JP2008088426A - New cyanine compound and use of the same - Google Patents

New cyanine compound and use of the same Download PDF

Info

Publication number
JP2008088426A
JP2008088426A JP2007229622A JP2007229622A JP2008088426A JP 2008088426 A JP2008088426 A JP 2008088426A JP 2007229622 A JP2007229622 A JP 2007229622A JP 2007229622 A JP2007229622 A JP 2007229622A JP 2008088426 A JP2008088426 A JP 2008088426A
Authority
JP
Japan
Prior art keywords
group
formula
cyanine compound
compound
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007229622A
Other languages
Japanese (ja)
Inventor
Toshitaka Toriniwa
俊孝 鳥庭
Takaaki Kurata
高明 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2007229622A priority Critical patent/JP2008088426A/en
Publication of JP2008088426A publication Critical patent/JP2008088426A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/0016Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a halogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/0041Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being bound through a nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/08Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines
    • C09B23/086Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups more than three >CH- groups, e.g. polycarbocyanines more than five >CH- groups

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cyanine compound having a maximum absorption in a wavelength range of 400-1,100 nm, high in solubility in a solvent such as ketone etc., and excellent in workability, and to provide an optical filter for the use of near infrared absorption and image property improvement. <P>SOLUTION: The cyanine compound is represented by formula (1), wherein, Q<SB>1</SB>and Q<SB>2</SB>each forms a nitrogen-containing condensed heterocyclic ring that may each have independently a substitution group, R<SB>1</SB>and R<SB>2</SB>each represents an alkyl or alkenyl group that each may have independently a substitution group, D represents a connecting group for forming mono-, di-, or tri-carbocyanine, and X<SP>-</SP>represents tris(halogenoalkylsulfonyl)methide anion. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規シアニン化合物、それを用いた光吸収剤、該光吸収剤を用いた光学フィルタに関する。詳しくは、高い分子吸光係数(質量吸光係数)を有し、吸収波形が鋭く、溶剤溶解性に優れた新規なシアニン化合物と、それを用いた可視〜近赤外線吸収剤及び該光吸収剤を用いた光学フィルタ、特にプラズマディスプレイパネル向けの近赤外吸収用、画像特性改善用フィルタに関する。   The present invention relates to a novel cyanine compound, a light absorber using the compound, and an optical filter using the light absorber. Specifically, a novel cyanine compound having a high molecular extinction coefficient (mass extinction coefficient), a sharp absorption waveform, and excellent solvent solubility, a visible to near-infrared absorber using the same, and the light absorber are used. The present invention relates to an optical filter, particularly a near infrared absorption filter for plasma display panels and a filter for improving image characteristics.

大型薄型テレビやディスプレイとして注目されているプラズマディスプレイパネルには、その機構上必然的に発生する電磁波や近赤外線、ネオン光を遮断するための電磁波シールド、近赤外線カットフィルタ、ネオンカットフィルタ等を必要とし、それに関して例えば、特許文献1等が知られている。又、ネオン等に由来する輝線の遮断や蛍光灯等の映りこみ防止の為の、ディスプレイの画像特性改善に用いる色素及びそれを用いたフィルムやフィルタ等の樹脂組成物が検討されている。画像特性改善のための色素としては、発生する電磁波や近赤外線、ネオン光等を遮断するための特定波長におけるシャープな吸収を有する色素が求められている。
従来、プラズマディスプレイパネルで必要とされる400nm〜1100nm、即ち、可視光〜赤外線の吸収剤としてのシアニン化合物が特許文献2、特許文献3に記載されている。中でも、対イオンが六フッ化アンチモン酸イオンであるシアニン化合物が耐熱性に優れているため主に使用されていた。
Plasma display panels, which are attracting attention as large-sized thin TVs and displays, require electromagnetic shielding, near-infrared shielding, neon-cutting filters, neon-cutting filters, etc. to block electromagnetic waves, near-infrared rays, and neon light that are inevitably generated due to their mechanisms In this regard, for example, Patent Document 1 is known. In addition, for the purpose of blocking bright lines derived from neon and the like, and preventing reflection of fluorescent lamps and the like, dyes used for improving image characteristics of displays and resin compositions such as films and filters using the same are being studied. As a dye for improving image characteristics, a dye having sharp absorption at a specific wavelength for blocking generated electromagnetic waves, near infrared rays, neon light and the like is required.
Conventionally, cyanine compounds as absorbers of 400 nm to 1100 nm, that is, visible light to infrared ray, required for plasma display panels are described in Patent Document 2 and Patent Document 3. Among them, cyanine compounds whose counter ions are hexafluoroantimonate ions are mainly used because of their excellent heat resistance.

しかし、これらの色素では加工性(塗工溶媒に対する溶解性)、耐熱性、耐光性、吸収率及び透過率等の点で満足するものがなく、アンチモンを含む化合物は劇物に該当する為、近年、重金属等の使用が規制を受ける産業分野、特に電気材料分野では重金属を含まない化合物が望まれていた。特許文献4には重金属を含有しない化合物が記載されているが、これらは塗工等に使用するメチルエチルケトン等の溶媒に対する溶解性が不十分であり、より加工性の良い化合物が求められていた。特許文献5にはフッ素化アルキルスルホニル対イオンを有する染料が記載されている。   However, none of these dyes are satisfactory in terms of processability (solubility in coating solvents), heat resistance, light resistance, absorption rate, transmittance, etc., and compounds containing antimony fall under deleterious substances, In recent years, compounds that do not contain heavy metals have been desired in the industrial field where the use of heavy metals and the like is regulated, particularly in the field of electrical materials. Patent Document 4 describes compounds that do not contain heavy metals, but these compounds have insufficient solubility in solvents such as methyl ethyl ketone used for coating and the like, and compounds with better workability have been demanded. Patent Document 5 describes a dye having a fluorinated alkylsulfonyl counter ion.

特開2000−81511号公報JP 2000-81511 A 特公平5−37119号公報Japanese Patent Publication No. 5-37119 特許第3045404号公報Japanese Patent No. 3045404 国際公開第2006/006573号パンフレットInternational Publication No. 2006/006573 Pamphlet 特開平8−253705号公報JP-A-8-253705

本発明はこの様な状況に鑑みてなされたものであり、本発明の目的は400nm〜1100nmの波長域に最大吸収を有し、ケトン類等の溶剤溶解性が高く、加工性に優れたシアニン化合物、及びそれを用いた近赤外吸収用、画像特性改善用の光学フィルタを提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is a cyanine having maximum absorption in a wavelength range of 400 nm to 1100 nm, high solubility in solvents such as ketones, and excellent workability. An object is to provide a compound and an optical filter for improving near-infrared absorption and image characteristics using the compound.

本発明者らは前記したような課題を解決すべく鋭意努力した結果、本発明を完成した。即ち、本発明は、以下の1)〜12)に関する。
1)
下記式(1)
As a result of diligent efforts to solve the above problems, the present inventors have completed the present invention. That is, the present invention relates to the following 1) to 12).
1)
Following formula (1)

Figure 2008088426
Figure 2008088426

[式中、Q、Qはそれぞれ独立に置換基を有していてもよい含窒素縮合複素環を形成し、R、Rはそれぞれ独立に置換基を有していてもよいアルキル基又は置換基を有していてもよいアルケニル基を示し、Dはモノ、ジ又はトリカルボシアニンを形成するための連結基を示し、Xはトリス(ハロゲノアルキルスルホニル)メチドアニオンを示す]
で表されるシアニン化合物。
[Wherein, Q 1 and Q 2 each independently form a nitrogen-containing condensed heterocyclic ring which may have a substituent, and R 1 and R 2 each independently have an alkyl which may have a substituent. An alkenyl group which may have a group or a substituent, D represents a linking group for forming a mono, di or tricarbocyanine, and X represents a tris (halogenoalkylsulfonyl) methide anion]
A cyanine compound represented by:

2)
がトリス(トリフルオロメタンスルホニル)メチドアニオンである上記1)記載のシアニン化合物。
3)
、Qが形成する含窒素縮合複素環が下記式(2)〜式(6)から選ばれる1種である上記1)又は2)に記載のシアニン化合物(Qが形成する含窒素縮合複素環の場合はそれに対応する構造式に読み替えるものとする)。
2)
Wherein X - 1) above cyanine compound according tris (trifluoromethanesulfonyl) methide anion.
3)
The nitrogen-containing condensed heterocyclic ring formed by Q 1 and Q 2 is one selected from the following formulas (2) to (6): 1) or 2) The cyanine compound (nitrogen-containing formed by Q 2 ) In the case of a fused heterocycle, the corresponding structural formula shall be read).

Figure 2008088426
Figure 2008088426

[式中、RはR、Rと同じ意味を示し、Rはハロゲン原子、アルキル基、アルコキシ基又はニトロ基を示し、pは0〜2の整数を示す] [Wherein R represents the same meaning as R 1 and R 2 , R 3 represents a halogen atom, an alkyl group, an alkoxy group or a nitro group, and p represents an integer of 0 to 2]

4)
Dが下記式(8)〜式(12)から選ばれる1種である上記1)〜3)のいずれか一項に記載のシアニン化合物。
4)
Cyanine compound as described in any one of said 1) -3) whose D is 1 type chosen from following formula (8)-formula (12).

Figure 2008088426
Figure 2008088426

[式中、Yは水素原子、ハロゲン原子、フェニル基、ジフェニルアミノ基又は炭素数1〜4のアルキル基を示し、*は結合部位を示す] [In the formula, Y represents a hydrogen atom, a halogen atom, a phenyl group, a diphenylamino group or an alkyl group having 1 to 4 carbon atoms, and * represents a bonding site.]

5)
、Rがそれぞれ独立に炭素数1〜20のアルキル基、炭素数7〜20のアラルキル基、炭素数3〜20のアルコキシアルキル基、炭素数4〜20のアルコキシアルコキシアルキル基、炭素数2〜20のアルケニル基である上記1)〜4)のいずれか一項に記載のシアニン化合物。
6)
、Rがそれぞれ独立にメチル基、n−ブチル基、メトキシエチル基又はn−ブトキシエチル基である上記1)〜5)のいずれか一項に記載のシアニン化合物。
7)
上記1)に記載の式(1)におけるQ及びQが形成する含窒素縮合複素環のいずれもが、上記3)に記載の式(2)、式(3)又は式(5)から選ばれる同一の1種であり、該式(2)、式(3)又は式(5)におけるRがハロゲン原子であり、pが0又は1の整数であり;
上記1)に記載の式(1)におけるR及びRがそれぞれ独立にメチル基、n−ブチル基、メトキシエチル基又はn−ブトキシエチル基であり;
Dが上記4)に記載の式(8)、式(9)、式(11)又は式(12)のいずれかであり、該式(8)、式(9)、式(11)又は式(12)におけるYが水素原子又は塩素原子であり;
がトリス(トリフルオロメタンスルホニル)メチドアニオン;
である上記1)に記載のシアニン化合物、
但し、Qが形成する含窒素縮合複素環は、Qが形成する含窒素縮合複素環の構造式を、Qに対応する構造式に読み替えるものとする。
8)
下記式(201)
5)
R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an alkoxyalkyl group having 3 to 20 carbon atoms, an alkoxyalkoxyalkyl group having 4 to 20 carbon atoms, a carbon number Cyanine compound as described in any one of said 1) -4) which is a 2-20 alkenyl group.
6)
The cyanine compound according to any one of 1) to 5) above, wherein R 1 and R 2 are each independently a methyl group, an n-butyl group, a methoxyethyl group, or an n-butoxyethyl group.
7)
Any of the nitrogen-containing condensed heterocyclic rings formed by Q 1 and Q 2 in formula (1) described in 1) above can be obtained from formula (2), formula (3), or formula (5) described in 3) above. One selected, R 3 in the formula (2), formula (3) or formula (5) is a halogen atom, and p is an integer of 0 or 1;
R 1 and R 2 in formula (1) described in 1) above are each independently a methyl group, an n-butyl group, a methoxyethyl group, or an n-butoxyethyl group;
D is any one of the formula (8), the formula (9), the formula (11), or the formula (12) described in the above 4), and the formula (8), the formula (9), the formula (11), or the formula Y in (12) is a hydrogen atom or a chlorine atom;
X is a tris (trifluoromethanesulfonyl) methide anion;
The cyanine compound according to 1) above,
However, the nitrogen-containing fused heterocyclic ring formed by Q 2 is a replacement of the structural formula of the nitrogen-containing fused heterocyclic ring formed by Q 1 with the structural formula corresponding to Q 2 .
8)
The following formula (201)

Figure 2008088426
Figure 2008088426

[式中、Qが形成する含窒素縮合複素環は、下記式(202)乃至(204)から選ばれる1種であり、R及びRはそれぞれ独立に、C1−C5アルキル基又はC1−C5アルコキシC1−C3アルキル基を表し、Rは水素原子、C1−C5アルキル基又はフェニル基を表し、Yはハロゲン原子又はフェニル基を表し、Xはトリス(トリフルオロメチルスルホニル)メチドアニオンを表す。] [Wherein, the nitrogen-containing condensed heterocyclic ring formed by Q 2 is one selected from the following formulas (202) to (204), and R 4 and R 5 are each independently a C1-C5 alkyl group or C1 represents -C5 alkoxy C1-C3 alkyl group, R 6 is a hydrogen atom, a C1-C5 alkyl group or a phenyl group, Y represents a halogen atom or a phenyl group, X - and tris (trifluoromethylsulfonyl) methide anion To express. ]

Figure 2008088426
Figure 2008088426

Figure 2008088426
[式中、Rは、水素原子、ハロゲン原子又はニトロ基を表す。]
Figure 2008088426
[Wherein R 7 represents a hydrogen atom, a halogen atom or a nitro group. ]

Figure 2008088426
Figure 2008088426

で表される上記1)に記載のシアニン化合物。
9)
メタノール中400nm〜1100nmの波長域に最大吸収を有する上記1)〜8)のいずれか一項に記載のシアニン化合物。
10)
上記1)〜9)のいずれか一項に記載のシアニン化合物を用いた光吸収剤。
11)
近赤外吸収用及び/又は画像特性改善用である上記10)記載の光吸収剤。
12)
上記10)又は11)に記載の光吸収剤を用いた光学フィルタ。
13)
上記12)記載の光学フィルタを使用したプラズマディスプレイパネル。
The cyanine compound as described in 1) above.
9)
The cyanine compound according to any one of 1) to 8) above, which has maximum absorption in a wavelength range of 400 nm to 1100 nm in methanol.
10)
The light absorber using the cyanine compound as described in any one of said 1) -9).
11)
The light absorber according to 10) above, which is for near infrared absorption and / or for improving image characteristics.
12)
An optical filter using the light absorbent as described in 10) or 11) above.
13)
A plasma display panel using the optical filter described in 12) above.

本発明のシアニン化合物は、アンチモン及び砒素等の重金属を含まず、劇物に該当せず、400nm〜1100nmのモル吸光係数が高く、耐熱性、耐光性に優れ、特にメチルエチルケトン等の溶媒に対する溶解性が高く、加工性に優れている。本発明の光吸収剤及びそれを用いた光学フィルタは、アンチモン等の重金属を含有せず、耐熱性に極めて優れており熱による分解反応を起こしにくい。この様な特徴を有している本発明の光学フィルタは、例えば、断熱フィルムやサングラスのような赤外線カット用に適し、特に、プラズマディスプレイ用の近赤外線吸収フィルタや画像特性改善用のフィルタとして好適である。   The cyanine compound of the present invention does not contain heavy metals such as antimony and arsenic, does not correspond to a deleterious substance, has a high molar extinction coefficient of 400 nm to 1100 nm, is excellent in heat resistance and light resistance, and is particularly soluble in solvents such as methyl ethyl ketone. And high workability. The light absorber of the present invention and the optical filter using the same do not contain heavy metals such as antimony, are extremely excellent in heat resistance, and hardly undergo thermal decomposition reactions. The optical filter of the present invention having such characteristics is suitable for infrared cut such as a heat insulating film or sunglasses, and particularly suitable as a near infrared absorption filter for plasma display or a filter for improving image characteristics. It is.

以下、本発明を詳細に説明する。本発明のシアニン化合物はトリス(ハロゲノアルキルスルホニル)メチドアニオンの塩であり、上記一般式(1)[式中、Q、Qはそれぞれ独立に置換基を有していてもよい含窒素縮合複素環を形成し、R、Rはそれぞれ独立に置換基を有していてもよいアルキル基又は置換基を有していてもよいアルケニル基を示し、Dはモノ、ジ又はトリカルボシアニンを形成するための連結基を示し、Xはトリス(ハロゲノアルキルスルホニル)メチドアニオンを示す]で表される。 Hereinafter, the present invention will be described in detail. The cyanine compound of the present invention is a salt of a tris (halogenoalkylsulfonyl) methide anion, and the above general formula (1) [wherein Q 1 and Q 2 are each independently a nitrogen-containing condensed complex which may have a substituent. A ring is formed, R 1 and R 2 each independently represents an optionally substituted alkyl group or an optionally substituted alkenyl group, and D represents mono-, di- or tricarbocyanine. Represents a linking group for forming, and X represents a tris (halogenoalkylsulfonyl) methide anion].

トリス(ハロゲノアルキルスルホニル)メチドアニオンにおけるハロゲノアルキル基としては、同一でも異なっていてもよく、置換基を有していてもよい直鎖、分岐鎖又は環状のハロゲノアルキル基が挙げられ、好ましくは炭素数が1〜36であり、更に好ましくは置換基を有していてもよい直鎖ハロゲノアルキル基で炭素数が1〜10であるものであり、最も好ましくは無置換の炭素数が1〜4の直鎖ハロゲノアルキル基である。該ハロゲノアルキル基のハロゲン原子とは、同一でも異なっていてもよく置換位置も特に限定されず、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、フッ素原子、塩素原子、臭素原子が好ましく、フッ素原子が更に好ましい。ハロゲノアルキル基としては、例えば、トリフルオロメチル基、ジフルオロメチル基、モノフルオロメチル基、ジクロロメチル基、モノクロロメチル基、ジブロモメチル基、ジフルオロクロロメチル基、ペンタフルオロエチル基、テトラフルオロエチル基、トリフルオロエチル基、トリフルオロクロロエチル基、ジフルオロエチル基、モノフルオロエチル基、トリフルオロヨードエチル基、ヘプタフルオロプロピル基、ヘキサフルオロプロピル基、ペンタフルオロプロピル基、テトラフルオロプロピル基、トリフルオロプロピル基、ジフルオロプロピル基、モノフルオロプロピル基、ペルフルオロブチル基、ペルフルオロヘキシル基、ペルフルオロオクチル基、ペルフルオロオクチルエチル基、ペンタフルオロイソプロピル基、ヘプタフルオロイソプロピル基、ペルフルオロ−3−メチルブチル基、ペルフルオロ−3−メチルヘキシル基等が挙げられ、トリフルオロメチル基が好ましい。トリス(ハロゲノアルキルスルホニル)メチドアニオンとしてはトリス(トリフルオロメチルスルホニル)メチドアニオンが好ましい。   The halogenoalkyl group in the tris (halogenoalkylsulfonyl) methide anion may be the same or different and includes a linear, branched or cyclic halogenoalkyl group which may have a substituent, and preferably has a carbon number. 1 to 36, more preferably a linear halogenoalkyl group which may have a substituent and having 1 to 10 carbon atoms, most preferably an unsubstituted carbon atom having 1 to 4 carbon atoms. A straight-chain halogenoalkyl group. The halogen atom of the halogenoalkyl group may be the same or different, and the substitution position is not particularly limited, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and a fluorine atom, a chlorine atom and a bromine atom are preferable. Further, a fluorine atom is more preferable. Examples of halogenoalkyl groups include trifluoromethyl, difluoromethyl, monofluoromethyl, dichloromethyl, monochloromethyl, dibromomethyl, difluorochloromethyl, pentafluoroethyl, tetrafluoroethyl, Fluoroethyl group, trifluorochloroethyl group, difluoroethyl group, monofluoroethyl group, trifluoroiodoethyl group, heptafluoropropyl group, hexafluoropropyl group, pentafluoropropyl group, tetrafluoropropyl group, trifluoropropyl group, Difluoropropyl group, monofluoropropyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, perfluorooctylethyl group, pentafluoroisopropyl group, heptafluor Isopropyl, perfluoro-3-methylbutyl group, a perfluoro-3-methylhexyl group and the like, a trifluoromethyl group is preferable. The tris (halogenoalkylsulfonyl) methide anion is preferably a tris (trifluoromethylsulfonyl) methide anion.

上記式(1)におけるQ、Qが形成する含窒素縮合複素環としては特に限定されないが、例えば、ベンゾチアゾール環化合物、ベンゾオキサゾール環化合物又は上記の式(2)〜式(6)[式中、RはR、Rと同じ意味を示し、Rはハロゲン原子、アルキル基、アルコキシ基又はニトロ基を示し、pは0〜2の整数を示す]から選ばれる1種の複素環化合物が挙げられる。
が形成する含窒素縮合複素環の場合はそれに対応する構造式に読み替えるものとする。
Although it does not specifically limit as a nitrogen-containing condensed heterocyclic ring which Q < 1 >, Q < 2 > in said Formula (1) forms, For example, a benzothiazole ring compound, a benzoxazole ring compound, or said Formula (2)-Formula (6) [ In the formula, R represents the same meaning as R 1 and R 2 , R 3 represents a halogen atom, an alkyl group, an alkoxy group or a nitro group, and p represents an integer of 0 to 2]. A ring compound is mentioned.
For nitrogen-containing condensed heterocyclic ring Q 2 forms to be replaced by a structural formula corresponding thereto.

上記R、R、Rの置換基を有していてもよいアルキル基におけるアルキル基としては炭素数1〜20のアルキル基が挙げられ、好ましくは炭素数1〜5のアルキル基が挙げられ、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−アミル基、i−アミル基、t−アミル基等が挙げられる。該置換基としては3〜6員環の飽和複素環基(例えば、テトラヒドロフリル基等)、アルコキシ基を有していてもよいフェニル基、カルバモイル基、アルコキシ基(例えば、メトキシ基、エトキシ基、n−ブトキシ基等)、アルコキシアルコキシ基(例えば、エトキシエトキシ基、メトキシエトキシ基、メトキシメトキシ基等)等が挙げられる。
R、R、Rとしては置換基を有していてもよい炭素数1〜20のアルキル基、置換基を有していてもよい炭素数7〜20のアラルキル基、炭素数3〜20のアルコキシアルキル基、炭素数4〜20のアルコキシアルコキシアルキル基が挙げられ、メチル基、n−ブチル基、メトキシエチル基、n−ブトキシエチル基、カルバモイル基、フェネチル基又はp−(イソプロポキシ)フェネチル基等が好ましい。
Examples of the alkyl group in the alkyl group which may have a substituent of R, R 1 and R 2 include an alkyl group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 5 carbon atoms. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, n-amyl group, i-amyl group, t-amyl group, etc. Can be mentioned. Examples of the substituent include a 3- to 6-membered saturated heterocyclic group (for example, a tetrahydrofuryl group), a phenyl group optionally having an alkoxy group, a carbamoyl group, an alkoxy group (for example, a methoxy group, an ethoxy group, n-butoxy group, etc.), alkoxyalkoxy groups (for example, ethoxyethoxy group, methoxyethoxy group, methoxymethoxy group, etc.) and the like.
As R, R 1 and R 2 , an alkyl group having 1 to 20 carbon atoms which may have a substituent, an aralkyl group having 7 to 20 carbon atoms which may have a substituent, and 3 to 20 carbon atoms And an alkoxyalkoxyalkyl group having 4 to 20 carbon atoms, such as a methyl group, an n-butyl group, a methoxyethyl group, an n-butoxyethyl group, a carbamoyl group, a phenethyl group or p- (isopropoxy) phenethyl. Groups etc. are preferred.

R、R、Rの置換基を有していてもよいアルケニル基としては炭素数2〜20のアルケニル基が挙げられ、好ましくは無置換の炭素数2〜5のアルケニル基が挙げられ、例えば、アリル基が挙げられる。 Examples of the alkenyl group which may have a substituent of R, R 1 and R 2 include an alkenyl group having 2 to 20 carbon atoms, preferably an unsubstituted alkenyl group having 2 to 5 carbon atoms, For example, an allyl group is mentioned.

式(2)〜式(6)のRにおけるハロゲン原子としては、フッ素原子、塩素原子又は臭素原子等が挙げられ、好ましくは塩素原子である。
式(2)〜式(6)のRにおけるアルキル基としては、R、R、Rの置換基を有していてもよいアルキル基におけるアルキル基と同様な基が挙げられる。
式(2)〜式(6)のRにおけるアルコキシ基としては、上記のR、R、Rの置換基を有していてもよいアルキル基におけるアルキル基が酸素原子と結合した基が挙げられる。
式(2)〜式(6)においてRの置換数Pは0〜2であり、置換基Rが存在する場合、その置換位置は特に限定されない。
As a halogen atom in R < 3 > of Formula (2)-Formula (6), a fluorine atom, a chlorine atom, a bromine atom, etc. are mentioned, Preferably it is a chlorine atom.
Examples of the alkyl group in R 3 of the formulas (2) to (6) include the same groups as the alkyl groups in the alkyl group which may have a substituent of R, R 1 , or R 2 .
As an alkoxy group in R < 3 > of Formula (2)-Formula (6), the group which the alkyl group in the alkyl group which may have a substituent of said R, R < 1 >, R < 2 > couple | bonded with the oxygen atom is mentioned. Can be mentioned.
In Formula (2) to Formula (6), the substitution number P of R 3 is 0 to 2, and when the substituent R 3 is present, the substitution position is not particularly limited.

前記式(1)におけるDとしてのモノ、ジ又はトリカルボシアニンを形成する為の連結基とは、上記式(8)〜式(12)[式中、Yは水素原子、ハロゲン原子、フェニル基、ジフェニルアミノ基又は炭素数1〜4のアルキル基を示し、*は結合部位を示す]から選ばれる1種の基が好ましい。   The linking group for forming mono, di or tricarbocyanine as D in the formula (1) is the above formula (8) to the formula (12) [wherein Y is a hydrogen atom, a halogen atom, a phenyl group. And a diphenylamino group or an alkyl group having 1 to 4 carbon atoms, and * represents a binding site].

式(8)〜式(12)のYにおけるハロゲン原子とは、フッ素原子、塩素原子、臭素原子等が挙げられ、炭素数1〜4のアルキル基とはメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基等が挙げられる。Yとして好ましくは水素原子、塩素原子又はフェニル基が挙げられる。   Examples of the halogen atom in Y in the formulas (8) to (12) include a fluorine atom, a chlorine atom, and a bromine atom. The alkyl group having 1 to 4 carbon atoms includes a methyl group, an ethyl group, and an n-propyl group. , I-propyl group, n-butyl group, i-butyl group, t-butyl group and the like. Y is preferably a hydrogen atom, a chlorine atom or a phenyl group.

本発明のシアニン化合物としては、プラズマディスプレイパネル等における近赤外吸収用、画像特性改善の点からメタノール中400nm〜1100nmの波長域に最大吸収を有する化合物が好ましい。   As the cyanine compound of the present invention, a compound having a maximum absorption in a wavelength region of 400 nm to 1100 nm in methanol is preferable from the viewpoint of near-infrared absorption in a plasma display panel and the like and improvement of image characteristics.

上記式(1)で表されるシアニン化合物は種々の方法で製造されるが、例えば、特許文献3に記載の方法を参考に次の方法で製造することができる。
式(13)
The cyanine compound represented by the above formula (1) is produced by various methods. For example, it can be produced by the following method with reference to the method described in Patent Document 3.
Formula (13)

Figure 2008088426
Figure 2008088426

[式中、Qは前記Q、Qと同じ意味を示し、Rも前記と同じ意味を示す]で表される化合物2モルと、式(14)又は式(15) [Wherein Q has the same meaning as Q 1 and Q 2, and R also has the same meaning as described above] 2 mol of the compound represented by formula (14) or formula (15)

Figure 2008088426
Figure 2008088426

[式中、Dは前記と同じ意味を示す] [Wherein D represents the same meaning as described above]

Figure 2008088426
Figure 2008088426

[式中、Dは前記と同じ意味を示す] [Wherein D represents the same meaning as described above]

で表される化合物1モル及びトリス(ハロゲノアルキルスルホニル)メチド酸又はそのナトリウム塩、カリウム塩等の塩1モルを、必要に応じ酢酸ナトリウム、酢酸カリウム、ピペラジン、ピペリジン等の塩基触媒の存在下で、無水酢酸あるいは無水酢酸と氷酢酸の混合物のような脱水性の有機溶媒中で、例えば、50〜140℃で通常10分〜10時間、好ましくは30分〜120分加熱し縮合させ対称シアニン化合物(式(1)におけるQ、Rが、Q、Rとそれぞれ同様である化合物)を合成することができる。 1 mol of the compound represented by the above formula and 1 mol of tris (halogenoalkylsulfonyl) methide acid or a salt thereof such as sodium salt or potassium salt thereof, if necessary, in the presence of a base catalyst such as sodium acetate, potassium acetate, piperazine, piperidine or the like. In a dehydrating organic solvent such as acetic anhydride or a mixture of acetic anhydride and glacial acetic acid, for example, the mixture is heated and condensed at 50 to 140 ° C. for usually 10 minutes to 10 hours, preferably 30 minutes to 120 minutes. (A compound in which Q 1 and R 1 in Formula (1) are the same as Q 2 and R 2 , respectively) can be synthesized.

非対称のシアニン化合物は、同一の式(13)の化合物2モルの代わりに、Q,Rが異なる式(13)の化合物各1モルを用いて同様に合成することができる。   An asymmetric cyanine compound can be synthesized in the same manner by using 1 mol of each compound of the formula (13) having different Q and R instead of 2 mol of the same compound of the formula (13).

あるいは、式(16)又は式(17)の様なアルデヒド体   Alternatively, an aldehyde compound represented by formula (16) or formula (17)

Figure 2008088426
Figure 2008088426

[式中、Q、R、Yは前記と同じ意味を示す]
1モルと、同一又は異なる上記式(13)の化合物各1モルとトリス(ハロゲノアルキルスルホニル)メチドの塩1モルを、必要に応じ酢酸ナトリウム、酢酸カリウム、ピペラジン、ピペリジン等の塩基触媒の存在下、無水酢酸あるいは無水酢酸と氷酢酸の混合物のような脱水性の有機溶媒中で、例えば、50〜140℃で通常10分〜12時間、好ましくは10分〜60分加熱し縮合させ、対称又は非対称のシアニン化合物を合成することもできる。
[Wherein Q, R and Y have the same meaning as described above]
1 mol each of the same or different compound of formula (13) and 1 mol of tris (halogenoalkylsulfonyl) methide in the presence of a base catalyst such as sodium acetate, potassium acetate, piperazine, piperidine, etc., if necessary In a dehydrating organic solvent such as acetic anhydride or a mixture of acetic anhydride and glacial acetic acid, for example, the mixture is heated and condensed at 50 to 140 ° C. for usually 10 minutes to 12 hours, preferably 10 minutes to 60 minutes. Asymmetric cyanine compounds can also be synthesized.

又、後記の実施例に示すように、モノカルボシアニン化合物は上記式(13)の化合物、オルトエステル化合物及びトリス(ハロゲノアルキルスルホニル)メチド酸から製造することもできる。   Moreover, as shown in the Example below, the monocarbocyanine compound can also be produced from the compound of the above formula (13), an ortho ester compound and tris (halogenoalkylsulfonyl) methide acid.

反応生成物は必要に応じてメタノ−ル、エタノ−ル或いはその他の有機溶媒から再結晶して精製してもよい。   The reaction product may be purified by recrystallization from methanol, ethanol or other organic solvent, if necessary.

次に、本発明のシアニン化合物を下記に例示する。ただし、本発明はこれらに限定されるものではない。   Next, the cyanine compound of this invention is illustrated below. However, the present invention is not limited to these.

Figure 2008088426
Figure 2008088426

Figure 2008088426
Figure 2008088426

Figure 2008088426
Figure 2008088426

Figure 2008088426
Figure 2008088426

Figure 2008088426
Figure 2008088426

Figure 2008088426
Figure 2008088426

上記式(1)で表される本発明のシアニン化合物のうち、より好ましいものは、上記式(201)で表される化合物である。
上記式(201)中、Qが形成する含窒素縮合複素環は、上記式(202)乃至(204)から選ばれる1種であり、R及びRはそれぞれ独立に、C1−C5アルキル基又はC1−C5アルコキシC1−C3アルキル基を表し、Rは水素原子、C1−C5アルキル基又はフェニル基を表し、Yはハロゲン原子又はフェニル基を表し、Xはトリス(トリフルオロメチルスルホニル)メチドアニオンを表す。
Of the cyanine compounds of the present invention represented by the above formula (1), a compound represented by the above formula (201) is more preferable.
In the above formula (201), the nitrogen-containing fused heterocyclic ring formed by Q 2 is one selected from the above formulas (202) to (204), and R 4 and R 5 are each independently C1-C5 alkyl. Group represents a C1-C5 alkoxy C1-C3 alkyl group, R 6 represents a hydrogen atom, a C1-C5 alkyl group or a phenyl group, Y represents a halogen atom or a phenyl group, and X represents tris (trifluoromethylsulfonyl). ) Represents the metide anion.

上記式(201)におけるR及びRがC1−C5アルキル基の場合、該アルキル基は、直鎖、分岐鎖及び環状のいずれでもよいが、直鎖又は分岐鎖アルキルが好ましい。分岐鎖アルキルの場合にはC3−C5アルキル基が好ましく、窒素原子が置換した炭素原子以外の炭素原子が分岐しているものの方がより好ましい。
直鎖C1−C5アルキル基の具体例としては、メチル、エチル、n−プロピル、n−ブチル及びn−ペンチル(アミル)が挙げられ、n−ブチルが好ましい。
分岐鎖C3−C5アルキル基の具体例としては、イソプロピル、イソブチル、sec−ブチル、t−ブチル、1−メチルブチル、2−メチルブチル、イソアミル、t−アミル、1,2−ジメチルプロピル、1,1−ジメチルプロピル等が挙げられ、イソブチル、2−メチルブチル、イソアミルが好ましい。
環状アルキルとしては、C3−C5環状アルキル基が好ましく、その具体例としては、シクロプロピル、シクロブチル及びシクロペンチルが挙げられる。
及びRがC3−C5アルコキシC1−C3アルキル基の場合、アルコキシ部分及びアルキル部分の両者は、直鎖、分岐鎖及び環状のいずれの構造を有してもよいが、両者が共に直鎖であるものが好ましい。好ましい具体例としては、プロポキシメチル、ブトキシメチル、ペントキシメチル、プロポキシエチル、ブトキシエチル、ペントキシエチル、プロポキシプロピル、ブトキシプロピル、ペントキシプロピルが挙げられ、より好ましくはプロポキシエチル、ブトキシエチル、ペントキシエチルであり、さらに好ましくはブトキシエチルである。
When R 4 and R 5 in the above formula (201) are a C1-C5 alkyl group, the alkyl group may be linear, branched or cyclic, but is preferably linear or branched alkyl. In the case of branched chain alkyl, a C3-C5 alkyl group is preferred, and one having a branched carbon atom other than the carbon atom substituted with a nitrogen atom is more preferred.
Specific examples of the straight chain C1-C5 alkyl group include methyl, ethyl, n-propyl, n-butyl and n-pentyl (amyl), and n-butyl is preferable.
Specific examples of the branched C3-C5 alkyl group include isopropyl, isobutyl, sec-butyl, t-butyl, 1-methylbutyl, 2-methylbutyl, isoamyl, t-amyl, 1,2-dimethylpropyl, 1,1- Examples thereof include dimethylpropyl, and isobutyl, 2-methylbutyl, and isoamyl are preferable.
As the cyclic alkyl, a C3-C5 cyclic alkyl group is preferable, and specific examples thereof include cyclopropyl, cyclobutyl and cyclopentyl.
When R 4 and R 5 are C3-C5 alkoxy C1-C3 alkyl groups, both the alkoxy moiety and the alkyl moiety may have any structure of straight chain, branched chain and cyclic, but both are straight Those that are chains are preferred. Preferable specific examples include propoxymethyl, butoxymethyl, pentoxymethyl, propoxyethyl, butoxyethyl, pentoxyethyl, propoxypropyl, butoxypropyl, pentoxypropyl, more preferably propoxyethyl, butoxyethyl, pentoxy. Ethyl, more preferably butoxyethyl.

上記式(201)において、Rは水素原子、C1−C5アルキル基又はフェニル基を表す。これらはいずれも好ましいが、水素原子、C1−C4アルキル基又はフェニル基がより好ましい。
がC1−C5アルキル基の場合、該アルキル基は、直鎖、分岐鎖及び環状のいずれでもよいが、直鎖又は分岐鎖アルキルが好ましい。これらの具体例及び好ましいもの等については、上記R及びRで記載したものと同じでよいが、Rが分岐鎖アルキルの場合には、上記の記載のうち、C3−C4アルキル基がより好ましい。
In the above formula (201), R 6 represents a hydrogen atom, a C1-C5 alkyl group or a phenyl group. These are all preferable, but a hydrogen atom, a C1-C4 alkyl group or a phenyl group is more preferable.
When R 6 is a C1-C5 alkyl group, the alkyl group may be linear, branched or cyclic, but is preferably linear or branched alkyl. These specific examples and preferred ones may be the same as those described for R 4 and R 5 above. However, when R 6 is a branched alkyl, among the above descriptions, the C3-C4 alkyl group is More preferred.

上記式(201)中、Yはハロゲン原子又はフェニル基を表す。これらはいずれも好ましいが、ハロゲン原子がより好ましい。ハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子、塩素原子及び臭素原子が好ましく、塩素原子がより好ましい。   In said formula (201), Y represents a halogen atom or a phenyl group. These are all preferable, but a halogen atom is more preferable. Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. A fluorine atom, a chlorine atom and a bromine atom are preferable, and a chlorine atom is more preferable.

上記式(201)において、Qが形成する含窒素縮合複素環は、上記式(202)乃至(204)から選ばれる1種である。これらはいずれも好ましいが、より好ましくはQが式(202)又は(203)の含窒素縮合複素環を形成したものであり、カルボシアニンを形成する両端の含窒素縮合複素環が、それぞれ異なる構造式を有するものがよい。このような構成とすることにより、有機溶媒への溶解性をより向上させることができる。
式(201)中、二重結合の末端に記載した炭素原子「C」及びRが結合した窒素原子は、式(202)乃至(204)中に記載した炭素原子「C」及びRが結合した窒素原子にそれぞれ相当する。
従って、式(202)乃至(204)中、Rは上記式(201)と好ましいもの等を含めて同じ意味を有する。
In the above formula (201), the nitrogen-containing fused heterocycle formed by Q 2 is one selected from the above formulas (202) to (204). All of these are preferred, but more preferably, Q 2 forms a nitrogen-containing fused heterocycle of formula (202) or (203), and the nitrogen-containing fused heterocycles at both ends forming carbocyanine are different from each other. Those having a structural formula are preferred. By setting it as such a structure, the solubility to an organic solvent can be improved more.
In the formula (201), the nitrogen atom to which carbon atoms "C" and R 5 described bonded to the terminal double bond, has the formula (202) to (204) carbon atom "C" and R 5 as described in Each corresponds to a bonded nitrogen atom.
Therefore, in the formulas (202) to (204), R 5 has the same meaning as that of the formula (201) and preferred ones.

上記式(203)中、Rは、水素原子、ハロゲン原子又はニトロ基を表す。これらはいずれも好ましいが、より好ましくは水素原子又はハロゲン原子である。
ハロゲン原子の具体例は、好ましいもの等を含めて、上記式(201)におけるYがハロゲン原子である場合と同じでよい。
In the above formula (203), R 7 represents a hydrogen atom, a halogen atom or a nitro group. These are all preferred, but more preferably a hydrogen atom or a halogen atom.
Specific examples of the halogen atom, including preferred ones, may be the same as those in the case where Y in the above formula (201) is a halogen atom.

なお、上記式(201)と式(1)との対比から明らかなように、上記式(201)において、式(1)のDで表される連結基は、炭素数7に相当し、トリカルボシアニンを形成している。これを図示したものが下記式(207)である。式(207)中、1乃至7の数字は、トリカルボシアニンを形成している7個の炭素原子にそれぞれ付与した。 As is clear from the comparison between the above formula (201) and the formula (1), in the above formula (201), the linking group represented by D in the formula (1) corresponds to 7 carbon atoms, Carbocyanine is formed. This is illustrated in the following formula (207). In the formula (207), the numbers 1 to 7 were respectively assigned to 7 carbon atoms forming tricarbocyanine.

Figure 2008088426
Figure 2008088426

上記式(1)におけるDで表される連結基の炭素数は、トリカルボシアニンに対応する数、すなわち7個が最大であり、この構成とすることにより、メタノール中において400nm〜1100nmの波長域に最大吸収を有する本発明のシアニン化合物が得られる。これ以上の炭素数、例えば炭素数が9となるテトラカルボシアニン等の構成にすると、上記の範囲の波長域に最大吸収が得られないため、本発明には含まれない。 The number of carbons of the linking group represented by D in the above formula (1) is the number corresponding to tricarbocyanine, that is, 7 is the maximum. By adopting this configuration, the wavelength range of 400 nm to 1100 nm in methanol. Thus, the cyanine compound of the present invention having maximum absorption is obtained. If a structure such as tetracarbocyanine having 9 or more carbon atoms, for example, 9 carbon atoms is used, maximum absorption cannot be obtained in the above-mentioned wavelength range, and therefore it is not included in the present invention.

以下に、上記式(201)で表される化合物の具体例として化合物49乃至57を以下に例示する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, compounds 49 to 57 are exemplified as specific examples of the compound represented by the formula (201). However, the present invention is not limited to these.

Figure 2008088426
Figure 2008088426

本発明のシアニン化合物は、後記の実施例にその特性を示すように、光吸収剤、特にフィルタ用近赤外線吸収色素、不要な発光を吸収し色純度を向上させる画像特性改善用色素等の光吸収剤として使用することができ、該光吸収剤も本発明に含まれる。光情報記録媒体に用いることもできる。   The cyanine compound of the present invention is a light absorber, particularly a near infrared absorbing dye for filters, an image characteristic improving dye that absorbs unnecessary light emission and improves color purity, as shown in the examples below. It can be used as an absorber, and the light absorber is also included in the present invention. It can also be used for an optical information recording medium.

本発明のシアニン化合物を用いた光吸収剤を使用した光学フィルタも本発明に含まれる。該光学フィルタは、本発明のシアニン化合物を含有する樹脂層を基材上に設けたものでも、又、基材自体が本発明のシアニン化合物を含有する樹脂組成物(又はその硬化物)からなる層であってもよい。該基材としては、一般に光学フィルタに使用し得るものであれば特に制限されないが、通常、樹脂製の材が使用される。層の厚みは通常0.1μm〜10mm程度であるが、近赤外線カット率等の目的に応じて適宜、決定され得る。   An optical filter using a light absorber using the cyanine compound of the present invention is also included in the present invention. The optical filter may be one in which a resin layer containing the cyanine compound of the present invention is provided on a substrate, or the substrate itself is made of a resin composition (or a cured product thereof) containing the cyanine compound of the present invention. It may be a layer. The substrate is not particularly limited as long as it can be generally used for an optical filter, but a resin material is usually used. The thickness of the layer is usually about 0.1 μm to 10 mm, but can be appropriately determined according to the purpose such as the near infrared cut rate.

又、用いるシアニン化合物の含有率も目的とする近赤外線カット率に応じて適宜、決定され得る。
用い得る該樹脂製の材としては、例えば、ポリエチレン、ポリスチレン、ポリアクリル酸、ポリアクリル酸エステル、ポリ酢酸ビニル、ポリアクリロニトリル、ポリ塩化ビニル、ポリフッ化ビニル等のビニル化合物、及びそれらのビニル化合物の付加重合体、ポリメタクリル酸、ポリメタクリル酸エステル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリシアン化ビニリデン、フッ化ビニリデン/トリフルオロエチレン共重合体、フッ化ビニリデン/テトラフルオロエチレン共重合体、シアン化ビニリデン/酢酸ビニル共重合体等のビニル化合物又はフッ素系化合物の共重合体、ポリトリフルオロエチレン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン等のフッ素を含む樹脂、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリウレタン、ポリペプチド、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ポリオキシメチレン等のポリエーテル、エポキシ樹脂、ポリビニルアルコール、ポリビニルブチラール等が挙げられる。
In addition, the content of the cyanine compound to be used can be appropriately determined according to the target near-infrared cut rate.
Examples of the resin material that can be used include polyethylene compounds such as polyethylene, polystyrene, polyacrylic acid, polyacrylate esters, polyvinyl acetate, polyacrylonitrile, polyvinyl chloride, and polyvinyl fluoride, and those vinyl compounds. Addition polymer, polymethacrylic acid, polymethacrylic ester, polyvinylidene chloride, polyvinylidene fluoride, poly (vinylidene fluoride), vinylidene fluoride / trifluoroethylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, vinylidene cyanide / Vinyl compounds such as vinyl acetate copolymers or copolymers of fluorine compounds, fluorine-containing resins such as polytrifluoroethylene, polytetrafluoroethylene, polyhexafluoropropylene, polyamides such as nylon 6 and nylon 66 Polyimides, polyurethanes, polypeptides, polyesters such as polyethylene terephthalate, polycarbonate, polyether polyoxymethylene or the like, epoxy resins, polyvinyl alcohol, polyvinyl butyral, and the like.

本発明の光学フィルタを作成する方法としては特に限定されるものではないが、例えば、次のような、それ自体公知の方法が利用できる。
(1)樹脂に本発明のシアニン化合物を混練し、加熱成形して樹脂板又はフィルムを作製する方法、
(2)本発明のシアニン化合物と樹脂モノマー又は樹脂モノマーの予備重合体を重合触媒の存在下にキャスト重合し、樹脂板又はフィルムを作製する方法、
(3)本発明のシアニン化合物を含有する塗料を作製し、透明樹脂板、透明フィルム、又は透明ガラス板にコーティングする方法、
(4)本発明のシアニン化合物及び樹脂(接着剤)を含有させた組成物を用いて、合わせ樹脂板、合わせ樹脂フィルム、又は合わせガラス板を作製する方法、
等である。
The method for producing the optical filter of the present invention is not particularly limited. For example, the following methods known per se can be used.
(1) A method of preparing a resin plate or film by kneading the cyanine compound of the present invention into a resin and thermoforming it,
(2) A method for producing a resin plate or film by cast polymerization of the cyanine compound of the present invention and a resin monomer or a prepolymer of a resin monomer in the presence of a polymerization catalyst,
(3) A method of preparing a coating material containing the cyanine compound of the present invention and coating the transparent resin plate, transparent film, or transparent glass plate,
(4) A method for producing a laminated resin plate, a laminated resin film, or a laminated glass plate using a composition containing the cyanine compound of the present invention and a resin (adhesive),
Etc.

(1)の作製方法としては、用いる樹脂によって加工温度、フィルム化(樹脂板化)条件等が多少異なるが、通常、本発明のシアニン化合物を基材樹脂の粉体又はペレットに添加し、150〜350℃に加熱、溶解させた後、成形して樹脂板を作製する方法あるいは押し出し機によりフィルム化(樹脂板化)する方法等が挙げられる。該シアニン化合物添加量は、作製する樹脂板又はフィルムの厚み、吸収強度、可視光透過率等によって異なるが、通常、基材樹脂の質量に対して0.01〜30質量%程度、好ましくは0.03〜15質量%程度使用される。   As the production method of (1), the processing temperature, filming (resin plate) conditions, etc. are slightly different depending on the resin to be used. Usually, the cyanine compound of the present invention is added to the base resin powder or pellet, and 150 Examples thereof include a method of heating and dissolving at ˜350 ° C. and then molding to prepare a resin plate, or a method of forming a film (resin plate) with an extruder. The amount of the cyanine compound added varies depending on the thickness, absorption strength, visible light transmittance, etc. of the resin plate or film to be produced, but is usually about 0.01 to 30% by mass, preferably 0, based on the mass of the base resin. About 0.03 to 15% by mass is used.

(2)の方法は、本発明のシアニン化合物と、樹脂モノマー又は樹脂モノマーの予備重合体を重合触媒の存在下に型内に注入し、反応させて硬化させるか、又は、金型に流し込んで型内で硬い製品となるまで固化させて成形する。多くの樹脂がこの方法で成形可能であり、その様な樹脂としては、(メタ)アクリル樹脂、ジエチレングリコールビス(アリルカーボネート)樹脂、エポキシ樹脂、フェノール−ホルムアルデヒド樹脂、ポリスチレン樹脂、シリコン樹脂等が挙げられる。その中でも、硬度、耐熱性、耐薬品性に優れたアクリルシートが得られるメタクリル酸メチルの塊状重合によるキャスティング法が好ましい。
重合触媒としては公知のラジカル熱重合開始剤が利用でき、例えば、ベンゾイルパーオキシド、p−クロロベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。その使用量は混合物の総量に対して、一般的に0.01〜5質量%である。熱重合における加熱温度は、通常40〜200℃であり、重合時間は通常30分〜8時間程度である。又、熱重合以外に、光重合開始剤や増感剤を添加して光重合する方法も採用できる。
In the method (2), the cyanine compound of the present invention and a resin monomer or a prepolymer of a resin monomer are injected into a mold in the presence of a polymerization catalyst and allowed to react and harden or poured into a mold. Solidify and mold until hard product in mold. Many resins can be molded by this method, and examples of such resins include (meth) acrylic resin, diethylene glycol bis (allyl carbonate) resin, epoxy resin, phenol-formaldehyde resin, polystyrene resin, and silicon resin. . Among them, the casting method by bulk polymerization of methyl methacrylate, which can obtain an acrylic sheet excellent in hardness, heat resistance, and chemical resistance, is preferable.
As the polymerization catalyst, known radical thermal polymerization initiators can be used, for example, peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, diisopropyl peroxycarbonate, and azo compounds such as azobisisobutyronitrile. It is done. The amount used is generally 0.01 to 5% by mass relative to the total amount of the mixture. The heating temperature in the thermal polymerization is usually 40 to 200 ° C., and the polymerization time is usually about 30 minutes to 8 hours. In addition to thermal polymerization, a method of photopolymerization by adding a photopolymerization initiator or a sensitizer can also be employed.

(3)の方法は、本発明のシアニン化合物をバインダー樹脂及び溶媒に溶解し塗料化する方法、該シアニン化合物を樹脂の存在下に微粒子化して分散し、水系塗料とする方法等がある。前者の方法では、例えば、脂肪族エステル樹脂、アクリル系樹脂、メラミン樹脂、ウレタン樹脂、芳香族エステル樹脂、ポリカーボネート樹脂、ポリビニル系樹脂、脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂、ポリビニルアルコール樹脂、ポリビニル変性樹脂等、又は、それらの共重合樹脂を用いる事ができる。   The method (3) includes a method in which the cyanine compound of the present invention is dissolved in a binder resin and a solvent to form a paint, and a method in which the cyanine compound is finely dispersed in the presence of the resin to form a water-based paint. In the former method, for example, aliphatic ester resin, acrylic resin, melamine resin, urethane resin, aromatic ester resin, polycarbonate resin, polyvinyl resin, aliphatic polyolefin resin, aromatic polyolefin resin, polyvinyl alcohol resin, polyvinyl modification Resins or the like or copolymer resins thereof can be used.

該溶媒としては、ハロゲン系、アルコール系、ケトン系、エステル系、脂肪族炭化水素系、芳香族炭化水素系、エーテル系の溶媒、又は、それらの混合溶媒を用いることができる。該シアニン化合物の濃度は、作製するコーティングの厚み、吸収強度、可視光透過率によって異なるが、バインダー樹脂に対して一般的に0.1〜30質量%程度である。
このようにして得られた塗料を透明樹脂フィルム、透明樹脂板、透明ガラス等の上にスピンコーター、バーコーター、ロールコーター、スプレー等でコーティングして近赤外線吸収フィルタを得ることができる。
As the solvent, a halogen-based, alcohol-based, ketone-based, ester-based, aliphatic hydrocarbon-based, aromatic hydrocarbon-based, ether-based solvent, or a mixed solvent thereof can be used. The concentration of the cyanine compound varies depending on the thickness of the coating to be produced, the absorption strength, and the visible light transmittance, but is generally about 0.1 to 30% by mass with respect to the binder resin.
The paint thus obtained can be coated on a transparent resin film, transparent resin plate, transparent glass or the like with a spin coater, bar coater, roll coater, spray or the like to obtain a near infrared absorption filter.

(4)の方法は、シリコン系、ウレタン系、アクリル系等の樹脂用、ポリビニルブチラール接着剤、エチレン−酢酸ビニル系接着剤等の合わせガラス用の公知の透明接着剤に、本発明のシアニン化合物を0.1〜30質量%程度添加した樹脂を用い、透明な樹脂板同士、樹脂板と樹脂フィルム、樹脂板とガラス、樹脂フィルム同士、樹脂フィルムとガラス、ガラス同士を接着することにより光学フィルタを作製する。
尚、それぞれの方法で混練・混合の際、紫外線吸収剤、可塑剤等の樹脂成形に用いる通常の添加剤を加えてもよい。
The method (4) can be applied to known transparent adhesives for laminated glass such as silicon-based, urethane-based, acrylic-based resins, polyvinyl butyral adhesives, ethylene-vinyl acetate adhesives, etc. Optical resin by adhering transparent resin plates, resin plates and resin film, resin plates and glass, resin films, resin films and glass, and glass. Is made.
In addition, when kneading and mixing by each method, usual additives used for resin molding such as an ultraviolet absorber and a plasticizer may be added.

本発明の光学フィルタ、特に近赤外線吸収用のフィルタは近赤外線吸収化合物として本発明のシアニン化合物のみを1種又は2種以上使用してもよいが、吸収波長域を広くするために、更にこれらの化合物以外の近赤外線吸収化合物を併用してもよい。併用し得る他の近赤外線吸収化合物としては、例えば、ジイモニウム系化合物、フタロシアニン系化合物、ニッケルジチオール錯体等の金属錯体化合物が挙げられる。これらの併用し得る他の近赤外線吸収化合物がカチオン系である場合、対アニオンは本発明のシアニン化合物と同じトリス(ハロゲノアルキルスルホニル)メチドアニオンであってもよい。
他の近赤外線吸収化合物としては、特にジイモニウム系化合物が好ましく、更に、このジイモニウム系化合物の対アニオンがトリス(ハロゲノアルキルスルホニル)メチドアニオンであるものが好ましい。
The optical filter of the present invention, particularly the near-infrared absorbing filter, may use only one or two or more of the cyanine compounds of the present invention as a near-infrared absorbing compound. Near infrared absorbing compounds other than these compounds may be used in combination. Examples of other near-infrared absorbing compounds that can be used in combination include metal complex compounds such as diimonium compounds, phthalocyanine compounds, and nickel dithiol complexes. When these other near infrared ray absorbing compounds that can be used in combination are cationic, the counter anion may be the same tris (halogenoalkylsulfonyl) methide anion as the cyanine compound of the present invention.
As the other near-infrared absorbing compound, a diimonium compound is particularly preferable, and a counter anion of the diimonium compound is preferably a tris (halogenoalkylsulfonyl) methide anion.

又、併用しうる無機金属の近赤外線吸収化合物としては、例えば、金属銅又は硫化銅、酸化銅等の銅化合物、酸化亜鉛を主成分とする混合物、タングステン化合物、酸化チタンを主成分とする混合物等が挙げられる。   Examples of the inorganic infrared near-absorbing compound that can be used in combination include copper, copper sulfide, copper compounds such as copper oxide, a mixture containing zinc oxide as a main component, a tungsten compound, and a mixture containing titanium oxide as a main component. Etc.

又、光学フィルタの色調を変えるために、本発明のシアニン化合物以外の可視領域に吸収を持つ色素を加えてもよい。又、画像特性改善用色素のみを含有するフィルタを作製し、後で本発明の近赤外線吸収用のフィルタと貼り合わせ、一枚の画像特性改善及び近赤外吸収フィルタを得ることもできる。   In order to change the color tone of the optical filter, a dye having absorption in the visible region other than the cyanine compound of the present invention may be added. Alternatively, a filter containing only a dye for improving image characteristics can be prepared and later bonded to the near infrared absorption filter of the present invention to obtain a single image characteristic improvement and near infrared absorption filter.

本発明の近赤外線吸収用の光学フィルタをプラズマディスプレイの前面板に用いる場合には、可視光の透過率は高いほどよく、少なくとも40%以上、好ましくは50%以上の透過率が必要である。近赤外線のカット領域は好ましくは750〜1100nm、より好ましくは800〜1000nmであり、その領域の近赤外線の平均透過率が50%以下、より好ましくは30%以下、更に好ましくは20%以下、特に好ましくは10%以下になることが望ましい。
又、画像特性改善用としては、理想的な3原色の発光とは別のネオンの不要な光を吸収するために、波長580〜620nm付近にシャープな吸収をもつ化合物を使用することが好ましい。更に蛍光灯等の映りこみ等の対策としては490〜550nm、キセノンの発光を吸収するためには560〜580nmにシャープな吸収をもつ化合物を用いることで良好な画像特性改善用の光学フィルタが得られる。
When the near-infrared absorbing optical filter of the present invention is used for the front plate of a plasma display, the visible light transmittance is preferably as high as possible, and at least 40% or more, preferably 50% or more is required. The near infrared cut region is preferably 750 to 1100 nm, more preferably 800 to 1000 nm, and the average near infrared transmittance of the region is 50% or less, more preferably 30% or less, still more preferably 20% or less, particularly Preferably it is 10% or less.
In order to improve the image characteristics, it is preferable to use a compound having sharp absorption in the vicinity of a wavelength of 580 to 620 nm in order to absorb unnecessary neon light different from the ideal three primary colors. Furthermore, optical filters for improving image characteristics can be obtained by using a compound having sharp absorption at 490 to 550 nm as a countermeasure against reflection of fluorescent light, etc., and 560 to 580 nm for absorbing xenon emission. It is done.

近赤外線吸収用の本発明の光学フィルタは、ディスプレイの前面板に限らず、近赤外線をカットする必要があるフィルタフィルム、例えば、断熱フィルム、光学製品、サングラス等にも使用することが出来る。   The optical filter of the present invention for absorbing near infrared rays is not limited to the front plate of a display, but can also be used for filter films that need to cut near infrared rays, such as heat insulating films, optical products, and sunglasses.

本発明の光学フィルタはアンチモンや砒素を含有せず、環境に優しく、又、従来の過塩素酸イオン、ヘキサフルオロリン酸イオン又はテトラフルオロホウ酸イオンを含有する近赤外線吸収フィルタに比べ、以下に示すように耐熱及び耐湿熱安定性に優れている。更に、溶媒への溶解度も十分であり加工性にも優れている。特に、本発明の光学フィルタは耐熱、耐湿熱、耐光性において非常に優れており、熱による分解反応を起こしにくいため、可視部の着色がほとんど起こらない光学フィルタである。この様な特徴から、プラズマディスプレイ用の近赤外線吸収フィルタとして好適であり、本発明の光学フィルタを使用するプラズマディスプレイパネルも本発明に含まれる。   The optical filter of the present invention does not contain antimony or arsenic, and is environmentally friendly. Compared to conventional near-infrared absorbing filters containing perchlorate ions, hexafluorophosphate ions or tetrafluoroborate ions, As shown, it has excellent heat and moisture heat stability. Furthermore, the solubility in a solvent is sufficient and the processability is also excellent. In particular, the optical filter of the present invention is very excellent in heat resistance, moisture heat resistance, and light resistance, and hardly undergoes a decomposition reaction due to heat, so that the visible portion is hardly colored. From such characteristics, it is suitable as a near-infrared absorption filter for plasma display, and a plasma display panel using the optical filter of the present invention is also included in the present invention.

以下、実施例により本発明を更に具体的に説明する。尚、実施例中、部は特に限定しない限り質量部を、%は質量%をそれぞれ意味する。   Hereinafter, the present invention will be described more specifically with reference to examples. In Examples, “part” means “part by mass” unless otherwise specified, and “%” means “% by mass”.

実施例1
1,3,3−トリメチル−2−メチレンインドリン10.6部とオルトギ酸トリエチル14.8部、トリス(トリフルオロメタンスルホニル)メチド酸10.3部(3M社製)を無水酢酸75部中にて還流冷却下1時間加熱還流し、次いで室温まで冷却した後、この反応液を吸引濾過し不溶な不純物を除去した。この反応液に水100部を滴下し、沈殿した結晶を吸引濾過し、得られた結晶をメタノール40部で再結晶し、結晶をメタノール5部で洗浄し、水洗、乾燥して、前記化合物1を8.2部得た。ここで得られた化合物1の分光特性、分解温度及び溶解度は下記の通りであった。尚、分解温度としては、熱重量−示差熱分析(TG−DTA)による減量開始温度の値を示した。
最大吸収波長 544nm(メタノール中)
モル吸光係数 140,000(メタノール中)
分解温度 約278℃(TG−DTA)
又、各種溶媒における室温での溶解性は下記の通りであった。
メタノール 1.3%
メチルエチルケトン(MEK) 12.2%
シクロペンタノン 6.1%
Example 1
10.6 parts of 1,3,3-trimethyl-2-methyleneindoline, 14.8 parts of triethyl orthoformate, and 10.3 parts of tris (trifluoromethanesulfonyl) methido acid (manufactured by 3M) in 75 parts of acetic anhydride The mixture was heated to reflux for 1 hour under reflux and then cooled to room temperature, and then the reaction solution was filtered with suction to remove insoluble impurities. 100 parts of water was added dropwise to the reaction solution, the precipitated crystals were suction filtered, the obtained crystals were recrystallized with 40 parts of methanol, the crystals were washed with 5 parts of methanol, washed with water and dried, then the compound 1 Of 8.2 parts. The spectral characteristics, decomposition temperature, and solubility of Compound 1 obtained here were as follows. In addition, as a decomposition temperature, the value of the weight loss start temperature by thermogravimetric-differential thermal analysis (TG-DTA) was shown.
Maximum absorption wavelength 544nm (in methanol)
Molar extinction coefficient 140,000 (in methanol)
Decomposition temperature about 278 ° C (TG-DTA)
Moreover, the solubility at room temperature in various solvents was as follows.
Methanol 1.3%
Methyl ethyl ketone (MEK) 12.2%
Cyclopentanone 6.1%

実施例2
5−クロロ−1−(2−メトキシエチル)−3,3−ジメチル−2−メチレンインドリン15.7部と1,3,3−トリメチル−2−ホルミルメチレンインドリン10.6部、トリス(トリフルオロメタンスルホニル)メチド酸11.4部を無水酢酸50部と酢酸25部の混合溶媒中に仕込み、還流冷却下2時間加熱還流し、次いで室温まで冷却した後、水25部を加え、沈殿した結晶を吸引濾過し、得られた結晶をメタノール40部で再結晶し、結晶をメタノール5部で洗浄し、水洗、乾燥して、前記化合物9を18.3部得た。ここで得られた化合物9の分光特性及び分解温度は下記の通りであった。
最大吸収波長 550nm(メタノール中)
モル吸光係数 137,000(メタノール中)
分解温度 約276℃(TG−DTA)
又、各種溶媒における室温での溶解性は下記の通りであった。
メタノール 2.2%
メチルエチルケトン(MEK) 6.3%
シクロペンタノン 3.3%
Example 2
15.7 parts of 5-chloro-1- (2-methoxyethyl) -3,3-dimethyl-2-methyleneindoline and 10.6 parts of 1,3,3-trimethyl-2-formylmethyleneindoline, tris (trifluoromethane (Sulfonyl) methidic acid (11.4 parts) was charged into a mixed solvent of 50 parts of acetic anhydride and 25 parts of acetic acid, heated under reflux for 2 hours under reflux and cooling, then cooled to room temperature, and then 25 parts of water was added to precipitate crystals. The crystals obtained by suction filtration were recrystallized from 40 parts of methanol, and the crystals were washed with 5 parts of methanol, washed with water and dried to obtain 18.3 parts of Compound 9. The spectral characteristics and decomposition temperature of the compound 9 obtained here were as follows.
Maximum absorption wavelength 550nm (in methanol)
Molar extinction coefficient 137,000 (in methanol)
Decomposition temperature about 276 ° C (TG-DTA)
Moreover, the solubility at room temperature in various solvents was as follows.
Methanol 2.2%
Methyl ethyl ketone (MEK) 6.3%
Cyclopentanone 3.3%

実施例3
4,5−ベンゾ−1−(2−メトキシエチル)−3,3−ジメチル−2−メチレンインドリン14.9部、マロンアルデヒドジアニル塩酸塩6.5部、酢酸ナトリウム4.1部を酢酸50部中に仕込み、60℃迄加熱し、50℃〜60℃にて無水酢酸5.1部を1時間かけて滴下、更に50℃〜60℃にて2時間攪拌し縮合反応を完結させた。次いで室温まで冷却した後、この反応液を吸引濾過し不溶な不純物を除去した。この反応液にトリス(トリフルオロメタンスルホニル)メチド酸11.4部を滴下し、沈殿した結晶を吸引濾過し、得られた結晶をメタノール40部で再結晶し、結晶をメタノール5部で洗浄し、水洗、乾燥して、前記化合物17を16.9部得た。ここで得られた化合物17の分光特性及び分解温度は下記の通りであった。
最大吸収波長 680nm(メタノール中)
モル吸光係数 220,000(メタノール中)
分解温度 約272℃(TG−DTA)
又、各種溶媒における室温での溶解性は下記の通りであった。
メタノール 0.2%
メチルエチルケトン(MEK) 6.4%
シクロペンタノン 2.4%
Example 3
1,4.9 parts of 4,5-benzo-1- (2-methoxyethyl) -3,3-dimethyl-2-methyleneindoline, 6.5 parts of malonaldehyde dianyl hydrochloride, 4.1 parts of sodium acetate and 50 parts of acetic acid Then, the mixture was heated to 60 ° C., 5.1 parts of acetic anhydride was added dropwise at 50 ° C. to 60 ° C. over 1 hour, and further stirred at 50 ° C. to 60 ° C. for 2 hours to complete the condensation reaction. Subsequently, after cooling to room temperature, the reaction solution was suction filtered to remove insoluble impurities. To this reaction solution, 11.4 parts of tris (trifluoromethanesulfonyl) methido acid was added dropwise, the precipitated crystals were suction filtered, the obtained crystals were recrystallized with 40 parts of methanol, and the crystals were washed with 5 parts of methanol. It was washed with water and dried to obtain 16.9 parts of the compound 17. The spectral characteristics and decomposition temperature of the compound 17 obtained here were as follows.
Maximum absorption wavelength 680nm (in methanol)
Molar extinction coefficient 220,000 (in methanol)
Decomposition temperature about 272 ° C (TG-DTA)
Moreover, the solubility at room temperature in various solvents was as follows.
Methanol 0.2%
Methyl ethyl ketone (MEK) 6.4%
Cyclopentanone 2.4%

実施例4
4,5−ベンゾ−1−(2−メトキシエチル)−3,3−ジメチル−2−メチレンインドリン14.9部、2−クロロ−1−ホルミル−3−ヒドロキシメチレンシクロヘキセン4.5部を酢酸25部中に仕込み、60℃迄加熱し、50℃〜60℃にて無水酢酸5.1部を1時間かけて滴下、更に50℃〜60℃にて2時間攪拌し縮合反応を完結させた。次いで室温まで冷却した後、この反応液を吸引濾過し不溶な不純物を除去した。この反応液にトリス(トリフルオロメタンスルホニル)メチド酸11.4部を滴下し、沈殿した結晶を吸引濾過し、得られた結晶をN,N−ジメチルホルムアミド70部で再結晶し、結晶をメタノール5部で洗浄し、水洗、乾燥して、前記化合物31を19.1部得た。ここで得られた化合物31の分光特性及び分解温度は下記の通りであった。
最大吸収波長 820nm(メタノール中)
モル吸光係数 270,000(メタノール中)
分解温度 約234℃(TG−DTA)
又、各種溶媒における室温での溶解性は下記の通りであった。
メタノール 0.2%
メチルエチルケトン(MEK) 13.6%
シクロペンタノン 5.5%
シクロヘキサノン 7.1%
Example 4
1,4.9 parts of 4,5-benzo-1- (2-methoxyethyl) -3,3-dimethyl-2-methyleneindoline and 4.5 parts of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene were mixed with 25 parts of acetic acid. Then, the mixture was heated to 60 ° C., 5.1 parts of acetic anhydride was added dropwise at 50 ° C. to 60 ° C. over 1 hour, and further stirred at 50 ° C. to 60 ° C. for 2 hours to complete the condensation reaction. Subsequently, after cooling to room temperature, the reaction solution was suction filtered to remove insoluble impurities. To this reaction solution, 11.4 parts of tris (trifluoromethanesulfonyl) methydic acid was added dropwise, the precipitated crystals were suction filtered, the obtained crystals were recrystallized with 70 parts of N, N-dimethylformamide, and the crystals were dissolved in methanol 5 After washing with water, washing with water and drying, 19.1 parts of Compound 31 were obtained. The spectral characteristics and decomposition temperature of the compound 31 obtained here were as follows.
Maximum absorption wavelength 820nm (in methanol)
Molar extinction coefficient 270,000 (in methanol)
Decomposition temperature about 234 ° C (TG-DTA)
Moreover, the solubility at room temperature in various solvents was as follows.
Methanol 0.2%
Methyl ethyl ketone (MEK) 13.6%
Cyclopentanone 5.5%
Cyclohexanone 7.1%

実施例5
実施例4における2−クロロ−1−ホルミル−3−ヒドロキシメチレンシクロヘキセン4.5部の換わりに2−クロロ−1−ホルミル−3−ヒドロキシメチレンシクロペンテン3.9部を用いて実施例4と同様にして前記化合物34を10.2部得た。ここで得られた化合物34の分光特性及び分解温度は下記の通りであった。
最大吸収波長 845nm(メタノール中)
モル吸光係数 285,000(メタノール中)
分解温度 約217℃(TG−DTA)
又、各種溶媒における室温での溶解性は下記の通りであった。
メタノール 0.1%
メチルエチルケトン(MEK) 1.1%
シクロペンタノン 2.6%
Example 5
As in Example 4, substituting 3.9 parts of 2-chloro-1-formyl-3-hydroxymethylenecyclopentene for 4.5 parts of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene in Example 4. Thus, 10.2 parts of the compound 34 was obtained. The spectral characteristics and decomposition temperature of the compound 34 obtained here were as follows.
Maximum absorption wavelength 845nm (in methanol)
Molar extinction coefficient 285,000 (in methanol)
Decomposition temperature about 217 ° C (TG-DTA)
Moreover, the solubility at room temperature in various solvents was as follows.
Methanol 0.1%
Methyl ethyl ketone (MEK) 1.1%
Cyclopentanone 2.6%

実施例6
実施例4における4,5−ベンゾ−1−(2−メトキシエチル)−3,3−ジメチル−2−メチレンインドリン14.9部の換わりに1−(n−ブチル)ベンゾ[c,d]−2−メチレンインドリン12.1部を用いて実施例4と同様にして前記化合物38を9.2部得た。ここで得られた化合物38の分光特性は下記の通りであった。
最大吸収波長 1015nm(メタノール中)
モル吸光係数 180,000(メタノール中)
Example 6
Instead of 14.9 parts of 4,5-benzo-1- (2-methoxyethyl) -3,3-dimethyl-2-methyleneindoline in Example 4, 1- (n-butyl) benzo [c, d]- 9.2 parts of the compound 38 was obtained in the same manner as in Example 4 using 12.1 parts of 2-methyleneindoline. The spectral characteristics of Compound 38 obtained here were as follows.
Maximum absorption wavelength 1015nm (in methanol)
Molar extinction coefficient 180,000 (in methanol)

実施例7
実施例4における4,5−ベンゾ−1−(2−メトキシエチル)−3,3−ジメチル−2−メチレンインドリン14.9部の換わりに1−(n−ブチル)ベンゾ[c,d]−2−メチレンインドリン12.1部を用い、2−クロロ−1−ホルミル−3−ヒドロキシメチレンシクロヘキセン4.5部の換わりに1−ホルミル−3−ヒドロキシメチレン−2−フェニルシクロペンテン5.1部を用いて実施例4と同様にして前記化合物40を8.2部得た。ここで得られた化合物40の分光特性は下記の通りであった。
最大吸収波長 1026nm(メタノール中)
モル吸光係数 230,000(メタノール中)
Example 7
Instead of 14.9 parts of 4,5-benzo-1- (2-methoxyethyl) -3,3-dimethyl-2-methyleneindoline in Example 4, 1- (n-butyl) benzo [c, d]- Using 12.1 parts of 2-methyleneindoline and using 5.1 parts of 1-formyl-3-hydroxymethylene-2-phenylcyclopentene instead of 4.5 parts of 2-chloro-1-formyl-3-hydroxymethylenecyclohexene In the same manner as in Example 4, 8.2 parts of the compound 40 was obtained. The spectral characteristics of the compound 40 obtained here were as follows.
Maximum absorption wavelength 1026nm (in methanol)
Molar extinction coefficient 230,000 (in methanol)

比較例1
実施例4におけるトリス(トリフルオロメタンスルホニル)メチド酸の換わりにビス(トリフルオロメタンスルホニル)イミド酸を用いて実施例4と同様にして特許文献4に化合物例31として記載されている化合物を合成した。分光特性及び分解温度は下記の通りであった。
最大吸収波長 820nm(メタノール中)
モル吸光係数 270,000(メタノール中)
分解温度 約240℃(TG−DTA)
Comparative Example 1
A compound described as Compound Example 31 in Patent Document 4 was synthesized in the same manner as in Example 4 except that bis (trifluoromethanesulfonyl) imidic acid was used instead of tris (trifluoromethanesulfonyl) methido acid in Example 4. Spectral characteristics and decomposition temperature were as follows.
Maximum absorption wavelength 820nm (in methanol)
Molar extinction coefficient 270,000 (in methanol)
Decomposition temperature about 240 ° C (TG-DTA)

比較例2
実施例4におけるトリス(トリフルオロメタンスルホニル)メチド酸の換わりにヘキサフルオロアンチモン酸カリウムを用いて実施例4と同様にして、特許文献3に開示されている化合物を合成した。分光特性及び分解温度は下記の通りであった。
最大吸収波長 820nm(メタノール中)
モル吸光係数 270,000(メタノール中)
分解温度 約240℃(TG−DTA)
Comparative Example 2
The compound disclosed in Patent Document 3 was synthesized in the same manner as in Example 4 using potassium hexafluoroantimonate instead of tris (trifluoromethanesulfonyl) methide acid in Example 4. Spectral characteristics and decomposition temperature were as follows.
Maximum absorption wavelength 820nm (in methanol)
Molar extinction coefficient 270,000 (in methanol)
Decomposition temperature about 240 ° C (TG-DTA)

溶解度
上記実施例4(化合物31)と比較例1及び比較例2の化合物の溶解度を表1に示す。
[表1]
試料 メタノール MEK DMF シクロヘキサノン
実施例4 0.2% 13.6% 10.6% 7.1%
比較例1 0.1%以下 2.9% 10.7% 5.5%
比較例2 0.1%以下 0.4% 1.3% 1.8%
Solubility The solubility of the compound of Example 4 (Compound 31) and Comparative Example 1 and Comparative Example 2 is shown in Table 1.
[Table 1]
Sample Methanol MEK DMF Cyclohexanone Example 4 0.2% 13.6% 10.6% 7.1%
Comparative Example 1 0.1% or less 2.9% 10.7% 5.5%
Comparative Example 2 0.1% or less 0.4% 1.3% 1.8%

表1より、本発明の化合物は、同じカチオン骨格でアニオンの異なる比較例の化合物と比べて、メチルエチルケトンをはじめ溶剤溶解性に非常に優れており、従って、加工性に優れた化合物である事が示された。   From Table 1, it can be seen that the compound of the present invention is very excellent in solvent solubility, including methyl ethyl ketone, compared to the compound of the comparative example having the same cation skeleton and different anions, and therefore, it is a compound excellent in processability. Indicated.

実施例8
テトラフルオロプロパノール4.5部に実施例4で得られた化合物31を0.5部溶解させた。この溶液を厚さ1.5mm、10cm四方のポリカーボネート板上に2000rpm×10秒でスピンコートし色素膜を形成し、赤外線吸収フィルタを作成した。
比較例3
特許文献4に記載された化合物である比較例1の化合物(特許文献3にて開示されたヘキサフルオロアンチモン酸塩よりも耐熱及び耐湿熱安定性が高い事が特許文献4に開示されている化合物)を用いて、実施例8と同様に赤外線フィルタを作成した。
Example 8
0.5 part of the compound 31 obtained in Example 4 was dissolved in 4.5 parts of tetrafluoropropanol. This solution was spin-coated on a 1.5 mm thick, 10 cm square polycarbonate plate at 2000 rpm × 10 seconds to form a dye film, and an infrared absorption filter was prepared.
Comparative Example 3
Compound of Comparative Example 1 which is a compound described in Patent Document 4 (Compound disclosed in Patent Document 4 having higher heat resistance and heat and moisture resistance stability than the hexafluoroantimonate disclosed in Patent Document 3) ) To prepare an infrared filter in the same manner as in Example 8.

耐熱安定性及び耐湿熱安定性試験
実施例8又は比較例3のフィルタをオーブン中にて80℃で7日間放置し、熱安定性試験を実施した。又、恒温恒湿庫中にて80℃、85RH(相対湿度%)にて7日間放置し、耐湿熱安定性試験を実施した。試験前後のフィルタを分光光度計(島津製作所製UV−3150)にて吸光度を測定し、最大吸収波長における吸光度(OD値)の変化から下記式にて色素の残存率を求めた。得られた耐熱安定性試験及び耐湿熱安定性試験の結果を表2−1及び2−2に示す。
残存率=(試験後の吸光度/試験前の吸光度)×100
Heat Stability Stability and Wet Heat Stability Test The filter of Example 8 or Comparative Example 3 was left in an oven at 80 ° C. for 7 days to conduct a heat stability test. Moreover, it was left to stand at 80 degreeC and 85RH (relative humidity%) for 7 days in a constant temperature and humidity chamber, and the moisture-and-heat-resistant stability test was implemented. Absorbance of the filter before and after the test was measured with a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation), and the residual ratio of the dye was determined from the change in absorbance (OD value) at the maximum absorption wavelength using the following formula. The results of the obtained heat stability test and moisture heat stability test are shown in Tables 2-1 and 2-2.
Residual rate = (absorbance after test / absorbance before test) × 100

[表2−1](耐熱安定性試験)
試料
吸光度(OD値) 初期 7日後 色素残存率
実施例8 0.562 0.015 2.7%
比較例3 0.608 0.000 0.0%
[Table 2-1] (Heat resistance stability test)
sample
Absorbance (OD value) Initial 7 days later Dye remaining rate Example 8 0.562 0.015 2.7%
Comparative Example 3 0.608 0.000 0.0%

[表2−2](耐湿熱安定性試験)
化合物No.
吸光度(OD値) 初期 7日後 色素残存率
実施例8 0.562 0.458 81.5%
比較例3 0.608 0.386 63.5%
[Table 2-2] (Moisture and heat stability test)
Compound No.
Absorbance (OD value) Initial 7 days later Dye remaining rate Example 8 0.562 0.458 81.5%
Comparative Example 3 0.608 0.386 63.5%

表2−1及び2−2より、本発明の化合物を用いて作成したフィルタは、特許文献4に記載された同じカチオン骨格でアニオンの異なる比較例の化合物を用いて作成したフィルタに比べて色素残存率が高いことから、高温条件下での安定性及び高温高湿条件下での安定性に優れていることが示された。   From Tables 2-1 and 2-2, the filter prepared using the compound of the present invention is a pigment compared to the filter prepared using a compound of a comparative example having the same cation skeleton and different anions described in Patent Document 4. Since the residual ratio was high, it was shown that the stability under high temperature conditions and the stability under high temperature and high humidity conditions were excellent.

実施例9〜16
上記の実施例1乃至7の方法に準じて合成することにより、上記式(201)で表される化合物39、47、49、51、52、54、55及び56をそれぞれ得た。これらをそれぞれ実施例9から16とする。得られた各化合物の物性を、下記表3に示す。尚、最大吸収波長及びモル吸光係数はメタノール溶液中の値であり、分解温度はTG−DTAから得られた減量開始温度である。
Examples 9-16
The compounds 39, 47, 49, 51, 52, 54, 55 and 56 represented by the above formula (201) were obtained by synthesis according to the methods of Examples 1 to 7, respectively. These are referred to as Examples 9 to 16, respectively. The physical properties of each compound obtained are shown in Table 3 below. The maximum absorption wavelength and molar extinction coefficient are values in a methanol solution, and the decomposition temperature is a weight loss starting temperature obtained from TG-DTA.

比較例4
上記の化合物49におけるトリス(トリフルオロメチルスルホニル)メチドアニオンを、ヨウ素原子のアニオンに代える以外は、上記の実施例1乃至7の方法に準じて、下記式(206)で表される比較用の化合物を得た。これを比較例4とする。得られた化合物の物性を、下記表3に示す。
Comparative Example 4
A comparative compound represented by the following formula (206) according to the method of Examples 1 to 7 except that the tris (trifluoromethylsulfonyl) methide anion in the compound 49 is replaced with an anion of iodine atom. Got. This is referred to as Comparative Example 4. The physical properties of the obtained compound are shown in Table 3 below.

Figure 2008088426
Figure 2008088426

Figure 2008088426
Figure 2008088426

表3から明らかな通り、上記式(201)で表される溶剤溶解性に優れる実施例9〜16の本発明の化合物のうち、900nm以上の波長に最大吸収を有するものでは、Qが形成する含窒素縮合複素環が、上記式(204)で表される化合物39、49及び56のMEKに対する溶剤溶解性は0.3〜0.6%である。これに対してQが形成する含窒素縮合複素環が上記式(202)又は(203)である化合物47及び51乃至56の溶剤溶解性は、同様に1.0〜1.7%であり、含窒素縮合複素環が上記式(204)である化合物に対して、溶剤溶解性が最小でも約1.7倍、最大では実に5.7倍も大きく、上記の通り溶解性が高く、より好ましい化合物であると言える。 As is apparent from Table 3, among the compounds of the present invention of Examples 9 to 16 having excellent solvent solubility represented by the above formula (201), those having maximum absorption at a wavelength of 900 nm or longer form Q 2. In the nitrogen-containing condensed heterocyclic ring, the compounds 39, 49 and 56 represented by the above formula (204) have a solvent solubility in MEK of 0.3 to 0.6%. On the other hand, the solvent solubility of the compounds 47 and 51 to 56 in which the nitrogen-containing condensed heterocyclic ring formed by Q 2 is the above formula (202) or (203) is 1.0 to 1.7% similarly. The solvent solubility of the compound containing the nitrogen-containing fused heterocycle represented by the above formula (204) is at least about 1.7 times as large as the maximum and 5.7 times as large as the maximum. It can be said that it is a preferred compound.

Claims (13)

下記式(1)
Figure 2008088426
[式中、Q、Qはそれぞれ独立に置換基を有していてもよい含窒素縮合複素環を形成し、R、Rはそれぞれ独立に置換基を有していてもよいアルキル基又は置換基を有していてもよいアルケニル基を示し、Dはモノ、ジ又はトリカルボシアニンを形成するための連結基を示し、Xはトリス(ハロゲノアルキルスルホニル)メチドアニオンを示す]
で表されるシアニン化合物。
Following formula (1)
Figure 2008088426
[Wherein, Q 1 and Q 2 each independently form a nitrogen-containing condensed heterocyclic ring which may have a substituent, and R 1 and R 2 each independently have an alkyl which may have a substituent. An alkenyl group which may have a group or a substituent, D represents a linking group for forming a mono, di or tricarbocyanine, and X represents a tris (halogenoalkylsulfonyl) methide anion]
A cyanine compound represented by:
がトリス(トリフルオロメタンスルホニル)メチドアニオンである請求項1記載のシアニン化合物。 Wherein X - tris (trifluoromethane sulfonyl) cyanine compound of claim 1 wherein the methide anion. 、Qが形成する含窒素縮合複素環が下記式(2)〜式(6)から選ばれる1種である請求項1又は2に記載のシアニン化合物(Qが形成する含窒素縮合複素環の場合はそれに対応する構造式に読み替えるものとする)。
Figure 2008088426
[式中、RはR、Rと同じ意味を示し、Rはハロゲン原子、アルキル基、アルコキシ基又はニトロ基を示し、pは0〜2の整数を示す]
The nitrogen-containing condensed heterocyclic ring formed by Q 1 and Q 2 is one selected from the following formulas (2) to (6): Cyanine compound according to claim 1 or 2 (nitrogen-containing condensed formed by Q 2 In the case of a heterocyclic ring, it shall be read as the corresponding structural formula).
Figure 2008088426
[Wherein R represents the same meaning as R 1 and R 2 , R 3 represents a halogen atom, an alkyl group, an alkoxy group or a nitro group, and p represents an integer of 0 to 2]
Dが下記式(8)〜式(12)から選ばれる1種である請求項1〜3のいずれか一項に記載のシアニン化合物。
Figure 2008088426
[式中、Yは水素原子、ハロゲン原子、フェニル基、ジフェニルアミノ基又は炭素数1〜4のアルキル基を示し、*は結合部位を示す]
The cyanine compound according to any one of claims 1 to 3, wherein D is one selected from the following formulas (8) to (12).
Figure 2008088426
[In the formula, Y represents a hydrogen atom, a halogen atom, a phenyl group, a diphenylamino group or an alkyl group having 1 to 4 carbon atoms, and * represents a bonding site.]
、Rがそれぞれ独立に炭素数1〜20のアルキル基、炭素数7〜20のアラルキル基、炭素数3〜20のアルコキシアルキル基、炭素数4〜20のアルコキシアルコキシアルキル基、炭素数2〜20のアルケニル基である請求項1〜4のいずれか一項に記載のシアニン化合物。 R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, an alkoxyalkyl group having 3 to 20 carbon atoms, an alkoxyalkoxyalkyl group having 4 to 20 carbon atoms, a carbon number It is a 2-20 alkenyl group, The cyanine compound as described in any one of Claims 1-4. 、Rがそれぞれ独立にメチル基、n−ブチル基、メトキシエチル基又はn−ブトキシエチル基である請求項1〜5のいずれか一項に記載のシアニン化合物。 R < 1 >, R < 2 > is a methyl group, n-butyl group, methoxyethyl group, or n-butoxyethyl group each independently, The cyanine compound as described in any one of Claims 1-5. 請求項1に記載の式(1)におけるQ及びQが形成する含窒素縮合複素環のいずれもが、請求項3に記載の式(2)、式(3)又は式(5)から選ばれる同一の1種であり、該式(2)、式(3)又は式(5)におけるRがハロゲン原子であり、pが0又は1の整数であり;
請求項1に記載の式(1)におけるR及びRがそれぞれ独立にメチル基、n−ブチル基、メトキシエチル基又はn−ブトキシエチル基であり;
Dが請求項4に記載の式(8)、式(9)、式(11)又は式(12)のいずれかであり、該式(8)、式(9)、式(11)又は式(12)におけるYが水素原子又は塩素原子であり;
がトリス(トリフルオロメタンスルホニル)メチドアニオン;
である請求項1に記載のシアニン化合物、
但し、Qが形成する含窒素縮合複素環は、Qが形成する含窒素縮合複素環の構造式を、Qに対応する構造式に読み替えるものとする。
Any of the nitrogen-containing fused heterocycles formed by Q 1 and Q 2 in formula (1) according to claim 1 are derived from formula (2), formula (3) or formula (5) according to claim 3. One selected, R 3 in the formula (2), formula (3) or formula (5) is a halogen atom, and p is an integer of 0 or 1;
R 1 and R 2 in formula (1) according to claim 1 are each independently a methyl group, an n-butyl group, a methoxyethyl group or an n-butoxyethyl group;
D is any one of the formula (8), the formula (9), the formula (11), or the formula (12) according to claim 4, and the formula (8), the formula (9), the formula (11), or the formula Y in (12) is a hydrogen atom or a chlorine atom;
X is a tris (trifluoromethanesulfonyl) methide anion;
The cyanine compound according to claim 1,
However, the nitrogen-containing fused heterocyclic ring formed by Q 2 is a replacement of the structural formula of the nitrogen-containing fused heterocyclic ring formed by Q 1 with the structural formula corresponding to Q 2 .
下記式(201)
Figure 2008088426
[式中、Qが形成する含窒素縮合複素環は、下記式(202)乃至(204)から選ばれる1種であり、R及びRはそれぞれ独立に、C1−C5アルキル基又はC1−C5アルコキシC1−C3アルキル基を表し、Rは水素原子、C1−C5アルキル基又はフェニル基を表し、Yはハロゲン原子又はフェニル基を表し、Xはトリス(トリフルオロメチルスルホニル)メチドアニオンを表す。]
Figure 2008088426
Figure 2008088426
[式中、Rは、水素原子、ハロゲン原子又はニトロ基を表す。]
Figure 2008088426
で表される請求項1に記載のシアニン化合物。
The following formula (201)
Figure 2008088426
[Wherein, the nitrogen-containing condensed heterocyclic ring formed by Q 2 is one selected from the following formulas (202) to (204), and R 4 and R 5 are each independently a C1-C5 alkyl group or C1 represents -C5 alkoxy C1-C3 alkyl group, R 6 is a hydrogen atom, a C1-C5 alkyl group or a phenyl group, Y represents a halogen atom or a phenyl group, X - and tris (trifluoromethylsulfonyl) methide anion To express. ]
Figure 2008088426
Figure 2008088426
[Wherein R 7 represents a hydrogen atom, a halogen atom or a nitro group. ]
Figure 2008088426
The cyanine compound of Claim 1 represented by these.
メタノール中400nm〜1100nmの波長域に最大吸収を有する請求項1〜8のいずれか一項に記載のシアニン化合物。 The cyanine compound according to any one of claims 1 to 8, which has maximum absorption in a wavelength region of 400 nm to 1100 nm in methanol. 請求項1〜9のいずれか一項に記載のシアニン化合物を用いた光吸収剤。 The light absorber using the cyanine compound as described in any one of Claims 1-9. 近赤外吸収用及び/又は画像特性改善用である請求項10記載の光吸収剤。 The light absorber according to claim 10, which is for near infrared absorption and / or for improving image characteristics. 請求項10又は11に記載の光吸収剤を用いた光学フィルタ。 The optical filter using the light absorber of Claim 10 or 11. 請求項12記載の光学フィルタを使用したプラズマディスプレイパネル。 A plasma display panel using the optical filter according to claim 12.
JP2007229622A 2006-09-06 2007-09-05 New cyanine compound and use of the same Pending JP2008088426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007229622A JP2008088426A (en) 2006-09-06 2007-09-05 New cyanine compound and use of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006241142 2006-09-06
JP2007229622A JP2008088426A (en) 2006-09-06 2007-09-05 New cyanine compound and use of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013119573A Division JP5665204B2 (en) 2006-09-06 2013-06-06 Novel cyanine compounds and uses thereof

Publications (1)

Publication Number Publication Date
JP2008088426A true JP2008088426A (en) 2008-04-17

Family

ID=39372896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007229622A Pending JP2008088426A (en) 2006-09-06 2007-09-05 New cyanine compound and use of the same

Country Status (1)

Country Link
JP (1) JP2008088426A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016879A (en) * 2009-07-07 2011-01-27 Adeka Corp Fluorescence quenching material, composition for forming film, and optical filter
WO2011158748A1 (en) * 2010-06-15 2011-12-22 日本化薬株式会社 Colored resin composition, colored cured film, color filter, display device and solid-state image sensor
WO2012053211A1 (en) * 2010-10-21 2012-04-26 日本化薬株式会社 Colored resin composition for use in color filter, color filter, display device, and solid-state imaging element
WO2012053201A1 (en) * 2010-10-21 2012-04-26 日本化薬株式会社 Colored resin composition for use in color filter, color filter, display device, and solid-state imaging element
US8323536B2 (en) 2010-11-12 2012-12-04 Shin-Etsu Chemical Co., Ltd. Near-infrared absorbing dye, near-infrared absorptive film-forming composition, and near-infrared absorptive film
WO2013055640A3 (en) * 2011-10-11 2013-07-11 Eastman Kodak Company Infrared fluorescent composition having polyvinyl acetal binder
US8653445B2 (en) 2011-10-11 2014-02-18 Eastman Kodak Company Method for viewing invisible indicia
JP2014031435A (en) * 2012-08-03 2014-02-20 Nippon Kayaku Co Ltd Novel cyanine pigment compound, resin composition and near infrared ray cut filter
EP2719541A1 (en) 2012-10-11 2014-04-16 Agfa-Gevaert Colour laser marking
WO2014057018A1 (en) 2012-10-11 2014-04-17 Agfa-Gevaert Infrared dyes for laser marking
US8722307B2 (en) 2011-05-27 2014-05-13 International Business Machines Corporation Near-infrared absorptive layer-forming composition and multilayer film comprising near-infrared absorptive layer
JP2015034252A (en) * 2013-08-09 2015-02-19 日本化薬株式会社 Thermosetting resin composition and near-infrared cut filter thereof
JP2016045243A (en) * 2014-08-20 2016-04-04 日本化薬株式会社 Thermosetting resin composition comprising near-infrared absorbing dye, and near-infrared cut filter
JP2016060774A (en) * 2014-09-16 2016-04-25 富士フイルム株式会社 Near infrared absorbing composition, cured film, near infrared absorbing filter, solid state imaging device, infrared sensor, compound
WO2016158819A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Infrared cut-off filter and solid-state imaging element
WO2016158818A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Infrared cut-off filter, kit, and solid-state imaging element
JP2017031394A (en) * 2015-07-28 2017-02-09 Jsr株式会社 Novel cyanine compound, optical filter and device using optical filter
JP2017197744A (en) * 2013-09-06 2017-11-02 富士フイルム株式会社 Coloring composition, cured film, color filter, method for producing color filter, solid state imaging device, image display device, polymer and xanthene pigment
WO2018131350A1 (en) * 2017-01-11 2018-07-19 富士フイルム株式会社 Composition, film, optical filter, pattern forming method, solid-state imaging element, image display device and infrared sensor
US10071983B2 (en) 2011-03-15 2018-09-11 Ramot At Tel-Aviv University Ltd. Activatable fluorogenic compounds and uses thereof as near infrared probes
WO2019054281A1 (en) 2017-09-15 2019-03-21 富士フイルム株式会社 Composition, film, laminate, infrared transmission filter, solid-state imaging device and infrared sensor
WO2019151344A1 (en) * 2018-02-05 2019-08-08 Agc株式会社 Optical filter and imaging device
WO2020059509A1 (en) 2018-09-20 2020-03-26 富士フイルム株式会社 Curable composition, cured film, infrared transmission filter, laminate, solid-state imaging element, sensor, and pattern formation method
WO2020241535A1 (en) 2019-05-31 2020-12-03 富士フイルム株式会社 Optical sensor and sensing device
CN114616291A (en) * 2019-11-01 2022-06-10 Jsr株式会社 Resin composition, compound (Z), optical filter, and use of optical filter
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
JP7360665B2 (en) 2019-11-01 2023-10-13 Jsr株式会社 Resin composition, resin layer and optical filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253705A (en) * 1995-03-06 1996-10-01 Minnesota Mining & Mfg Co <3M> Organic soluble cationic dye with fluorinated alkylsulfonyl counter ion
WO2006006573A1 (en) * 2004-07-12 2006-01-19 Nippon Kayaku Kabushiki Kaisha Filter and cyanine compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253705A (en) * 1995-03-06 1996-10-01 Minnesota Mining & Mfg Co <3M> Organic soluble cationic dye with fluorinated alkylsulfonyl counter ion
WO2006006573A1 (en) * 2004-07-12 2006-01-19 Nippon Kayaku Kabushiki Kaisha Filter and cyanine compound

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016879A (en) * 2009-07-07 2011-01-27 Adeka Corp Fluorescence quenching material, composition for forming film, and optical filter
WO2011158748A1 (en) * 2010-06-15 2011-12-22 日本化薬株式会社 Colored resin composition, colored cured film, color filter, display device and solid-state image sensor
JPWO2011158748A1 (en) * 2010-06-15 2013-08-19 日本化薬株式会社 Colored resin composition, colored cured film, color filter, display device and solid-state imaging device
JP5750045B2 (en) * 2010-06-15 2015-07-15 日本化薬株式会社 Colored resin composition, colored cured film, color filter, display device and solid-state imaging device
WO2012053211A1 (en) * 2010-10-21 2012-04-26 日本化薬株式会社 Colored resin composition for use in color filter, color filter, display device, and solid-state imaging element
WO2012053201A1 (en) * 2010-10-21 2012-04-26 日本化薬株式会社 Colored resin composition for use in color filter, color filter, display device, and solid-state imaging element
US8323536B2 (en) 2010-11-12 2012-12-04 Shin-Etsu Chemical Co., Ltd. Near-infrared absorbing dye, near-infrared absorptive film-forming composition, and near-infrared absorptive film
US10071983B2 (en) 2011-03-15 2018-09-11 Ramot At Tel-Aviv University Ltd. Activatable fluorogenic compounds and uses thereof as near infrared probes
EP2686385B1 (en) * 2011-03-15 2019-01-16 Ramot at Tel Aviv University, Ltd. Activatable fluorogenic compounds and uses thereof as near infrared probes
US8722307B2 (en) 2011-05-27 2014-05-13 International Business Machines Corporation Near-infrared absorptive layer-forming composition and multilayer film comprising near-infrared absorptive layer
WO2013055640A3 (en) * 2011-10-11 2013-07-11 Eastman Kodak Company Infrared fluorescent composition having polyvinyl acetal binder
US8653445B2 (en) 2011-10-11 2014-02-18 Eastman Kodak Company Method for viewing invisible indicia
JP2014031435A (en) * 2012-08-03 2014-02-20 Nippon Kayaku Co Ltd Novel cyanine pigment compound, resin composition and near infrared ray cut filter
US9829784B2 (en) 2012-10-11 2017-11-28 Agfa-Gevaert Colour laser marking
WO2014057018A1 (en) 2012-10-11 2014-04-17 Agfa-Gevaert Infrared dyes for laser marking
CN104685003A (en) * 2012-10-11 2015-06-03 爱克发-格法特公司 Infrared dyes for laser marking
EP2722367A1 (en) 2012-10-11 2014-04-23 Agfa-Gevaert Infrared dyes for laser marking
EP2722367B1 (en) * 2012-10-11 2018-03-28 Agfa-Gevaert Infrared dyes for laser marking
EP2719541A1 (en) 2012-10-11 2014-04-16 Agfa-Gevaert Colour laser marking
JP2015034252A (en) * 2013-08-09 2015-02-19 日本化薬株式会社 Thermosetting resin composition and near-infrared cut filter thereof
JP2017197744A (en) * 2013-09-06 2017-11-02 富士フイルム株式会社 Coloring composition, cured film, color filter, method for producing color filter, solid state imaging device, image display device, polymer and xanthene pigment
JP2016045243A (en) * 2014-08-20 2016-04-04 日本化薬株式会社 Thermosetting resin composition comprising near-infrared absorbing dye, and near-infrared cut filter
JP2016060774A (en) * 2014-09-16 2016-04-25 富士フイルム株式会社 Near infrared absorbing composition, cured film, near infrared absorbing filter, solid state imaging device, infrared sensor, compound
JPWO2016158818A1 (en) * 2015-03-31 2018-03-01 富士フイルム株式会社 Infrared cut filter, kit, and solid-state image sensor
JPWO2016158819A1 (en) * 2015-03-31 2018-03-08 富士フイルム株式会社 Infrared cut filter and solid-state image sensor
WO2016158818A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Infrared cut-off filter, kit, and solid-state imaging element
WO2016158819A1 (en) * 2015-03-31 2016-10-06 富士フイルム株式会社 Infrared cut-off filter and solid-state imaging element
JP2017031394A (en) * 2015-07-28 2017-02-09 Jsr株式会社 Novel cyanine compound, optical filter and device using optical filter
TWI698497B (en) * 2015-07-28 2020-07-11 日商Jsr股份有限公司 Cyanine compound, optical filter, device using optical filter, and resin composition
WO2018131350A1 (en) * 2017-01-11 2018-07-19 富士フイルム株式会社 Composition, film, optical filter, pattern forming method, solid-state imaging element, image display device and infrared sensor
WO2019054281A1 (en) 2017-09-15 2019-03-21 富士フイルム株式会社 Composition, film, laminate, infrared transmission filter, solid-state imaging device and infrared sensor
CN114637066A (en) * 2018-02-05 2022-06-17 Agc株式会社 Optical filter and imaging device
WO2019151344A1 (en) * 2018-02-05 2019-08-08 Agc株式会社 Optical filter and imaging device
CN111684319A (en) * 2018-02-05 2020-09-18 Agc株式会社 Optical filter and imaging device
JPWO2019151344A1 (en) * 2018-02-05 2021-02-04 Agc株式会社 Optical filter and imaging device
CN111684319B (en) * 2018-02-05 2022-04-12 Agc株式会社 Optical filter and imaging device
JP7222361B2 (en) 2018-02-05 2023-02-15 Agc株式会社 Optical filters and imagers
WO2020059509A1 (en) 2018-09-20 2020-03-26 富士フイルム株式会社 Curable composition, cured film, infrared transmission filter, laminate, solid-state imaging element, sensor, and pattern formation method
WO2020241535A1 (en) 2019-05-31 2020-12-03 富士フイルム株式会社 Optical sensor and sensing device
CN114616291A (en) * 2019-11-01 2022-06-10 Jsr株式会社 Resin composition, compound (Z), optical filter, and use of optical filter
JP7360665B2 (en) 2019-11-01 2023-10-13 Jsr株式会社 Resin composition, resin layer and optical filter
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor

Similar Documents

Publication Publication Date Title
JP2008088426A (en) New cyanine compound and use of the same
JP4635007B2 (en) Filter and cyanine compound
JP4800769B2 (en) Diimonium salt compounds and uses thereof
JP4825676B2 (en) Diimonium compounds and uses thereof
EP2371904B1 (en) Near-infrared-ray absorbing material containing cyanine compound, and cyanine compound
JP2008528706A (en) Borate and near infrared absorbing materials
TWI398676B (en) Filter
JP4908414B2 (en) Diimonium compounds and uses thereof
JP2008050599A (en) Phthalocyanine compound
JP5904546B2 (en) Novel cyanine dye compound, resin composition and near-infrared cut filter
JP5665204B2 (en) Novel cyanine compounds and uses thereof
JP2014095007A (en) Novel cyanine pigment compound, resin composition and near infrared ray cutting filter
JP5250415B2 (en) Diimonium compounds and uses thereof
JP2011063540A (en) Phthalocyanine compound
JP4901248B2 (en) Diimonium compounds and uses thereof
JP2005336150A (en) Diimmonium compound and use of the same
JP2014080487A (en) Resin composition and near infrared ray cutting filter
JP2000081511A (en) Ir cut filter
JP4490367B2 (en) Near-infrared absorbing compound, near-infrared absorbing filter using the same
JP2003096040A (en) Diimonium salt compound and near-infrared ray absorption filter using the same
WO2017022708A1 (en) Thermally reactive composition
JP3682347B2 (en) Near infrared absorption filter for plasma display
JP2007197492A (en) Immonium compound and use thereof
KR20090022692A (en) Cyanine dyestuff and optical filter for plasma display device
JP4901188B2 (en) Cyanine compound and optical filter using the cyanine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130618

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130709

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130802