JP2008088540A - Maraging steel having high fatigue strength and maraging steel strip using the same - Google Patents

Maraging steel having high fatigue strength and maraging steel strip using the same Download PDF

Info

Publication number
JP2008088540A
JP2008088540A JP2006333384A JP2006333384A JP2008088540A JP 2008088540 A JP2008088540 A JP 2008088540A JP 2006333384 A JP2006333384 A JP 2006333384A JP 2006333384 A JP2006333384 A JP 2006333384A JP 2008088540 A JP2008088540 A JP 2008088540A
Authority
JP
Japan
Prior art keywords
less
maraging steel
fatigue strength
strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006333384A
Other languages
Japanese (ja)
Other versions
JP5007930B2 (en
Inventor
Toshihiro Uehara
利弘 上原
Katsuhiko Oishi
勝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2006333384A priority Critical patent/JP5007930B2/en
Publication of JP2008088540A publication Critical patent/JP2008088540A/en
Application granted granted Critical
Publication of JP5007930B2 publication Critical patent/JP5007930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a maraging steel having high fatigue strength in which surface hardness is increased by reducing TiN being the starting point of fatigue fracture in a high cycle region and facilitating nitriding treatment, also, bending fatigue strength is improved by increasing the compressive residual stress of a surface nitrided layer, and old austenite crystal grains are refined for securing high strength and ductility, and which has satisfactory nitriding properties and weldability. <P>SOLUTION: The maraging steel having high fatigue strength has a composition comprising, by mass, ≤0.01% C, ≤0.1% Si, ≤0.1% Mn, ≤0.01% P, ≤0.005% S, 17.0 to 22.0% Ni, 0.1 to 3.0% Cr, 3.0 to 7.0% Mo, >7.0 to 20.0% Co, ≤0.1% Ti, >0.15 to 2.5% Al, ≤0.03% N, ≤0.005% O, ≤0.01% (not including zero) B, 8.0 to 15.0% Co/3+Mo+4Al, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車用無段変速機等に使用される動力伝達用ベルトのリング製品のような高疲労強度が要求される部材に使用されるのに適した高疲労強度を有するマルエージング鋼及びそれを用いたマルエージング鋼帯に関するものである。   The present invention relates to maraging steel having high fatigue strength suitable for use in a member requiring high fatigue strength, such as a ring product of a power transmission belt used in a continuously variable transmission for automobiles, and the like. It relates to a maraging steel strip using the same.

マルエージング鋼は、2000MPa前後の非常に高い引張強さをもつため、高強度が要求される部材、例えば、ロケット用部品、遠心分離機部品、航空機部品、自動車エンジンの無段変速機用部品、金型等種々の用途に使用されている。その代表的な組成には、18%Ni−8%Co−5%Mo−0.4%Ti−0.1%Al−bal.Feが挙げられる。
そして、マルエージング鋼は、強化元素として、Co、Mo、Tiを適量含んでおり、時効処理を行うことによって、NiMo、NiTi、FeMo等の金属間化合物を析出させて高強度を得ることのできる鋼である。また、特に自動車エンジンの無段変速機用部品に使用される鋼帯においては、特に高サイクル域での疲労強度が重要な要求特性であるため、高強度を有するマルエージング鋼の内部に存在するTiN等の非金属介在物をできるだけ微細化することが必要とされ、また、表面に窒化処理を施して窒化層を形成させて疲労強度を向上させて使用されている。
自動車エンジンの無段変速機用部品の分野では、非金属介在物を起点とする疲労強度低下を解決することを目的とした改良合金が提案されている。(例えば、特許文献1、2、3参照。)。
特表2004−514056号公報 特開2001−240943号公報 特開2002−167652号公報
Since maraging steel has a very high tensile strength of around 2000 MPa, members that require high strength, such as rocket parts, centrifuge parts, aircraft parts, automobile engine continuously variable transmission parts, It is used for various applications such as molds. Its typical composition includes 18% Ni-8% Co-5% Mo-0.4% Ti-0.1% Al-bal. Fe.
And the maraging steel contains appropriate amounts of Co, Mo and Ti as strengthening elements, and by performing an aging treatment, an intermetallic compound such as Ni 3 Mo, Ni 3 Ti and Fe 2 Mo is precipitated. Steel that can provide strength. Also, especially in steel strips used for parts for continuously variable transmissions of automobile engines, fatigue strength in the high cycle region is an important required characteristic, so it exists inside maraging steel having high strength. It is necessary to make non-metallic inclusions such as TiN as fine as possible, and a nitrided layer is formed on the surface to form a nitride layer to improve fatigue strength.
In the field of continuously variable transmissions for automobile engines, improved alloys have been proposed for the purpose of solving the deterioration of fatigue strength starting from non-metallic inclusions. (For example, refer to Patent Documents 1, 2, and 3.)
Japanese translation of PCT publication No. 2004-514056 JP 2001-240943 A Japanese Patent Laid-Open No. 2002-167652

上述した特表2004−514056号公報に開示される合金は、非金属介在物を形成するTiを0.1%以下に低減しているため、疲労破壊の起点となるTiNの微細化の点では有利であるものの、単純に非金属介在物を形成する元素の添加を抑制している合金のため窒化処理がし難いという問題があった。
また、特開2001−240943号公報に開示される合金もTiを低減しているため、疲労破壊の起点となるTiNの微細化の点では有利であるが、強化元素の一つであるCoを低く抑えているため、高い引張強度を確保し難く、引張強度を確保するためにSi、Mnを添加しているが、このために靭性が低下する可能性があった。
また、特開2002−167652号公報に開示される合金もTiを低減しているため、疲労破壊の起点となるTiNの微細化の点では有利であるが、Cを積極添加して高強度化を図っているため、Cr、Mo等の炭化物が析出し、これが疲労破壊の起点となって疲労強度が低下したり、また積極添加したCによって無断変速機部品に必要とされる溶接性が低下する可能性がある。
本発明の目的は、高サイクル域での疲労破壊の起点となるTiNを低減すると共に、窒化処理を容易にして表面硬度を高め、かつ表面窒化層の圧縮残留応力を大きくして曲げ疲労強度を向上させ、さらに高い強度、延性を確保するために旧オーステナイト結晶粒を微細化した、窒化性、溶接性の良好な高疲労強度を有するマルエージング鋼を提供することである。
The alloy disclosed in the above-mentioned Japanese translations of PCT publication No. 2004-514056 has reduced the Ti forming non-metallic inclusions to 0.1% or less, so in terms of the refinement of TiN that becomes the starting point of fatigue fracture Although advantageous, there is a problem that it is difficult to perform nitriding because the alloy simply suppresses the addition of elements that form non-metallic inclusions.
Further, since the alloy disclosed in Japanese Patent Application Laid-Open No. 2001-240943 also reduces Ti, it is advantageous in terms of miniaturization of TiN, which is the starting point of fatigue fracture, but Co, which is one of strengthening elements, is added. Since the tensile strength is kept low, it is difficult to ensure high tensile strength, and Si and Mn are added to ensure tensile strength. For this reason, the toughness may be reduced.
Further, since the alloy disclosed in Japanese Patent Application Laid-Open No. 2002-167652 also reduces Ti, it is advantageous in terms of refining TiN, which is the starting point of fatigue fracture, but C is actively added to increase strength. As a result, carbides such as Cr and Mo are precipitated, and this causes fatigue failure, and the fatigue strength is reduced. Also, the positively added C reduces the weldability required for the transmission parts without permission. there's a possibility that.
The object of the present invention is to reduce TiN, which is the starting point of fatigue failure in a high cycle region, to facilitate nitriding treatment to increase surface hardness, and to increase the compressive residual stress of the surface nitrided layer to increase bending fatigue strength. It is an object of the present invention to provide a maraging steel having high fatigue strength with good nitriding properties and weldability, in which prior austenite crystal grains are refined in order to improve and secure higher strength and ductility.

本発明者は、疲労強度向上に有害な介在物TiN低減のためにTi、Nを共に低く抑え、Ti低下による強度低下をCo、Mo、Al量のみの増加とCo/3+Mo+4Alの値を適正範囲に限定することによって補うことができることを見出した。また、引張強度、延性、疲労強度を向上させるため、結晶粒微細化が有効であるが、これをBの微量添加することによって解決できることを見出した。
また、更に本発明者は、Ti低下による窒化処理のし難さを解決するためにCr、Alを適量添加することによって窒化による表面圧縮残留応力の絶対値を増加させることができることを見出し、またCを不純物レベルに抑えることで溶接性を確保して、本発明に到ったものである。
The inventor suppresses both Ti and N in order to reduce inclusion TiN, which is detrimental to improving fatigue strength, and reduces the strength decrease due to Ti decrease only in the amount of Co, Mo, Al and the value of Co / 3 + Mo + 4Al within an appropriate range. It was found that it can be compensated by limiting to. Moreover, in order to improve tensile strength, ductility, and fatigue strength, it has been found that crystal grain refinement is effective, but this can be solved by adding a small amount of B.
Furthermore, the present inventor has found that the absolute value of the surface compressive residual stress due to nitriding can be increased by adding an appropriate amount of Cr and Al in order to solve the difficulty of nitriding due to Ti reduction, By suppressing C to an impurity level, weldability is ensured and the present invention has been achieved.

即ち本発明は、質量%でC:0.01%以下、Si:0.1%以下、Mn:0.1%以下、P:0.01%以下、S:0.005%以下、Ni:17.0〜22.0%、Cr:0.1〜3.0%、Mo:3.0〜7.0%、Co:7.0%を超え20.0%以下、Ti:0.1%以下、Al:0.15%を超え2.5%以下、N:0.03%以下、O:0.005%以下、B:0.01%以下(0は含まない)、Co/3+Mo+4Al:8.0〜15.0%、残部はFe及び不可避的不純物からなる高疲労強度を有するマルエージング鋼である。
本発明において好ましい組成の範囲は、質量%でC:0.008%以下、Ni:18.0%を超え22.0%以下、Mo:5.0%を超え7.0%以下、Ti:0.05%以下、Co/3+Mo+4Al:10.0〜15.0%である。更に好ましくは、質量%でCo:12.0%を超え20.0%以下である。
本発明においては、上記の組成に加えて、更に、質量%でCa:0.01%以下、Mg:0.005%以下の1種以上を含有することができる。
また、本発明は結晶粒度がASTM No.で10以上の細粒であるマルエージング鋼である。
更に本発明は、上述のマルエージング鋼の表面に窒化層が形成され、且つ表面に圧縮残留応力を付与したマルエージング鋼帯である。
That is, in the present invention, C: 0.01% or less, Si: 0.1% or less, Mn: 0.1% or less, P: 0.01% or less, S: 0.005% or less, Ni: 17.0-22.0%, Cr: 0.1-3.0%, Mo: 3.0-7.0%, Co: Over 7.0% and 20.0% or less, Ti: 0.1 % Or less, Al: more than 0.15% and 2.5% or less, N: 0.03% or less, O: 0.005% or less, B: 0.01% or less (0 is not included), Co / 3 + Mo + 4Al : 8.0 to 15.0%, the balance being maraging steel having high fatigue strength composed of Fe and inevitable impurities.
In the present invention, preferable composition ranges are C: 0.008% or less, Ni: more than 18.0% and 22.0% or less, Mo: more than 5.0% and 7.0% or less, and Ti: It is 0.05% or less, Co / 3 + Mo + 4Al: 10.0-15.0%. More preferably, it is more than Co: 12.0% and 20.0% or less by mass%.
In the present invention, in addition to the above-mentioned composition, it may further contain one or more of Ca: 0.01% or less and Mg: 0.005% or less by mass%.
In the present invention, the crystal grain size is ASTM No. The maraging steel is 10 or more fine grains.
Furthermore, the present invention is a maraging steel strip in which a nitrided layer is formed on the surface of the maraging steel described above and a compressive residual stress is applied to the surface.

本発明のマルエージング鋼は、疲労破壊の起点となるTiNを低減でき、高強度と窒化処理後の表面の高硬度及び大きな圧縮残留応力を得ることができることから、自動車用無段変速機等に使用される動力伝達用ベルトのリング製品のような高疲労強度が要求される部材に使用されると、長い疲労寿命を有することができる等、工業上顕著な効果をもつことが期待される。   The maraging steel of the present invention can reduce TiN that is the starting point of fatigue failure, and can obtain high strength, high hardness of the surface after nitriding treatment, and large compressive residual stress. When used for a member that requires high fatigue strength, such as a ring product of a power transmission belt to be used, it is expected to have a significant industrial effect such as having a long fatigue life.

本発明は、上述の新規な知見に基づいてなされたものであり、以下に本発明における各元素の作用について述べる。
本発明のマルエージング鋼において、以下の範囲で各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り質量%として記す。
Cは、Moと炭化物を形成して、析出すべき金属間化合物を減少させて強度を低下させるため、低く抑える必要がある。また、Cを積極添加すると、例えば無断変速機部品に必要とされる溶接性が低下する危険性が高くなる。このような理由からCは0.01%以下とした。好ましくは、0.008%以下である。
Siは、時効処理時に析出する金属間化合物を微細化したり、Niとともに金属間化合物を形成したりすることでTi低下による強度低下分を補うことができる元素であるが、靭性を低下させる惧れがあることから、靭性、延性を確保するために、本発明においては低く抑える必要がある。0.1%を超えて添加すると靭性、延性が低下することから、Siは0.1%以下とした。靭性、延性の確保をより確実に行うための好ましい範囲は0.05%以下である。
Mnは、時効処理時にNiと共に金属間化合物を形成し、時効硬化に寄与する元素であることから、Ti低下による強度低下分を補うためことができる元素であるが、靭性を低下させる惧れがあることから、靭性、延性を確保するために、本発明においては低く抑える必要がある。0.1%を超えて添加すると靭性、延性が低下することから、Mnは0.1%以下とした。靭性、延性の確保をより確実に行うための好ましい範囲は0.05%以下である。
P、Sは、旧オーステナイト粒界に偏析したり、介在物を形成したりすることで、マルエージング鋼を脆化させ、疲労強度を低下させる有害な元素であるため、Pは0.01%以下、Sは0.005%以下とした。好ましくは、Pについては0.005%以下、Sについては0.004%以下の範囲である。
The present invention has been made based on the above-described novel findings, and the action of each element in the present invention will be described below.
In the maraging steel of the present invention, the reason why each chemical composition is specified in the following range is as follows. Unless otherwise specified, the mass% is indicated.
C forms a carbide with Mo and decreases the strength of the intermetallic compound to be precipitated, so it is necessary to keep C low. Further, when C is positively added, for example, there is a high risk that the weldability required for a transmission component without permission is reduced. For these reasons, C is set to 0.01% or less. Preferably, it is 0.008% or less.
Si is an element that can compensate for the strength reduction due to Ti reduction by refining the intermetallic compound that precipitates during aging treatment or forming an intermetallic compound with Ni, but may reduce toughness. Therefore, in order to secure toughness and ductility, it is necessary to keep it low in the present invention. If added over 0.1%, the toughness and ductility are lowered, so Si was made 0.1% or less. A preferred range for ensuring toughness and ductility more reliably is 0.05% or less.
Mn is an element that forms an intermetallic compound together with Ni during the aging treatment and contributes to age hardening. Therefore, Mn is an element that can compensate for a decrease in strength due to a decrease in Ti, but may reduce toughness. Therefore, in order to ensure toughness and ductility, it is necessary to keep it low in the present invention. If added over 0.1%, the toughness and ductility deteriorate, so Mn was made 0.1% or less. A preferred range for ensuring toughness and ductility more reliably is 0.05% or less.
P and S are harmful elements that segregate and form inclusions in the prior austenite grain boundaries, embrittle the maraging steel and reduce fatigue strength. Therefore, P is 0.01%. Hereinafter, S is set to 0.005% or less. Preferably, P is 0.005% or less, and S is 0.004% or less.

Crは、窒化を行う場合にNとの親和力が強く、窒化深さを浅くし、窒化硬さを高めたり、窒化表面の圧縮残留応力を増加させたりする元素であるため、必須で添加する。しかし、0.1%より少ないと効果がなく、一方3.0%を越えて添加してもより一層の向上効果がみられず、また、時効後の強度が大きく低下することから、Crは0.1〜3.0%とした。
Niは、マルエージング鋼の基地組織である低Cマルテンサイト組織を安定して形成させるため、少なくとも17.0%は必要であるが、22.0%を超えるとオーステナイト組織が安定化し、マルテンサイト変態を起こし難くなることから、Niは17.0〜22.0%とした。Niの好ましい範囲は18.0%を超え22.0%以下である。
Moは、時効処理時にNiMo、FeMo等の微細な金属間化合物を形成し、析出強化に寄与する重要な元素である。また、Moは窒化による表面の硬さ及び圧縮残留応力を大きくするために有効な元素である。このためのMoは、3.0%より少ないと引張強度が不十分であり、一方、7.0%より多いとFe、Moを主要元素とする粗大な金属間化合物を形成しやすくなるため、Moは3.0〜7.0%とした。Moの好ましい範囲は、5.0%を超え7.0%以下である。
Cr is an element that has a strong affinity for N when nitriding, reduces the nitriding depth, increases the nitriding hardness, and increases the compressive residual stress on the nitriding surface, so is essential. However, if the amount is less than 0.1%, there is no effect. On the other hand, even if added over 3.0%, a further improvement effect is not seen, and the strength after aging is greatly reduced. It was set to 0.1 to 3.0%.
Ni stably forms a low-C martensite structure, which is a base structure of maraging steel, so at least 17.0% is necessary, but if it exceeds 22.0%, the austenite structure is stabilized and martensite is formed. Since it is difficult to cause transformation, Ni is set to 17.0 to 22.0%. The preferable range of Ni is more than 18.0% and 22.0% or less.
Mo is an important element that contributes to precipitation strengthening by forming fine intermetallic compounds such as Ni 3 Mo and Fe 2 Mo during aging treatment. Mo is an effective element for increasing the surface hardness and compressive residual stress due to nitriding. For this purpose, if the Mo content is less than 3.0%, the tensile strength is insufficient. On the other hand, if it exceeds 7.0%, it becomes easy to form a coarse intermetallic compound containing Fe and Mo as main elements. Mo was 3.0 to 7.0%. The preferable range of Mo is more than 5.0% and 7.0% or less.

Coは、マトリックスのマルテンサイト組織の安定性に大きく影響することなく、固溶化処理温度でMo、Al等の時効析出物形成元素の固溶度を増加させ、時効析出温度域でのMo、Alの固溶度を低下させることによってMo、Alを含む微細な金属間化合物の析出を促進し、時効析出強化に寄与する重要な元素であり、強度面、靭性面から多く添加することが必要である。Coが7.0%以下ではSi、Mn、Tiを低減したマルエージング鋼では十分な強度が得られ難く、一方20.0%を超えて添加するとオーステナイトが安定化してマルテンサイト組織が得られ難くなることから、7.0%を超え20.0%以下とした。好ましいCoの範囲は12.0%を超え20.0%以下である。
Tiは、本来、マルエージング鋼における重要な強化元素の一つであるが、同時に介在物であるTiNまたはTi(C、N)を形成して、特に超高サイクル域での疲労強度を低下させる有害元素でもあるので、疲労強度を重視する場合には、不純物として低く抑える必要がある。
また、Tiは表面に薄くて安定な酸化膜を形成し易く、この酸化膜が形成されると窒化反応を阻害するため、十分な窒化表面の圧縮残留応力が得られ難くなる。窒化を容易に行うために、また窒化後の表面の圧縮残留応力を大きくするために、Tiは有害な不純物元素であり、低く抑える必要がある。
Tiは、0.1%より多いとTiNまたはTi(C、N)の低減に十分な効果が得られず、また安定な酸化膜を表面に形成し易くなることから、Tiは0.1%以下とした。望ましくは0.05%以下がよく、さらに望ましくは0.01%以下が良い。
Co increases the solid solubility of aging precipitate-forming elements such as Mo and Al at the solution treatment temperature without greatly affecting the stability of the martensitic structure of the matrix, so that Mo and Al in the aging precipitation temperature range are increased. This is an important element that contributes to the strengthening of aging precipitation by promoting the precipitation of fine intermetallic compounds including Mo and Al by reducing the solid solubility of Ni, and it is necessary to add more in terms of strength and toughness. is there. When Co is less than 7.0%, it is difficult to obtain sufficient strength with maraging steel with reduced Si, Mn, and Ti, while when added over 20.0%, austenite is stabilized and it is difficult to obtain a martensite structure. Therefore, the content is more than 7.0% and not more than 20.0%. A preferable Co range is more than 12.0% and not more than 20.0%.
Ti is originally one of the important strengthening elements in maraging steel, but at the same time, it forms inclusions TiN or Ti (C, N) to reduce fatigue strength particularly in the ultra-high cycle region. Since it is also a harmful element, it is necessary to keep it low as an impurity when emphasizing fatigue strength.
Further, Ti easily forms a thin and stable oxide film on the surface. When this oxide film is formed, the nitriding reaction is inhibited, so that it is difficult to obtain a sufficient compressive residual stress on the nitrided surface. In order to easily perform nitriding and to increase the compressive residual stress on the surface after nitriding, Ti is a harmful impurity element and needs to be kept low.
If Ti exceeds 0.1%, a sufficient effect for reducing TiN or Ti (C, N) cannot be obtained, and a stable oxide film can be easily formed on the surface. It was as follows. Preferably it is 0.05% or less, and more preferably 0.01% or less.

Alは、通常、脱酸のために少量添加されるが、本来、時効処理時にNiと共に金属間化合物を形成して強化に寄与する元素である。Si、Mn、Tiを低減した本発明のマルエージング鋼ではAlの添加によって強度を補う必要がある。また、Tiを低減したマルエージング鋼において窒化処理を容易にして良好な窒化層を得るためにもAlの添加が必要である。Alは、0.15%以下では時効処理による十分な強化作用が得られず、一方2.5%より多いとAlN、Al介在物を多く形成して疲労強度を低下させたり、表面に薄くて安定な酸化膜を形成して窒化反応を阻害したりすることから、Alは0.15%を超え2.5%以下とした。
Co、Mo及びTiは、共にマルエージング鋼における主要な強化元素であり、またAlもマルエージング鋼の時効強化に寄与する元素である。Tiを低く抑えると、Tiによる強度の低下分をCo、Mo、Alの添加量を増すことによって補う必要がある。しかし、その各元素の強化への寄与は同じではなく、Co及びAlによる強化分はMoによる強化分のそれぞれ1/3及び4倍である。
従って、Co、Mo、Alによる強化はCo/3+Mo+4Alで整理できる。質量%でCo/3+Mo+4Alの値が8.0%より少ないと強度が十分でなく、一方、15.0%を超えると強度が高くなりすぎ、靭性低下の惧れがあることから、Co/3+Mo+4Alは、8.0〜15.0%とした。好ましいCo/3+Mo+4Alの範囲は、10.0〜15.0%である。
Al is usually added in a small amount for deoxidation, but originally is an element that contributes to strengthening by forming an intermetallic compound with Ni during aging treatment. In the maraging steel of the present invention in which Si, Mn, and Ti are reduced, it is necessary to supplement the strength by adding Al. Moreover, addition of Al is also necessary in order to obtain a good nitrided layer by facilitating nitriding in maraging steel with reduced Ti. When Al is less than 0.15%, sufficient strengthening action due to aging treatment cannot be obtained. On the other hand, when it exceeds 2.5%, a large amount of inclusions of AlN and Al 2 O 3 are formed to reduce the fatigue strength. Therefore, Al is made more than 0.15% and not more than 2.5% because a thin and stable oxide film is formed to inhibit the nitriding reaction.
Co, Mo, and Ti are all major strengthening elements in maraging steel, and Al is an element that contributes to aging strengthening of maraging steel. If Ti is kept low, it is necessary to compensate for the decrease in strength due to Ti by increasing the amount of addition of Co, Mo, and Al. However, the contribution of each element to the strengthening is not the same, and the strengthening by Co and Al is 1/3 and 4 times the strengthening by Mo, respectively.
Therefore, the strengthening by Co, Mo, and Al can be organized by Co / 3 + Mo + 4Al. If the value of Co / 3 + Mo + 4Al is less than 8.0% by mass%, the strength is not sufficient, while if it exceeds 15.0%, the strength becomes too high, and there is a possibility that the toughness is reduced. Therefore, Co / 3 + Mo + 4Al Was 8.0 to 15.0%. A preferable range of Co / 3 + Mo + 4Al is 10.0 to 15.0%.

Nは、Tiと結合してTiNまたはTi(C、N)の介在物を形成して、特に超高サイクル域での疲労強度を低下させる不純物元素である。Tiを含むマルエージング鋼では、粗大なTiNまたはTi(C、N)の形成を防ぐため、Nを大幅に低く抑える必要がある。しかし、Tiを殆ど含まないマルエージング鋼では、通常の真空溶解で混入するN量でも悪影響が少ないことから、0.03%以下とした。望ましくは、0.01%以下が良い。更に望ましくは、0.005%以下が良い。
Oは、酸化物系介在物を形成して靭性、疲労強度を低下させる不純物元素であるので、0.005%以下に制限した。望ましくは、0.003%以下が良い。
Bは、冷間加工後に固溶化処理を行った時の旧オーステナイト結晶粒を微細化して強化に寄与するとともに表面肌荒れを抑制する効果をもつ元素であり、必須添加する。Bが0.01%より多いと靭性が低下することから、Bは0.01%以下(0%は含まず)とした。望ましくは、0.005%以下(0%は含まず)が良い。旧オーステナイト結晶粒をより確実に微細化できる好ましいBの下限は0.0002%であり、更に好ましい下限は0.0003%である。
N is an impurity element that combines with Ti to form inclusions of TiN or Ti (C, N), and lowers fatigue strength particularly in the ultra-high cycle region. In maraging steel containing Ti, it is necessary to keep N significantly low in order to prevent the formation of coarse TiN or Ti (C, N). However, in maraging steel containing almost no Ti, the amount of N mixed by ordinary vacuum melting has little adverse effect, so the content was made 0.03% or less. Desirably, 0.01% or less is good. More preferably, 0.005% or less is good.
O is an impurity element that forms oxide inclusions and lowers toughness and fatigue strength, so is limited to 0.005% or less. Desirably, it is 0.003% or less.
B is an element that has the effect of refining the prior austenite crystal grains when subjected to the solution treatment after cold working to contribute to strengthening and suppressing surface roughness, and is essential. When B is more than 0.01%, the toughness is lowered. Therefore, B is set to 0.01% or less (not including 0%). Desirably, 0.005% or less (excluding 0%) is good. A preferable lower limit of B that can refine the prior austenite crystal grains more reliably is 0.0002%, and a more preferable lower limit is 0.0003%.

本発明においては、Ca:0.01%以下、Mg:0.005%以下の1以上を含有することができる。本発明のマルエージング鋼は、真空誘導溶解または、真空誘導溶解の後、さらに真空アーク再溶解あるいはエレクトロスラグ再溶解を行なう等の真空雰囲気中での溶解によってインゴットを製造することができる。しかし、これら真空雰囲気中での溶解を行なっても、完全に非金属介在物を無くすことは技術的に困難である。
本発明の場合、強度向上を目的としてAlを積極添加するため、例えば25μmを超えるような粗大で硬質なAl介在物が形成する危険性や、Alがクラスター化したりする危険性がある。Al介在物は硬質・高融点であり、例えば熱間塑性加工中でも殆ど変形することがない、そのため、例えば冷間圧延時のロールに疵を発生させてマルエージング鋼の表面欠陥を生じる可能性が有る。そのため、Al介在物を複合介在物として、硬さを低下させたり、融点を下げたりするのが良い。また、それと同時にクラスター化を防止できる元素を添加して、介在物欠陥を防止するのが好ましい。
Al介在物を複合介在物とするのに有効な元素としては、Si、Mn、Ca、Mgが挙げられるが、本発明ではSi,Mnは靭性と延性を低下させる元素として、添加量を規制する。そのためSi,Mn以外のCa、Mgの1種以上を添加することで、Al介在物を複合介在物とするのが良い。また、Ca、MgにはAl介在物のクラスター化を防止する効果もある。そのため、本発明においては、Ca:0.01%以下、或いは更に、Mg:0.005%以下を含有するとした。
なお、このCaとMgの効果を確実に得るには、Caは0.001%、Mgは0.0001%を下限とすると良い。
以上、説明する元素以外は、Fe及び不可避的不純物とする。
なお、以下の元素は、下記の範囲であれば、脱酸、脱硫等の目的で添加しても良い。
Zr≦0.01%
In the present invention, one or more of Ca: 0.01% or less and Mg: 0.005% or less can be contained. The maraging steel of the present invention can produce an ingot by vacuum induction melting or melting in a vacuum atmosphere such as vacuum arc remelting or electroslag remelting after vacuum induction melting. However, it is technically difficult to completely eliminate non-metallic inclusions even when melting in a vacuum atmosphere is performed.
In the case of the present invention, since Al is positively added for the purpose of improving the strength, for example, there is a risk of formation of coarse and hard Al 2 O 3 inclusions exceeding 25 μm, or a risk of Al 2 O 3 being clustered. There is sex. Al 2 O 3 inclusions are hard, high melting point, it is not possible to deform almost for example, even hot during plastic working, therefore, causes surface defects of maraging steel by generating scratches for example, a roll of cold rolling There is a possibility. Therefore, it is preferable to reduce the hardness or lower the melting point by using Al 2 O 3 inclusions as composite inclusions. At the same time, it is preferable to prevent inclusion defects by adding an element capable of preventing clustering.
Examples of elements effective for making Al 2 O 3 inclusions complex inclusions include Si, Mn, Ca, and Mg. In the present invention, Si and Mn are added as elements that lower toughness and ductility. To regulate. Therefore, it is preferable that Al 2 O 3 inclusions be combined inclusions by adding one or more of Ca and Mg other than Si and Mn. Ca and Mg also have an effect of preventing clustering of Al 2 O 3 inclusions. Therefore, in this invention, it was supposed that Ca: 0.01% or less, or also Mg: 0.005% or less.
In order to reliably obtain the effects of Ca and Mg, the lower limit is preferably 0.001% for Ca and 0.0001% for Mg.
As mentioned above, it is set as Fe and an unavoidable impurity except the element demonstrated.
The following elements may be added for the purpose of deoxidation, desulfurization, etc. within the following ranges.
Zr ≦ 0.01%

本発明のマルエージング鋼は、10%以上の冷間加工後、組成に応じた適当な温度、例えば780〜1000℃程度の温度で固溶化処理することによって旧オーステナイト結晶粒(ここで、マルエージング鋼の場合、結晶粒とは旧オーステナイト結晶粒を指す)をASTM No.10以上に細粒化することができる。
本発明のマルエージング鋼では、結晶粒を細粒化することにより、硬さ、引張強度、疲労強度、衝撃靭性等を安定して高めにすることができたり、鋼帯においては表面肌荒れを軽微にすることができる等の効果が期待できる。
The maraging steel of the present invention is obtained by subjecting prior austenite crystal grains (here, maraging) to a solution treatment at an appropriate temperature according to the composition, for example, about 780 to 1000 ° C., after cold working of 10% or more. In the case of steel, crystal grains refer to prior austenite grains) according to ASTM No. The particle size can be reduced to 10 or more.
In the maraging steel of the present invention, it is possible to stably increase the hardness, tensile strength, fatigue strength, impact toughness, etc. by refining the crystal grains, and the surface roughness of the steel strip is slight. The effect of being able to be made can be expected.

本発明のマルエージング鋼は、窒化を阻害する可能性のある安定な酸化膜を表面に形成するTiを殆ど含まないため、通常のガス窒化、ガス軟窒化、浸硫窒化、イオン窒化、塩浴窒化、等の種々の窒化処理が容易にできる。また、Tiを含まないマルエージング鋼では低下し易い窒化層の圧縮残留応力の絶対値についても、窒化硬さや窒化層の圧縮残留応力の絶対値を高める効果のあるCr、Alによって窒化層の圧縮残留応力の絶対値を高めることができる。
また、上述の本発明で規定する化学組成範囲内に調整されたマルエージング鋼を、例えば自動車エンジンの無段変速機用部品に適用できるように、帯状に形成した鋼帯に適当な条件で窒化処理を行うと、窒化物を殆ど形成することなく表面に20〜40μm程度の薄い窒化層を形成でき、表面に大きな圧縮残留応力を付与でき、十分な疲労強度を得ることができる。この時、十分高い疲労強度を得るためには、窒化処理後の表面圧縮残留応力が1050MPa以上であることが好ましく、より好ましくは1100MPa以上が良い。
なお、表面の圧縮残留応力は高い方が好ましいが、そのコントロールは窒化層の厚みを適宜調整することで可能である。
本発明のマルエージング鋼は、高引張強度、高疲労強度を有し、窒化も容易であることから自動車エンジンの無段変速機用部品のリング製品に好適である。
Since the maraging steel of the present invention contains almost no Ti that forms a stable oxide film on the surface that may inhibit nitriding, ordinary gas nitriding, gas soft nitriding, sulfur nitriding, ion nitriding, salt bath Various nitriding treatments such as nitriding can be easily performed. In addition, the absolute value of the compressive residual stress of the nitrided layer, which tends to decrease in maraging steel not containing Ti, is also improved by compressing the nitride layer by Cr and Al, which has the effect of increasing the hardness of the nitrided layer and the absolute value of the compressive residual stress of the nitrided layer. The absolute value of the residual stress can be increased.
In addition, maraging steel adjusted within the chemical composition range defined in the present invention described above is nitrided under appropriate conditions to a steel strip formed into a strip shape so that it can be applied to a continuously variable transmission part of an automobile engine, for example. When the treatment is performed, a thin nitride layer of about 20 to 40 μm can be formed on the surface without forming almost any nitride, a large compressive residual stress can be applied to the surface, and sufficient fatigue strength can be obtained. At this time, in order to obtain a sufficiently high fatigue strength, the surface compressive residual stress after nitriding is preferably 1050 MPa or more, more preferably 1100 MPa or more.
In addition, although the one where the surface compressive residual stress is higher is preferable, the control is possible by adjusting the thickness of a nitrided layer suitably.
The maraging steel of the present invention has a high tensile strength and a high fatigue strength, and is easily nitrided. Therefore, the maraging steel is suitable for a ring product of a continuously variable transmission for an automobile engine.

以下の実施例で本発明を更に詳しく説明する。
本発明鋼及び比較鋼を真空誘導溶解炉で溶解し、10kgのインゴットを作製し、均質化焼鈍を実施後、熱間鍛造した。さらに熱間圧延、冷間圧延によって約0.3mm厚さの鋼帯を作製した。その後、820〜900℃で固溶化処理を行ない、更に490℃で時効処理を行なった後に、450〜470℃において窒化深さが20〜40μmとなるような条件でガス軟窒化を行った。
表1に本発明鋼No.1〜8、従来鋼及び比較鋼No.21〜22の化学組成を示す。ここで、比較鋼No.21はTiを含む従来鋼、比較鋼No.22はTiを含まず、かつCr、Alを無添加としたマルエージング鋼である。何れのマルエージング鋼もCを0.01%以下の範囲に調整して、溶接性の低下を防止しした。また、本発明鋼No.5,No.6はMgを添加した。Mg含有量はNo.5が10ppm、No.6が6ppmであった。
また、表2に各試料を時効した後の旧オーステナイト結晶粒度、引張強さ、窒化処理後の内部硬さ、表面硬さ、及び窒化処理後の表面の残留応力を示す。ここで、表2中の残留応力の符号は、+が引張、−が圧縮を表しており、全て圧縮残留応力である。
なお、表には示さないが、上記の本発明鋼及び比較鋼の断面にて、電子顕微鏡とエックス線分析装置を用いて、微細介在物の観察、分析を行い、比較鋼No.21を除いた全ての試験片でTiNやTi(C、N)の介在物の量が極めて少ない量であったことを確認した。
また、本発明鋼No.5,No.6については、1000倍で10視野の電子顕微鏡による断面観察を行ったが、Al介在物は観察できなかった。
The following examples further illustrate the present invention.
The steel of the present invention and the comparative steel were melted in a vacuum induction melting furnace, a 10 kg ingot was produced, homogenized annealing was performed, and then hot forging was performed. Further, a steel strip having a thickness of about 0.3 mm was produced by hot rolling and cold rolling. Thereafter, a solid solution treatment was performed at 820 to 900 ° C., an aging treatment was further performed at 490 ° C., and then gas soft nitriding was performed at 450 to 470 ° C. under a condition that the nitriding depth was 20 to 40 μm.
Table 1 shows the steel No. of the present invention. 1-8, conventional steel and comparative steel No. 1 The chemical composition of 21-22 is shown. Here, comparative steel No. No. 21 is a conventional steel containing Ti and comparative steel No. 21. 22 is maraging steel which does not contain Ti and which does not contain Cr or Al. In all maraging steels, C was adjusted to a range of 0.01% or less to prevent deterioration of weldability. In addition, the steel No. of the present invention. 5, no. 6 added Mg. The Mg content is no. 5 is 10 ppm, no. 6 was 6 ppm.
Table 2 shows the prior austenite grain size, tensile strength, internal hardness after nitriding treatment, surface hardness, and residual stress on the surface after nitriding treatment after aging each sample. Here, as for the sign of the residual stress in Table 2, + indicates tension and-indicates compression, and all are compressive residual stresses.
Although not shown in the table, in the cross-sections of the steel of the present invention and the comparative steel, the microscopic inclusions were observed and analyzed using an electron microscope and an X-ray analyzer. It was confirmed that the amount of inclusions of TiN and Ti (C, N) was extremely small in all the test pieces except for No. 21.
In addition, the inventive steel No. 5, no. For No. 6, cross-sectional observation was performed with an electron microscope at 1000 magnifications with 10 fields of view, but Al 2 O 3 inclusions could not be observed.

Figure 2008088540
Figure 2008088540

Figure 2008088540
Figure 2008088540

表2より、本発明鋼No.1〜8は何れも時効後の引張強さが1800MPa以上であり、マルエージング鋼として十分な強度をもっている。また、窒化後においても高い内部硬さ、表面硬さと大きな表面圧縮残留応力をもつことが分かり、Tiを含む従来鋼No.21と比較しても同等以上の特性を有していることが分かる。
また、発明鋼No.1〜8は、Bを添加した効果によりた旧オーステナイト結晶粒度がASTM No.10以上の細粒を維持している。
一方、Tiを無添加とし、かつCr、Alを添加しない比較鋼No.22は、時効後の引張強さ、窒化後の内部硬さ、表面硬さ、表面圧縮残留応力が本発明鋼に比べて低い。また、
Bを含まないため、結晶粒がやや粗い結果となった。
このように、本発明鋼は、従来のマルエージング鋼よりTiN介在物が極めて少なく、高引張強度でかつ窒化特性が良好であるため、高疲労強度が期待できる。
From Table 2, steel of the present invention No. Nos. 1 to 8 each have a tensile strength after aging of 1800 MPa or more, and have sufficient strength as maraging steel. Further, even after nitriding, it was found that the steel had high internal hardness, surface hardness and large surface compressive residual stress. It can be seen that even if compared with 21, it has the same or better characteristics.
Inventive steel No. In Nos. 1 to 8, the prior austenite grain size due to the effect of adding B is ASTM No. 10 or more fine grains are maintained.
On the other hand, comparative steel No. without addition of Ti and addition of Cr and Al. No. 22 has lower tensile strength after aging, internal hardness after nitriding, surface hardness, and surface compressive residual stress than the steel of the present invention. Also,
Since B was not included, the crystal grain was slightly coarse.
As described above, the steel according to the present invention has much less TiN inclusions than the conventional maraging steel, and has high tensile strength and good nitriding characteristics, so that high fatigue strength can be expected.

本発明のマルエージング鋼は、高強度と窒化処理後の表面の高硬度及び大きな圧縮残留応力を得ることができることから、自動車用無段変速機等に使用される動力伝達ベルトのリング製品のような高引張強度、高疲労強度が要求される部材に適用できる。   Since the maraging steel of the present invention can obtain high strength, high hardness of the surface after nitriding treatment, and large compressive residual stress, it is like a ring product of a power transmission belt used in a continuously variable transmission for automobiles. It can be applied to members that require high tensile strength and high fatigue strength.

Claims (6)

質量%でC:0.01%以下、Si:0.1%以下、Mn:0.1%以下、P:0.01%以下、S:0.005%以下、Ni:17.0〜22.0%、Cr:0.1〜3.0%、Mo:3.0〜7.0%、Co:7.0%を超え20.0%以下、Ti:0.1%以下、Al:0.15%を超え2.5%以下、N:0.03%以下、O:0.005%以下、B:0.01%以下(0は含まない)、Co/3+Mo+4Al:8.0〜15.0%、残部はFe及び不可避的不純物からなることを特徴とする高疲労強度を有するマルエージング鋼。 C: 0.01% or less, Si: 0.1% or less, Mn: 0.1% or less, P: 0.01% or less, S: 0.005% or less, Ni: 17.0-22 in mass% 0.0%, Cr: 0.1-3.0%, Mo: 3.0-7.0%, Co: over 7.0% and 20.0% or less, Ti: 0.1% or less, Al: More than 0.15% and 2.5% or less, N: 0.03% or less, O: 0.005% or less, B: 0.01% or less (0 is not included), Co / 3 + Mo + 4Al: 8.0 A maraging steel having high fatigue strength, characterized by 15.0%, the balance being Fe and inevitable impurities. 質量%でC:0.008%以下、Ni:18.0%を超え22.0%以下、Mo:5.0%を超え7.0%以下、Ti:0.05%以下、Co/3+Mo+4Al:10.0〜15.0%、であることを特徴とする請求項1に記載の高疲労強度を有するマルエージング鋼。 C: 0.008% or less by mass%, Ni: more than 18.0% and 22.0% or less, Mo: more than 5.0% and 7.0% or less, Ti: 0.05% or less, Co / 3 + Mo + 4Al The maraging steel having high fatigue strength according to claim 1, which is 10.0 to 15.0%. 質量%でCo:12.0%を超え20.0%以下であることを特徴とする請求項1または2に記載の高疲労強度を有するマルエージング鋼。 The maraging steel having high fatigue strength according to claim 1 or 2, characterized in that Co in mass% is more than 12.0% and not more than 20.0%. 質量%でCa:0.01%以下、Mg:0.005%以下の1種以上を含有することを特徴とする請求項1乃至3の何れかに記載の高疲労強度を有するマルエージング鋼。 The maraging steel having high fatigue strength according to any one of claims 1 to 3, characterized by containing at least one of Ca: 0.01% or less and Mg: 0.005% or less in mass%. 結晶粒度がASTM No.で10以上の細粒であることを特徴とする請求項1乃至4の何れかに記載の高疲労強度を有するマルエージング鋼。 The crystal grain size is ASTM No. The maraging steel having high fatigue strength according to any one of claims 1 to 4, wherein the maraging steel has a fine grain size of 10 or more. 請求項1乃至5の何れかに記載のマルエージング鋼の表面に窒化層が形成され、且つ表面に圧縮残留応力を付与したことを特徴とするマルエージング鋼帯。 A maraging steel strip, wherein a nitrided layer is formed on the surface of the maraging steel according to any one of claims 1 to 5 and compressive residual stress is applied to the surface.
JP2006333384A 2005-12-13 2006-12-11 Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength Active JP5007930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333384A JP5007930B2 (en) 2005-12-13 2006-12-11 Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005359505 2005-12-13
JP2005359505 2005-12-13
JP2006240083 2006-09-05
JP2006240083 2006-09-05
JP2006333384A JP5007930B2 (en) 2005-12-13 2006-12-11 Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength

Publications (2)

Publication Number Publication Date
JP2008088540A true JP2008088540A (en) 2008-04-17
JP5007930B2 JP5007930B2 (en) 2012-08-22

Family

ID=39372989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333384A Active JP5007930B2 (en) 2005-12-13 2006-12-11 Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength

Country Status (1)

Country Link
JP (1) JP5007930B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013464A (en) * 2007-07-04 2009-01-22 Hitachi Metals Ltd Maraging steel for metal belt
WO2010110379A1 (en) 2009-03-26 2010-09-30 日立金属株式会社 Maraging steel strip
WO2013047078A1 (en) 2011-09-30 2013-04-04 日立金属株式会社 Maraging steel
WO2016170519A1 (en) * 2015-04-23 2016-10-27 Aperam Steel, product made of said steel, and manufacturing method thereof
WO2017064537A1 (en) * 2015-10-15 2017-04-20 Aperam Steel, product created from said steel, and manufacturing method thereof
JP7447377B2 (en) 2020-03-24 2024-03-12 株式会社プロテリアル Manufacturing method of Ti-free maraging steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142052A (en) * 1987-11-27 1989-06-02 Sumitomo Metal Ind Ltd Seamless metallic belt and its production
JPH02285053A (en) * 1989-04-26 1990-11-22 Hitachi Metals Ltd Maraging steel and its production
JP2001240944A (en) * 1999-12-24 2001-09-04 Hitachi Metals Ltd Maraging steel with high fatigue strength, and maragin steel strip using it
JP2002275585A (en) * 2001-03-19 2002-09-25 Hitachi Metals Ltd Maraging steel strip and production method therefor
JP2007186780A (en) * 2005-12-13 2007-07-26 Hitachi Metals Ltd Maraging steel with high fatigue strength, and maraging steel strip using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142052A (en) * 1987-11-27 1989-06-02 Sumitomo Metal Ind Ltd Seamless metallic belt and its production
JPH02285053A (en) * 1989-04-26 1990-11-22 Hitachi Metals Ltd Maraging steel and its production
JP2001240944A (en) * 1999-12-24 2001-09-04 Hitachi Metals Ltd Maraging steel with high fatigue strength, and maragin steel strip using it
JP2002275585A (en) * 2001-03-19 2002-09-25 Hitachi Metals Ltd Maraging steel strip and production method therefor
JP2007186780A (en) * 2005-12-13 2007-07-26 Hitachi Metals Ltd Maraging steel with high fatigue strength, and maraging steel strip using it

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013464A (en) * 2007-07-04 2009-01-22 Hitachi Metals Ltd Maraging steel for metal belt
WO2010110379A1 (en) 2009-03-26 2010-09-30 日立金属株式会社 Maraging steel strip
EP2412836A1 (en) * 2009-03-26 2012-02-01 Hitachi Metals, Ltd. Maraging steel strip
EP2412836A4 (en) * 2009-03-26 2012-08-29 Hitachi Metals Ltd Maraging steel strip
JPWO2010110379A1 (en) * 2009-03-26 2012-10-04 日立金属株式会社 Maraging steel strip
JP5429651B2 (en) * 2009-03-26 2014-02-26 日立金属株式会社 Maraging steel strip
US8747574B2 (en) 2009-03-26 2014-06-10 Hitachi Metals, Ltd. Maraging steel strip
WO2013047078A1 (en) 2011-09-30 2013-04-04 日立金属株式会社 Maraging steel
JP2018516313A (en) * 2015-04-23 2018-06-21 アペラン Steel, product manufactured from the steel, and manufacturing method thereof
WO2016170397A1 (en) * 2015-04-23 2016-10-27 Aperam Steel, product made of said steel, and manufacturing method thereof
CN107532226A (en) * 2015-04-23 2018-01-02 艾普伦 Steel, product and its manufacture method made of the steel
US20180087123A1 (en) * 2015-04-23 2018-03-29 Aperam Steel, product made of said steel, and manufacturing method thereof
WO2016170519A1 (en) * 2015-04-23 2016-10-27 Aperam Steel, product made of said steel, and manufacturing method thereof
US11186886B2 (en) 2015-04-23 2021-11-30 Aperam Steel, product made of said steel, and manufacturing method thereof
WO2017064537A1 (en) * 2015-10-15 2017-04-20 Aperam Steel, product created from said steel, and manufacturing method thereof
WO2017064684A1 (en) * 2015-10-15 2017-04-20 Aperam Steel, product created from said steel, and manufacturing method thereof
CN108138286A (en) * 2015-10-15 2018-06-08 艾普伦 Steel, the product of the steel making and its manufacturing method
JP2018535316A (en) * 2015-10-15 2018-11-29 アペラム Steel, product made from said steel, and manufacturing method thereof
US10731231B2 (en) 2015-10-15 2020-08-04 Aperam Steel, product created from said steel, and manufacturing method thereof
CN116024505A (en) * 2015-10-15 2023-04-28 艾普伦 Steel, product made of said steel and method for manufacturing same
JP7447377B2 (en) 2020-03-24 2024-03-12 株式会社プロテリアル Manufacturing method of Ti-free maraging steel

Also Published As

Publication number Publication date
JP5007930B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5429651B2 (en) Maraging steel strip
JP5046363B2 (en) Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same
EP1111080B1 (en) Maraging steel having high fatigue strength and maraging steel strip made of same
KR101464712B1 (en) Steel component having excellent temper softening resistance
JP5053651B2 (en) Method for producing maraging steel strip having high fatigue strength
RU2733612C2 (en) Steel, product made from such steel, and method of its production
JP5328785B2 (en) Hardened martensitic steel with low or no cobalt content, method for producing parts from the steel, and parts thus obtained
JP5007930B2 (en) Maraging steel having high fatigue strength, maraging steel strip using the same, and method for producing maraging steel having high fatigue strength
EP2270247B1 (en) Piston ring material for internal combustion engine
EP2180073B1 (en) Maraging steel for metallic belt
JP2009013464A (en) Maraging steel for metal belt
JP2013253277A (en) Maraging steel
TWI473890B (en) Maraging steel
JP2010189697A (en) Crankshaft and method for producing the same
CN102605281A (en) Maraging steel and maraging steel used for metal belt
JP2006028568A (en) Steel for high temperature carburizing and its production method
JP4507149B2 (en) Maraging steel for power transmission belt with high fatigue strength and maraging steel strip for power transmission belt using the same
JP4427772B2 (en) Maraging steel with high fatigue strength and maraging steel strip using it
JP2006328486A (en) Steel for thin strip, and thin strip
JP4178490B2 (en) Maraging steel with high fatigue strength and maraging steel strip using it
JP2011195922A (en) Thin steel sheet for cvt ring
JP7172080B2 (en) Maraging steel for metal belts
JP7447377B2 (en) Manufacturing method of Ti-free maraging steel
JP2004183097A (en) Method for producing maraging steel and maraging steel
JP2005320611A (en) Thin steel strip superior in strength, fatigue strength, corrosion resistance and abrasion resistance, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 5007930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350