の45℃サイクル特性図を示し、縦軸は500サイクル目の電池容量維持率、横軸は初期充電時の環境温度を示している。   In addition, FIG. 4 shows that each non-aqueous electrolyte secondary battery shown in (Table 3) is charged with a battery voltage of 4.2 V by CVCC charging to a maximum current of 1540 mA, charging with a current termination of 100 mA, and a discharge current of 2200 mA. , Shows a 45 ° C. cycle characteristic diagram when charging and discharging are repeated up to 500 cycles under the condition of performing a constant current discharge with a discharge end voltage of 3.0 V, the vertical axis is the battery capacity maintenance rate of the 500th cycle, and the horizontal axis is It shows the environmental temperature during initial charging.

図4からわかるように実施例1、6、7、10においては、比較例4〜5に比べてサイクル特性の劣化が小さいことが解かる。比較例4を初回充電後に分解を行ったところ、負極表面にリチウム金属が大量に析出していた。このことから−20℃環境下での過度な充電を行うことで反応が均一に起こらず、リチウム金属が析出したものと考えられる。また充放電を繰り返すことでデンドライド上に成長しそれがセパレータを突き破り、内部短絡を起こしたため、サイクル寿命特性が劣化したと考えられる。比較例5においては、初回充電を行うことで、電解液中のリチウムイオンが拡散し、それが溶媒との反応が高いため、負極表面に形成される生成物の量が多くなり、負極上に良好な皮膜を形成することができない。また電解液中に存在するリチウムイオンが減少したにより、正極・負極活物質劣化が起こりその影響で、サイクル寿命特性の劣化が急激に起こったと考えられる。実施例1、6、7、10においては、低温下での初回充電においては電解液中でのリチウムイオンの拡散が低下するため、負極表面に形成される生成物の量が少なくなり、負極上に良好な皮膜を形成させることができる。また、電解液中のリチウムイオンの拡散を抑制することで、電解液中でのリチウムイオンの減少を防ぐことが出来たことにより正極、負極活物
質劣化を抑制し、サイクル寿命特性が良化したと考えれる。
As can be seen from FIG. 4, in Examples 1, 6, 7, and 10, the deterioration of the cycle characteristics is small compared to Comparative Examples 4 to 5. When Comparative Example 4 was decomposed after the initial charge, a large amount of lithium metal was deposited on the negative electrode surface. From this, it is considered that the reaction is not uniformly caused by excessive charging in an environment of −20 ° C., and lithium metal is deposited. Moreover, it is thought that the cycle life characteristics deteriorated because it grew on the dendride by repeating charge and discharge, and it broke through the separator and caused an internal short circuit. In Comparative Example 5, by performing the initial charge, lithium ions in the electrolytic solution diffuse, and since the reaction with the solvent is high, the amount of products formed on the negative electrode surface increases, A good film cannot be formed. In addition, it is considered that the deterioration of the positive electrode / negative electrode active material occurred due to the decrease of lithium ions present in the electrolytic solution, and the cycle life characteristics rapidly deteriorated due to the influence thereof. In Examples 1, 6, 7, and 10, since the diffusion of lithium ions in the electrolytic solution decreases in the initial charge at a low temperature, the amount of products formed on the negative electrode surface decreases, and Can form a good film. In addition, by suppressing the diffusion of lithium ions in the electrolyte, it was possible to prevent the decrease of lithium ions in the electrolyte, thereby suppressing deterioration of the positive and negative electrode active materials and improving the cycle life characteristics. I think.

また、図5は、(表3)に示すそれぞれの非水電解液二次電池について、電池電圧4.2VのCVCC充電を行い最大電流1540mAとし、電流終止が100mAの充電を行い、放電電流2200mA、放電終止電圧が3.0Vの定電流放電を行う条件で繰り返し500サイクルまで充放電を行った時の45℃サイクル特性図を示し、縦軸は500サイクル目の電池容量維持率、横軸は充電電流を示している。   In addition, FIG. 5 shows that each non-aqueous electrolyte secondary battery shown in (Table 3) is charged with a battery voltage of 4.2 V by CVCC charging to a maximum current of 1540 mA, charging with a current termination of 100 mA, and a discharge current of 2200 mA. , Shows a 45 ° C. cycle characteristic diagram when charging and discharging are repeated up to 500 cycles under the condition of performing a constant current discharge with a discharge end voltage of 3.0 V, the vertical axis is the battery capacity maintenance rate of the 500th cycle, and the horizontal axis is The charging current is shown.

図5からわかるように実施例1と8〜11においては、比較例7に比べてサイクル特性の劣化が小さいことが解かる。比較例7を初回充電後に分解を行ったところ、負極表面にリチウム金属が大量に析出していた。このことから充電電流を1.0C以上の過度な充電を行ったため、電極板での反応が不均一に進行したことにより、負極表面上にリチウム金属が大量に析出したものと考えられる。また充放電を繰り返すことでデンドライド上に成長しそれがセパレータを突き破り、内部短絡を起こしたため、サイクル寿命特性が劣化したと考えられる。実施例1と8〜11においては、初回充電の電流を規定の1.0C以下で行うことにより、電極板での電池反応を均一に進行させることができたため、その結果サイクル寿命特性が良化したと考えられる。   As can be seen from FIG. 5, in Examples 1 and 8 to 11, the deterioration of the cycle characteristics is smaller than that in Comparative Example 7. When Comparative Example 7 was decomposed after the initial charge, a large amount of lithium metal was deposited on the negative electrode surface. From this fact, it was considered that a large amount of lithium metal was deposited on the negative electrode surface because the charge current was excessively charged at 1.0 C or more and the reaction at the electrode plate proceeded non-uniformly. Moreover, it is thought that the cycle life characteristics deteriorated because it grew on the dendride by repeating charge and discharge, and it broke through the separator and caused an internal short circuit. In Examples 1 and 8 to 11, the battery reaction at the electrode plate was able to proceed uniformly by performing the initial charging current at a specified 1.0 C or less, and as a result, the cycle life characteristics were improved. It is thought that.

Figure 2008091259
Figure 2008091259

次に、実施例1に対してVCの添加を検討した。
(表4)に示すようなVC量の添加量(%は、非水電解質に対する重量%である。)を変えた以外は、実施例1と同様に初回の充電を行った実施例12〜14の非水電解液二次電池を作成した。
Next, addition of VC to Example 1 was examined.
Examples 12 to 14 in which the initial charge was performed in the same manner as in Example 1 except that the amount of VC added as shown in Table 4 was changed (% is% by weight relative to the nonaqueous electrolyte). A non-aqueous electrolyte secondary battery was prepared.

また、図6は、(表4)に示すそれぞれの非水電解液二次電池について、電池電圧4.2VのCVCC充電を行い最大電流1540mAとし、電流終止が100mAの充電を行い、放電電流2200mA、放電終止電圧が3.0Vの定電流放電を行う条件で繰り返し600サイクルまで充放電を行った時の45℃サイクル特性図を示し、縦軸は600サイクル目の電池容量維持率、横軸は添加剤VC量(%)を示している。   In addition, FIG. 6 shows that each non-aqueous electrolyte secondary battery shown in (Table 4) is charged with a battery voltage of 4.2 V, CVCC charging to a maximum current of 1540 mA, charging with a current termination of 100 mA, and a discharge current of 2200 mA. The 45 ° C. cycle characteristic diagram when charging and discharging are repeated up to 600 cycles under the condition of constant current discharge with a discharge end voltage of 3.0 V, the vertical axis is the battery capacity maintenance rate at the 600th cycle, and the horizontal axis is The additive VC amount (%) is shown.

図6からわかるように、実施例12〜14の電池は、いずれも実施例1に比べて、サイクル劣化が小さいことから、VCを添加することにより、負極表面に形成される生成物の量が少なくなり、負極上にさらに良好な皮膜を形成させることができることから、サイクル時の活物質劣化を抑制することできためサイクル特性が良化したと考えられる。   As can be seen from FIG. 6, the batteries of Examples 12 to 14 all have less cycle deterioration than that of Example 1, so that the amount of product formed on the negative electrode surface can be increased by adding VC. It is considered that the cycle characteristics are improved because the number of the active materials is reduced and a better film can be formed on the negative electrode, and the deterioration of the active material during the cycle can be suppressed.

Figure 2008091259
Figure 2008091259

(表5)に示すような正極活物質を変えた以外は、実施例1と同様に初回の充電を行った実施例15〜16の非水電解液二次電池を作成した。   Except for changing the positive electrode active material as shown in Table 5, non-aqueous electrolyte secondary batteries of Examples 15 to 16 that were charged for the first time in the same manner as Example 1 were prepared.

また、図7は、(表5)に示すそれぞれの非水電解液二次電池について、電池電圧4.2VのCVCC充電を行い最大電流1540mAとし、電流終止が100mAの充電を行い、放電電流2200mA、放電終止電圧が3.0Vの定電流放電を行う条件で繰り返し500サイクルまで充放電を行った時の45℃サイクル特性図を示し、縦軸は500サイクル目の電池容量維持率、横軸は、正極活物質の種類を示している。   Further, FIG. 7 shows that each non-aqueous electrolyte secondary battery shown in (Table 5) is charged at a battery voltage of 4.2 V by CVCC charging to a maximum current of 1540 mA, charging at a current end of 100 mA, and a discharge current of 2200 mA. , Shows a 45 ° C. cycle characteristic diagram when charging and discharging are repeated up to 500 cycles under the condition of performing a constant current discharge with a discharge end voltage of 3.0 V, the vertical axis is the battery capacity maintenance rate of the 500th cycle, and the horizontal axis is The type of positive electrode active material is shown.

図7からわかるように、実施例14、15に比べてサイクル劣化が小さい。鋭意検討の結果からメカニズムは明らかではないが、ニッケルマンガンコバルトをそれぞれ含むリチウム複合酸化物は、コバルト酸リチウム(LiCoO)に比べて、初回充電時の不可逆容量が多く、電圧分極の変化が大きいことから正極と負極とのバランスが良くなったため、サイクル寿命特性が良化したと考えられる。 As can be seen from FIG. 7, the cycle deterioration is small as compared with Examples 14 and 15. Although the mechanism is not clear from the results of intensive studies, lithium composite oxides containing nickel manganese cobalt each have a greater irreversible capacity during initial charge and a large change in voltage polarization compared to lithium cobaltate (LiCoO 2 ). From this, it is considered that the cycle life characteristics were improved because the balance between the positive electrode and the negative electrode was improved.

本発明で用いる充放電システムの模式図Schematic diagram of the charge / discharge system used in the present invention 本実施例において作成した電池の斜視図(一部切り欠き図)Perspective view of the battery prepared in this example (partially cut away view) 本実施例での電池の500サイクル目の容量維持率とLiPFの濃度の関係を示す図It shows the relationship between the concentration of the capacity retention ratio and LiPF 6 in the 500th cycle of the battery in this embodiment 本実施例での電池の500サイクル目の容量維持率と初期充電時の温度の関係を示す図The figure which shows the capacity | capacitance maintenance ratio of the 500th cycle of the battery in a present Example, and the relationship of the temperature at the time of initial charge. 本実施例での電池の500サイクル目の容量維持率と充電電流の関係を示す図The figure which shows the relationship of the capacity maintenance rate of the 500th cycle of a battery and a charging current in a present Example. 本実施例での電池の600サイクル目の電池容量維持率、横軸は添加剤VC量(%)を示す図The battery capacity retention rate at the 600th cycle of the battery in this example, and the horizontal axis represents the amount of additive VC (%). 本実施例での電池の500サイクル目の容量維持率と正極活物質の種類の関係を示す図The figure which shows the relationship between the capacity maintenance rate of the 500th cycle of the battery in a present Example, and the kind of positive electrode active material.

符号の説明Explanation of symbols

1 極板群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
10 非水電解液二次電池
11 恒温槽
12 商用電源
13 充放電制御機
14 コネクタ
15 ファン

DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Sealing plate 10 Nonaqueous electrolyte secondary battery 11 Constant temperature bath 12 Commercial power supply 13 Charge / discharge controller 14 Connector 15 Fan

Claims (4)

正極活物質を保持した正極板と負極活物質を保持した負極板とセパレータとからなる極板群と、六フッ化リン酸リチウムからなるリチウム塩0.5mol/l〜1.5mol/lと非水溶媒とからなる非水電解質を備えた非水電解液二次電池を、−5℃から10℃の環境で初回充電の充電電流を定格容量に対する時間率で1.0It以下とすることを特徴とする非水電解液二次電池の製造方法。   A positive electrode plate holding a positive electrode active material, a negative electrode plate holding a negative electrode active material, and a separator, and a lithium salt consisting of lithium hexafluorophosphate 0.5 mol / l to 1.5 mol / l A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte composed of an aqueous solvent is characterized in that the charge current of the first charge in an environment of -5 ° C. to 10 ° C. is 1.0 It or less in terms of the time rate with respect to the rated capacity. A method for producing a non-aqueous electrolyte secondary battery. 前記非水電解液は、C=Cを有する環状カーボネートを含むことを特徴とする請求項1記載の非水電解液二次電池の製造方法。   The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte includes a cyclic carbonate having C═C. 前記C=Cを有する環状カーボネートは、ビニレンカーボネートであることを特徴とする請求項1記載の非水電解液二次電池の製造方法。   The method for producing a nonaqueous electrolyte secondary battery according to claim 1, wherein the cyclic carbonate having C═C is vinylene carbonate. 前記正極活物質は、ニッケル、マンガンおよびコバルトをそれぞれ含むリチウム含有複合酸化物であることを特徴とする請求項1記載の非水電解液二次電池の製造方法。

































The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material is a lithium-containing composite oxide containing nickel, manganese, and cobalt.

































JP2006272471A 2006-10-04 2006-10-04 Method for manufacturing nonaqueous electrolyte secondary battery Pending JP2008091259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006272471A JP2008091259A (en) 2006-10-04 2006-10-04 Method for manufacturing nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272471A JP2008091259A (en) 2006-10-04 2006-10-04 Method for manufacturing nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008091259A true JP2008091259A (en) 2008-04-17

Family

ID=39375192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272471A Pending JP2008091259A (en) 2006-10-04 2006-10-04 Method for manufacturing nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008091259A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
US9960459B2 (en) 2015-06-11 2018-05-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
CN114243089A (en) * 2021-12-13 2022-03-25 上海瑞浦青创新能源有限公司 Lithium iron phosphate secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
US9960459B2 (en) 2015-06-11 2018-05-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing nonaqueous electrolyte secondary battery
CN114243089A (en) * 2021-12-13 2022-03-25 上海瑞浦青创新能源有限公司 Lithium iron phosphate secondary battery
CN114243089B (en) * 2021-12-13 2023-10-13 上海瑞浦青创新能源有限公司 Lithium iron phosphate secondary battery

Similar Documents

Publication Publication Date Title
JP5219401B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5356374B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
KR100898857B1 (en) Non-aqueous electrolyte and secondary battery using the same
WO2009150773A1 (en) Charging method and discharging method of lithium ion secondary battery
JP2019530955A (en) Non-aqueous electrolyte and lithium secondary battery including the same
CN101803071A (en) Electrode active material having core-shell structure
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2009218065A (en) Lithium secondary battery and method for manufacturing the same
JP2002358999A (en) Non-aqueous electrolyte secondary battery
KR100813309B1 (en) Nonaqueous electrolyte for lithium secondary batteries having enhanced cycle performance and lithium secondary batteries comprising the same
JP2011071100A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
KR100922685B1 (en) Cathode active material for lithium secondary battery
JP2009129721A (en) Non-aqueous secondary battery
JP2001223024A (en) Electrolyte for lithium secondary battery
WO2017185703A1 (en) High-temperature lithium-ion battery electrolyte solution and preparation method therefor and high-temperature lithium-ion battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP6565899B2 (en) Nonaqueous electrolyte secondary battery
US10090559B2 (en) Non-aqueous electrolyte and lithium secondary battery including the same
JP2006526878A (en) Lithium ion battery with improved high-temperature storage characteristics
JP2015524988A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
JP2005502179A (en) Non-aqueous electrolyte
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery