JP2008088005A - Apparatus and method for manufacturing glass sheet, glass product and manufacturing method of liquid crystal display - Google Patents

Apparatus and method for manufacturing glass sheet, glass product and manufacturing method of liquid crystal display Download PDF

Info

Publication number
JP2008088005A
JP2008088005A JP2006268633A JP2006268633A JP2008088005A JP 2008088005 A JP2008088005 A JP 2008088005A JP 2006268633 A JP2006268633 A JP 2006268633A JP 2006268633 A JP2006268633 A JP 2006268633A JP 2008088005 A JP2008088005 A JP 2008088005A
Authority
JP
Japan
Prior art keywords
glass
plate
plate glass
chambers
slow cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006268633A
Other languages
Japanese (ja)
Other versions
JP4918183B2 (en
Inventor
Nobuhiro Maeda
伸広 前田
Kazuya Uchida
一弥 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39372531&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2008088005(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006268633A priority Critical patent/JP4918183B2/en
Publication of JP2008088005A publication Critical patent/JP2008088005A/en
Application granted granted Critical
Publication of JP4918183B2 publication Critical patent/JP4918183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a glass sheet by the down draw method, preparing the glass sheet with higher flatness by inhibiting the occurrence of an air current produced by the draft effect, a method of manufacturing a glass sheet by using the apparatus, and a method of manufacturing a glass product, whereby various glass products are manufactured from the glass sheet prepared thereby. <P>SOLUTION: Pairs of movable partitions 4 are supported by fixed partitions 3 established on both ends in the width direction of the glass sheet G with a prescribed clearance between the partially molded glass sheet G passing through annealing chambers 10a-10k in an annealing step. Respective pairs of the movable partitions are holizontally slidably arranged along the direction of the thickness of the glass sheet G and facing each other on opposite sides of the glass sheet G. The distance between the movable partitions in each pair can be adjusted so that their distances from the glass sheet G can be minimized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熔融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、徐冷することによって板ガラスを製造するための板ガラスの製造装置、及びそのような装置を利用した板ガラスの製造方法、並びにガラス製品の製造方法に関する。   The present invention relates to a plate glass manufacturing apparatus for manufacturing a plate glass by slowly cooling the molten glass while lowering the molten glass along the vertical direction, and a method of manufacturing the plate glass using such a device, In addition, the present invention relates to a method for manufacturing a glass product.

板ガラスの製造方法としては、例えば、1)熔融槽から熔融ガラスを鉛直上方に引き上げながら板状に成形するフルコール法、2)熔融錫槽に熔融ガラスを所定厚みに浮かべた後、水平方向に引き出すフロート法、3)くさび状の成形体の両側面に沿って熔融ガラスを流下させた後、成形体の下端部で合流した熔融ガラスを鉛直下方に引き下げながら板状に成形するフュージョン法などが知られている。   Examples of plate glass manufacturing methods include: 1) Full coal method in which molten glass is pulled up vertically from a melting tank and shaped into a plate shape; 2) Fused glass is floated in a molten tin tank to a predetermined thickness and then pulled out in a horizontal direction. Float method, 3) Fusion method in which molten glass is flowed down along both sides of a wedge-shaped molded body, and then the molten glass joined at the lower end of the molded body is vertically lowered and molded into a plate shape. It has been.

フルコール法のように、熔融ガラスを鉛直上方に引き上げる板ガラスの製造法はアップドロー法とも称され、例えば、特許文献1、特許文献2に、その例が示されている。また、フュージョン法のように、熔融ガラスを鉛直下方に引き下げる板ガラスの製造方法はダウンドロー法とも称され、例えば、特許文献3に、その例が示されている。
これらの方法は、徐冷工程において、板ガラスの厚み方向に対向する二つの主面に及ぼされる重力の影響が等しく、板ガラス表面の平坦度を維持するのに有利な方法といえる。
A plate glass manufacturing method in which the molten glass is pulled up vertically as in the full coal method is also referred to as an updraw method. For example, Patent Document 1 and Patent Document 2 show examples thereof. Moreover, the manufacturing method of the plate glass which pulls down a molten glass to the vertically downward direction like the fusion method is also called the down draw method, For example, patent document 3 shows the example.
These methods can be said to be advantageous in maintaining the flatness of the surface of the plate glass because the influence of gravity exerted on the two main surfaces facing each other in the thickness direction of the plate glass is equal in the slow cooling step.

特公昭39−7915号公報Japanese Examined Patent Publication No. 39-7915 特公昭43−4278号公報Japanese Patent Publication No.43-4278 特開平10−53426号公報Japanese Patent Laid-Open No. 10-53426

ところで、特許文献1は、板ガラスの徐冷(焼鈍)における歪の低減、又は膨れの除去を目的とし、特許文献2は、徐冷時のガラス板に起こる平面歪の減少と分布の一様化を目的としているが、いずれも高温の熔融ガラスによる徐冷室内の上昇気流(ドラフト効果)を制御して、板ガラス表面の温度分布を調整しようとするものであり、ドラフト効果により生じた、熔融ガラス浴からの熱を蓄えた気流を徐冷室の加熱に積極的に利用している。   By the way, Patent Document 1 aims to reduce strain or remove blisters during slow cooling (annealing) of sheet glass, and Patent Document 2 reduces planar strain that occurs in a glass sheet during slow cooling and makes the distribution uniform. However, both are intended to adjust the temperature distribution on the surface of the glass sheet by controlling the rising air flow (draft effect) in the slow cooling chamber with high-temperature molten glass. The airflow that stores the heat from the bath is actively used to heat the annealing chamber.

一方、特許文献3のようなダウンドロー法の場合、特許文献1や特許文献2のようなアップドロー法とは異なり、成形装置の最下部に高温の大きな熱源(熔融ガラス)が無い。このため、アップドロー法のような、ドラフト効果による温度調整機能は期待できず、むしろ、ドラフト効果による気流の発生は、部分冷却による弊害を招くものでしかない。   On the other hand, in the case of the downdraw method as in Patent Document 3, unlike the updraw method as in Patent Document 1 and Patent Document 2, there is no high-temperature large heat source (molten glass) at the bottom of the molding apparatus. For this reason, the temperature adjustment function by the draft effect like the up-draw method cannot be expected. Rather, the generation of the airflow by the draft effect only causes a harmful effect due to the partial cooling.

すなわち、ダウンドロー法では、徐冷室下方に熔融ガラス浴などの大きな熱源はないが、板ガラス付近の雰囲気は高温のガラスによって熱せられ、板ガラス表面に沿って温度の異なる気流が発生する。そして、この気流によって板ガラスの表面が部分的に冷却され、このような部分冷却によって板ガラス表面に温度差が生じてしまうと、板ガラス表面の平坦度が悪化してしまう。   That is, in the downdraw method, there is no large heat source such as a molten glass bath below the slow cooling chamber, but the atmosphere in the vicinity of the plate glass is heated by the high-temperature glass, and airflows having different temperatures are generated along the plate glass surface. And if the surface of a plate glass is partially cooled by this air flow and a temperature difference arises in the plate glass surface by such a partial cooling, the flatness of the plate glass surface will deteriorate.

近年、大型化が進んだフラットパネルディスプレイに用いられる板ガラスに代表されるように、板ガラスの肉薄化と平坦度の向上の要求が強くなってきており、より平坦度の高い板ガラスを製造するには、このような気流の影響も抑制する必要がある。また、肉薄化されればされるほど、板ガラス表面の平坦度の悪化に及ぼす気流の影響は相対的に大きくなってくるので、肉薄で、かつ、平坦度の高いガラス板を得るには、可能な限りドラフト効果の出現を抑止することが望まれる。   In recent years, as typified by flat glass used in flat panel displays that have been increasing in size, there has been an increasing demand for thinning and flatness of flat glass, and in order to manufacture flat glass with higher flatness. It is also necessary to suppress the influence of such airflow. In addition, the thinner the wall, the greater the influence of airflow on the flatness of the flat glass surface, so it is possible to obtain a thin and high flatness glass plate. It is desirable to suppress the appearance of the draft effect as much as possible.

本発明は、上記の事情に鑑みなされたものであって、ダウンドロー法によって板ガラスを製造するにあたり、ドラフト効果による気流の発生を抑止し、より平坦度の高い板ガラスを得ることができる板ガラスの製造装置、及びそのような製造装置を利用した板ガラスの製造方法、並びにそのような方法によって得られた板ガラスから種々のガラス製品を製造するガラス製品の製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and in producing a plate glass by a downdraw method, the production of a plate glass capable of suppressing the generation of airflow due to the draft effect and obtaining a plate glass with higher flatness. It aims at providing the manufacturing method of the glass product which manufactures a various glass product from the apparatus, the manufacturing method of the plate glass using such a manufacturing apparatus, and the plate glass obtained by such a method.

本発明に係る板ガラスの製造装置は、溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、徐冷する板ガラスの製造装置であって、成形途中の板ガラスが通過する複数の徐冷室を備えるとともに、隣接する前記徐令室間相互の気流の流れを抑止しつつ、前記徐冷室の温度がそれぞれ独立して制御されるようにした構成としてある。   The plate glass manufacturing apparatus according to the present invention is a plate glass manufacturing apparatus that slowly cools molten glass while forming it into a plate shape while being pulled down along the vertical direction, and a plurality of slow cooling chambers through which the plate glass in the middle of forming passes. And the temperature of the slow cooling chamber is controlled independently while suppressing the flow of airflow between the adjacent slow chambers.

このような構成とした本発明に係る板ガラスの製造装置によれば、隣接する徐令室間相互の気流の流れを抑止して、より平坦度の高い板ガラスを製造することができる。   According to the plate glass manufacturing apparatus according to the present invention configured as described above, it is possible to manufacture plate glass with higher flatness by suppressing the flow of airflow between adjacent grace chambers.

また、本発明に係る板ガラスの製造装置は、より具体的には、前記徐令室を通過する前記板ガラスに対して所定のクリアランスをもって、前記板ガラスの幅方向両端側に設置された固定隔壁と、前記板ガラスを挟むように対向配置され、前記板ガラスの厚み方向に沿って水平にスライド可能となるように前記固定隔壁に支持された一対の可動隔壁とにより、前記徐冷室が仕切られている構成とすることができる。   In addition, the plate glass manufacturing apparatus according to the present invention, more specifically, with a predetermined clearance with respect to the plate glass passing through the gradual chamber, fixed partition walls installed on both ends in the width direction of the plate glass, A structure in which the slow cooling chamber is partitioned by a pair of movable partition walls that are opposed to each other so as to sandwich the plate glass and are supported by the fixed partition wall so as to be slidable horizontally along the thickness direction of the plate glass. It can be.

また、本発明に係る板ガラスの製造装置は、前記固定隔壁及び前記可動隔壁とともに、前記徐冷室を画成する炉壁の断熱性能が、前記徐冷室ごとに独立して調整されている構成とすることができる。   Further, in the plate glass manufacturing apparatus according to the present invention, the heat insulation performance of the furnace wall defining the slow cooling chamber is adjusted independently for each of the slow cooling chambers together with the fixed partition wall and the movable partition wall. It can be.

また、本発明に係る板ガラスの製造方法は、溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、徐冷する板ガラスの製造方法であって、相互の気流の流れを抑止しつつ、それぞれ独立に温度制御された複数の徐冷室に、成形途中の板ガラスを通過させて徐冷する方法としてある。   In addition, the method for producing a plate glass according to the present invention is a method for producing a plate glass that is gradually cooled while being shaped into a plate shape while pulling down the molten glass along the vertical direction, while suppressing the flow of mutual airflow, This is a method in which a glass sheet in the middle of molding is passed through a plurality of annealing chambers, each of which is independently temperature controlled, and cooled slowly.

このような方法とした本発明に係る板ガラスの製造方法によれば、成形途中の板ガラスを複数の徐冷室を通過させて徐冷するに際して、隣接する徐令室間相互の気流の流れを抑止して、より平坦度の高い板ガラスを製造することができる。   According to the plate glass manufacturing method according to the present invention as described above, when the plate glass being formed is gradually cooled by passing through a plurality of slow cooling chambers, the flow of airflow between adjacent gradual chambers is suppressed. And plate glass with higher flatness can be manufactured.

また、本発明に係る板ガラスの製造方法は、前記徐令室を通過する前記板ガラスに対して所定のクリアランスをもって、前記板ガラスの幅方向両端側に設置された固定隔壁に、前記板ガラスの厚み方向に沿って水平にスライド可能となるように支持され、前記板ガラスを挟むように対向配置された一対の可動隔壁間の離間距離を、成形が安定してきた段階で、前記板ガラスとの間の隙間が極力小さくなるように調整することにより、隣接する前記徐令室間相互の気流の流れを抑止する方法とすることができる。
このような方法とすれば、運転開始時における板ガラスとの接触を避けながらも、成形が安定してきた定常運転時にあっては、その時点での板ガラスの厚みに応じて可動隔壁をスライドさせることにより、板ガラスとの間に形成される隙間を極力小さくして、隣接する徐令室間相互の気流の流れを抑止することができる。
Moreover, the manufacturing method of the plate glass which concerns on this invention is a fixed partition installed in the width direction both ends of the said plate glass with the predetermined clearance with respect to the said plate glass which passes the said gradual chamber in the thickness direction of the said plate glass. The distance between the pair of movable partition walls supported so as to be horizontally slidable and facing each other so as to sandwich the plate glass is set so that the gap between the plate glass is as much as possible at the stage where the molding has stabilized. By adjusting so that it may become small, it can be set as the method of suppressing the flow of the mutual air flow between the said gradual chambers.
With such a method, while avoiding contact with the plate glass at the start of operation, in the steady operation where the molding is stable, by sliding the movable partition according to the thickness of the plate glass at that time The gap formed between the glass plates can be made as small as possible to suppress the flow of airflow between adjacent aging chambers.

また、本発明に係る板ガラスの製造方法は、前記徐冷室ごとに、前記固定隔壁及び前記可動隔壁とともに、前記徐冷室を画成する炉壁の断熱性能を独立に調整して、ガラスの成形を行う方法とすることができる。   In addition, the method for producing a glass sheet according to the present invention includes separately adjusting the heat insulating performance of the furnace wall defining the slow cooling chamber together with the fixed partition wall and the movable partition wall for each of the slow cooling chambers. It can be set as the method of shaping | molding.

また、本発明に係る板ガラスの製造方法は、得ようとする板ガラスの厚さが1.5mm以下である方法とすることができ、このような肉薄の板ガラスを得ようとする場合に、特に好適である。   Moreover, the manufacturing method of the plate glass which concerns on this invention can be made into the method whose thickness of the plate glass to be obtained is 1.5 mm or less, and is especially suitable when it is going to obtain such a thin plate glass. It is.

また、本発明に係るガラス製品の製造方法は、溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、相互の気流の流れが抑止され、それぞれ独立に温度制御された複数の徐冷室を通過させて徐冷してなる板ガラスを分割する方法としてあり、本発明に係る液晶ディスプレイの製造方法は、溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、相互の気流の流れが抑止され、それぞれ独立に温度制御された複数の徐冷室を通過させて徐冷してなる板ガラスを分割することによって得られたガラス基板の上に、少なくとも配線パターンを形成する工程を含む方法としてある。   In addition, the method for producing a glass product according to the present invention includes a plurality of slow cooling methods in which molten air is formed into a plate shape while being pulled down along the vertical direction, the flow of mutual airflow is suppressed, and the temperature is controlled independently. It is a method of dividing a plate glass that is gradually cooled by passing through a chamber, and the liquid crystal display manufacturing method according to the present invention is a method of forming a plate while lowering the molten glass along the vertical direction, Including a step of forming at least a wiring pattern on a glass substrate obtained by dividing a plate glass formed by passing a plurality of slow cooling chambers, each of which is flow-suppressed and independently controlled, and which is slowly cooled. There is a way.

以上のように、本発明によれば、溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、複数の徐冷室を通過させて徐冷することによって板ガラスを製造するに際し、隣接する徐令室間相互の気流の流れを抑止することによって、より平坦度の高い板ガラスを製造することができる。   As described above, according to the present invention, the molten glass is formed into a plate shape while being pulled down along the vertical direction, and when the plate glass is manufactured by passing through a plurality of annealing chambers and gradually cooling, it is adjacent. By suppressing the flow of airflow between the slow chambers, a flat glass with higher flatness can be produced.

以下、本発明の好ましい実施形態について、図面を参照して説明する。
なお、図1は、本実施形態における板ガラスの製造装置の概略を示す説明図である。図2は、図1に示す製造装置10の要部拡大図であり、一つの徐冷室と、この上下に隣接する徐令室の一部を示している。図3は、図2のA−A断面図であり、図4は、図2のB−B断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
In addition, FIG. 1 is explanatory drawing which shows the outline of the manufacturing apparatus of the plate glass in this embodiment. FIG. 2 is an enlarged view of a main part of the manufacturing apparatus 10 shown in FIG. 1, and shows one annealing chamber and a part of the aging chamber adjacent to the upper and lower sides. 3 is a cross-sectional view taken along the line AA in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line BB in FIG.

製造装置10は、図示しない熔融ガラス供給手段に接続された、樋状の成形体1を備えている。成形体1としては、いわゆるフィーディングセルと称されるものが利用でき、図示するように、成形体1の両側面に沿って流出する熔融ガラスが下端部で合流するようになっている。
成形体1の下端部で合流した熔融ガラスは、そのまま鉛直方向に沿って引き下げられ、板状に成形されつつ、徐冷工程を経て、板ガラスGとなって製造装置10から取り出される。
The manufacturing apparatus 10 includes a bowl-shaped molded body 1 connected to a molten glass supply unit (not shown). As the molded body 1, a so-called feeding cell can be used, and as shown in the figure, molten glass flowing out along both side surfaces of the molded body 1 joins at the lower end.
The molten glass joined at the lower end portion of the molded body 1 is pulled down along the vertical direction as it is, and is formed into a plate shape, and then is subjected to a slow cooling step to become a plate glass G and is taken out from the manufacturing apparatus 10.

また、製造装置10は、炉壁2で囲まれた内部の空間が、複数の徐冷室10a〜10kに仕切られている。各徐令室10a〜10kは、それぞれ独立した加熱手段6を備え、図示しない制御手段によって所定の温度に制御されている。   Moreover, as for the manufacturing apparatus 10, the internal space enclosed with the furnace wall 2 is partitioned off into the some annealing room 10a-10k. Each of the slow chambers 10a to 10k is provided with an independent heating means 6, and is controlled to a predetermined temperature by a control means (not shown).

徐冷工程にある成形途上の板ガラスGは、図示するように、その幅方向(図1において、紙面に対して垂直な方向)の両端縁が複数対のローラー5で狭持され、装置内を下方に繰り出されていく。このとき、各徐冷室10a〜10kは、板ガラスGの進行方向である下方に向かって、順次、温度が下がるように設定、制御されており、これらの徐冷室10a〜10kを通過することによって、板ガラスGは、高い平坦度が保たれたまま、除歪、冷却される。   As shown in the drawing, the sheet glass G in the process of slow cooling is sandwiched by a plurality of pairs of rollers 5 at both ends in the width direction (in the direction perpendicular to the paper surface in FIG. 1). It goes out downward. At this time, each of the slow cooling chambers 10a to 10k is set and controlled so that the temperature is sequentially lowered toward the lower direction that is the traveling direction of the plate glass G, and passes through these slow cooling chambers 10a to 10k. Thus, the plate glass G is subjected to distortion removal and cooling while maintaining high flatness.

このようにして、板ガラスGを成形、徐冷するにあたり、各徐冷室10a〜10kを仕切る隔壁には、板ガラスGの通過を許容する貫通路を設けなければならないが、板ガラスGと貫通路との間に大きな隙間が形成されていると、異なる設定温度に制御された隣接する徐冷室間に、ドラフト効果による気流が発生する。そして、このような気流の流れが、板ガラスGの主面(厚み方向に対向する面積最大の面)に沿って生じると、板ガラスGの幅方向に沿った温度分布の均一性が乱されて、板ガラスGの表面の平坦度に悪影響を及ぼしてしまう。   In this way, when the plate glass G is formed and slowly cooled, the partition walls that partition the slow cooling chambers 10a to 10k must be provided with a through passage that allows the plate glass G to pass. If a large gap is formed between the two, an air flow due to the draft effect is generated between adjacent slow cooling chambers controlled at different set temperatures. And when such a flow of airflow occurs along the main surface of the plate glass G (surface with the largest area facing the thickness direction), the uniformity of the temperature distribution along the width direction of the plate glass G is disturbed, The flatness of the surface of the plate glass G will be adversely affected.

板ガラスGとの間の隙間が極力小さくなるように貫通路の寸法を設定すれば、隣接する徐令室間相互の気流の流れは抑止され、上記のような不都合はないように思われるものの、通常、製造装置10の運転を開始した時点では、定常運転時に比べて、成形途上の板ガラスGの肉厚が相当に厚い。   If the dimension of the through passage is set so that the gap between the glass sheets G is as small as possible, the flow of airflow between adjacent grace chambers is suppressed, although it seems that there is no such inconvenience, Usually, when the operation of the manufacturing apparatus 10 is started, the thickness of the sheet glass G in the process of forming is considerably thicker than that in the steady operation.

したがって、定常運転時の板ガラスGの肉厚に基づいて貫通路の寸法を設定すると、運転開始時に板ガラスGが隔壁に接触し、成形に支障をきたしてしまうことになる。一方、運転開始時の板ガラスGの肉厚に基づいて貫通路の寸法を設定すると、通常運転となった時に、板ガラスGとの間に大きな隙間が形成されてしまい、隣接する徐令室間相互の気流の流れを抑止することができない。   Therefore, when the dimension of the through passage is set based on the thickness of the plate glass G during steady operation, the plate glass G contacts the partition wall at the start of operation, which hinders molding. On the other hand, if the dimension of the through-passage is set based on the thickness of the plate glass G at the start of operation, a large gap is formed between the plate glasses G in the normal operation, and the adjacent gradual chambers are mutually connected. The flow of air cannot be suppressed.

このため、本実施形態にあっては、各徐冷室10a〜10kを通過する成形途中の板ガラスGに対して所定のクリアランスをもって、板ガラスGの幅方向両端側に固定隔壁3を設置するとともに、板ガラスGを挟むように対向配置され、板ガラスGの厚み方向に沿って水平にスライド可能とされた一対の可動隔壁4を固定隔壁3に支持することにより、各徐令室10a〜10kを仕切っている。   For this reason, in this embodiment, while installing the fixed partition 3 on the both ends in the width direction of the plate glass G with a predetermined clearance with respect to the plate glass G in the middle of molding passing through the slow cooling chambers 10a to 10k, The gradual chambers 10a to 10k are partitioned by supporting a pair of movable partition walls 4 opposed to each other so as to sandwich the sheet glass G and horizontally slidable along the thickness direction of the sheet glass G. Yes.

このようにすることで、スライド可能とされた一対の可動隔壁4を近接、離間させることにより、板ガラスGとの間に形成される隙間の大きさを調整することができ、これによって、板ガラスGとの間に常に適度の隙間を確保しつつ、板ガラスGの通過を許容する貫通路を形成することが可能となる。その結果、運転開始時における板ガラスGとの接触を避けながらも、定常運転時にあっては、その時点での板ガラスGの厚みに応じて可動隔壁4をスライドさせることにより、板ガラスGとの間に形成される隙間を極力小さくして、隣接する徐令室間相互の気流の流れを抑止することができる。   By doing in this way, the magnitude | size of the clearance gap formed between plate glass G can be adjusted by making a pair of movable partition 4 made slidable approach and space apart, and, thereby, plate glass G It is possible to form a through-passage that allows passage of the glass sheet G while always ensuring an appropriate gap between the two. As a result, while avoiding contact with the plate glass G at the start of operation, during the steady operation, the movable partition wall 4 is slid according to the thickness of the plate glass G at that time, so that it is between the plate glass G. The gap formed can be made as small as possible to suppress the flow of airflow between adjacent aging chambers.

製造装置10を形成する各部の具体的な構成は、公知のこの種のガラス製造装置のものを利用することができるが、可動隔壁4は、スライド可能とする上で、比較的軽量の肉薄の板材からなるのが好ましい。その一方で、可動隔壁4によって仕切られる徐冷室の間には温度差があり、可動隔壁4の材料に金属などを用いると、その上面と下面との間に生じる温度差によって、可動隔壁4に反りが生じるおそれがある。
このため、可動隔壁4の反りを抑えつつ、徐冷室間を断熱するには、セラミックス製の板材を用いて可動隔壁4を構成するのが好ましい。より具体的には、薄くても優れた断熱性を備え、温度差による反りも生じにくい、セラミックファイバーボードなどを例示することができる。
The specific configuration of each part forming the manufacturing apparatus 10 can use a known glass manufacturing apparatus of this kind, but the movable partition 4 is slidable and relatively thin and thin. It is preferably made of a plate material. On the other hand, there is a temperature difference between the slow cooling chambers partitioned by the movable partition wall 4, and when a metal or the like is used as the material of the movable partition wall 4, the temperature difference generated between the upper surface and the lower surface causes the movable partition wall 4. There is a risk of warping.
For this reason, in order to insulate between the slow cooling chambers while suppressing the warp of the movable partition wall 4, it is preferable to configure the movable partition wall 4 using a ceramic plate material. More specifically, a ceramic fiber board or the like that has excellent heat insulating properties even when thin and hardly warps due to a temperature difference can be exemplified.

ところで、図示する例において、各徐令室10a〜10kは、それぞれが独立した加熱手段6を備えて温度制御されるようにしてあるが、徐冷室内の温度を所望の温度に保持するに際して、冷却手段として低温の熱媒体を通した熱交換器を徐冷室内に設置することが考えられるが、低温の熱媒体の周囲にはその熱媒体に近い温度の空気ができることになると同時に、熱交換器が周囲の熱を必要以上に奪ってしまうと加熱手段6の出力を上げる必要が生じる。この加熱手段の出力向上は、当然熱源の温度が上がることを意味するので、熱源近くにはその熱源に近い温度の空気ができることになる。同一空間(徐冷室)内に存在する低温の熱媒体近くの低温の空気と、高温の熱源の近くの高温の空気は気流を発生させる原因となるので、その温度差が大きいほど気流発生のエネルギーは大きくなり、その空間内に存在する板ガラスGの温度分布を悪化させる引き金となりうる。したがって、より平坦度の高い板ガラスを得るには、徐冷室内における気流の発生を誘発するような、高温の熱源による加熱も、低温の熱媒体による冷却も行わないで、徐冷室内の温度を制御するのが好ましい。   Incidentally, in the illustrated example, each of the gradual chambers 10a to 10k is provided with an independent heating means 6 so that the temperature is controlled, but when maintaining the temperature in the gradual cooling chamber at a desired temperature, It is conceivable to install a heat exchanger that passes through a low-temperature heat medium as a cooling means in the slow cooling chamber, but air at a temperature close to that heat medium will be created around the low-temperature heat medium, and at the same time heat exchange If the vessel takes away ambient heat more than necessary, the output of the heating means 6 needs to be increased. This improvement in the output of the heating means naturally means that the temperature of the heat source rises, so that air having a temperature close to that heat source is created near the heat source. Low-temperature air near the low-temperature heat medium and high-temperature air near the high-temperature heat source that exist in the same space (annealing chamber) cause airflow. The larger the temperature difference, the more the airflow is generated. The energy increases and can trigger the temperature distribution of the sheet glass G present in the space. Therefore, in order to obtain a flat glass with a higher degree of flatness, the temperature in the slow cooling chamber is not increased by heating with a high-temperature heat source or cooling with a low-temperature heat medium that induces the generation of airflow in the slow-cooling chamber. It is preferable to control.

このような温度制御手段の一つとして、成形途上にある板ガラスGから放出される熱を熱源として徐冷室内に必要な熱量を確保しつつ、その熱の一部を必要に応じて外部に放出することで、それぞれの徐冷室内の温度を所望の温度に制御することが考えられる。このような温度制御手段を実現するには、固定隔壁3や可動隔壁4とともに徐冷室を画成する炉壁2の断熱性能を、それぞれの徐冷室ごとに調整すればよい。
すなわち、例えば、板ガラスGが高温な上位の徐冷室では、その炉壁2に高い断熱性能を持たせて急激な温度低下を避けつつ、板ガラスGの温度が低下とともに、しだいに断熱性能を下げていく。そして、下位の徐冷室の炉壁2ほど断熱性能が低くなるようにして、好適な温度勾配が得られるように、それぞれの徐冷室の炉壁2に付与する断熱性能を独立して調整すればよい。
As one of such temperature control means, the heat released from the glass sheet G in the process of forming is used as a heat source to secure a necessary amount of heat in the annealing chamber, and a part of the heat is released to the outside as needed. By doing so, it is conceivable to control the temperature in each annealing chamber to a desired temperature. In order to realize such temperature control means, the heat insulation performance of the furnace wall 2 that defines the slow cooling chamber together with the fixed partition wall 3 and the movable partition wall 4 may be adjusted for each slow cooling chamber.
That is, for example, in the upper cooling chamber where the glass sheet G is high in temperature, the furnace wall 2 is provided with high heat insulation performance to avoid a sudden temperature drop, while the temperature of the glass sheet G is lowered and the heat insulation performance is gradually lowered. To go. Then, the heat insulation performance to be imparted to the furnace wall 2 of each slow cooling chamber is independently adjusted so that the heat insulation performance becomes lower as the furnace wall 2 of the lower slow cooling chamber and a suitable temperature gradient is obtained. do it.

断熱性能を調整するにあたり、より具体的には、断熱材として徐冷室の炉壁2の内側に貼り付けているセラミックファイバー製の断熱ボードの厚みを、上位の徐冷室では十分に厚くする一方で、下位に向かうにしたがって徐々に薄くしていく。そして、放熱量が不足する場合は、断熱材を用いないで、鉄製の壁面むき出しとし、さらに必要に応じて、その放射率を高める塗料を炉壁2の内面及び外面に塗布するなどの断熱性能調整方法を用いることができる。   In adjusting the heat insulating performance, more specifically, the thickness of the ceramic fiber heat insulating board affixed to the inside of the furnace wall 2 of the slow cooling chamber as a heat insulating material is made sufficiently thick in the upper cooling chamber. On the other hand, it gradually becomes thinner as it goes down. And when the amount of heat radiation is insufficient, without using a heat insulating material, a steel wall is exposed, and if necessary, a heat insulating performance such as applying a paint for increasing the emissivity to the inner surface and the outer surface of the furnace wall 2 An adjustment method can be used.

なお、以上のようにして炉壁2の断熱性能を調整するにあたり、板ガラスGの幅方向両端に対向する炉壁2の断熱性能を下げると、板ガラスGの幅方向の温度分布に影響を与え、板ガラスGの平坦度への影響が大きい。このため、この部分での断熱性能は一定以上を維持したまま、板ガラスGの主面に対向する炉壁2の断熱性能の程度を増減させるのが好ましい。
すなわち、本実施形態にあっては、固定隔壁3及び可動隔壁4とともに、徐冷室を画成する炉壁2のうち、板ガラスGの主面に対向する部分の断熱性能が、徐冷室ごとに独立して調整されているのが特に好ましい。
In adjusting the heat insulation performance of the furnace wall 2 as described above, if the heat insulation performance of the furnace wall 2 facing both ends in the width direction of the plate glass G is lowered, the temperature distribution in the width direction of the plate glass G is affected. The influence on the flatness of the plate glass G is great. For this reason, it is preferable to increase / decrease the degree of the heat insulation performance of the furnace wall 2 facing the main surface of the plate glass G while maintaining the heat insulation performance at this portion at a certain level or more.
That is, in this embodiment, the heat insulation performance of the part facing the main surface of the sheet glass G in the furnace wall 2 that defines the slow cooling chamber together with the fixed partition wall 3 and the movable partition wall 4 is the same for each slow cooling chamber. It is particularly preferable that the adjustment is performed independently.

以上のような製造装置10によって板ガラスGを成形するにあたり、成形体1から流出する熔融ガラスは、鉛直方向に沿って引き下げられながら板状に成形されつつ、各徐冷室10a〜10kへと繰り出されていくが、前述したように、成形を開始した初期の段階では、成形途中の板ガラスGの肉厚は、定常運転時に比べて相当に厚い。このため、成形開始時には、一対の可動隔壁4の離間距離を十分広くしておき、可動隔壁4が板ガラスGの繰り出しを妨げないようにする。   When the sheet glass G is formed by the manufacturing apparatus 10 as described above, the molten glass flowing out of the formed body 1 is drawn into the slow cooling chambers 10a to 10k while being formed into a plate shape while being pulled down along the vertical direction. However, as described above, at the initial stage when molding is started, the thickness of the glass sheet G during molding is considerably thicker than that during steady operation. For this reason, at the start of molding, the distance between the pair of movable partition walls 4 is made sufficiently wide so that the movable partition walls 4 do not hinder the feeding of the plate glass G.

そして、成形が安定してきて、成形途中の板ガラスGの厚みが定常運転時の厚みに近づいてきた段階で、可動隔壁4の離間距離を狭めて、板ガラスGとの間の隙間が極力小さくなるように調整することにより、隣接する徐令室間相互の気流の流れを抑止する
このように、相互の気流の流れを抑止しつつ、それぞれ独立に温度制御された複数の徐冷室10a〜10kに、成形途中の板ガラスを通過させて徐冷することにより、より平坦度の高い板ガラスを得ることができる。そして、板ガラスGの平坦度の悪化に及ぼす気流の影響は、肉薄化されればされるほど相対的に大きくなってくるので、得ようとする板ガラスGの厚さが1.5mm以下の肉薄となる場合に、特に好適である。
And when shaping | molding becomes stable and the thickness of the plate glass G in the middle of shaping | molding has approached the thickness at the time of a steady operation, the separation distance of the movable partition 4 is narrowed, and the clearance gap between the plate glasses G becomes as small as possible. In this way, the flow of mutual airflow between adjacent gradual chambers is restrained in this way, while the flow of mutual airflow is restrained, and each of the plurality of slow cooling chambers 10a to 10k that are independently temperature controlled. By passing the plate glass in the middle of molding and gradually cooling, a plate glass with higher flatness can be obtained. And since the influence of the airflow on the deterioration of the flatness of the plate glass G becomes relatively larger as the thickness is reduced, the thickness of the plate glass G to be obtained is as thin as 1.5 mm or less. This is particularly suitable.

ここで、運転を開始してから定常運転に移行するまでの間、板ガラスGは、ロータ5に引っ張られながら幅方向に揺れ動く。このため、板ガラスGの側面(幅方向両端における端面)と、固定隔壁3の間には、ある程度の隙間(図3参照)がないと、板ガラスGが固定隔壁3に接触してしまう。
また、板ガラスGの平坦度は、主面の温度分布に大きな影響を受けるため、主面に沿ったドラフト効果による気流の流れを十分に抑止する必要があるが、板ガラスGの両端部は、溶融ガラスが成形体1から離脱後の表面張力による幅収縮に伴い、板ガラスGの中央部に比べ2倍近い厚みを持ち、謂わば「柱」のような働きをする。このため、板ガラスGの側面に沿ってドラフト効果による気流が発生しても、板ガラスGの平坦度には、それほど大きな影響を与えない。
したがって、定常運転に移行した後は、板ガラスGが幅方向に揺れ動くことはなく、板ガラスG側面と固定隔壁3との間に隙間を設ける必要はないが、この部分に隙間を残した状態で定常運転を行っても差支えない。
Here, the plate glass G swings in the width direction while being pulled by the rotor 5 during the period from the start of the operation to the transition to the steady operation. For this reason, if there is no gap (refer to FIG. 3) between the side surfaces (end surfaces at both ends in the width direction) of the plate glass G and the fixed partition 3, the plate glass G comes into contact with the fixed partition 3.
Further, since the flatness of the glass sheet G is greatly influenced by the temperature distribution of the main surface, it is necessary to sufficiently suppress the flow of airflow due to the draft effect along the main surface. Along with the width shrinkage due to the surface tension after separation from the molded body 1, the glass has a thickness nearly twice that of the central portion of the plate glass G, and functions as a so-called “column”. For this reason, even if an air flow due to the draft effect is generated along the side surface of the glass sheet G, the flatness of the glass sheet G is not significantly affected.
Therefore, after shifting to the steady operation, the glass sheet G does not sway in the width direction, and there is no need to provide a gap between the side surface of the glass sheet G and the fixed partition wall 3, but in a state where a gap remains in this portion. You can drive.

徐冷工程を経て、製造装置10から取り出された板ガラスGは、所定の大きさに分割されて種々のガラス製品に加工される。このとき、ナールロールやローラー5と接触した両端部分を切り落とせば、非常に平坦な主面を有し、かつ、その主面どうしの平行度も高い、一定の厚みの板状のガラス製品を得ることができる。   The plate glass G taken out from the manufacturing apparatus 10 through the slow cooling process is divided into a predetermined size and processed into various glass products. At this time, if both end portions in contact with the knurled roll or the roller 5 are cut off, a plate-shaped glass product having a very flat main surface and high parallelism between the main surfaces is obtained. be able to.

板ガラスGを分割することによって製造されるガラス製品としては、例えば、ガラス基板や、カバーガラスなど、高精度の平坦性が要求される板状のガラス製品を例示することができる。   Examples of the glass product manufactured by dividing the plate glass G include a plate-like glass product that requires high-precision flatness, such as a glass substrate and a cover glass.

より具体的には、例えば、アルミノボロシリケート系の組成を有する無アルカリガラスをガラス原料とし、製造装置10により板ガラスGを成形して、徐冷した後に幅方向に沿って切断し、両端部を切り落とすことで、TFTアクティブマトリックス方式の液晶ディスプレイ用のガラス基板を製造することができ、このガラス基板には、TFTアレイと配線パターンとを良好に形成することができる。   More specifically, for example, an alkali-free glass having an aluminoborosilicate-based composition is used as a glass raw material, the glass sheet G is formed by the manufacturing apparatus 10, slowly cooled, then cut along the width direction, and both end portions are By cutting off, a glass substrate for a TFT active matrix type liquid crystal display can be manufactured, and a TFT array and a wiring pattern can be satisfactorily formed on the glass substrate.

このように、得られた板ガラスGを所望の大きさ、形状に分割すれば、板厚が目標の厚さになるように成形するだけで、その主面を研磨することなく、高精度な平坦面が要求されるガラス製品を製造することができるが、得られた板ガラスGに対しては、その主面に、必要に応じて研磨を施すようにしてもよい。この場合、もともとの主面の平坦度が高いため、研磨工程にそれほどの手間をかけなくても、研磨後の主面を、より高精度の平坦面とすることができる。   In this way, if the obtained glass sheet G is divided into a desired size and shape, a flat plate with high accuracy can be obtained by simply forming the sheet thickness to a target thickness without polishing the main surface. Although a glass product requiring a surface can be produced, the obtained plate glass G may be polished on its main surface as necessary. In this case, since the original main surface has a high degree of flatness, the main surface after polishing can be made a more accurate flat surface without much effort in the polishing process.

より具体的には、例えば、所定のガラス原料からなる板ガラスGを成形し、所望の長さに切断するとともに、両端部分部を切り落とした後、円盤状に切り出して中心に孔を開け、次いで、主面を研削、研磨してディスク状のガラス基板に仕上げれば、磁気ディスクなどの情報記録媒体用のガラス基板とすることもできる。そして、このガラス基板の主面上に、磁気記録膜を形成することによって、磁気ディスクなどの情報記録媒体とすることができる。
また、得られた板ガラスGを長方形や正方形などの方形に切り出し、主面を研削、研磨すれば、携帯電話用のカバーガラスや、デジタルカメラ用のカバーガラスなどの各種カバーガラスとすることもできる。
More specifically, for example, a plate glass G made of a predetermined glass raw material is formed, cut into a desired length, and after both end portions are cut off, a disk is cut out and a hole is opened in the center, If the main surface is ground and polished to finish a disk-shaped glass substrate, a glass substrate for an information recording medium such as a magnetic disk can be obtained. An information recording medium such as a magnetic disk can be obtained by forming a magnetic recording film on the main surface of the glass substrate.
In addition, if the obtained plate glass G is cut into a rectangular or square shape and the main surface is ground and polished, various cover glasses such as a cover glass for a mobile phone and a cover glass for a digital camera can be obtained. .

これらのガラス製品は、薄い板ガラスをさらに研削、研磨しているので、より薄いガラス製品になっているが、硝酸ナトリウム及び硝酸カリウムの混合熔融塩中に浸漬して化学強化することにより強度を向上させることで、信頼性、耐久性の面で優れた製品に仕上げることができる。   These glass products are thin glass products because they are ground and polished further, but they are strengthened by immersion in a mixed molten salt of sodium nitrate and potassium nitrate for chemical strengthening. Therefore, it can be finished into a product excellent in terms of reliability and durability.

なお、上記の例では、板ガラスGから切り出したガラス片を研削、研磨したが、板ガラスGの主面を研削、研磨してから切り出しを行ってもよいし、板ガラスGの主面を研削した後、切り出し、切り出したガラスの主表面を研磨してもよい。   In the above example, the glass piece cut out from the plate glass G is ground and polished. However, the main surface of the plate glass G may be ground and polished, and then cut out or after the main surface of the plate glass G is ground. The main surface of the cut and cut glass may be polished.

次に、具体的な実施例を挙げて本発明を詳細に説明する。   Next, the present invention will be described in detail with specific examples.

[実施例]
図1に示す製造装置10を用いて、ガラス転移点が500℃、歪点が460℃、100℃〜300℃までの平均線膨張係数が90×10−7/℃、ガラス成分としてLiO及びNaOを含むアルミノシリケート系の組成を有するガラス原料から、板ガラスGを成形した。このとき、各徐冷室を仕切る可動壁4と、成形途中の板状ガラスGとの間に形成される隙間が、成形が安定してきた段階で2〜3mm程度に保たれるように調整した。そして、12mm/secの成形速度で鉛直方向に沿って引き下げて、幅600mm、厚み1.1mmの板ガラスGを成形した。
[Example]
Using the production apparatus 10 shown in FIG. 1, the glass transition point is 500 ° C., the strain point is 460 ° C., the average linear expansion coefficient from 100 ° C. to 300 ° C. is 90 × 10 −7 / ° C., and Li 2 O as a glass component and glass material having a composition of aluminosilicate containing Na 2 O, it was molded glass sheet G. At this time, it adjusted so that the clearance gap formed between the movable wall 4 which partitions each slow cooling chamber, and the plate glass G in the middle of shaping | molding may be maintained at about 2-3 mm in the stage where shaping | molding has stabilized. . And it pulled down along the perpendicular direction with the shaping | molding speed of 12 mm / sec, and shape | molded the plate glass G of width 600mm and thickness 1.1mm.

なお、各徐冷室の設定温度は、上から順番に520℃、510℃、500℃、480℃、440℃、400℃、360℃、320℃、280℃、240℃、180℃となうように制御した。このとき、各徐冷室を区画する炉壁のうち、板ガラスGの幅方向両端に対向する炉壁の内側には、セラミックファイバー製の断熱ボードを150mm厚みで内張りした。また、ガラス板Gの主面に対向する炉壁にあっては、最上位の徐冷室では断熱ボードの厚みを150mmとし、下方に行くに従って設定温度に応じて断熱ボードの厚みを減少させ、最下位の徐冷室には断熱ボードは設置しなかった。   In addition, the set temperature of each slow cooling chamber will be 520 degreeC, 510 degreeC, 500 degreeC, 480 degreeC, 440 degreeC, 400 degreeC, 360 degreeC, 320 degreeC, 280 degreeC, 240 degreeC, 180 degreeC in order from the top. Was controlled as follows. At this time, a heat insulating board made of ceramic fiber was lined with a thickness of 150 mm on the inner side of the furnace wall facing both ends in the width direction of the plate glass G among the furnace walls partitioning each annealing chamber. Moreover, in the furnace wall facing the main surface of the glass plate G, the thickness of the heat insulation board is set to 150 mm in the uppermost slow cooling chamber, and the thickness of the heat insulation board is reduced according to the set temperature as it goes downward, No heat insulation board was installed in the lowest annealing room.

徐冷した上記板ガラスを切断し、さらに所望の形状、寸法に加工した後、硝酸ナトリウムと硝酸カリウムの混合熔融塩に浸漬し、化学強化した。このようにして携帯電話用のカバーガラスや、デジタルカメラ用のカバーガラスなどの各種カバーガラスを作製した。これらカバーガラスは耐擦傷強度が高く、高い信頼性を有するものであった。   The plate glass that had been slowly cooled was cut and further processed into a desired shape and size, and then immersed in a mixed molten salt of sodium nitrate and potassium nitrate for chemical strengthening. Thus, various cover glasses such as a cover glass for a mobile phone and a cover glass for a digital camera were produced. These cover glasses have high scratch resistance and high reliability.

次に、ガラスをアルミノボロシリケート系の組成を有する無アルカリガラスに変更し、同様の成形を行った。得られた徐冷済み板ガラスを切断して液晶ディスプレイ基板とし、基板上にポリシリコンの配線パターンを形成してTFTアレイを形成した。そして、この基板を用いて液晶ディスプレイを作製した。   Next, the glass was changed to alkali-free glass having an aluminoborosilicate composition, and the same molding was performed. The obtained slowly cooled plate glass was cut into a liquid crystal display substrate, and a polysilicon wiring pattern was formed on the substrate to form a TFT array. And the liquid crystal display was produced using this board | substrate.

[比較例]
各徐冷室を仕切る可動壁4と、成形途中の板状ガラスGとの間に形成される隙間を20mm以上とした以外は、実施例と同様にして板ガラスGを成形した。
[Comparative example]
A sheet glass G was formed in the same manner as in the example except that the gap formed between the movable wall 4 partitioning each slow cooling chamber and the sheet glass G in the middle of forming was 20 mm or more.

得られた板ガラスGを600mm四方に切り出して、その反り具合をみてみたところ、実施例における反りの最大値は、比較例に対して、平均で50%以上改善された。また、反りの値のばらつきも50%以上改善された。   When the obtained plate glass G was cut into a 600 mm square and the degree of warpage was examined, the maximum value of the warpage in the example was improved by 50% or more on average with respect to the comparative example. Further, the variation of the warp value was improved by 50% or more.

以上、本発明について、好ましい実施形態を示して説明したが、本発明は、前述した実施形態にのみ限定されるものではなく、本発明の範囲で種々の変更実施が可能であることは言うまでもない。   Although the present invention has been described with reference to the preferred embodiment, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. .

すなわち、図示する成形装置10は一例であり、成形途中の板ガラスが通過する複数の徐冷室を備えるとともに、隣接する徐令室間相互の気流の流れを抑止しつつ、徐冷室の温度がそれぞれ独立して制御されるようになっていれば、これに限られない。徐冷室の数、徐冷室が備える加熱手段の配置、成形途中の板ガラスを繰り出すローラーの配置など、装置の細部は必要に応じて適宜変更することができる。   That is, the illustrated molding apparatus 10 is an example, and includes a plurality of slow cooling chambers through which glass plates in the middle of molding pass, and the temperature of the slow cooling chamber is controlled while suppressing the flow of airflow between adjacent slow chambers. If it comes to be controlled independently, it will not be restricted to this. Details of the apparatus, such as the number of slow cooling chambers, the arrangement of heating means provided in the slow cooling chamber, and the arrangement of rollers for feeding out plate glass in the middle of molding, can be appropriately changed as necessary.

さらに、図示する例では、可動隔壁4は、固定隔壁3の端面に形成された段部に支持されて、スライド可能となるようにしてあるが(図4参照)、可動隔壁4を固定隔壁3に支持させる具体的な手段は、一対の可動隔壁4を近接、離間させて、板ガラスGとの間に形成される隙間の大きさを調整することができれば、これに限られない。   Further, in the illustrated example, the movable partition 4 is supported by a step formed on the end face of the fixed partition 3 so as to be slidable (see FIG. 4). The specific means to be supported is not limited to this as long as the pair of movable partition walls 4 can be moved closer to and away from each other and the size of the gap formed between the glass plates G can be adjusted.

本発明によれは、表面の平坦度が高い板ガラスを容易に製造することができる。   According to the present invention, a plate glass having a high surface flatness can be easily produced.

本発明に係る板ガラスの製造装置の実施形態の概略を示す説明図である。It is explanatory drawing which shows the outline of embodiment of the manufacturing apparatus of the plate glass which concerns on this invention. 図1に示す製造装置の要部拡大図である。It is a principal part enlarged view of the manufacturing apparatus shown in FIG. 図2のA−A断面図である。It is AA sectional drawing of FIG. 図2のB−B断面図である。It is BB sectional drawing of FIG.

符号の説明Explanation of symbols

1 成形体
3 固定隔壁
4 可動隔壁
6 加熱手段
10 製造装置
10a〜10k 徐冷室
G 板ガラス
DESCRIPTION OF SYMBOLS 1 Molded object 3 Fixed partition 4 Movable partition 6 Heating means 10 Manufacturing apparatus 10a-10k Slow cooling chamber G Sheet glass

Claims (9)

溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、徐冷する板ガラスの製造装置であって、
成形途中の板ガラスが通過する複数の徐冷室を備えるとともに、
隣接する前記徐令室間相互の気流の流れを抑止しつつ、前記徐冷室の温度がそれぞれ独立して制御されるようにしたことを特徴とする板ガラスの製造装置。
An apparatus for producing sheet glass that is gradually cooled while being shaped into a plate shape while pulling down the molten glass along the vertical direction,
While having a plurality of annealing chambers through which the plate glass in the middle of molding passes,
An apparatus for producing sheet glass, wherein the temperature of the slow cooling chamber is controlled independently while suppressing the flow of airflow between the adjacent gradual chambers.
前記徐令室を通過する前記板ガラスに対して所定のクリアランスをもって、前記板ガラスの幅方向両端側に設置された固定隔壁と、
前記板ガラスを挟むように対向配置され、前記板ガラスの厚み方向に沿って水平にスライド可能となるように前記固定隔壁に支持された一対の可動隔壁とにより、
前記徐冷室が仕切られている請求項1に記載の板ガラスの製造装置。
With a predetermined clearance with respect to the plate glass passing through the gradual chamber, fixed partition walls installed on both ends in the width direction of the plate glass;
With a pair of movable partitions supported by the fixed partition so as to be opposed to each other so as to sandwich the plate glass and to be horizontally slidable along the thickness direction of the plate glass,
The plate glass manufacturing apparatus according to claim 1, wherein the annealing chamber is partitioned.
前記固定隔壁及び前記可動隔壁とともに、前記徐冷室を画成する炉壁の断熱性能が、前記徐冷室ごとに独立して調整されている請求項2に記載の板ガラスの製造装置。   The apparatus for producing sheet glass according to claim 2, wherein the heat insulation performance of the furnace wall defining the slow cooling chamber is adjusted independently for each of the slow cooling chambers together with the fixed partition wall and the movable partition wall. 溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、徐冷する板ガラスの製造方法であって、
相互の気流の流れを抑止しつつ、それぞれ独立に温度制御された複数の徐冷室に、成形途中の板ガラスを通過させて徐冷することを特徴とする板ガラスの製造方法。
A method for producing plate glass that is gradually cooled while forming a plate shape while pulling down the molten glass along the vertical direction,
A method for producing a sheet glass, characterized in that a sheet glass in the middle of molding is passed through a plurality of annealing chambers, each of which is independently temperature-controlled while suppressing the flow of mutual airflow, and then gradually cooled.
前記徐令室を通過する前記板ガラスに対して所定のクリアランスをもって、前記板ガラスの幅方向両端側に設置された固定隔壁に、前記板ガラスの厚み方向に沿って水平にスライド可能となるように支持され、前記板ガラスを挟むように対向配置された一対の可動隔壁間の離間距離を、
成形が安定してきた段階で、前記板ガラスとの間の隙間が極力小さくなるように調整することにより、隣接する前記徐令室間相互の気流の流れを抑止する請求項4に記載の板ガラスの製造方法。
With a predetermined clearance with respect to the plate glass passing through the gradual chamber, it is supported by fixed partition walls installed at both ends in the width direction of the plate glass so that it can slide horizontally along the thickness direction of the plate glass. , A separation distance between a pair of movable partition walls facing each other so as to sandwich the plate glass,
The manufacturing of the plate glass according to claim 4, wherein the flow of the air flow between the adjacent aging chambers is suppressed by adjusting the gap between the plate glasses to be as small as possible when the molding has been stabilized. Method.
前記徐冷室ごとに、前記固定隔壁及び前記可動隔壁とともに、前記徐冷室を画成する炉壁の断熱性能を独立に調整して、ガラスの成形を行う請求項5に記載の板ガラスの製造方法。   The plate glass production according to claim 5, wherein, for each of the slow cooling chambers, together with the fixed partition wall and the movable partition wall, the heat insulation performance of the furnace wall that defines the slow cooling chamber is independently adjusted to perform glass molding. Method. 得ようとする板ガラスの厚さが1.5mm以下である請求項4〜6のいずれか1項に記載の板ガラスの製造方法。   The manufacturing method of the plate glass of any one of Claims 4-6 whose thickness of the plate glass to be obtained is 1.5 mm or less. 溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、相互の気流の流れが抑止され、それぞれ独立に温度制御された複数の徐冷室を通過させて徐冷してなる板ガラスを分割することを特徴とするガラス製品の製造方法。   Splitting the glass plate that is formed by cooling the molten glass through a plurality of annealing chambers, each of which is controlled in temperature, while the molten glass is shaped into a plate shape while being pulled down along the vertical direction. A method for producing a glass product, comprising: 溶融ガラスを鉛直方向に沿って引き下げながら板状に成形しつつ、相互の気流の流れが抑止され、それぞれ独立に温度制御された複数の徐冷室を通過させて徐冷してなる板ガラスを分割することによって得られたガラス基板の上に、少なくとも配線パターンを形成する工程を含む液晶ディスプレイの製造方法。   Splitting the glass plate that is formed by cooling the molten glass through a plurality of annealing chambers, each of which is controlled in temperature, while the molten glass is shaped into a plate shape while being pulled down along the vertical direction. A method for producing a liquid crystal display, comprising a step of forming at least a wiring pattern on a glass substrate obtained by performing the steps.
JP2006268633A 2006-09-29 2006-09-29 Sheet glass manufacturing apparatus and method, and glass product and liquid crystal display manufacturing method Expired - Fee Related JP4918183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268633A JP4918183B2 (en) 2006-09-29 2006-09-29 Sheet glass manufacturing apparatus and method, and glass product and liquid crystal display manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268633A JP4918183B2 (en) 2006-09-29 2006-09-29 Sheet glass manufacturing apparatus and method, and glass product and liquid crystal display manufacturing method

Publications (2)

Publication Number Publication Date
JP2008088005A true JP2008088005A (en) 2008-04-17
JP4918183B2 JP4918183B2 (en) 2012-04-18

Family

ID=39372531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268633A Expired - Fee Related JP4918183B2 (en) 2006-09-29 2006-09-29 Sheet glass manufacturing apparatus and method, and glass product and liquid crystal display manufacturing method

Country Status (1)

Country Link
JP (1) JP4918183B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2009149463A (en) * 2007-12-20 2009-07-09 Nippon Electric Glass Co Ltd Method and equipment for manufacturing glass plate
WO2011007617A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
WO2012073624A1 (en) * 2010-11-29 2012-06-07 旭硝子株式会社 Apparatus for producing float plate glass and method for producing float plate glass
JP2012167016A (en) * 2010-09-30 2012-09-06 Avanstrate Inc Method for producing glass plate
JP2012211079A (en) * 2010-09-30 2012-11-01 Avanstrate Inc Method for manufacturing glass plate
CN102906035A (en) * 2010-05-20 2013-01-30 康宁股份有限公司 Fusion draw method ribbon position control scheme
JP2013047183A (en) * 2011-03-31 2013-03-07 Avanstrate Inc Method for manufacturing glass substrate
WO2014051003A1 (en) * 2012-09-28 2014-04-03 AvanStrate株式会社 Glass substrate fabrication method and glass substrate fabrication apparatus
JP2015199665A (en) * 2012-09-28 2015-11-12 AvanStrate株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
KR20160003622A (en) 2014-02-21 2016-01-11 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
JP2016104700A (en) * 2009-05-29 2016-06-09 コルサム テクノロジーズ エルエルシーCorsam Technologies Llc Fusion formable sodium-free glass
JP2016117641A (en) * 2014-12-17 2016-06-30 日本電気硝子株式会社 Support glass substrate and laminate comprising the same
JP2016147770A (en) * 2015-02-10 2016-08-18 日本電気硝子株式会社 Production method of glass ribbon, and heating furnace
WO2017095791A1 (en) * 2015-11-30 2017-06-08 Corning Incorporated Glass redraw system and methods of forming a thin glass sheet using a glass redraw system
JP2018076212A (en) * 2016-11-11 2018-05-17 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339132A (en) * 1986-08-04 1988-02-19 Hitachi Maxell Ltd Magnetic recording medium
JPH05124826A (en) * 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate
JPH1053426A (en) * 1996-08-02 1998-02-24 Hoya Corp Production of glass plate and device for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6339132A (en) * 1986-08-04 1988-02-19 Hitachi Maxell Ltd Magnetic recording medium
JPH05124826A (en) * 1991-10-31 1993-05-21 Hoya Corp Device for producing glass plate
JPH1053426A (en) * 1996-08-02 1998-02-24 Hoya Corp Production of glass plate and device for producing the same

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014040370A (en) * 2007-01-16 2014-03-06 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2008195602A (en) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2012036092A (en) * 2007-01-16 2012-02-23 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate and tempered glass substrate
JP2009149463A (en) * 2007-12-20 2009-07-09 Nippon Electric Glass Co Ltd Method and equipment for manufacturing glass plate
JP2016104700A (en) * 2009-05-29 2016-06-09 コルサム テクノロジーズ エルエルシーCorsam Technologies Llc Fusion formable sodium-free glass
US10173919B2 (en) 2009-05-29 2019-01-08 Corsam Technologies Llc Fusion formable sodium free glass
EP2455346A1 (en) * 2009-07-13 2012-05-23 Asahi Glass Company, Limited Glass plate manufacturing method and manufacturing device
US8453478B2 (en) 2009-07-13 2013-06-04 Asahi Glass Company, Limited Glass plate manufacturing method and manufacturing device
US20120159990A1 (en) * 2009-07-13 2012-06-28 Asashi Glass Company, Limited Glass plate manufacturing method and manufacturing device
CN102471121A (en) * 2009-07-13 2012-05-23 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
KR101751082B1 (en) 2009-07-13 2017-06-26 아사히 가라스 가부시키가이샤 Glass plate manufacturing method and manufacturing device
JP5648635B2 (en) * 2009-07-13 2015-01-07 旭硝子株式会社 Glass plate manufacturing method and manufacturing apparatus
WO2011007617A1 (en) * 2009-07-13 2011-01-20 旭硝子株式会社 Glass plate manufacturing method and manufacturing device
EP2455346A4 (en) * 2009-07-13 2013-11-06 Asahi Glass Co Ltd Glass plate manufacturing method and manufacturing device
CN102906035A (en) * 2010-05-20 2013-01-30 康宁股份有限公司 Fusion draw method ribbon position control scheme
CN103102059A (en) * 2010-09-30 2013-05-15 安瀚视特股份有限公司 Method of manufacturing glass sheet
KR20130048190A (en) 2010-09-30 2013-05-09 아반스트레이트 가부시키가이샤 Glass sheet manufacturing method
JP2012211079A (en) * 2010-09-30 2012-11-01 Avanstrate Inc Method for manufacturing glass plate
JP2012167016A (en) * 2010-09-30 2012-09-06 Avanstrate Inc Method for producing glass plate
US8826694B2 (en) 2010-09-30 2014-09-09 Avanstrate Inc. Method of manufacturing glass sheet
CN103228584A (en) * 2010-11-29 2013-07-31 旭硝子株式会社 Apparatus for producing float plate glass and method for producing float plate glass
WO2012073624A1 (en) * 2010-11-29 2012-06-07 旭硝子株式会社 Apparatus for producing float plate glass and method for producing float plate glass
CN103228584B (en) * 2010-11-29 2015-04-22 旭硝子株式会社 Apparatus for producing float plate glass and method for producing float plate glass
JP2013047183A (en) * 2011-03-31 2013-03-07 Avanstrate Inc Method for manufacturing glass substrate
KR101651318B1 (en) * 2011-03-31 2016-08-25 아반스트레이트 가부시키가이샤 Glass substrate production method
US9038416B2 (en) 2011-03-31 2015-05-26 Avanstrate Inc. Glass-substrate manufacturing method
KR20130122954A (en) * 2011-03-31 2013-11-11 아반스트레이트 가부시키가이샤 Glass substrate production method
JP2014001133A (en) * 2011-03-31 2014-01-09 Avanstrate Inc Method for manufacturing glass substrate
US9533908B2 (en) 2011-03-31 2017-01-03 Avanstrate Inc. Glass-substrate manufacturing method
WO2014051003A1 (en) * 2012-09-28 2014-04-03 AvanStrate株式会社 Glass substrate fabrication method and glass substrate fabrication apparatus
CN104010981B (en) * 2012-09-28 2017-07-18 安瀚视特控股株式会社 The manufacture method and glass substrate manufacture device of glass substrate
JP5952311B2 (en) * 2012-09-28 2016-07-13 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2015199665A (en) * 2012-09-28 2015-11-12 AvanStrate株式会社 Process for manufacturing glass substrate and apparatus for manufacturing glass substrate
JPWO2014051003A1 (en) * 2012-09-28 2016-08-22 AvanStrate株式会社 Glass substrate manufacturing method and glass substrate manufacturing apparatus
CN104010981A (en) * 2012-09-28 2014-08-27 安瀚视特控股株式会社 Glass substrate fabrication method and glass substrate fabrication apparatus
KR101608896B1 (en) * 2012-09-28 2016-04-04 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR20160003622A (en) 2014-02-21 2016-01-11 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
JP2016117641A (en) * 2014-12-17 2016-06-30 日本電気硝子株式会社 Support glass substrate and laminate comprising the same
JP2016147770A (en) * 2015-02-10 2016-08-18 日本電気硝子株式会社 Production method of glass ribbon, and heating furnace
WO2017095791A1 (en) * 2015-11-30 2017-06-08 Corning Incorporated Glass redraw system and methods of forming a thin glass sheet using a glass redraw system
KR20180080353A (en) * 2015-11-30 2018-07-11 코닝 인코포레이티드 Methods of forming thin glass sheets using glass lead low system and glass lead low system
CN108290763A (en) * 2015-11-30 2018-07-17 康宁股份有限公司 Glass again control system and using glass again control system formed thin glass sheet method
TWI721051B (en) * 2015-11-30 2021-03-11 美商康寧公司 Glass redraw system and methods of forming a thin glass sheet using a glass redraw system
CN108290763B (en) * 2015-11-30 2021-08-17 康宁股份有限公司 Glass redraw system and method of forming thin glass sheets using a glass redraw system
KR102526092B1 (en) * 2015-11-30 2023-04-26 코닝 인코포레이티드 Glass leadrow systems and methods of forming thin glass sheets using glass leadrow systems
JP2018076212A (en) * 2016-11-11 2018-05-17 日本電気硝子株式会社 Sheet glass manufacturing apparatus and sheet glass manufacturing method
WO2018088031A1 (en) * 2016-11-11 2018-05-17 日本電気硝子株式会社 Device for producing sheet glass, and method for producing sheet glass

Also Published As

Publication number Publication date
JP4918183B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4918183B2 (en) Sheet glass manufacturing apparatus and method, and glass product and liquid crystal display manufacturing method
US20200407259A1 (en) Glass article with reduced thickness variation, method for making and apparatus therefor
JP5848673B2 (en) Manufacturing method of glass plate
JP5574454B2 (en) Manufacturing method of glass substrate
JP5428288B2 (en) Glass plate manufacturing method and manufacturing equipment
JP5733639B2 (en) Glass substrate
JP5428287B2 (en) Glass plate manufacturing method and manufacturing equipment
CN102822102A (en) Glass substrate manufacturing method and glass substrate
JPH10291826A (en) Production of glass pane and apparatus for production therefor
JPH1053426A (en) Production of glass plate and device for producing the same
KR101608896B1 (en) Method and apparatus for making glass sheet
CN105307989A (en) Float glass production method and float glass production device
JP7208926B2 (en) How to control compaction
CN112759241A (en) Glass stress control device and method
CN102674661A (en) Temperature control method of glass plate shaping zone of overflow drop-down device
JP2015105215A (en) Glass substrate manufacturing device and manufacturing method for glass substrate
JP2015105216A (en) Float glass manufacturing apparatus and float glass manufacturing method
JP2013139342A (en) Method for manufacturing glass sheet
JP2012512122A (en) Sheet glass manufacturing method and apparatus
JP2017065983A (en) Production method of glass sheet, and production apparatus of glass sheet
JP5768082B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
JP6675850B2 (en) Glass substrate manufacturing method and glass substrate manufacturing apparatus
TWI576318B (en) Method for manufacturing glass substrates
WO2022131205A1 (en) Glass article production apparatus
WO2022038976A1 (en) Glass sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4918183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees