JP2008089087A - Flow rate regulating valve - Google Patents

Flow rate regulating valve Download PDF

Info

Publication number
JP2008089087A
JP2008089087A JP2006270939A JP2006270939A JP2008089087A JP 2008089087 A JP2008089087 A JP 2008089087A JP 2006270939 A JP2006270939 A JP 2006270939A JP 2006270939 A JP2006270939 A JP 2006270939A JP 2008089087 A JP2008089087 A JP 2008089087A
Authority
JP
Japan
Prior art keywords
valve body
flow rate
valve
flow
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006270939A
Other languages
Japanese (ja)
Other versions
JP5030521B2 (en
Inventor
Kazuo Koshiba
和夫 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006270939A priority Critical patent/JP5030521B2/en
Publication of JP2008089087A publication Critical patent/JP2008089087A/en
Application granted granted Critical
Publication of JP5030521B2 publication Critical patent/JP5030521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flow rate regulating valve capable of easily opening and closing a valve body, and enlarging it. <P>SOLUTION: The flow rate regulating valve 10 is provided with the cylindrical valve body 16 comprising a material with rubber elasticity and having a flow passage 16a axially extending in the inside thereof, a cylindrical envelope 18 formed to surround an outer peripheral surface of the valve body 16 and to have a space S between the outer peripheral surface and the envelope and always is brought into contact with fluid, and a thermally reacting member 20 comprising a material expanding in heating and contracting in cooling and filled in the space S, and automatically regulates a flow rate of the fluid passing through the flow passage 16a in accordance with variation of a temperature of the fluid. An enlargement diameter part 16b having an enlarged inside diameter and a cross section perpendicular to an axial direction of the flow passage 16a and formed in an elliptical shape is provided in the flow passage 16a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体の温度変化に応じてその流量を自動的に調整する流量調整バルブに関する。   The present invention relates to a flow rate adjusting valve that automatically adjusts the flow rate according to a temperature change of a fluid.

配管内を流れる流体の流量をその温度変化に応じて自動的に調整するバルブとして、図6に示すような流量調整バルブ1が知られている。すなわち、フッ素ゴムからなり、その中心軸上に通流路2aが設けられた弁本体2と、前記弁本体2の外周面を囲繞して当該外周面との間に隙間が生じるように形成された円筒状の外囲器3と、加熱時に膨張し冷却時に収縮する材料からなり、前記弁本体2の外周面と前記外囲器3との間の隙間に充填された熱反応部材4とを備えたバルブ機構5を、ハウジング6に収納した流量調整バルブ1である(例えば、特許文献1参照。)。   A flow rate adjusting valve 1 as shown in FIG. 6 is known as a valve that automatically adjusts the flow rate of the fluid flowing in the pipe in accordance with the temperature change. That is, it is formed so that a gap is formed between the valve main body 2 made of fluororubber and provided with a flow passage 2a on the central axis thereof, and the outer peripheral surface of the valve main body 2. A cylindrical envelope 3 and a thermal reaction member 4 made of a material that expands when heated and contracts when cooled, and is filled in a gap between the outer peripheral surface of the valve body 2 and the envelope 3. This is a flow rate adjusting valve 1 in which the provided valve mechanism 5 is housed in a housing 6 (see, for example, Patent Document 1).

かかるバルブ1によれば、ハウジング6の内部キャビティ6aに達した流体の温度が上昇した場合には、熱反応部材4が膨張して弁本体2に押圧力を作用させる。その結果、通流路2aの内径が狭められ、通流路2aを通過する流体の流量が絞られる。逆に、流体の温度が低下した場合には、熱反応部材4が収縮して弁本体2への押圧力が減じられる結果、通流路2aの内径が拡げられ、通流路2aを通過する流体の流量が増やされる。つまり、ハウジング6の内部キャビティ6aにおける流体の温度変化に応じて熱反応部材4が膨張・収縮を行い、これにより通流路2aの内径が拡縮して通流路2aを通過する流体の流量を自動的に調整することができる。
米国特許第6409147号明細書
According to the valve 1, when the temperature of the fluid reaching the internal cavity 6 a of the housing 6 rises, the thermal reaction member 4 expands and exerts a pressing force on the valve body 2. As a result, the inner diameter of the flow path 2a is narrowed, and the flow rate of the fluid passing through the flow path 2a is reduced. On the contrary, when the temperature of the fluid decreases, the thermal reaction member 4 contracts and the pressing force to the valve body 2 is reduced. As a result, the inner diameter of the flow path 2a is expanded and passes through the flow path 2a. The fluid flow rate is increased. That is, the thermal reaction member 4 expands and contracts in accordance with the temperature change of the fluid in the internal cavity 6a of the housing 6, thereby expanding and contracting the inner diameter of the flow path 2a, and the flow rate of the fluid passing through the flow path 2a. It can be adjusted automatically.
US Pat. No. 6,409,147

しかしながら、上述の流量調整バルブ1では、弁本体2に設けられた通流路2aの軸方向に直交する断面の形状が弁本体2の外形と同じ真円で形成されており(図7(a)参照)、通流路2aの内径dおよび弁本体2の肉厚tが周方向全体において均一であることから、熱反応部材4が最大限膨張した際に通流路2aを隙間なく閉塞させるのが困難である場合がある(図7(b)参照)。また、弁本体2を弾性変形させて通流路2aを隙間なく閉塞させるためには、熱反応部材4の量を増やしてその押圧力を高くしなければならず、バルブ全体の大きさに対して通流可能な流体の流量が極めて少なくなるという問題があった。換言すれば、バルブ1の大型化(大流量化)が困難であるという問題もあった。   However, in the flow rate adjusting valve 1 described above, the cross-sectional shape perpendicular to the axial direction of the flow passage 2a provided in the valve body 2 is formed in the same perfect circle as the outer shape of the valve body 2 (FIG. 7 (a Since the inner diameter d of the flow passage 2a and the wall thickness t of the valve body 2 are uniform in the entire circumferential direction, the flow passage 2a is closed without any gap when the thermal reaction member 4 is expanded to the maximum. May be difficult (see FIG. 7B). Further, in order to elastically deform the valve body 2 and close the flow passage 2a without a gap, the amount of the thermal reaction member 4 must be increased to increase the pressing force, and the size of the entire valve is reduced. Therefore, there is a problem that the flow rate of the fluid that can flow through becomes extremely small. In other words, there has been a problem that it is difficult to increase the size (large flow rate) of the valve 1.

さらに、図6に示すように、弁本体2の軸方向両端部は、ワッシャ7或いはニップル8のフランジ部8aと外囲器3の軸方向端部とで押圧・挟持されており、これにより外囲器3内部の隙間に充填した熱反応部材4が漏出しないように一体化されている。しかしながら、このように弁本体2の軸方向両端部を狭い範囲で押圧・挟持した場合、弁本体2が長期間繰り返し伸縮を行なうことによって弁本体2の軸方向両端部に亀裂が生じると、弁本体2の外周面と外囲器3との隙間に充填した熱反応部材4が外囲器3内部から直ちに漏出するようになり、バルブ1の使用ができなくなるという問題もあった。   Further, as shown in FIG. 6, both end portions of the valve body 2 in the axial direction are pressed and clamped by the flange portion 8a of the washer 7 or nipple 8 and the end portion of the envelope 3 in the axial direction. The heat reaction member 4 filled in the gap inside the envelope 3 is integrated so as not to leak out. However, when both end portions in the axial direction of the valve body 2 are pressed and clamped in a narrow range in this way, if the valve body 2 repeatedly expands and contracts for a long time, The thermal reaction member 4 filled in the gap between the outer peripheral surface of the main body 2 and the envelope 3 immediately leaks from the inside of the envelope 3, and there is a problem that the valve 1 cannot be used.

それゆえに、本発明の主たる課題は、弁本体の開閉を容易にすることができ、しかも大型化が可能な流量調整バルブを提供することである。また、本発明の従たる課題は、長期間使用しても内部に充填した熱反応部材の漏出の心配がない流量調整バルブを提供することである。   Therefore, a main object of the present invention is to provide a flow rate adjusting valve that can easily open and close the valve body and can be enlarged. Another object of the present invention is to provide a flow rate adjusting valve that is free from the risk of leakage of a heat-reactive member filled therein even when used for a long period of time.

請求項1に記載した発明は、「内部に軸方向へ延びる通流路16aが設けられた筒状の弁本体16と、弁本体16の外周面を囲繞して該外周面との間に隙間Sが生じるように形成され、且つ常に流体と接する筒状の外囲器18と、加熱時に膨張し冷却時に収縮する材料からなり隙間Sに充填された熱反応部材20とを備え、流体の温度変化に応じて通流路16aを通過する流体の流量が変化する流量調整バルブ10であって、通流路16aには、通流路16aの軸方向と直交する断面が略楕円形状に形成された拡径部16bが設けられている」ことを特徴とする流量調整バルブ10である。   According to the first aspect of the present invention, “a gap is formed between a cylindrical valve body 16 provided with a passage 16 a extending in the axial direction therein and the outer peripheral surface of the valve main body 16. A cylindrical envelope 18 that is formed so that S occurs and is always in contact with the fluid, and a thermal reaction member 20 that is made of a material that expands when heated and contracts when cooled, and is filled in the gap S, and The flow rate adjusting valve 10 changes the flow rate of the fluid passing through the flow path 16a according to the change, and the cross section perpendicular to the axial direction of the flow path 16a is formed in a substantially elliptical shape in the flow path 16a. Further, the flow regulating valve 10 is characterized in that an enlarged diameter portion 16b is provided.

この発明では、通流路16aにその内径が拡径した拡径部16bが設けられている。このため、拡径部16bが設けられた弁本体16の部分は、その肉厚が薄くなっており、弁本体16の外部から応力が与えられた場合、拡径部16bが設けられた弁本体16の部分が選択的に弾性変形するようになる。然も拡径部16bは、通流路16aの軸方向と直交する断面が略楕円形状にて形成されているので、通流路16aを閉塞させるべく弁本体16の外部から均一に応力を加えた場合、この拡径部16bは短径D1が減少する方向に変形し易くなっている。   In the present invention, the passage 16a is provided with an enlarged portion 16b whose inner diameter is enlarged. For this reason, the portion of the valve body 16 provided with the enlarged diameter portion 16b has a small thickness, and when stress is applied from the outside of the valve body 16, the valve body provided with the enlarged diameter portion 16b. The portion 16 is selectively elastically deformed. However, since the cross section orthogonal to the axial direction of the flow passage 16a is formed in a substantially elliptical shape, the enlarged diameter portion 16b applies a uniform stress from the outside of the valve body 16 to close the flow passage 16a. In this case, the enlarged diameter portion 16b is easily deformed in the direction in which the minor axis D1 decreases.

このため、流体の温度上昇に伴い熱反応部材20が熱膨張して弁本体16に押圧力が作用すると、弁本体16は、略楕円形状にて形成された拡径部16b断面の短径D1を減少させるよう容易に変形し、これに伴い通流路16aの断面積が漸減する。そして、熱反応部材20の熱膨張が最大になった際には、拡径部16b断面の短径D1がほぼゼロとなり、通流路16aが閉塞して弁本体16に設けられた通流路16aにおける流体の通流がほぼストップする。   For this reason, when the thermal reaction member 20 is thermally expanded as the fluid temperature rises and a pressing force acts on the valve body 16, the valve body 16 has a short diameter D1 of a cross section of the enlarged diameter portion 16b formed in a substantially elliptical shape. The cross-sectional area of the flow passage 16a is gradually reduced. When the thermal expansion of the thermal reaction member 20 is maximized, the short diameter D1 of the cross section of the expanded diameter portion 16b becomes almost zero, the flow path 16a is closed, and the flow path provided in the valve body 16 The fluid flow in 16a is almost stopped.

一方、流体の温度低下に伴い熱反応部材20が収縮して弁本体16に与えられた押圧力が解除された場合には、拡径部16bが設けられた弁本体16の薄肉部分は、その周辺に連接する肉厚部分の弾性回復力に引っ張られるようになるため、迅速に元の形状に復旧することができる。   On the other hand, when the thermal reaction member 20 contracts as the fluid temperature decreases and the pressing force applied to the valve body 16 is released, the thin-walled portion of the valve body 16 provided with the enlarged diameter portion 16b Since it is pulled by the elastic recovery force of the thick portion connected to the periphery, it can be quickly restored to its original shape.

このように本発明の流量調整バルブ10では、通流路16aにその内径が拡径した拡径部16bが設けられており、該拡径部16bは、通流路16aの軸方向と直交する断面が略楕円形状にて形成されているので、熱反応部材20が最大限膨張した際に通流路16aを隙間なく容易且つ確実に閉塞させることができ、しかも熱反応部材20が収縮した際には、通流路16aを元の形状に直ちに復旧させることができる。また、このように通流路16aを隙間なく容易且つ確実に閉塞或いは開放させることができるので、流量調整バルブの大型化(大流量化)に際しても、熱反応部材20の量を不所望に増やす必要がない。   As described above, in the flow rate adjusting valve 10 of the present invention, the passage 16a is provided with the enlarged diameter portion 16b whose inner diameter is enlarged, and the enlarged diameter portion 16b is orthogonal to the axial direction of the passage 16a. Since the cross section is formed in a substantially elliptical shape, when the thermal reaction member 20 expands to the maximum extent, the flow path 16a can be easily and reliably closed without a gap, and when the thermal reaction member 20 contracts. In this case, the passage 16a can be immediately restored to the original shape. In addition, since the flow passage 16a can be easily and reliably closed or opened without any gap as described above, the amount of the thermal reaction member 20 is undesirably increased even when the flow rate adjustment valve is increased in size (large flow rate). There is no need.

請求項2に記載した発明は、請求項1に記載の流量調整バルブ10において、「通流路16aの軸方向両端部には短管状の係止部材が挿入され、係止部材と外囲器18の両端部とで弁本体16の軸方向両端部が押圧挟持されてなる」ことを特徴とするもので、このように弁本体16の軸方向両端部を広い範囲で押圧・挟持することにより、弁本体16が長期間繰り返して伸縮を行なうことによって弁本体16の軸方向両端部に亀裂が生じたとしても、弁本体16の外周面と外囲器18との隙間に充填した熱反応部材20が外囲器18内部から直ちに漏出するのを防止することができる。   According to the second aspect of the present invention, in the flow rate adjusting valve 10 according to the first aspect, “a short tubular locking member is inserted at both axial ends of the flow passage 16a, and the locking member and the envelope are provided. 18, both axial ends of the valve body 16 are pressed and clamped between the both ends of the valve 18 ”, and thus both axial ends of the valve body 16 are pressed and clamped in a wide range. Even if the valve body 16 repeatedly expands and contracts for a long period of time, cracks are generated at both axial ends of the valve body 16, the thermal reaction member filled in the gap between the outer peripheral surface of the valve body 16 and the envelope 18. It is possible to prevent 20 from leaking immediately from the inside of the envelope 18.

請求項1又は2に記載の発明によれば、熱反応部材が最大限膨張した際に通流路を隙間なく容易且つ確実に閉塞させることができ、しかも熱反応部材が収縮した際には、通流路を元の形状に直ちに復旧させることができ、通流路が閉塞し続けるのを効果的に防止することができる。このため、流量調整バルブの大型化に際しても、使用する熱反応部材の量を不所望に増やす必要がなく、流量調整バルブの大型化に合せて通流する流体の量を増やすことができる。   According to the invention described in claim 1 or 2, when the thermal reaction member expands to the maximum extent, the flow path can be easily and reliably closed without a gap, and when the thermal reaction member contracts, The flow path can be immediately restored to the original shape, and the flow path can be effectively prevented from continuing to be blocked. For this reason, even when the flow control valve is increased in size, it is not necessary to undesirably increase the amount of the thermal reaction member to be used, and the amount of fluid flowing in accordance with the increase in the flow control valve can be increased.

また、請求項2に記載の発明によれば、長期間使用しても内部に充填した熱反応部材の漏出の心配がない流量調整バルブを提供することができる。   In addition, according to the second aspect of the present invention, it is possible to provide a flow rate adjusting valve that is free from the risk of leakage of the thermal reaction member filled therein even when used for a long period of time.

以下、本発明を図面に従って詳述する。図1は、本発明における一実施例(第1実施例)の流量調整バルブ10を示す断面図であり、図2は、図1におけるA−A線断面図である。また、図3は、図1におけるB−B線断面図であり、図4は、図1におけるC−C線断面図である。これらの図が示すように、本実施例の流量調整バルブ10は、主としてハウジング12と、前記ハウジングの内部に収容されるバルブ機構14とで構成されている。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a flow rate adjusting valve 10 according to an embodiment (first embodiment) of the present invention, and FIG. 2 is a cross-sectional view taken along line AA in FIG. 3 is a cross-sectional view taken along line BB in FIG. 1, and FIG. 4 is a cross-sectional view taken along line CC in FIG. As shown in these drawings, the flow rate adjusting valve 10 of this embodiment is mainly composed of a housing 12 and a valve mechanism 14 accommodated in the housing.

ハウジング12は、耐圧性や耐蝕性に優れる金属(例えばステンレスや真鍮等)などで形成された管状の容器体である。このハウジング12の軸方向一方端部には、その外径が縮径されると共に、配管接続用の雄ネジが螺設された配管接続部12aが形成されている。また、ハウジング12の軸方向他方端部には、後述する雄ネジ部材24を螺着させてハウジング12内部の所定位置にバルブ機構14を配設するための雌ネジ部12bが形成されている。   The housing 12 is a tubular container formed of a metal (for example, stainless steel or brass) having excellent pressure resistance and corrosion resistance. A pipe connecting portion 12a is formed at one end in the axial direction of the housing 12 and the outer diameter thereof is reduced, and a male screw for pipe connection is screwed. In addition, a female screw portion 12b for screwing a male screw member 24, which will be described later, to dispose the valve mechanism 14 at a predetermined position inside the housing 12 is formed at the other axial end portion of the housing 12.

ここで、このハウジング12は、その内面をセラミックやPTFE(4フッ化エチレン樹脂)などでコーティングするようにしてもよい。このようなコーティングを行なうことによってハウジング12に耐薬品性や防汚性などを付与することができるからである。   Here, the inner surface of the housing 12 may be coated with ceramic, PTFE (tetrafluoroethylene resin), or the like. It is because chemical resistance, antifouling property, etc. can be provided to the housing 12 by performing such coating.

バルブ機構14は、大略、弁本体16,外囲器18および熱反応部材20などで構成されている。   The valve mechanism 14 is generally composed of a valve body 16, an envelope 18, a thermal reaction member 20, and the like.

弁本体16は、耐熱性や耐薬品性などを備えたフッ素ゴムやシリコーンゴム等のゴム弾性を有する材料からなり、その内部に軸方向へ延びる通流路16aが設けられた筒状の部材である。   The valve body 16 is a cylindrical member made of a material having rubber elasticity such as fluorine rubber or silicone rubber having heat resistance, chemical resistance, and the like, and provided with a passage 16a extending in the axial direction therein. is there.

本実施例の流量調整バルブ10では、図1乃至図4に示すように、弁本体16に設けられた通流路16aに、その内径が拡径した拡径部16bが設けられている。この該拡径部16bは、通流路16aの軸方向と直交する断面が、通流路16aの内径に等しい短径D1とこれに直交する長径D2とを有する略楕円形状にて形成されている。また、本実施例では、弁本体16の外周がストレートな円筒状にて形成されている。   In the flow rate adjusting valve 10 of the present embodiment, as shown in FIGS. 1 to 4, a through-flow passage 16 a provided in the valve body 16 is provided with an enlarged diameter portion 16 b having an enlarged inner diameter. The enlarged diameter portion 16b is formed in a substantially elliptical shape in which a cross section perpendicular to the axial direction of the flow path 16a has a short diameter D1 equal to the inner diameter of the flow path 16a and a long diameter D2 perpendicular to the short diameter D1. Yes. In this embodiment, the outer periphery of the valve body 16 is formed in a straight cylindrical shape.

外囲器18は、耐圧性,耐蝕性および熱伝導性に優れる金属(例えばステンレス等)などの材料からなり、弁本体16の外周面を囲繞して該外周面との間に隙間Sが生じるように形成された筒状の部材である。   The envelope 18 is made of a material such as metal (for example, stainless steel) having excellent pressure resistance, corrosion resistance, and thermal conductivity. The envelope 18 surrounds the outer peripheral surface of the valve body 16 and creates a gap S between the outer peripheral surface. It is the cylindrical member formed in this way.

ここで、この外囲器18は、上述したハウジング12と同様に、その表面をセラミックやPTFE(4フッ化エチレン樹脂)などでコーティングするようにしてもよい。このようなコーティングを行なうことによって外囲器18に耐薬品性や防汚性などを付与することができるからである。   Here, the surface of the envelope 18 may be coated with ceramic, PTFE (tetrafluoroethylene resin), or the like, similarly to the housing 12 described above. It is because chemical resistance, antifouling property, etc. can be provided to the envelope 18 by performing such coating.

熱反応部材20は、加熱時に膨張し冷却時に収縮する材料からなり、弁本体16の外周面と外囲器18との間に生じた隙間Sに充填されることによって、加熱時には弁本体16に対して押圧力を作用させて通流路16aの内径を狭め、冷却時には弁本体16への押圧力を減じて通流路16aの内径を拡げる部材である。この熱反応部材20の具体例として、例えば、本実施例の流量調整バルブ10を蒸気配管のスチームトラップとして使用する場合には、常温では固体であるが、80℃〜90℃で液体に変化するワックスを用いるので好適であるが、ハウジング12内部の温度上昇に応じて段階的に液相に変化する(つまり、体積が変化する)ように設計されたものであれば、如何なるものであってもよい。   The thermal reaction member 20 is made of a material that expands during heating and contracts during cooling, and is filled in a gap S formed between the outer peripheral surface of the valve main body 16 and the envelope 18, so that the valve main body 16 is heated during heating. On the other hand, it is a member that narrows the inner diameter of the flow passage 16a by applying a pressing force and expands the inner diameter of the passage 16a by reducing the pressing force to the valve body 16 during cooling. As a specific example of the thermal reaction member 20, for example, when the flow rate adjusting valve 10 of this embodiment is used as a steam trap for a steam pipe, it is solid at room temperature, but changes to liquid at 80 ° C to 90 ° C. Any wax can be used as long as it is designed to change into a liquid phase stepwise (ie, the volume changes) in response to a temperature rise inside the housing 12. Good.

以上のような各部材を用いてバルブ機構14を構成する際には、まず、初めに、弁本体16に設けられた通流路16aの軸方向一方端部に、金属などの剛性材料からなり、一端がフランジ状に形成され、当該フランジ状の部分が弁本体16の軸方向端面に係止される短管状のリング部材22を挿入すると共に、通流路16aの軸方向他方端部に雄ネジ部材24の係止部24bを挿入する。   When the valve mechanism 14 is configured using each of the above members, first, at one end in the axial direction of the flow passage 16a provided in the valve body 16, it is made of a rigid material such as metal. In addition, a short tubular ring member 22 having one end formed in a flange shape and the flange-shaped portion being engaged with the axial end surface of the valve body 16 is inserted, and a male end is inserted into the other end in the axial direction of the flow passage 16a. The locking portion 24b of the screw member 24 is inserted.

ここで、雄ネジ部材24とは、ハウジング12の軸方向他方端部を閉塞するためのものであり、その外周にハウジング12の雌ネジ部12bと螺合する雄ネジが形成された金属製の本体24aを有する。この本体24aの軸方向一方端部には、その外径が縮径され、弁本体16の通流路16aに挿入される係止部24bが形成されており、軸方向他方端部には、その外径が縮径され、配管接続用の雄ネジが螺設された配管接続部24cが形成されている。また、本体24a、係止部24bおよび配管接続部24cを貫く軸線上には、係止部24bを通流路16aに挿入した際、該通流路16aと連通するオリフィス24dが設けられている。   Here, the male screw member 24 is for closing the other end portion in the axial direction of the housing 12, and is made of a metal having a male screw threadedly engaged with the female screw portion 12 b of the housing 12 on the outer periphery thereof. It has a main body 24a. One end of the main body 24a in the axial direction has an outer diameter reduced, and a locking portion 24b to be inserted into the flow passage 16a of the valve main body 16 is formed. At the other end in the axial direction, The outer diameter is reduced, and a pipe connection portion 24c is formed in which a male screw for pipe connection is screwed. Further, an orifice 24d is provided on an axis passing through the main body 24a, the locking portion 24b, and the pipe connection portion 24c when the locking portion 24b is inserted into the flow path 16a. .

なお、上述したリング部材22及び雄ネジ部材24の係止部24bは共に「短管状の係止部材」として機能するものであり、これらの部材を統一的に上位概念で表す場合には「短管状の係止部材」という。   Note that both the ring member 22 and the locking portion 24b of the male screw member 24 described above function as “short tubular locking members”. It is called a “tubular locking member”.

続いて、リング部材22及び雄ネジ部材24の係止部24bが挿入された弁本体16に外囲器18を被せると共に、係止部24bが挿入された弁本体16の部分を外囲器18の外側から押圧してこれらが気密的且つ一体的となるようにかしめる。   Subsequently, the envelope 18 is put on the valve body 16 in which the locking portion 24b of the ring member 22 and the male screw member 24 is inserted, and the portion of the valve body 16 in which the locking portion 24b is inserted is covered with the envelope 18. It presses from the outer side of this, and it crimps so that these may become airtight and integral.

そして、弁本体16の外面と外囲器18との間の隙間Sに熱反応部材20を充填した後、リング部材22が挿入された弁本体16の部分を外囲器18の外側から押圧してこれらが気密的且つ一体的となるようにかしめることによって、バルブ機構14が完成する。   Then, after the thermal reaction member 20 is filled in the gap S between the outer surface of the valve body 16 and the envelope 18, the portion of the valve body 16 in which the ring member 22 is inserted is pressed from the outside of the envelope 18. The valve mechanism 14 is completed by caulking them so as to be airtight and integrated.

また、以上のように構成されたバルブ機構14をハウジング12の内部キャビティ12cに挿入し、雄ネジ部材24の本体24aに設けられた雄ネジをハウジング12の雌ネジ部12bに螺合させることによって本発明の流量調整バルブ10が完成する。   Further, the valve mechanism 14 configured as described above is inserted into the internal cavity 12 c of the housing 12, and the male screw provided on the main body 24 a of the male screw member 24 is screwed into the female screw portion 12 b of the housing 12. The flow rate adjusting valve 10 of the present invention is completed.

この流量調整バルブ10を使用する際には、ハウジング12および雄ネジ部材24の配管接続部12a,24cに配管Pを接合して、該配管Pに流体を通流させる。すると、配管P内を通流する流体の温度変化によって熱反応部材20が膨張或いは収縮を行い、これに伴って弁本体16に設けられた通流路16aが縮径或いは拡径して配管P内を通流する流体の流量が調整される。   When using the flow rate adjusting valve 10, the pipe P is joined to the pipe connection portions 12 a and 24 c of the housing 12 and the male screw member 24, and fluid is passed through the pipe P. Then, the thermal reaction member 20 expands or contracts due to the temperature change of the fluid flowing through the pipe P, and accordingly, the flow path 16a provided in the valve body 16 is reduced or expanded in diameter. The flow rate of the fluid flowing through the inside is adjusted.

本実施例の流量調整バルブ10では、通流路16aにその内径の一部が拡径した拡径部16bが設けられている。このため、拡径部16bが設けられた弁本体16の部分は、その肉厚が薄くなっており、弁本体16の外部から応力が与えられた場合、拡径部16bが設けられた弁本体16の部分が選択的に弾性変形するようになる。然も拡径部16bは、通流路16aの軸方向と直交する断面が略楕円形状にて形成されているので、通流路16aを閉塞させるべく弁本体16の外部から均一に応力を加えた場合、この拡径部16bは短径D1が減少する方向に変形し易くなっている。   In the flow rate adjusting valve 10 of the present embodiment, the passage 16a is provided with an enlarged diameter portion 16b having a part of its inner diameter enlarged. For this reason, the portion of the valve body 16 provided with the enlarged diameter portion 16b has a small thickness, and when stress is applied from the outside of the valve body 16, the valve body provided with the enlarged diameter portion 16b. The portion 16 is selectively elastically deformed. However, since the cross section orthogonal to the axial direction of the flow passage 16a is formed in a substantially elliptical shape, the enlarged diameter portion 16b applies a uniform stress from the outside of the valve body 16 to close the flow passage 16a. In this case, the enlarged diameter portion 16b is easily deformed in the direction in which the minor axis D1 decreases.

このため、流体の温度上昇に伴い熱反応部材20が熱膨張して弁本体16に押圧力が作用すると、弁本体16は、略楕円形状にて形成された拡径部16b断面の短径D1を減少させるよう容易に変形し、これに伴い通流路16aの断面積が漸減する。そして、熱反応部材20の熱膨張が最大になった際には、図5に示すように、拡径部16b断面の短径D1がほぼゼロとなり、通流路16aが閉塞して弁本体16に設けられた通流路16aにおける流体の通流がほぼストップする。   For this reason, when the thermal reaction member 20 is thermally expanded as the fluid temperature rises and a pressing force acts on the valve body 16, the valve body 16 has a short diameter D1 of a cross section of the enlarged diameter portion 16b formed in a substantially elliptical shape. The cross-sectional area of the flow passage 16a is gradually reduced. When the thermal expansion of the thermal reaction member 20 is maximized, as shown in FIG. 5, the short diameter D1 of the cross section of the enlarged diameter portion 16b becomes almost zero, the passage 16a is closed, and the valve body 16 is closed. The flow of the fluid in the flow path 16a provided in is almost stopped.

一方、流体の温度低下に伴い熱反応部材20が収縮して弁本体16に与えられた押圧力が解除された場合には、拡径部16bが設けられた弁本体16の薄肉部分は、その周辺に連接する肉厚部分の弾性回復力に引っ張られるようになるため、閉塞された拡径部16bを迅速に元の形状へと復旧させることができる。特に、本実施例の流量調整バルブ10では、拡径部16bの弁本体16軸方向と直交する略楕円形状の断面に関し、短径D1が通流路16aの内径と等しく形成されており、また、弁本体16の外周がストレートな円筒状に形成されているので、薄肉部分に対する形状復旧(戻り)時の引張応力が大きくなり、上記効果がより一層顕著なものとなる。   On the other hand, when the thermal reaction member 20 contracts as the fluid temperature decreases and the pressing force applied to the valve body 16 is released, the thin-walled portion of the valve body 16 provided with the enlarged diameter portion 16b Since it becomes pulled by the elastic recovery force of the thick portion connected to the periphery, the closed diameter-expanded portion 16b can be quickly restored to the original shape. In particular, in the flow rate adjusting valve 10 of the present embodiment, the minor diameter D1 is formed equal to the inner diameter of the flow passage 16a with respect to the substantially elliptical cross section orthogonal to the axial direction of the valve body 16 of the enlarged diameter portion 16b. Since the outer periphery of the valve main body 16 is formed in a straight cylindrical shape, the tensile stress at the time of shape recovery (return) to the thin wall portion is increased, and the above effect becomes more remarkable.

このように本実施例の流量調整バルブ10では、通流路16aにその内径の一部が拡径した拡径部16bが設けられており、該拡径部16bは、通流路16aの軸方向と直交する断面が略楕円形状にて形成されているので、熱反応部材20が最大限膨張した際に通流路16aを隙間なく容易且つ確実に閉塞させることができ、しかも熱反応部材20が収縮した際には、通流路16aを元の形状に直ちに復旧させることができ、通流路16aが閉塞し続けるのを効果的に防止することができる。また、このように通流路16aを隙間なく容易且つ確実に閉塞或いは開放させることができるので、流量調整バルブの大型化(大流量化)に際しても、熱反応部材20の量を不所望に増やす必要がない。   As described above, in the flow rate adjusting valve 10 of the present embodiment, the passage 16a is provided with the enlarged portion 16b having a part of its inner diameter enlarged, and the enlarged portion 16b is an axis of the passage 16a. Since the cross section orthogonal to the direction is formed in a substantially elliptical shape, when the thermal reaction member 20 expands to the maximum extent, the flow passage 16a can be easily and reliably closed without a gap, and the thermal reaction member 20 When is contracted, the passage 16a can be immediately restored to its original shape, and the passage 16a can be effectively prevented from continuing to be blocked. In addition, since the flow passage 16a can be easily and reliably closed or opened without any gap as described above, the amount of the thermal reaction member 20 is undesirably increased even when the flow rate adjustment valve is increased in size (large flow rate). There is no need.

また、通流路16aの軸方向両端部には、短管状の係止部材(具体的には、リング部材22及び雄ネジ部材24の係止部24b)が挿入されており、この係止部材と外囲器18の両端部とで弁本体16の軸方向両端部を広い範囲で押圧・挟持して外囲器18内部の隙間に充填した熱反応部材20が漏出しないようにしているので、弁本体16が長期間繰り返して伸縮を行なうことによって弁本体16の軸方向両端部に多少亀裂が生じたとしても、弁本体16の外周面と外囲器18との隙間に充填した熱反応部材20が直ちに外囲器18内部から漏出するのを防止することができる。   A short tubular locking member (specifically, a locking portion 24b of the ring member 22 and the male screw member 24) is inserted into both axial ends of the flow passage 16a. And the both ends of the envelope 18 are pressed and sandwiched in a wide range between both ends in the axial direction of the valve body 16 so that the thermal reaction member 20 filled in the gap inside the envelope 18 does not leak. Even if the valve body 16 repeatedly expands and contracts for a long period of time, cracks occur at both ends in the axial direction of the valve body 16, and the thermal reaction member filled in the gap between the outer peripheral surface of the valve body 16 and the envelope 18. It is possible to prevent 20 from leaking out of the envelope 18 immediately.

なお、上述の実施例では、通流路16aに挿入する短管状の係止部材の1つとして、雄ネジ部材24の端部に一体的に形成された係止部24bを示したが、当該係止部24bに替えて雄ネジ部材24とは別体で構成した短管状の係止部材を用いるようにしてもよい。   In the above-described embodiment, the locking portion 24b formed integrally with the end of the male screw member 24 is shown as one of the short tubular locking members inserted into the flow passage 16a. Instead of the locking portion 24b, a short tubular locking member configured separately from the male screw member 24 may be used.

また、上述の例では、配管Pの端部に雌ネジを形成し、これに流量調整バルブ10の端部に設けた雄ネジを螺合することによって両者を接続する場合を示したが、配管Pの端部に雄ネジを形成し、これに流量調整バルブ10の端部に設けた雌ネジを螺合して両者を接続するようにしてもよいし、このようなネジ構造に替えてフランジ継手などを設けて両者を接続するようにしてもよい。つまり、配管Pと流量調整バルブ10とを気密的或いは水密的に接続できる構造であれば、配管Pと流量調整バルブ10との接続構造は如何なるものであってもよい。   In the above-described example, a case is shown in which a female screw is formed at the end of the pipe P, and a male screw provided at the end of the flow rate adjusting valve 10 is screwed into this to connect the two. A male screw may be formed at the end of P, and a female screw provided at the end of the flow rate adjusting valve 10 may be screwed into this to connect the two, or a flange may be used instead of such a screw structure. A joint or the like may be provided to connect the two. In other words, as long as the pipe P and the flow rate adjusting valve 10 can be connected in an airtight or watertight manner, the connection structure between the pipe P and the flow rate adjusting valve 10 may be any.

さらに、拡径部16bの弁本体16軸方向と直交する断面形状について、短径D1が通流路16aの内径と等しい略楕円形状の場合を示したが、当該断面形状が略楕円形状となるのであれば、短径D1の大きさは上記のものに限定されるものではない。但し、短径D1を通流路16aの内径と等しくすることによって、上述したように、熱反応部材20が収縮して弁本体16に与えられた押圧力が解除された際、薄肉部分に対する形状復旧(戻り)時の引張応力が大きくなり、拡径部16bをより迅速に元の形状へと復旧させることができる。   Furthermore, although the cross-sectional shape orthogonal to the axial direction of the valve main body 16b of the enlarged diameter portion 16b shows a case where the short diameter D1 is a substantially elliptical shape equal to the inner diameter of the flow passage 16a, the cross-sectional shape becomes a substantially elliptical shape. In this case, the size of the minor axis D1 is not limited to the above. However, by making the short diameter D1 equal to the inner diameter of the flow path 16a, as described above, when the thermal reaction member 20 contracts and the pressing force applied to the valve body 16 is released, the shape with respect to the thin portion The tensile stress at the time of restoration (return) becomes large, and the enlarged diameter portion 16b can be restored to the original shape more quickly.

そして、上述の例では、流量調整バルブ10としてハウジング12とこれに収納されるバルブ機構14とで構成される場合を示したが、流量調整バルブ10としてバルブ機構14のみを配管に直接取り付けるようにしてもよい。   In the above-described example, the case where the flow rate adjusting valve 10 includes the housing 12 and the valve mechanism 14 accommodated in the housing 12 is shown. However, only the valve mechanism 14 as the flow rate adjusting valve 10 is directly attached to the pipe. May be.

本発明における一実施例の流量調整バルブの常態を示す断面図である。It is sectional drawing which shows the normal state of the flow regulating valve of one Example in this invention. 図1におけるA−A線の要部拡大断面図(常態)である。It is a principal part expanded sectional view (normal state) of the AA line in FIG. 図1におけるB−B線の要部拡大断面図(常態)である。It is a principal part expanded sectional view (normal state) of the BB line in FIG. 図1におけるC−C線断面図(常態)である。It is CC sectional view taken on the line in FIG. 1 (normal state). 図1におけるA−A線の要部拡大断面図(通流路閉塞時)である。It is a principal part expanded sectional view of the AA line in FIG. 1 (at the time of a flow path obstruction | occlusion). 従来の流量調整バルブの常態を示す断面図である。It is sectional drawing which shows the normal state of the conventional flow control valve. 図6におけるA−A線要部拡大断面図であり、(a)は常態を、(b)は弁本体の通流路を最大限閉塞させた状態を示す。It is an AA line principal part expanded sectional view in FIG. 6, (a) shows a normal state, (b) shows the state which obstruct | occluded the flow path of the valve main body to the maximum.

符号の説明Explanation of symbols

10…流量調整バルブ
12…ハウジング
14…バルブ機構
16…弁本体
16a…通流路
16b…拡径部
18…外囲器
20…熱反応部材
22…リング部材
24…雄ネジ部材
24b…係止部
P…配管
DESCRIPTION OF SYMBOLS 10 ... Flow control valve 12 ... Housing 14 ... Valve mechanism 16 ... Valve body 16a ... Flow path 16b ... Diameter expansion part 18 ... Enclosure 20 ... Thermal reaction member 22 ... Ring member 24 ... Male screw member 24b ... Locking part P ... Piping

Claims (2)

内部に軸方向へ延びる通流路が設けられた筒状の弁本体と、前記弁本体の外周面を囲繞して該外周面との間に隙間が生じるように形成され、且つ常に流体と接する筒状の外囲器と、加熱時に膨張し冷却時に収縮する材料からなり前記隙間に充填された熱反応部材とを備え、前記流体の温度変化に応じて前記通流路を通過する流体の流量が変化する流量調整バルブであって、
前記通流路には、前記通流路の軸方向と直交する断面が略楕円形状に形成された拡径部が設けられていることを特徴とする流量調整バルブ。
It is formed so as to create a gap between a cylindrical valve body provided with a flow passage extending in the axial direction therein and the outer peripheral surface of the valve main body, and always in contact with the fluid. A flow rate of fluid passing through the passage according to a temperature change of the fluid, comprising a cylindrical envelope and a thermal reaction member filled with the gap made of a material that expands when heated and contracts when cooled Is a flow adjustment valve that changes,
The flow control valve according to claim 1, wherein the flow passage is provided with a diameter-enlarged portion in which a cross section perpendicular to the axial direction of the flow passage is formed in a substantially elliptical shape.
前記通流路の軸方向両端部には短管状の係止部材が挿入され、前記係止部材と前記外囲器の両端部とで前記弁本体の軸方向両端部が押圧挟持されてなることを特徴とする請求項1に記載の流量調整バルブ。
A short tubular locking member is inserted into both axial ends of the flow path, and both axial ends of the valve body are pressed and clamped between the locking member and both ends of the envelope. The flow rate adjustment valve according to claim 1.
JP2006270939A 2006-10-02 2006-10-02 Flow adjustment valve Active JP5030521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270939A JP5030521B2 (en) 2006-10-02 2006-10-02 Flow adjustment valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270939A JP5030521B2 (en) 2006-10-02 2006-10-02 Flow adjustment valve

Publications (2)

Publication Number Publication Date
JP2008089087A true JP2008089087A (en) 2008-04-17
JP5030521B2 JP5030521B2 (en) 2012-09-19

Family

ID=39373444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270939A Active JP5030521B2 (en) 2006-10-02 2006-10-02 Flow adjustment valve

Country Status (1)

Country Link
JP (1) JP5030521B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341321A (en) * 2021-05-21 2021-09-03 国网黑龙江省电力有限公司电力科学研究院 Battery low temperature detection reducing mechanism
CN113847469A (en) * 2021-08-27 2021-12-28 东风汽车集团股份有限公司 Temperature control throttle valve, double-motor cooling system and vehicle
JP7371292B1 (en) * 2023-03-31 2023-10-30 和夫 小柴 flow adjustment valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343071A (en) * 1986-08-08 1988-02-24 Moon Star Co Pinch valve
JPH1137339A (en) * 1997-07-16 1999-02-12 Matsushita Electric Ind Co Ltd Thermally-actuated valve
US6409147B1 (en) * 2000-06-13 2002-06-25 Thomas M. Kenny Thermally operated valve for automatically modulating the flow of fluids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6343071A (en) * 1986-08-08 1988-02-24 Moon Star Co Pinch valve
JPH1137339A (en) * 1997-07-16 1999-02-12 Matsushita Electric Ind Co Ltd Thermally-actuated valve
US6409147B1 (en) * 2000-06-13 2002-06-25 Thomas M. Kenny Thermally operated valve for automatically modulating the flow of fluids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341321A (en) * 2021-05-21 2021-09-03 国网黑龙江省电力有限公司电力科学研究院 Battery low temperature detection reducing mechanism
CN113847469A (en) * 2021-08-27 2021-12-28 东风汽车集团股份有限公司 Temperature control throttle valve, double-motor cooling system and vehicle
JP7371292B1 (en) * 2023-03-31 2023-10-30 和夫 小柴 flow adjustment valve

Also Published As

Publication number Publication date
JP5030521B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP4923105B2 (en) Built-in heater valve
JP6699992B2 (en) Gasket for fluid coupling and fluid coupling
JP2011503449A (en) Seal connection that does not require O-ring
JP5064903B2 (en) Fluid control valve
JP2009522526A (en) Welded diaphragm valve
TW201018820A (en) Tube joint consisting of resin
JP5030521B2 (en) Flow adjustment valve
JPH04248095A (en) Structure of pipe joint for hydraulic equipment
CN109477585B (en) Connecting part for maintaining air tightness by using elasticity and valve provided with same
JPH1137339A (en) Thermally-actuated valve
JP7371292B1 (en) flow adjustment valve
JP2849345B2 (en) Pipe fittings
JP4131716B2 (en) Fluororesin inner ring for pipe joints, pipe joints, and connection methods for pipe joints
JP2006509131A (en) Built-in components used in sanitary facilities
JP3947746B2 (en) Fluid equipment having a pipe joint structure
US20110209769A1 (en) Thermally operated valve
JP2005300458A (en) Temperature indicator
JP6748791B2 (en) Pipe fitting
JP4979347B2 (en) Hot water mixing valve
JP6002789B2 (en) Vacuum pressure proportional control valve
JP2009197839A (en) Flow path opening/closing device
JP7093968B2 (en) Seal structure of connection part
JP2024147320A (en) Heat-resistant seal structure at connection
JP5620189B2 (en) steam trap
KR20090002563A (en) Valve for opening and shutting liquid passage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5030521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250