JP2008087132A - Rope groove processing device for elevator and processing method thereof - Google Patents

Rope groove processing device for elevator and processing method thereof Download PDF

Info

Publication number
JP2008087132A
JP2008087132A JP2006272932A JP2006272932A JP2008087132A JP 2008087132 A JP2008087132 A JP 2008087132A JP 2006272932 A JP2006272932 A JP 2006272932A JP 2006272932 A JP2006272932 A JP 2006272932A JP 2008087132 A JP2008087132 A JP 2008087132A
Authority
JP
Japan
Prior art keywords
processing
rope groove
elevator
rope
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272932A
Other languages
Japanese (ja)
Other versions
JP2008087132A5 (en
JP4835365B2 (en
Inventor
Masahiko Hasegawa
正彦 長谷川
Tomoaki Nakasuji
智明 中筋
Takenobu Honda
武信 本田
Akira Hida
晃 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2006272932A priority Critical patent/JP4835365B2/en
Priority to CN2007101806320A priority patent/CN101157193B/en
Priority to KR1020070099184A priority patent/KR101475949B1/en
Publication of JP2008087132A publication Critical patent/JP2008087132A/en
Publication of JP2008087132A5 publication Critical patent/JP2008087132A5/ja
Application granted granted Critical
Publication of JP4835365B2 publication Critical patent/JP4835365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/02Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding grooves, e.g. on shafts, in casings, in tubes, homokinetic joint elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/06Dust extraction equipment on grinding or polishing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/08Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rope groove processing device for an elevator capable of applying reproduction processing on a rope groove formed on a driving sheave or the like within a short time and of preventing the serviceability of the elevator from degrading. <P>SOLUTION: This rope groove processing device for an elevator includes: a mounting part 8 removably provided on the fixing body 5 of the elevator; a processing part 9 disposed so as to face the rope groove portion of a rope groove 4a formed on the driving sheave 4, on which a main rope 2 for suspending the car 1 of the elevator is not wound; and a movable supporting part 13 installed on the mounting part for movably supporting the processing part in the rotating shaft direction and the radial direction of the driving sheave. The processing part with a rotary type grinding tool 10 for removing the rope groove is fixed so that the rotary axis 16 of the grinding tool is at an angle of roughly 30°with respect to a tangential line 17 from the processing point on the driving sheave. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、エレベータ巻上機の駆動綱車やそらせ車に形成されたロープ溝を効率的に再生加工するエレベータのロープ溝加工装置及びその加工方法に関するものである。   The present invention relates to an elevator rope groove processing apparatus and a processing method thereof that efficiently regenerates a rope groove formed on a drive sheave or a deflector of an elevator hoist.

従来のエレベータのロープ溝加工装置を図15〜図18に示す。図15は一般的なエレベータの配置構成を示す概略構成図、図16はエレベータ巻上機の駆動綱車の構成を示す概略構成図、図17は磨耗が進行した駆動綱車のロープ溝を従来のロープ溝加工装置により再生加工する場合を示す概略構成図、図18は加工完了状態を示す概略構成図である。   A conventional elevator rope grooving apparatus is shown in FIGS. FIG. 15 is a schematic configuration diagram showing a general elevator arrangement configuration, FIG. 16 is a schematic configuration diagram showing a configuration of a drive sheave of an elevator hoist, and FIG. 17 is a conventional rope sheave of a drive sheave with advanced wear. FIG. 18 is a schematic configuration diagram showing a state of completion of processing.

図15において、1はエレベータのかご、2はかご1を懸架する主ロープで、一端はかご1に固定されている。3は釣合い重りで、主ロープ2のもう一方の他端が固定されている。4は機械室等に設置された巻上機の駆動綱車で、主ロープ2が巻き掛けられる。5は駆動綱車4および巻上機の駆動機を固定する固定体である。6はかご1と釣合い重り3の懸架位置を合わせるためのそらせ車で、主ロープ2が巻き掛けられる。このそらせ車6も固定体5に固定されている。
駆動綱車4には、図16に示すように、主ロープ2を巻き掛けるため複数のロープ溝4aが形成されている。また、そらせ車6にも、図16駆動綱車4と同様に、ロープ案内用のロープ溝が形成されている(図示せず)。
In FIG. 15, 1 is an elevator car, 2 is a main rope for suspending the car 1, and one end is fixed to the car 1. 3 is a counterweight, and the other end of the main rope 2 is fixed. Reference numeral 4 denotes a driving sheave for a hoist installed in a machine room or the like, on which a main rope 2 is wound. Reference numeral 5 denotes a fixed body that fixes the driving sheave 4 and the driving machine of the hoisting machine. Denoted at 6 is a deflecting wheel for adjusting the suspension position of the car 1 and the counterweight 3, on which the main rope 2 is wound. This deflecting wheel 6 is also fixed to the fixed body 5.
As shown in FIG. 16, the drive sheave 4 is formed with a plurality of rope grooves 4 a for winding the main rope 2. Further, the rope guide 6 is also provided with a rope groove for guiding the rope (not shown) as in the case of the drive sheave 4 in FIG.

このように構成されたエレベータの巻上機では、巻上機の駆動機の動力によって駆動綱車4が回転することにより、主ロープ2とロープ溝4aとの間に発生する摩擦力によって、駆動綱車4の回転に連動して主ロープ2が移動し、かご1を昇降させる。ここで、ロープ溝4aは、主ロープ2の微小すべり等によって徐々に摩耗が進行していくため、エレベータの長期運行により、所望の摩擦力が得られなくなっていき、駆動力を効率的に伝達できないといった問題が生じていた。   In the elevator hoisting machine configured as described above, the driving sheave 4 is rotated by the power of the hoisting machine drive, so that it is driven by the frictional force generated between the main rope 2 and the rope groove 4a. The main rope 2 moves in conjunction with the rotation of the sheave 4 and raises and lowers the car 1. Here, since the rope groove 4a gradually wears due to a minute slip of the main rope 2, etc., the desired frictional force cannot be obtained due to the long-term operation of the elevator, and the driving force is efficiently transmitted. There was a problem that it was impossible.

一般に、エレベータでは安全上、主ロープ2は複数本使用されている。これらの主ロープ2に対応したロープ溝4aの摩耗の進行は、図17に示すように、各ロープ溝4a毎で異なる。このため、ロープ溝4aの径4bに差が発生し、各主ロープ2の移動量が異なる。しかし、主ロープ2の両端はそれぞれかご1と釣合い重り3に固定されているため、移動量が等しくなるように、主ロープ2とロープ溝4aとの間にすべりが発生してしまう。このすべりで、かご1には振動が発生し、乗り心地を悪化させるという問題がある。
従来は、駆動綱車4のロープ溝4aの摩耗が進行すると、この対策のため、図17に示すように、ロープ溝4aの径4bを揃えるようにロープ溝4aの修正する再生加工を行っていた。
図17は、磨耗が進行した駆動綱車のロープ溝を従来のロープ溝加工装置30により再生加工する場合を示す概略構成図である。図において、31は固定体5に固定される従来の溝加工装置30の固定部、32は駆動綱車4の回転軸方向への移動を可能にしている軸方向移動器、33は駆動綱車4の半径方向への移動を可能にしている径方向移動器、34は径方向移動器33の先端に付けられた旋削工具(バイト)である。
Generally, a plurality of main ropes 2 are used in an elevator for safety. The progress of wear of the rope grooves 4a corresponding to these main ropes 2 is different for each rope groove 4a as shown in FIG. For this reason, a difference occurs in the diameter 4b of the rope groove 4a, and the amount of movement of each main rope 2 is different. However, since both ends of the main rope 2 are fixed to the car 1 and the counterweight 3, respectively, slip occurs between the main rope 2 and the rope groove 4a so that the movement amounts are equal. This slip has a problem that the car 1 is vibrated and deteriorates the ride comfort.
Conventionally, when the wear of the rope groove 4a of the driving sheave 4 progresses, as a countermeasure, as shown in FIG. 17, a regenerating process for correcting the rope groove 4a so as to align the diameter 4b of the rope groove 4a has been performed. It was.
FIG. 17 is a schematic configuration diagram showing a case where the rope groove of the drive sheave in which wear has progressed is reprocessed by the conventional rope groove processing apparatus 30. In the figure, 31 is a fixed portion of a conventional groove machining device 30 fixed to the fixed body 5, 32 is an axial movement device that enables the drive sheave 4 to move in the direction of the rotation axis, and 33 is a drive sheave. 4 is a turning tool (tool) attached to the tip of the radial moving device 33.

従来のロープ溝加工装置30によるロープ溝加工の手順について説明する。磨耗が進行した駆動綱車4のロープ溝4aを従来のロープ溝加工装置30により再生加工する場合は、まず、主ロープ2を駆動綱車4のロープ溝4aから取り外し、ロープ溝加工装置30を固定体6に設置する。次に、軸方向移動器32によって旋削工具34の中心とロープ溝4aの中心を合わせる。ここで、巻上機の駆動機によって駆動綱車4を回転させる。最後に、径方向移動器33によって旋削工具34をロープ溝4aの中心に向かって一定速度で送り出し、ロープ溝4aを再生加工する旋削加工を実施する。この場合、もっとも摩耗が進行しているロープ溝4aの径4bに合わせて、すべてのロープ溝を加工する必要がある。加工完了状態を図18に示す。図16に示すエレベータ運行前のロープ溝4aの深さより、図18の溝修正加工後の溝深さは深くなる。   The procedure of the rope groove processing by the conventional rope groove processing apparatus 30 will be described. When the rope groove 4a of the drive sheave 4 that has been worn is regenerated by the conventional rope groove processing device 30, the main rope 2 is first removed from the rope groove 4a of the drive sheave 4 and the rope groove processing device 30 is removed. Install on the fixed body 6. Next, the center of the turning tool 34 and the center of the rope groove 4 a are aligned by the axial direction moving device 32. Here, the driving sheave 4 is rotated by the driving machine of the hoisting machine. Finally, the turning tool 34 is sent out at a constant speed toward the center of the rope groove 4a by the radial mover 33, and the turning process for regenerating the rope groove 4a is performed. In this case, it is necessary to process all the rope grooves according to the diameter 4b of the rope groove 4a where the wear is most advanced. The machining completion state is shown in FIG. The groove depth after the groove correction processing of FIG. 18 becomes deeper than the depth of the rope groove 4a before the elevator operation shown in FIG.

また、従来技術として、主索が巻き掛けられる係合溝を外周部に有して巻上機により回転駆動される溝車の係合溝の形状を測定するための装置が知られている(例えば、特許文献1参照)。   Further, as a prior art, there is known an apparatus for measuring the shape of an engagement groove of a grooved wheel that has an engagement groove around which a main rope is wound and is driven to rotate by a hoisting machine ( For example, see Patent Document 1).

特開平11−6716号公報Japanese Patent Laid-Open No. 11-6716

上記のように従来のロープ溝加工装置30では、主ロープ2を駆動綱車4から取り外す必要があるため、長期に渡ってエレベータの運行を停止しなければならないといった問題があった。この停止期間は通常、1週間程度必要であり、サービスを低下させる大きな要因となっていた。また、そらせ車6が設けられている場合では、このそらせ車6のロープ溝も摩耗が進行し、かご1に振動が発生し、乗り心地が悪化する要因となる。しかし、そらせ車6は主ロープ2を取り外してしまうと、駆動させる手段がないため、ロープ溝の再生加工は実施できない。よって、エレベータの運行を長期間停止して、そらせ車自体を交換しなければならず、著しいコスト高およびサービス低下の要因となっていた。   As described above, the conventional rope groove processing device 30 has a problem that the operation of the elevator has to be stopped for a long time because it is necessary to remove the main rope 2 from the drive sheave 4. This stop period is usually required for about one week, which is a major factor in reducing service. Further, when the baffle 6 is provided, the rope groove of the baffle 6 also wears, causing vibration in the car 1 and deteriorating the riding comfort. However, once the main rope 2 is removed from the baffle wheel 6, there is no means for driving it, so the rope groove cannot be regenerated. Therefore, the operation of the elevator must be stopped for a long period of time, and the deflecting car itself must be replaced, which has been a significant cost increase and service reduction factor.

また、従来技術の溝車の溝形状測定装置は、主ロープを駆動綱車から取り外さずに効率的に再生加工できるようにすること、また駆動手段のないそらせ車であっても再生加工できるようにすることを考慮したものではない。   Further, the groove shape measuring device for a conventional grooved wheel can be efficiently reprocessed without removing the main rope from the drive sheave, and can be reprocessed even with a sled wheel without a driving means. It is not considered to be.

この発明は、上述のような課題を解決するためになされたもので、その目的は、駆動綱車等に形成されたロープ溝の再生加工を短期問で実施でき、エレベータのサービス低下を防止できるエレベータのロープ溝加工装置を提供することである。   The present invention has been made to solve the above-described problems, and the purpose thereof is to enable a short-term reproduction of a rope groove formed on a driving sheave or the like, and to prevent a decrease in elevator service. It is to provide an elevator rope groove processing apparatus.

この発明に係るエレベータのロープ溝加工装置は、エレベータの固定体に着脱自在に設けられる取付部と、駆動綱車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、取付部に設けられ、加工部を駆動綱車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、加工部は、ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、駆動綱車上の加工点からの接線とおおよそ30度の角度を成すように固定させたものである。   An elevator rope groove processing apparatus according to the present invention is configured such that a main rope that suspends an elevator car is wound around an attachment portion that is detachably provided on a fixed body of an elevator and a rope groove formed on a drive sheave. A machining portion disposed so as to be opposed to the rope groove portion that is not, and a movable support portion that is provided on the attachment portion and supports the machining portion so as to be movable in the rotational axis direction and the radial direction of the driving sheave. The part has a rotary grinding wheel for removing the rope groove, and the rotation axis of the grinding wheel forms an angle of approximately 30 degrees with the tangent from the processing point on the driving sheave. It is fixed.

また、この発明に係るエレベータのロープ溝加工装置は、エレベータの固定体に着脱自在に設けられる取付部と、そらせ車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、取付部に設けられ、加工部をそらせ車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、加工部は、ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、前記そらせ車上の加工点からの接線とおおよそ30度の角度を成すように固定させたものである。   The elevator rope groove processing apparatus according to the present invention includes a mounting portion that is detachably provided on a fixed body of the elevator, and a main rope that suspends the elevator car among the rope grooves formed on the deflector. A machining portion disposed so as to face the rope groove portion that is not provided, and a movable support portion that is provided on the attachment portion and supports the machining portion so as to be movable in the rotation axis direction and the radial direction of the vehicle. The section has a rotary grinding wheel for removing the rope groove, and the rotation axis of the grinding wheel forms an angle of approximately 30 degrees with the tangent line from the processing point on the deflector wheel. It is fixed.

また、この発明に係るエレベータのロープ溝加工装置は、駆動綱車又はそらせ車に形成されたロープ溝を、加工部によって除去加工した時に発生する加工粉を集塵する集塵機を備え、この集塵機の集塵口を、研削砥石の加工終了点からの接線の延長線上に配したものである。   Further, an elevator rope groove processing apparatus according to the present invention includes a dust collector that collects processing powder generated when a rope groove formed on a driving sheave or a deflector is removed by a processing unit. The dust collection port is disposed on an extension of the tangent line from the processing end point of the grinding wheel.

また、この発明に係るエレベータのロープ溝加工装置は、駆動綱車又はそらせ車に形成された基準面と取付部との半径方向の相対位置を測定する位置測定装置と、加工部の半径方向の送り量を、位置測定装置の測定値をもとに設定する演算装置とを備えたものである。   Further, an elevator rope groove processing apparatus according to the present invention includes a position measuring device that measures a relative position in a radial direction between a reference surface formed on a driving sheave or a deflector wheel and a mounting portion, and a radial direction of the processing portion. And an arithmetic unit that sets the feed amount based on the measured value of the position measuring device.

また、この発明に係るエレベータのロープ溝加工装置は、加工部の研削砥石の温度を測定する温度測定装置と、加工部の半径方向の送り量を、温度測定装置の測定値をもとに設定する演算装置とを備えたものである。   Further, the elevator rope grooving apparatus according to the present invention sets a temperature measuring device for measuring the temperature of the grinding wheel in the processing portion, and the radial feed amount of the processing portion based on the measured value of the temperature measuring device. And an arithmetic unit for performing the above.

また、この発明に係るエレベータのロープ溝加工装置は、加工部の研削負荷を測定する負荷測定装置と、加工部の半径方向の送り量を、負荷測定装置の測定値をもとに設定する演算装置とを備えたものである。   In addition, an elevator rope grooving apparatus according to the present invention includes a load measuring apparatus that measures a grinding load of a processed part, and a calculation that sets a feed amount in the radial direction of the processed part based on a measurement value of the load measuring apparatus. Device.

また、この発明に係るエレベータのロープ溝加工装置は、加工部の研削砥石を複数有するものである。   Moreover, the elevator rope groove processing apparatus according to the present invention has a plurality of grinding wheels for the processing portion.

また、この発明に係るエレベータのロープ溝加工方法は、エレベータの固定体に着脱自在に設けられる取付部と、駆動綱車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、取付部に設けられ、加工部を駆動綱車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、加工部は、ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、駆動綱車上の加工点からの接線とおおよそ30度の角度を成すように固定させたエレベータのロープ溝加工において、主ロープが巻き掛けられた状態のまま駆動綱車を回転させるとともに、研削砥石を回転させることにより、ロープ溝を除去加工するものである。   Also, the elevator rope groove machining method according to the present invention includes a mounting portion that is detachably provided on a fixed body of the elevator and a main rope that suspends the elevator car among the rope grooves formed on the drive sheave. A processing portion arranged to face the rope groove portion that is not hung, and a movable support portion that is provided on the attachment portion and supports the processing portion so as to be movable in the rotational axis direction and the radial direction of the driving sheave. The processing section has a rotary grinding wheel for removing the rope groove, and the rotation axis of the grinding wheel forms an angle of approximately 30 degrees with the tangent from the processing point on the driving sheave. In the elevator rope groove processing fixed in this way, the rope groove is removed by rotating the driving sheave while the main rope is wound and rotating the grinding wheel. That.

また、この発明に係るエレベータのロープ溝加工方法は、エレベータの固定体に着脱自在に設けられる取付部と、そらせ車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、取付部に設けられ、加工部をそらせ車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、加工部は、ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、そらせ車上の加工点からの接線とおおよそ30度の角度を成すように固定させたエレベータのロープ溝加工において、主ロープが巻き掛けられた状態のまま駆動綱車およびそらせ車を回転させるとともに、研削砥石を回転させることにより、ロープ溝を除去加工するものである。   The elevator rope groove processing method according to the present invention includes a mounting portion that is detachably provided on a fixed body of the elevator and a main rope that suspends the elevator car among the rope grooves formed on the deflector. A machining portion disposed so as to face the rope groove portion that is not provided, and a movable support portion that is provided on the attachment portion and supports the machining portion so as to be movable in the rotation axis direction and the radial direction of the vehicle. The part has a rotary grinding wheel that removes the rope groove, and the rotation axis of the grinding wheel is fixed so that it forms an angle of approximately 30 degrees with the tangent from the machining point on the baffle wheel. In rope grooving of a lifted elevator, the rope sheave is removed by rotating the driving sheave and the deflecting wheel while the main rope is wound and rotating the grinding wheel. It is intended to engineering.

また、この発明に係るエレベータのロープ溝加工方法は、駆動綱車又はそらせ車に形成されたロープ溝を、加工部によって除去加工した時に発生する加工粉を集塵する集塵機を備え、この集塵機の集塵口を、研削砥石の加工終了点からの接線の延長線上に配し、駆動綱車および研削砥石の回転と同時に集塵機を運転することにより、発生する加工紛を集塵口によって捕集するものである。   Moreover, the rope groove processing method for an elevator according to the present invention includes a dust collector that collects the processing powder generated when the rope groove formed in the drive sheave or the deflector is removed by the processing unit, and the dust collector of the dust collector The dust collection port is placed on the tangential line extending from the processing end point of the grinding wheel, and the generated dust is collected by the dust collection port by operating the dust collector simultaneously with the rotation of the driving sheave and the grinding wheel. Is.

この発明によれば、研削砥石の性能を十分に引き出すことによって、駆動綱車に形成されたロープ溝の修正加工を短時間に効率よく実施でき、エレベータのサービス低下を防止することができる。また、研削砥石の性能を十分に引き出すことによって、そらせ車に形成されたロープ溝の修正加工を短時間に効率よく実施でき、エレベータのサービス低下を防止することができる。また、除去加工によって生じた加工粉を気中での粉塵状態で確実に集塵可能とすることによって、加工粉の主ロープへの付着やロープ溝への付着を防止でき、また、加工粉による加工精度の悪化(可動支持部の摺動面への侵入や、砥石表面の目詰まりなど)も防止できる。結果として、加工中や加工後の清掃作業の効率が大幅に向上し、修正加工作業を短時間に実施できる。また、駆動綱車やそらせ車の軸受の不正回転運動による加工への悪影響(食い付き傷や加工効率低下など)を防止できる。特に送り量の安定化に有効で、要求される溝深さを確実に実現できる。結果として、より効率的に修正加工を実施できる。また、砥石や砥石軸の熱膨張による加工への悪影響(食い付き傷や過負荷異常停止)を防止できる。特に、砥石寿命の安定化に有効で、工具交換頻度を抑えられ、工具交換費用と工具交換時間の大幅な削減による作業時間の短縮を可能とする。結果として、より効率的に修正加工を実施できる。また、砥石の目詰まりや異物の噛み込みなどによる急激な加工異常にも対応でき、食い込み傷や過負荷による装置故障を防止できる。特に、研削砥石の駆動装置(モータなど)の能力を最大限に引き出すことにより、加工効率の高効率安定化に有効で、実加工時間の短縮を可能にする。結果として、より効率的に修正加工を実施できる。   According to the present invention, by fully drawing out the performance of the grinding wheel, the rope groove formed in the drive sheave can be corrected efficiently in a short time, and the service of the elevator can be prevented from being lowered. In addition, by sufficiently drawing out the performance of the grinding wheel, it is possible to efficiently perform correction processing of the rope groove formed in the deflecting wheel in a short time, and to prevent a decrease in service of the elevator. In addition, by making it possible to reliably collect the processing powder generated by removal processing in the air in the state of dust, it is possible to prevent the processing powder from adhering to the main rope and the rope groove. Deterioration of processing accuracy (intrusion into the sliding surface of the movable support portion, clogging of the grindstone surface, etc.) can also be prevented. As a result, the efficiency of the cleaning operation during and after the processing is greatly improved, and the correction processing operation can be performed in a short time. In addition, it is possible to prevent adverse effects (such as bite scratches and a decrease in processing efficiency) on processing due to unauthorized rotation motion of the driving sheave and the bearing of the deflector wheel. In particular, it is effective for stabilizing the feed amount, and the required groove depth can be reliably realized. As a result, correction processing can be performed more efficiently. In addition, it is possible to prevent adverse effects on the processing due to thermal expansion of the grindstone and the grindstone shaft (biting scratches and overload abnormal stop). In particular, it is effective for stabilizing the life of the grinding wheel, the frequency of tool change can be suppressed, and the work time can be shortened by greatly reducing the tool change cost and the tool change time. As a result, correction processing can be performed more efficiently. In addition, it is possible to cope with a sudden machining abnormality due to clogging of a grindstone or biting of a foreign substance, and to prevent a device failure due to a bite or overload. In particular, by maximizing the capacity of a grinding wheel drive device (motor, etc.), it is effective for high-efficiency stabilization of the processing efficiency, and shortens the actual processing time. As a result, correction processing can be performed more efficiently.

実施の形態1.
図1はこの発明の実施の形態1におけるエレベータのロープ溝加工装置を取り付けた状態を示すエレベータ装置の概略構成図、図2はこの発明の実施の形態1におけるエレベータのロープ溝加工装置を示す側面図、図3はこの発明の実施の形態1におけるロープ溝加工装置の可動支持部の可動状態を説明するための側面図、図4はこの発明の実施の形態1におけるロープ溝加工装置の可動支持部の可動状態を説明するための背面図、図5は加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が30度の場合の側面図、図6は加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が30度の場合の正面図、図7は加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が90度の場合の側面図、図8は加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が0度、30度、90度の3条件での加工現象の相違をまとめた図表である。
Embodiment 1.
1 is a schematic configuration diagram of an elevator apparatus showing a state where an elevator rope grooving apparatus according to Embodiment 1 of the present invention is attached, and FIG. 2 is a side view of the elevator rope grooving apparatus according to Embodiment 1 of the present invention. 3 is a side view for explaining the movable state of the movable support portion of the rope groove processing apparatus according to Embodiment 1 of the present invention. FIG. 4 is a movable support of the rope groove processing apparatus according to Embodiment 1 of the present invention. FIG. 5 is a side view when the angle formed by the rotation axis of the processing portion and the tangent line at the processing point on the driving sheave is 30 degrees, and FIG. 6 is the side view of the processing portion. FIG. 7 is a front view when the angle formed between the rotation axis and the tangent at the machining point on the drive sheave is 30 degrees, and FIG. 7 shows the angle formed between the rotation axis of the machining unit and the tangent at the machining point on the drive sheave. Side view in the case of 90 degrees, FIG. 8 shows the rotation axis of the processed part Angle of 0 degrees formed between the tangent of the machining point on the traction sheave and, 30 degrees, is a table summarizing differences in the processing behavior of the three conditions of 90 degrees.

図1において、1はエレベータのかご、2はかご1を懸架する主ロープで、一端はかご1に固定されている。3は釣合い重りで、主ロープ2のもう一方の他端が固定されている。4は機械室等に設置された巻上機の駆動綱車で、主ロープ2が巻き掛けられる。5は駆動綱車4および巻上機の駆動機を固定する固定体で、機械室等に設けられている。6はかご1と釣合い重り3の懸架位置を合わせるためのそらせ車で、主ロープ2が巻き掛けられる。このそらせ車6も固定体5に固定されている。
駆動綱車4には、主ロープ2を巻き掛けるため複数のロープ溝4aが形成されている。また、そらせ車6にも、駆動綱車4と同様に、ロープ案内用のロープ溝が形成されている。7はこの発明によるロープ溝加工装置である。駆動綱車4のロープ溝4aを再生加工する状態に取り付けられたロープ溝加工装置7aは、エレベータの固定体6の上面に取り付けられている。また、そらせ車6のロープ溝を再生加工する状態に取り付けられたロープ溝加工装置7bは、エレベータの固定体6の下面に取り付けられている。
In FIG. 1, 1 is an elevator car, 2 is a main rope for suspending the car 1, and one end is fixed to the car 1. 3 is a counterweight, and the other end of the main rope 2 is fixed. Reference numeral 4 denotes a driving sheave for a hoist installed in a machine room or the like, on which a main rope 2 is wound. Reference numeral 5 denotes a fixed body for fixing the driving sheave 4 and the driving machine of the hoisting machine, and is provided in a machine room or the like. Denoted at 6 is a deflecting wheel for adjusting the suspension position of the car 1 and the counterweight 3, on which the main rope 2 is wound. This deflecting wheel 6 is also fixed to the fixed body 5.
A plurality of rope grooves 4 a are formed in the drive sheave 4 for winding the main rope 2. Further, the rope guide 6 is also provided with a rope groove for guiding the rope, like the driving sheave 4. 7 is a rope groove processing apparatus according to the present invention. A rope groove processing device 7a attached in a state where the rope groove 4a of the drive sheave 4 is reprocessed is attached to the upper surface of the fixed body 6 of the elevator. The rope groove processing device 7b attached to the state of regenerating the rope groove of the deflector 6 is attached to the lower surface of the elevator fixed body 6.

図2は、ロープ溝加工装置7を駆動綱車4に取り付けた状態を示す拡大詳細図である。図2において、8はロープ溝加工装置7の基部を成す取付部であり、エレベータの固定体5にロープ溝加工装置7を着脱自在に固定するものである。9は取付部8の先端に設けられたロープ溝加工装置7の加工部であり、ロープ溝4aを研削除去加工する回転型の研削砥石10と、この研削砥石10を回転させるモータ11と、このモータ11を把持するモータ取付板12とから構成されている。13はロープ溝加工装置7の取付部8と加工部9との間に設けられ、加工部9を駆動綱車4の回転軸方向(x方向=図2の紙面に垂直の方向)、および駆動綱車4の半径方向(z方向=図2の紙面の上下方向)に移動自在に支持する可動支持部である。   FIG. 2 is an enlarged detailed view showing a state in which the rope groove processing device 7 is attached to the drive sheave 4. In FIG. 2, reference numeral 8 denotes an attachment portion that forms the base of the rope groove processing device 7, and detachably fixes the rope groove processing device 7 to the fixed body 5 of the elevator. Reference numeral 9 denotes a processing portion of the rope groove processing device 7 provided at the tip of the attachment portion 8, a rotary grinding wheel 10 for grinding and removing the rope groove 4 a, a motor 11 for rotating the grinding wheel 10, The motor mounting plate 12 holds the motor 11. 13 is provided between the attachment portion 8 and the processing portion 9 of the rope groove processing device 7, and the processing portion 9 is driven in the direction of the rotation axis of the driving sheave 4 (x direction = direction perpendicular to the paper surface of FIG. 2) and driving. It is a movable support part that is supported so as to be movable in the radial direction of the sheave 4 (z direction = up and down direction in FIG. 2).

図3は、可動支持部13の動作を説明するための側面図である。図4はその背面図である。各図は駆動綱車4の回転軸方向(x方向)および半径方向(z方向)に伸びた状態である。この可動支持部13はx方向可動器14と、z方向可動器15とから構成されている。x方向可動器14の固定端は取付部8に固定されていて、可動端にはz方向可動器15が固定されている。さらにz方向可動器15の可動端にはモータ取付板12が固定されている。x方向可動器14の伸縮によって、加工するロープ溝の選択と加工位置の微調整を行う。   FIG. 3 is a side view for explaining the operation of the movable support portion 13. FIG. 4 is a rear view thereof. Each figure shows a state in which the driving sheave 4 extends in the rotation axis direction (x direction) and the radial direction (z direction). The movable support portion 13 includes an x-direction movable device 14 and a z-direction movable device 15. A fixed end of the x-direction movable device 14 is fixed to the mounting portion 8, and a z-direction movable device 15 is fixed to the movable end. Further, a motor mounting plate 12 is fixed to the movable end of the z-direction movable device 15. The rope groove to be processed is selected and the processing position is finely adjusted by the expansion and contraction of the x-direction movable device 14.

ロープ溝の研削除去加工は、主にz方向へ一定の送り速度(送り量)で送ることによって実施する。つまり、z方向可動器15を定速で伸ばす。まず、巻上機の駆動機の回転によって主ロープ2が巻き掛けられた状態のまま駆動綱車4が回転しロープ溝4aが移動する。次に、モータ11により研削砥石10も回転させる。次に、z方向可動器15を一定速度で伸ばし、ロープ溝4aを修正加工する。つまり、ロープ溝4aを深くして、最も深い溝の深さにその深さを合わせる。このときの加工条件は、砥粒速度(=砥石半径*回転数で、周速ともいう)で、1000mm/分以上が必要である。z方向可動器15の送り速度(伸ばし速度)は、駆動綱車4の一回転当たりの送り量が5ミクロン以下になるように1ミクロン単位で行い、駆動綱車4の回転数に合わせて設定する。これ以上送り量が多いと、通常、砥粒の脱落が発生して工具寿命が短くなったり、研削砥石10がロープ溝4aに食い付いて食い込み傷ができる等の、不安定な加工になる。研削では不安定な加工になる一歩手前の最も効率のよい加工条件を採用することが望ましい。   Rope groove grinding removal processing is performed mainly by feeding in the z direction at a constant feed rate (feed amount). That is, the z-direction movable device 15 is extended at a constant speed. First, the driving sheave 4 rotates and the rope groove 4a moves while the main rope 2 is wound by the rotation of the driving machine of the hoisting machine. Next, the grinding wheel 10 is also rotated by the motor 11. Next, the z-direction movable device 15 is extended at a constant speed, and the rope groove 4a is corrected. That is, the rope groove 4a is deepened and the depth is adjusted to the depth of the deepest groove. The processing conditions at this time are abrasive speed (= grinding wheel radius * rotation speed, also referred to as peripheral speed), and 1000 mm / min or more is necessary. The feed speed (extension speed) of the z-direction movable device 15 is set in units of 1 micron so that the feed amount per rotation of the drive sheave 4 is 5 microns or less, and is set according to the rotation speed of the drive sheave 4 To do. If the feed amount is larger than this, the abrasive grains are usually dropped and the tool life is shortened, or the grinding wheel 10 bites into the rope groove 4a and bites and scratches, resulting in unstable machining. It is desirable to adopt the most efficient machining conditions one step before the unstable machining in grinding.

次に、ロープ溝加工装置7の加工部9の取付配置について図2を用いて説明する。特に、加工部9の研削砥石10の回転軸線16を、駆動綱車4上の加工点4yでの接線17との成す角度がおおよそ30度になるようにモータ取付板12によって固定する。
この加工部9の研削砥石10の回転軸線16と駆動綱車4上の加工点4yでの接線17との成す角度が30度である場合の効果を図5、図6、図7を用いて説明する。図5はロープ溝4aと研削砥石10の加工中における位置関係を示す側面図、図6はその背面図である。ロープ溝4aの修正加工では、ロープ溝4aの底部4h近傍を研削して、底部4hを深くする必要がある。その際、加工粉は加工中に他に逃げ場がないため、図6の加工終了点4zからの接線18に沿って飛ぶ。つまり、この発明によるロープ溝加工装置7の加工部9の取付配置によって、加工紛の飛ぶ方向が1方向に限定されたことになる。
Next, the mounting arrangement of the processing portion 9 of the rope groove processing device 7 will be described with reference to FIG. In particular, the rotation axis 16 of the grinding wheel 10 of the processing unit 9 is fixed by the motor mounting plate 12 so that the angle formed by the tangent line 17 at the processing point 4y on the drive sheave 4 is approximately 30 degrees.
The effect when the angle formed between the rotation axis 16 of the grinding wheel 10 of the processing portion 9 and the tangent line 17 at the processing point 4y on the drive sheave 4 is 30 degrees will be described with reference to FIGS. explain. FIG. 5 is a side view showing a positional relationship during processing of the rope groove 4a and the grinding wheel 10, and FIG. 6 is a rear view thereof. In the correction processing of the rope groove 4a, it is necessary to grind the vicinity of the bottom 4h of the rope groove 4a to deepen the bottom 4h. At this time, the machining powder flies along the tangent line 18 from the machining end point 4z in FIG. In other words, the direction in which the processing dust flies is limited to one direction by the mounting arrangement of the processing portion 9 of the rope groove processing device 7 according to the present invention.

次に、図5の側面図に戻って他の効果を説明する。研削砥石10の加工初期においては、表面の砥粒はロープ溝4aの上辺部4jでは点gが接触する。しかし、90度回転して底部5hでは点fにその接触点は移動する。さらに180度回転すると点gの反対側(点g')で接触する。よって、研削砥石10の表面の砥粒で、加工に寄与する砥粒は回転中に点gより点fに移動し、最後に点g'になる。よって、加工に寄与する砥粒は図5の斜線部の全砥粒となる。この面積は研削砥石10の回転軸線16が接線17に対して30度の場合、表面積の1/4に相当する。つまり、加工に寄与する砥粒数が全砥粒の1/4にも達する。しかし、角度が0度の場合は、接触位置は常に点gとなり、作用砥粒数が極端に少ないため、その一部の砥粒のみ集中して消費し、工具寿命が著しく短くなる。
また、1回転のうち半分の時間(回転)は加工に寄与していないため、表面は自然空冷作用があり、また、砥粒間に付着した加工粉をその遠心力で排出できる。さらに、研削に際して問題となる砥粒速度では、前述のように通常1000mm/分以上が必要である。点gの砥粒速度が最も速いことは自明であるが、点fの砥粒速度の低下分は13%しかない。よって、モータ12の回転数を上げることによって、この砥粒速度は容易に満足できる。
Next, returning to the side view of FIG. 5, other effects will be described. At the initial stage of processing of the grinding wheel 10, the point g contacts the surface abrasive grains at the upper side 4 j of the rope groove 4 a. However, the contact point moves to point f at the bottom 5h after rotating 90 degrees. When it further rotates 180 degrees, it comes into contact with the opposite side of point g (point g ′). Accordingly, the abrasive grains on the surface of the grinding wheel 10 that contribute to the processing move from the point g to the point f during the rotation, and finally become the point g ′. Therefore, the abrasive grains that contribute to the processing are all abrasive grains in the shaded area in FIG. This area corresponds to ¼ of the surface area when the rotation axis 16 of the grinding wheel 10 is 30 degrees with respect to the tangent line 17. That is, the number of abrasive grains contributing to processing reaches 1/4 of all abrasive grains. However, when the angle is 0 degree, the contact position is always point g, and the number of working abrasive grains is extremely small. Therefore, only a part of the abrasive grains is concentrated and consumed, and the tool life is remarkably shortened.
Further, since half of the rotation (rotation) does not contribute to the processing, the surface has a natural air cooling action, and the processing powder adhering between the abrasive grains can be discharged by the centrifugal force. Further, the abrasive speed that is a problem in grinding usually requires 1000 mm / min or more as described above. It is obvious that the abrasive speed at point g is the fastest, but the decrease in the abrasive speed at point f is only 13%. Therefore, this abrasive speed can be easily satisfied by increasing the number of revolutions of the motor 12.

さてここで、研削加工で考慮しなければならない2大項目である研削効率と工具寿命に関してまとめる。この発明による配置構成では、より多くの表面砥粒を作用させ、十分な砥粒速度を確保できるため、研削効率は十分によい。また、冷却効果も十分であるため、工具寿命も長くなる。よって、この発明の実施の形態1によれば、エレベータの長期稼動等によって摩耗の進行したロープ溝4aをロープ溝加工装置7によって修正加工する際に、加工部9の研削砥石10の回転軸線16を、駆動綱車4上の加工点4yでの接線17との成す角度がおおよそ30度になるように配したことにより、研削効率と工具寿命の両立を可能とし、工具交換を含む作業期間、および工具費も含む作業に要する費用を大幅に削減できる。   Here, the grinding efficiency and tool life, which are the two major items that must be taken into account in grinding, are summarized. In the arrangement configuration according to the present invention, more surface abrasive grains can act and a sufficient abrasive speed can be ensured, so that the grinding efficiency is sufficiently good. In addition, since the cooling effect is sufficient, the tool life is extended. Therefore, according to the first embodiment of the present invention, when the rope groove 4a, which has been worn by long-term operation of the elevator, is corrected by the rope groove processing device 7, the rotational axis 16 of the grinding wheel 10 of the processing portion 9 is used. Is arranged so that the angle formed with the tangent line 17 at the machining point 4y on the drive sheave 4 is approximately 30 degrees, so that both grinding efficiency and tool life can be achieved, and a work period including tool change, And the cost required for work including tool costs can be greatly reduced.

ここで補足説明として、加工部9の回転軸線16と駆動綱車4上の加工点4yでの接線17との成す角度が90度の場合を図7により考察する。図7から明らかなように、90度の場合は、最も加工しなければならない底部4hにおいて周速がかなり不十分であるため、加工効率が極めて悪い。また、加工粉をロープ溝4aの外へ排出ができず、目詰まりを起こし、温度上昇を引き起こし、結合材等を痛め、著しく工具寿命を短くする。   Here, as a supplementary explanation, a case where the angle formed by the rotation axis 16 of the processing unit 9 and the tangent line 17 at the processing point 4y on the driving sheave 4 is 90 degrees will be considered with reference to FIG. As is apparent from FIG. 7, in the case of 90 degrees, the peripheral speed is considerably insufficient at the bottom 4h that should be most processed, so that the processing efficiency is extremely poor. Further, the machining powder cannot be discharged out of the rope groove 4a, causing clogging, increasing the temperature, damaging the binding material and the like, and significantly shortening the tool life.

図8は加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が0度、30度、90度の3条件での加工現象の相違をまとめた図表である。なお、角度の最適値は、一般的に加工条件によって左右される。例えば、砥粒径の分布、砥粒の硬度、砥粒結合剤の保持力、砥石のコスト、溝の被削性、周囲の気温などである。しかし、大まかに30度前後に最適値が存在することが判った。
なお、研削砥石10の砥粒材質および粒径、結合剤の材質、合金の材質などは、工具コスト、仕上がり形状や要求表面粗度などによって決定すれるもので、この発明で限定されるものではない。また、加工部9の研削砥石10を複数個有するような構成にして、より効率的に修正加工を実施できるようにしても良い。
FIG. 8 is a table summarizing differences in machining phenomena under three conditions where the angle between the rotation axis of the machining portion and the tangent at the machining point on the drive sheave is 0 degrees, 30 degrees, and 90 degrees. Note that the optimum angle value generally depends on the processing conditions. For example, the distribution of the abrasive grain size, the hardness of the abrasive grain, the holding power of the abrasive binder, the cost of the grinding wheel, the machinability of the groove, the ambient temperature, and the like. However, it has been found that there is an optimum value around 30 degrees.
The abrasive material and particle size of the grinding wheel 10, the material of the binder, the material of the alloy, etc. are determined by the tool cost, the finished shape, the required surface roughness, etc., and are not limited by this invention. Absent. Moreover, it may be configured to have a plurality of grinding wheels 10 of the processing unit 9 so that the correction processing can be performed more efficiently.

実施の形態2.
図9はこの発明の実施の形態2におけるエレベータのロープ溝加工装置を示す側面図、図10はこの発明の実施の形態2におけるロープ溝加工装置を示す正面図、図11はこの発明の実施の形態2におけるロープ溝加工装置を示す背面図、図12はこの発明の実施の形態2におけるエレベータのロープ溝加工装置の位置測定値によって送り量を制御する手順を示すフローチャート、図13は温度測定値によって送り量を制御する手順を示すフローチャート、図14は負荷測定値によって送り量を制御する手順を示すフローチャートである。なお、図中、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 2.
9 is a side view showing an elevator rope grooving apparatus according to Embodiment 2 of the present invention, FIG. 10 is a front view showing the rope grooving apparatus according to Embodiment 2 of the present invention, and FIG. 11 is an embodiment of the present invention. The rear view which shows the rope groove processing apparatus in Embodiment 2, FIG. 12 is a flowchart which shows the procedure which controls a feed amount with the position measurement value of the rope groove processing apparatus of the elevator in Embodiment 2 of this invention, FIG. FIG. 14 is a flowchart showing a procedure for controlling the feed amount based on the load measurement value. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

この実施の形態2においては、実施の形態1によるロープ溝加工装置の加工能率をさらに向上させたものであり、集塵機の集塵口19、位置測定装置20、温度測定装置21、負荷測定装置22を取り付け、さらにz方向可動器15の送り量を演算装置23によって制御可能としたものである。
各付加装置の機能について説明する。
In the second embodiment, the processing efficiency of the rope grooving device according to the first embodiment is further improved, and the dust collecting port 19, the position measuring device 20, the temperature measuring device 21, the load measuring device 22 of the dust collector. And the feed amount of the z-direction movable unit 15 can be controlled by the arithmetic unit 23.
The function of each additional device will be described.

先ず、集塵機の集塵口19について説明する。この発明では、加工部9の研削砥石10の回転軸線16と駆動綱車4上の加工点4yでの接線17との成す角度がおおよそ30度になるように配置することにより、図6に示すように、加工終了点4gの接線方向18に、すべての加工粉の排出方向を限定した。この排出時の加工粉の速度は砥粒速度と同じでおおよそ1000mm/分の高速である。よって、加工粉は空気の抵抗を受けるものの、200mm程度はほぼ直線的に飛ぶ。よって、集塵機の集塵口19は、接線18の延長線上にのみあればよく、加工に際して、邪魔にならない位置で良い。そこで、図9のように、砥石の加工終了点4gの接線18の延長線上に位置するように集塵機の集塵口19を配し、モータ取付板12に取り付けている。この際、加工粉の飛散の若干の広がりを考慮した面積の開口を有する形状とし、この集塵口19によって捕捉した加工粉を集塵機(集塵口と集塵機への配管は図示せず)によって周囲の空気と一緒に吸い込めば、ほぼ100%の加工粉を集塵可能である。
通常の加工中では、加工粉による目詰まりを取り除くために適当な時期に研削砥石10の回転を止めて、ワイヤブラシ等で目詰まりを除去する。しかし、このような効率的な集塵によって、この発明では、加工中に詰まりを除去する必要はない。
さらに、通常の加工後は、加工粉の主ロープ2への付着によるロープすべりの増加など悪影響を防止するために、十分な清掃作業が必要になる。しかし、このような効率的な集塵によって、この発明では、加工後の清掃作業はほとんど必要がない。
なお、上記説明では集塵口19はモータ取付板12に取り付けたが、接線18の延長線上であれば、このような取り付け関係に限定する必要はなく、x方向可動器14の可動部に取り付けてもよく、加工において邪魔にならなければどこでもよい。
つまり、この発明では、除去加工によって生じた加工粉を気中での粉塵状態で確実に集塵可能とすることによって、加工粉による加工への悪影響、例えば砥石表面の目詰まりや可動支持部の摺動面への侵入なども防止できる。また、加工粉の主ロープ2への付着やロープ溝4aへの付着を防止できる。その結果として、加工中や加工後の清掃作業の効率が大幅に向上し、修正加工作業を短時間に実施できる。
First, the dust collection port 19 of the dust collector will be described. In this invention, it arrange | positions so that the angle which the rotational axis 16 of the grinding wheel 10 of the process part 9 and the tangent line 17 in the processing point 4y on the drive sheave 4 may form may become about 30 degree | times, and it shows in FIG. Thus, the discharge direction of all the processing powder was limited to the tangential direction 18 of the processing end point 4g. The speed of the processing powder at the time of discharging is the same as the abrasive speed and is approximately 1000 mm / min. Therefore, although the processed powder receives the resistance of air, the processed powder flies almost linearly. Therefore, the dust collection port 19 of the dust collector need only be on the extension line of the tangent 18 and may be at a position that does not interfere with the processing. Therefore, as shown in FIG. 9, the dust collection port 19 of the dust collector is disposed so as to be positioned on the extended line of the tangent 18 of the grindstone processing end point 4 g and is attached to the motor mounting plate 12. At this time, a shape having an opening having an area in consideration of a slight spread of the scattering of the processed powder is taken, and the processed powder captured by the dust collecting port 19 is surrounded by a dust collector (the dust collecting port and the piping to the dust collector are not shown). If it is sucked together with the air, almost 100% of the processed powder can be collected.
During normal processing, the grinding wheel 10 is stopped from rotating at an appropriate time to remove clogging due to processing powder, and the clogging is removed with a wire brush or the like. However, with this efficient dust collection, the present invention does not require clogging to be removed during processing.
Furthermore, after normal processing, sufficient cleaning work is required to prevent adverse effects such as an increase in rope slip due to adhesion of processed powder to the main rope 2. However, due to such efficient dust collection, the present invention requires little cleaning work after processing.
In the above description, the dust collection port 19 is attached to the motor attachment plate 12, but it is not necessary to limit the attachment relationship as long as it is an extension of the tangent line 18, and is attached to the movable part of the x-direction movable device 14. It may be anywhere as long as it does not interfere with processing.
In other words, in the present invention, it is possible to reliably collect the processing powder generated by the removal processing in the dust state in the air, thereby adversely affecting the processing by the processing powder, such as clogging of the grindstone surface and the movable support portion. Intrusion into the sliding surface can also be prevented. Moreover, adhesion of the processed powder to the main rope 2 and adhesion to the rope groove 4a can be prevented. As a result, the efficiency of the cleaning operation during and after the processing is greatly improved, and the correction processing operation can be performed in a short time.

次に、位置測定装置20について説明する。さて、巻上機の駆動綱車4やそらせ車6を回転自在に保持するベアリング(軸受)の内部にあるボールやコロから成る転動体は、すべて同一径ではない。使用初期においても数ミクロンの違いがあり、長期使用で摩耗が進行すると数十ミクロンにもなる。よって、回転中はいくらかの偏心がある。この偏心は、溝修正加工を必要とする時期には、大きいものでは0.1mm程度にも達する。上記したように、研削砥石10の送り量の制御は0.001mm(1ミクロン)単位で行う必要がある。しかるに、ベアリングの偏心がその100倍もあれば、正常な送り量のみで制御は行えず、送り量が急激に増加し、食い込み傷を生じさせたりする恐れがある。この偏心に周期性があれば、ある程度対策はとれるが、原因である転動体の位置関係が周期的に再現される可能性は著しく低い。よって、偏心の周期性に着目しても、この食い込みを回避することは不可能である。
そこで、位置測定装置20をモータ取付板12に取り付け、駆動綱車4やそらせ車6の基準面(主ロープ2による摩耗を受けない部分、図5の上辺部4jや駆動綱車4に嵌合結合されているブレーキの表面など)とロープ溝加工装置7との半径方向(z方向)の位置を測定し、設定どおりの送り量が確保されるように、z方向可動器15を制御すればよい。
Next, the position measuring device 20 will be described. Now, the rolling elements made of balls and rollers inside the bearing (bearing) that rotatably holds the driving sheave 4 and the deflector 6 of the hoist are not all the same diameter. There is a difference of several microns even in the initial stage of use, and when wear progresses in long-term use, it becomes several tens of microns. Thus, there is some eccentricity during rotation. This eccentricity reaches about 0.1 mm at the maximum when groove correction processing is required. As described above, the feed amount of the grinding wheel 10 needs to be controlled in units of 0.001 mm (1 micron). However, if the eccentricity of the bearing is 100 times that, the control cannot be performed only with a normal feed amount, and the feed amount may increase rapidly and may cause a bite wound. If this eccentricity has periodicity, measures can be taken to some extent, but the possibility that the positional relationship of the rolling elements that are the cause is periodically reproduced is extremely low. Therefore, even if paying attention to the periodicity of eccentricity, it is impossible to avoid this bite.
Therefore, the position measuring device 20 is attached to the motor mounting plate 12 and fitted to the reference surface of the driving sheave 4 and the deflecting wheel 6 (the portion that is not subject to wear by the main rope 2, the upper side 4j of FIG. 5 and the driving sheave 4). If the position in the radial direction (z direction) between the rope groove processing device 7 and the surface of the brake that is coupled to the rope groove processing device 7 is measured, and the z-direction movable unit 15 is controlled so as to ensure the feed amount as set. Good.

図12は位置測定値によって送り量を制御する手順を示すフローチャートである。実際は演算装置23にて計算・判断・実行される。まず、加工開始時のz方向の位置測定値z0を記憶する。次に、新たな基準面のz方向の位置測定値z1を測定し(ステップS1)、新たな位置測定値z1と加工開始時の位置測定値z0を比較して、位置の変化量△z(=z1−z0)を求める(ステップS2)。そして、この位置変化量△zを基準送り設定値zbに加え、実行送り量z(zb+△z)とし(ステップS3)、z方向可動器15を駆動し、z方向送りを実施する(ステップS4)。以下、この動作を繰り返せば、安定した送り量を確保できる。
つまり、この発明では、位置測定装置20によりその送り量を常に監視制御しているため、送り量を安定化でき、かつ、確実に要求どおりの溝深さが得られる。よって、ロープ溝加工装置7の性能を十分に発揮できる効率的な加工が実現できる。さらに、駆動綱車4やそらせ車6の軸受(ベアリング)の不正回転運動による加工への悪影響(食い付き傷や加工効率低下など)を防止できる。
さて、通常の加工中は、エレベータの駆動機が起動しているため、位置測定装置20の近傍はかなりの電磁ノイズが存在する。よって、位置測定装置20のアナログ信号にはノイズが乗り、正確な位置測定値を得ることは困難である。この対策として、特に光学式スケールや磁気スケールなどのデジタルスケールを有する位置測定装置が有効である。デジタルスケールを有する位置測定装置からの信号は、信号の有無で1ミクロンの位置の変化を表す。よって、どんなにノイズが乗っていても信号の有無は容易に判断ができ、確実に位置測定ができる。
なお、上記説明では、位置測定装置20はモータ取付板12に取り付けたが、基準面の位置を測定できれば、このような取り付け関係に限定する必要はなく、x方向可動器14の可動部に取り付けても、また、装置外に取り付けてもよい(ブレーキ面の位置測定時など)。加工において邪魔にならなければどの位置に取り付けてもよい。
FIG. 12 is a flowchart showing a procedure for controlling the feed amount based on the position measurement value. Actually, the calculation device 23 performs calculation / judgment / execution. First, the position measurement value z0 in the z direction at the start of machining is stored. Next, the position measurement value z1 of the new reference plane in the z direction is measured (step S1), and the new position measurement value z1 is compared with the position measurement value z0 at the start of machining to determine the position change amount Δz ( = Z1-z0) is obtained (step S2). Then, this position change amount Δz is added to the reference feed set value zb to obtain an effective feed amount z (zb + Δz) (step S3), the z-direction movable unit 15 is driven, and z-direction feed is performed (step S4). ). Hereinafter, if this operation is repeated, a stable feed amount can be secured.
That is, in the present invention, since the feed amount is constantly monitored and controlled by the position measuring device 20, the feed amount can be stabilized and the required groove depth can be obtained reliably. Therefore, the efficient process which can fully exhibit the performance of the rope groove processing apparatus 7 is realizable. Furthermore, it is possible to prevent adverse effects (such as bite scratches and a decrease in machining efficiency) on machining due to unauthorized rotation movement of the bearings of the driving sheave 4 and the deflecting wheel 6.
Now, during normal machining, since the elevator drive is activated, there is considerable electromagnetic noise in the vicinity of the position measuring device 20. Therefore, noise is added to the analog signal of the position measuring device 20, and it is difficult to obtain an accurate position measurement value. As a countermeasure, a position measuring device having a digital scale such as an optical scale or a magnetic scale is particularly effective. A signal from a position measuring device having a digital scale represents a change in position of 1 micron with or without the signal. Therefore, no matter how much noise is present, the presence or absence of a signal can be easily determined, and the position can be reliably measured.
In the above description, the position measuring device 20 is attached to the motor attachment plate 12. However, as long as the position of the reference plane can be measured, the position measurement device 20 is not limited to this attachment relationship, and is attached to the movable portion of the x-direction movable device 14. Alternatively, it may be attached outside the device (for example, when measuring the position of the brake surface). It may be attached at any position as long as it does not interfere with processing.

次に、温度測定装置21について説明する。その前に研削熱の悪影響について考察する。加工時の研削砥粒の作用切れ刃(エッジ部)は、ロープ溝を研削している角度180度の間は、300−900℃にまで上昇する。その面積は小さいので、研削していない角度180度の間で自然空冷される。加工効率を上げていくと、発熱量が増加し、自然空冷では不十分になり、砥粒の温度が上昇し、最終的には研削砥石10自体(砥石軸を含む)の温度が上昇する。実際の研削はこの一歩手前の加工効率の条件、つまり、温度がほぼ一定値になる条件で行われる。また、砥粒の作用切り刃は次第に摩耗する。単位時間当たりの送り量(送り速度)が一定であれば、摩耗の進行に連れて、負荷が上昇し、結果として発熱量が増加し、研削砥石の温度が上昇する。さらに、砥石表面に加工粉が堆積して目詰まり状態になると、送り量が一定であれば、研削負荷が上昇し、結果として発熱量が増加し、研削砥石10の温度が上昇する。このように、研削砥石10の温度が、安定加工状態より昇温してしまう可能性はかなり高い。
研削砥石10の温度が上昇すると研削砥石10は熱膨張し、実質的な切り込み量(送り量)が増えることになる。例えば10℃上昇すれば、直径10mmの砥石で、約1ミクロンの切り込み量の増加に相当する。この増加は送り方向(z方向)のみでなく、全周囲におよぶため、加工負荷は著しく増加し、この負荷増加のために、さらに温度が上昇する結果となる。最終的には、高温で砥石表面の砥粒の結合剤が劣化し、砥粒が脱落する。つまり、工具寿命が著しく短くなる。また、食い込み傷等が生じたり、過負荷により装置(主にモータ12)が破損することもある。よって、温度の急激な上昇をさせないために、負荷の小さい加工や、早めの研削砥石10の交換等を行うことになり、加工作業の効率が低下することになる。
そこで、この対策として、モータ取付板12に取り付けた温度測定装置21で研削砥石10の温度を測定し、設定値が温度範囲内になるように送り量を、z方向可動器15によって制御すればよい。
Next, the temperature measuring device 21 will be described. Before that, we will consider the adverse effects of grinding heat. The working cutting edge (edge part) of the grinding abrasive grains during processing rises to 300-900 ° C. during an angle of 180 degrees grinding the rope groove. Since the area is small, it is naturally air-cooled between 180 degrees that are not ground. As the processing efficiency increases, the amount of heat generation increases, and natural air cooling becomes insufficient, the temperature of the abrasive grains rises, and finally the temperature of the grinding wheel 10 itself (including the grinding wheel shaft) rises. Actual grinding is performed under the condition of the processing efficiency just before this step, that is, under the condition that the temperature becomes a substantially constant value. Also, the abrasive cutting edge gradually wears. If the feed amount per unit time (feed speed) is constant, the load increases with the progress of wear, and as a result, the heat generation amount increases and the temperature of the grinding wheel rises. Further, when the processing powder accumulates on the surface of the grindstone and becomes clogged, if the feed amount is constant, the grinding load increases, and as a result, the amount of heat generation increases, and the temperature of the grinding wheel 10 rises. Thus, the possibility that the temperature of the grinding wheel 10 is raised from the stable processing state is quite high.
When the temperature of the grinding wheel 10 rises, the grinding wheel 10 is thermally expanded, and a substantial cutting amount (feed amount) increases. For example, if the temperature rises by 10 ° C., it corresponds to an increase in the cutting amount of about 1 micron with a grinding wheel having a diameter of 10 mm. Since this increase extends not only in the feed direction (z direction) but also around the entire circumference, the machining load increases significantly, resulting in a further increase in temperature due to this increase in load. Eventually, the binder of the abrasive grains on the surface of the grindstone deteriorates at a high temperature, and the abrasive grains fall off. That is, the tool life is remarkably shortened. Further, a biting wound or the like may occur, or the apparatus (mainly the motor 12) may be damaged due to overload. Therefore, in order not to raise the temperature rapidly, processing with a small load or early replacement of the grinding wheel 10 is performed, and the efficiency of the processing operation is reduced.
Therefore, as a countermeasure, if the temperature of the grinding wheel 10 is measured by the temperature measuring device 21 attached to the motor mounting plate 12, and the feed amount is controlled by the z-direction movable unit 15 so that the set value is within the temperature range. Good.

図13は温度測定値によって送り量を制御する手順を示すフローチャートであり、実際は演算装置23の内部で処理される。まず、十分な加工効率を得られるように「下限設定温度Td」と、温度の急上昇を防ぐ「上限設定温度Tu」を予備実験等で決める。次に、温度測定を行い、温度測定値T1を得る(ステップS11)。この温度測定値T1と下限設定温度Tdを比較し(ステップS12)、温度測定値T1が下限設定温度Tdより低いときは、z方向の送り量は通常の基準送り設定zbのままにし(ステップS13)、z方向送りを実施する(ステップS14)。温度測定値T1が下限設定温度Tdと上限設定温度Tuの間の場合は、送り量をゼロとし(ステップS15、S16)、z方向送りを実施し(ステップS14)、自然空冷を実施する。もし、温度測定値T1が上限設定温度Tuを越えた場合は、熱膨張が急激に進行していると判断して、研削砥石10を後退させる。実際は演算装置23内で、送り量zを設定後退送り量(負の送り量)znとし(ステップS15、S17)、z方向可動器15に指令を出す(S14)。以下、この動作を繰り返せば、安定した温度での加工を確保できる。
よって、ロープ溝加工装置7の性能を十分に発揮できる効率的な加工が実現できる。さらに、食い込み傷等の発生を防止できる。
つまり、研削砥石10(砥石軸を含む)の温度上昇を防止することによって、砥石の工具寿命が安定し、工具交換頻度を抑えられ、工具交換費用と工具交換時間の大幅な削減による作業時間の短縮を可能とする。また、熱膨張による加工への悪影響(食い付き傷や過負荷異常停止)を防止できる。結果として、より効率的に修正加工を実施できる。
なお、上記説明では温度測定装置21はモータ取付板12に取り付けたが、研削砥石10の温度を測定できれば、このような取り付け関係に限定する必要はなく、z方向可動器14の可動部に取り付けても、また、装置外に取り付けてもよい。加工において邪魔にならなければどこ位置でもよい。
FIG. 13 is a flowchart showing a procedure for controlling the feed amount based on the temperature measurement value, and is actually processed inside the arithmetic unit 23. First, a “lower limit set temperature Td” and an “upper limit set temperature Tu” for preventing a rapid rise in temperature are determined by preliminary experiments or the like so that sufficient processing efficiency can be obtained. Next, temperature measurement is performed to obtain a temperature measurement value T1 (step S11). The measured temperature value T1 and the lower limit set temperature Td are compared (step S12). If the measured temperature value T1 is lower than the lower limit set temperature Td, the feed amount in the z direction is kept at the normal reference feed setting zb (step S13). ), Z-direction feed is performed (step S14). When the temperature measurement value T1 is between the lower limit set temperature Td and the upper limit set temperature Tu, the feed amount is set to zero (steps S15 and S16), z-direction feed is performed (step S14), and natural air cooling is performed. If the temperature measurement value T1 exceeds the upper limit set temperature Tu, it is determined that the thermal expansion is proceeding rapidly, and the grinding wheel 10 is moved backward. In practice, the feed amount z is set to the set reverse feed amount (negative feed amount) zn in the arithmetic unit 23 (steps S15 and S17), and a command is issued to the z-direction movable device 15 (S14). Hereinafter, if this operation is repeated, machining at a stable temperature can be ensured.
Therefore, the efficient process which can fully exhibit the performance of the rope groove processing apparatus 7 is realizable. Furthermore, the occurrence of biting wounds and the like can be prevented.
In other words, by preventing the temperature of the grinding wheel 10 (including the wheel shaft) from rising, the tool life of the wheel is stabilized, the frequency of tool change can be suppressed, and the work time can be reduced by greatly reducing the tool change cost and the tool change time. Enables shortening. In addition, adverse effects on processing due to thermal expansion (biting scratches and overload abnormal stop) can be prevented. As a result, correction processing can be performed more efficiently.
In the above description, the temperature measuring device 21 is mounted on the motor mounting plate 12. However, as long as the temperature of the grinding wheel 10 can be measured, it is not necessary to limit to such a mounting relationship, and the temperature measuring device 21 is mounted on the movable portion of the z-direction movable device 14. Alternatively, it may be attached outside the apparatus. Any position is acceptable as long as it does not interfere with processing.

次に、負荷測定装置22について説明する。その前に加工効率の向上と安定化について考察する。研削加工では、装置が故障しない範囲で、研削砥石10に研削力である回転方向の駆動力を与えることが最も効率的な加工になる。
さて、実際の溝修正加工では各溝の摩耗状態はどれも同じではない。例えば、全周の一部のみ摩耗量が少なく、残りの部分はかなり摩耗している溝(ケース1)があれば、全周の一部のみ摩耗量が多く、残りの部分はあまり摩耗していない溝(ケース2)もある。また、溝幅が広く摩耗している溝(ケース3)もあれば、溝幅が狭く摩耗している溝(ケース4)もある。ここで、一定の送り量でどの溝も加工する計画を立てると、モータ11などの故障を回避するために、加工負荷の高い溝(ケース2やケース4の場合)の送り量を採用せざるを得ない。これでは、他の加工負荷の低い溝(ケース1やケース3の場合)の加工では加工装置の性能が十分に発揮できない。
そこで、モータ取付板12に取り付けた負荷測定装置22で研削砥石用のモータ11の負荷を測定し、測定した負荷が設定値の範囲内になるように送り量を、z方向可動装置15によって制御すればよい。
Next, the load measuring device 22 will be described. Before that, we will consider the improvement and stabilization of machining efficiency. In the grinding process, it is the most efficient process to give the grinding wheel 10 a driving force in the rotational direction, which is a grinding force, as long as the apparatus does not fail.
Now, in actual groove correction processing, the wear state of each groove is not the same. For example, if there is a groove (case 1) with a small amount of wear only on a part of the entire circumference and a considerable amount of wear on the remaining part, only a part of the entire circumference has a large amount of wear, and the remaining part has a little wear. There is also no groove (case 2). In addition, there is a groove (case 3) that is worn with a wide groove width and a groove (case 4) that is worn with a narrow groove width. Here, if a plan for machining any groove with a constant feed amount is made, the feed amount of a groove with a high machining load (in the case of Case 2 or Case 4) must be employed in order to avoid failure of the motor 11 or the like. I do not get. In this case, the performance of the processing apparatus cannot be sufficiently exerted in the processing of a groove having a low processing load (in the case of Case 1 or Case 3).
Therefore, the load measuring device 22 attached to the motor mounting plate 12 measures the load of the grinding wheel motor 11 and the feed amount is controlled by the z-direction movable device 15 so that the measured load is within the set value range. do it.

図14は負荷測定値によって送り量を制御する手順を示すフローチャートであり、実際は演算装置23の内部で処理される。まず、十分な加工効率を得られるような「下限設定負荷Ld」と、装置の故障を防ぐ「上限設定負荷Lu」を予備実験やモータ11の仕様書などのデータで決める。次に、負荷測定を行い、負荷測定値L1を得る(ステップS21)。この負荷測定値L1と下限設定負荷Ldを比較し(ステップS22)、負荷測定値L1が下限設定負荷Ldより低いときは、z方向の送り量は、例えば通常の基準送り設定zbの2倍にして(ステップS23)、z方向送りを実施する(ステップS24)。負荷測定値L1が下限設定負荷Ldと上限設定負荷Luの間の場合は、送り量を基準送り量zbのままとし(ステップS25、S26)、z方向送りを実施する(ステップS24)。もし、負荷測定値L1が上限設定負荷Luを越えた場合は、装置の故障を防止するために、研削砥石10を後退させる。実際は演算装置23内で、送り量zを設定後退送り量(負の送り量)znとして(ステップS25、S27)、z方向可動器15に指令を出す(S24)。以下、この動作を繰り返せば、最も効率的で、かつ、安定した加工を確保できる。
つまり、研削砥石10の駆動装置(モータ11など)の能力を最大限に引き出すことにより、加工効率の高効率、安定化が実現でき、実加工時間の短縮を可能にする。また、砥石の目詰まりや異物の噛み込みなどによる急激な加工異常にも対応でき、食い込み傷や過負荷による装置故障を防止できる。結果として、溝加工装置の性能を十分に発揮できる効率的な修正加工を実施できる。
なお、上記説明では負荷測定装置22はモータ取付板12に取り付けたが、負荷を測定できれば、このような取り付け関係に限定する必要はなく、x方向可動器14の駆動部に取り付けても、また、モータ駆動装置に取り付けてもよい。加工において邪魔にならなければどこでもよい。また、負荷測定方法は、モータヘの供給動力(電圧、電流、ガス流量など)や、指令回転数に対する実質回転数の比などから算出してもよく、特に限定するものではない。
FIG. 14 is a flowchart showing a procedure for controlling the feed amount based on the load measurement value, and is actually processed inside the arithmetic unit 23. First, the “lower limit setting load Ld” for obtaining sufficient machining efficiency and the “upper limit setting load Lu” for preventing the failure of the apparatus are determined by data such as preliminary experiments and specifications of the motor 11. Next, load measurement is performed to obtain a load measurement value L1 (step S21). The load measurement value L1 and the lower limit set load Ld are compared (step S22). When the load measurement value L1 is lower than the lower limit set load Ld, the feed amount in the z direction is, for example, twice the normal reference feed setting zb. (Step S23), z-direction feeding is performed (step S24). When the load measurement value L1 is between the lower limit set load Ld and the upper limit set load Lu, the feed amount remains the reference feed amount zb (steps S25 and S26), and z-direction feed is performed (step S24). If the load measurement value L1 exceeds the upper limit set load Lu, the grinding wheel 10 is moved backward in order to prevent the failure of the apparatus. Actually, in the arithmetic unit 23, the feed amount z is set as the set reverse feed amount (negative feed amount) zn (steps S25 and S27), and a command is issued to the z-direction movable unit 15 (S24). Hereinafter, if this operation is repeated, the most efficient and stable machining can be secured.
In other words, by maximizing the capacity of the driving device (such as the motor 11) of the grinding wheel 10, the machining efficiency can be improved and stabilized, and the actual machining time can be shortened. In addition, it is possible to cope with a sudden machining abnormality due to clogging of a grindstone or biting of a foreign substance, and to prevent a device failure due to a bite or overload. As a result, it is possible to perform an efficient correction process that can sufficiently exhibit the performance of the groove processing apparatus.
In the above description, the load measuring device 22 is mounted on the motor mounting plate 12. However, if the load can be measured, the load measuring device 22 is not limited to such a mounting relationship. The motor drive device may be attached. Any place is acceptable as long as it does not interfere with processing. The load measuring method may be calculated from the power supplied to the motor (voltage, current, gas flow rate, etc.), the ratio of the actual rotational speed to the command rotational speed, etc., and is not particularly limited.

この発明の実施の形態1におけるエレベータのロープ溝加工装置を取り付けた状態を示すエレベータ装置の概略構成図である。It is a schematic block diagram of the elevator apparatus which shows the state which attached the rope groove processing apparatus of the elevator in Embodiment 1 of this invention. この発明の実施の形態1におけるエレベータのロープ溝加工装置を示す側面図である。It is a side view which shows the rope groove processing apparatus of the elevator in Embodiment 1 of this invention. この発明の実施の形態1におけるロープ溝加工装置の可動支持部の可動状態を説明するための側面図である。It is a side view for demonstrating the movable state of the movable support part of the rope groove processing apparatus in Embodiment 1 of this invention. この発明の実施の形態1におけるロープ溝加工装置の可動支持部の可動状態を説明するための背面図である。It is a rear view for demonstrating the movable state of the movable support part of the rope groove processing apparatus in Embodiment 1 of this invention. 加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が30度の場合の側面図である。It is a side view in case the angle which the rotation axis of a process part and the tangent in the process point on a drive sheave form is 30 degree | times. 加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が30度の場合の正面図である。It is a front view in case the angle which the rotation axis of a process part and the tangent in the process point on a drive sheave form is 30 degree | times. 加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が90度の場合の側面図である。It is a side view in case the angle which the rotation axis of a process part and the tangent in the process point on a drive sheave form is 90 degree | times. 加工部の回転軸線と駆動綱車上の加工点での接線との成す角度が0度、30度、90度の3条件での加工現象の相違をまとめた表である。It is the table | surface which put together the difference of the machining phenomenon in three conditions whose angles which the rotation axis of a process part and the tangent in the process point on a drive sheave form are 0 degree | times, 30 degree | times, and 90 degree | times. この発明の実施の形態2におけるエレベータのロープ溝加工装置を示す側面図である。It is a side view which shows the rope groove processing apparatus of the elevator in Embodiment 2 of this invention. この発明の実施の形態2におけるロープ溝加工装置を示す正面図である。It is a front view which shows the rope groove processing apparatus in Embodiment 2 of this invention. この発明の実施の形態2におけるロープ溝加工装置を示す背面図である。It is a rear view which shows the rope groove processing apparatus in Embodiment 2 of this invention. この発明の実施の形態2におけるエレベータのロープ溝加工装置の位置測定値によって送り量を制御する手順を示すフローチャートである。It is a flowchart which shows the procedure which controls a feed amount with the position measured value of the rope groove processing apparatus of the elevator in Embodiment 2 of this invention. 温度測定値によって送り量を制御する手順を示すフローチャートである。It is a flowchart which shows the procedure which controls feed amount by a temperature measurement value. 負荷測定値によって送り量を制御する手順を示すフローチャートである。It is a flowchart which shows the procedure which controls feed amount with a load measurement value. 一般的なエレベータの配置構成を示す概略構成図である。It is a schematic block diagram which shows the arrangement configuration of a general elevator. エレベータ巻上機の駆動綱車の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the drive sheave of an elevator hoisting machine. 磨耗が進行した駆動綱車のロープ溝を従来のロープ溝加工装置により再生加工する場合を示す概略構成図である。It is a schematic block diagram which shows the case where the rope groove | channel of the drive sheave which wear progressed is reprocessed with the conventional rope groove processing apparatus. 加工完了状態を示す概略構成図である。It is a schematic block diagram which shows a process completion state.

符号の説明Explanation of symbols

1 エレベータのかご
2 主ロープ
3 釣合い重り
4 駆動綱車
4a ロープ溝
4y 駆動綱車の加工点
4h ロープ溝の底部
4z 加工終了点
4j ロープ溝の上辺部
5 固定体
6 そらせ車
7 ロープ溝加工装置
8 ロープ溝加工装置の取付部
9 ロープ溝加工装置の加工部
10 研削砥石
11 モータ
12 モータ取付板
13 可動支持部
14 x方向可動器
15 z方向可動器
16 研削砥石の回転軸線
17 駆動綱車の加工点の接線
18 加工終了点4zからの接線
19 集塵機の集塵口
20 位置測定装置
21 温度測定装置
22 負荷測定装置
23 演算装置
DESCRIPTION OF SYMBOLS 1 Elevator car 2 Main rope 3 Balance weight 4 Drive sheave 4a Rope groove 4y Processing point of drive sheave 4h Rope groove bottom 4z Processing end point 4j Rope groove upper side 5 Fixed body 6 Baffle 7 Rope groove processing device DESCRIPTION OF SYMBOLS 8 Attachment part of rope grooving apparatus 9 Processing part of rope grooving apparatus 10 Grinding wheel 11 Motor 12 Motor mounting plate 13 Movable support part 14 X-direction movable device 15 Z-direction movable device 16 Rotation line of grinding wheel 17 Driving sheave Tangent line of machining point 18 Tangent line from machining end point 4z 19 Dust collector port of dust collector 20 Position measuring device 21 Temperature measuring device 22 Load measuring device 23 Computing device

Claims (14)

エレベータの固定体に着脱自在に設けられる取付部と、
駆動綱車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、
前記取付部に設けられ、前記加工部を駆動綱車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、
前記加工部は、前記ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、前記駆動綱車上の加工点からの接線とおおよそ30度の角度を成すように固定させたことを特徴とするエレベータのロープ溝加工装置。
A mounting portion detachably provided on the fixed body of the elevator;
Among the rope grooves formed on the drive sheave, a processing portion that is arranged so as to face the rope groove portion around which the main rope that suspends the elevator car is not wound,
A movable support portion provided in the attachment portion, and supporting the processing portion movably in a rotational axis direction and a radial direction of the drive sheave;
The processing unit has a rotary grinding wheel for removing the rope groove, and the rotation axis of the grinding wheel is an angle of approximately 30 degrees with a tangent from a processing point on the drive sheave. An elevator rope groove processing device characterized by being fixed so as to form
エレベータの固定体に着脱自在に設けられる取付部と、
そらせ車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、
前記取付部に設けられ、前記加工部をそらせ車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、
前記加工部は、前記ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、前記そらせ車上の加工点からの接線とおおよそ30度の角度を成すように固定させたことを特徴とするエレベータのロープ溝加工装置。
A mounting portion detachably provided on the fixed body of the elevator;
Among the rope grooves formed in the sled wheel, a processing portion arranged so as to face the rope groove portion around which the main rope for suspending the elevator car is not wound,
A movable support portion provided on the attachment portion and configured to support the processing portion so as to be movable in a rotation axis direction and a radial direction of the vehicle;
The processing portion has a rotary grinding wheel for removing the rope groove, and the rotation axis of the grinding wheel has an angle of approximately 30 degrees with a tangent line from the processing point on the deflector wheel. An elevator rope grooving apparatus characterized by being fixed to be formed.
駆動綱車又はそらせ車に形成されたロープ溝を、加工部によって除去加工した時に発生する加工粉を集塵する集塵機を備え、この集塵機の集塵口を、研削砥石の加工終了点からの接線の延長線上に配したことを特徴とする請求項1又は請求項2記載のエレベータのロープ溝加工装置。   It is equipped with a dust collector that collects the processing powder generated when the rope groove formed on the driving sheave or deflector is removed by the processing section, and the dust collection port of this dust collector is tangent to the grinding wheel processing end point. 3. The elevator rope groove processing apparatus according to claim 1, wherein the apparatus is disposed on an extension line of the elevator rope groove. 駆動綱車又はそらせ車に形成された基準面と取付部との半径方向の相対位置を測定する位置測定装置を備えたことを特徴とする請求項1〜請求項3の何れかに記載のエレベータのロープ溝加工装置。   The elevator according to any one of claims 1 to 3, further comprising a position measuring device that measures a relative position in a radial direction between a reference surface formed on the driving sheave or the deflecting wheel and the mounting portion. Rope groove processing equipment. 位置測定装置はデジタルスケールを有することを特徴とする請求項4記載のエレベータのロープ溝加工装置。   5. The elevator rope groove processing apparatus according to claim 4, wherein the position measuring device has a digital scale. 加工部の研削砥石の温度を測定する温度測定装置を備えたことを特徴とする請求項1〜請求項5の何れかに記載のエレベータのロープ溝加工装置。   The elevator rope groove processing device according to any one of claims 1 to 5, further comprising a temperature measuring device that measures the temperature of the grinding wheel of the processing portion. 加工部の研削負荷を測定する負荷測定装置を備えたことを特徴とする請求項1〜請求項6の何れかに記載のエレベータのロープ溝加工装置。   The elevator rope groove processing apparatus according to any one of claims 1 to 6, further comprising a load measuring device that measures a grinding load of the processing portion. 加工部の送り量を、位置測定装置の測定値をもとに設定する演算装置を備えたことを特徴とする請求項4又は請求項5記載のエレベータのロープ溝加工装置。   6. The elevator rope groove processing apparatus according to claim 4, further comprising an arithmetic unit that sets a feed amount of the processing unit based on a measurement value of the position measuring device. 加工部の送り量を、温度測定装置の測定値をもとに設定する演算装置を備えたことを特徴とする請求項6に記載のエレベータのロープ溝加工装置。   7. The elevator rope groove processing apparatus according to claim 6, further comprising an arithmetic unit that sets a feed amount of the processing unit based on a measurement value of the temperature measuring device. 加工部の送り量を、負荷測定装置の測定値をもとに設定する演算装置を備えたことを特徴とする請求項7記載のエレベータのロープ溝加工装置。   The elevator rope groove processing apparatus according to claim 7, further comprising an arithmetic unit that sets a feed amount of the processing unit based on a measurement value of the load measuring apparatus. 研削砥石を複数個有することを特徴とする請求項1〜請求項10の何れかに記載のエレベータのロープ溝加工装置。   The elevator rope groove processing apparatus according to any one of claims 1 to 10, comprising a plurality of grinding wheels. エレベータの固定体に着脱自在に設けられる取付部と、駆動綱車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、前記取付部に設けられ、前記加工部を駆動綱車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、前記加工部は、前記ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、前記駆動綱車上の加工点からの接線とおおよそ30度の角度を成すように固定させたエレベータのロープ溝加工において、
主ロープが巻き掛けられた状態のまま前記駆動綱車を回転させるとともに、前記研削砥石を回転させることにより、前記ロープ溝を除去加工することを特徴とするエレベータのロープ溝加工方法。
Of the rope groove formed on the drive sheave and the attachment part that is detachably provided on the fixed body of the elevator, it is arranged to face the rope groove part where the main rope that suspends the elevator car is not wound And a movable support portion that is provided in the attachment portion and supports the processing portion so as to be movable in the rotational axis direction and the radial direction of the driving sheave. The processing portion removes the rope groove. And an elevator rope groove fixed so that an axis of rotation of the grinding wheel forms an angle of approximately 30 degrees with a tangent to a processing point on the drive sheave. In processing
A rope groove machining method for an elevator, wherein the rope groove is removed by rotating the driving sheave while the main rope is wound and rotating the grinding wheel.
エレベータの固定体に着脱自在に設けられる取付部と、そらせ車に形成されたロープ溝のうち、エレベータのかごを懸架する主ロープが巻き掛けられていないロープ溝部分に対向するように配置される加工部と、前記取付部に設けられ、前記加工部をそらせ車の回転軸方向および半径方向に移動自在に支持する可動支持部とを備え、前記加工部は、前記ロープ溝を除去加工する回転型の研削砥石を有しており、かつ、この研削砥石の回転軸線が、前記そらせ車上の加工点からの接線とおおよそ30度の角度を成すように固定させたエレベータのロープ溝加工において、
主ロープが巻き掛けられた状態のまま駆動綱車および前記そらせ車を回転させるとともに、前記研削砥石を回転させることにより、前記ロープ溝を除去加工することを特徴とするエレベータのロープ溝加工方法。
Of the rope groove formed on the deflector and the attachment part provided detachably on the fixed body of the elevator, the main rope for suspending the elevator car is arranged so as to face the rope groove portion around which the main rope is not wound. A rotating portion that is provided in the attachment portion and supports the processing portion so as to be movable in a rotation axis direction and a radial direction of the vehicle, and the processing portion rotates to remove the rope groove; In an elevator rope grooving that has a grinding wheel of a mold and is fixed so that the rotation axis of the grinding wheel forms an angle of approximately 30 degrees with a tangent from a machining point on the deflector wheel,
A rope groove processing method for an elevator, wherein the rope groove is removed by rotating the driving sheave and the deflecting wheel while the main rope is wound, and rotating the grinding wheel.
駆動綱車又はそらせ車に形成されたロープ溝を、加工部によって除去加工した時に発生する加工粉を集塵する集塵機を備え、この集塵機の集塵口を、研削砥石の加工終了点からの接線の延長線上に配し、駆動綱車および研削砥石の回転と同時に前記集塵機を運転することにより、発生する加工紛を前記集塵口によって捕集することを特徴とする請求項12又は請求項13記載のエレベータのロープ溝加工方法。   It is equipped with a dust collector that collects the processing powder generated when the rope groove formed on the driving sheave or deflector is removed by the processing section, and the dust collection port of this dust collector is tangent to the grinding wheel processing end point. 14. The generated dust is collected by the dust collector by operating the dust collector simultaneously with the rotation of the driving sheave and the grinding wheel. The elevator rope groove processing method described.
JP2006272932A 2006-10-04 2006-10-04 Elevator rope groove processing apparatus and processing method thereof Active JP4835365B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006272932A JP4835365B2 (en) 2006-10-04 2006-10-04 Elevator rope groove processing apparatus and processing method thereof
CN2007101806320A CN101157193B (en) 2006-10-04 2007-09-29 Apparatus and method for processing elevator wire rope groove
KR1020070099184A KR101475949B1 (en) 2006-10-04 2007-10-02 Apparatus and method for processing rope race of elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006272932A JP4835365B2 (en) 2006-10-04 2006-10-04 Elevator rope groove processing apparatus and processing method thereof

Publications (3)

Publication Number Publication Date
JP2008087132A true JP2008087132A (en) 2008-04-17
JP2008087132A5 JP2008087132A5 (en) 2009-04-16
JP4835365B2 JP4835365B2 (en) 2011-12-14

Family

ID=39305493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272932A Active JP4835365B2 (en) 2006-10-04 2006-10-04 Elevator rope groove processing apparatus and processing method thereof

Country Status (3)

Country Link
JP (1) JP4835365B2 (en)
KR (1) KR101475949B1 (en)
CN (1) CN101157193B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000679A (en) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp Apparatus for correction processing of rope groove undercut, and method for correction processing of rope groove undercut using the correction processing apparatus
JP2013112471A (en) * 2011-11-29 2013-06-10 Mitsubishi Electric Corp Elevator device having groove processing device
JP2015168528A (en) * 2014-03-07 2015-09-28 株式会社日立製作所 Groove polishing device and elevator device
JP2015214418A (en) * 2014-05-13 2015-12-03 三菱電機ビルテクノサービス株式会社 Method for processing groove formed on guide pulley
CN107344693A (en) * 2017-07-07 2017-11-14 长江润发(张家港)机械有限公司 A kind of roller for traction elevator steel wire rope and preparation method thereof
CN107445036A (en) * 2017-07-07 2017-12-08 长江润发(张家港)机械有限公司 A kind of roller and its processing technology for traction elevator steel wire rope
WO2018154658A1 (en) * 2017-02-22 2018-08-30 三菱電機株式会社 Elevator repairing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102774732A (en) * 2012-08-06 2012-11-14 吴江信谊精密五金有限公司 Traction rope deviation prevention traction wheel
US10493518B2 (en) 2016-08-30 2019-12-03 Otis Elevator Company Sheave knurling tool and method of operating
CN114473740A (en) * 2021-12-20 2022-05-13 浙江信胜科技股份有限公司 High-precision processing machine for notch of steel wire for bead embroidery of embroidery machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637268A (en) * 1986-06-25 1988-01-13 Inoue Japax Res Inc Grinding device
JPH05261656A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Curved-surface form finishing method and device therefor
JPH081513A (en) * 1994-06-22 1996-01-09 Maruichi Koki Kk Movable grinding machine
JPH0929592A (en) * 1995-07-18 1997-02-04 Canon Inc Method of polishing diamond film
JP2000033570A (en) * 1998-05-12 2000-02-02 Mitsubishi Heavy Ind Ltd Ground chip collecting device
JP2000061796A (en) * 1998-08-20 2000-02-29 Canon Inc Processing method of spherical surface shape and horizontal positioning jig
JP2003267649A (en) * 2002-03-15 2003-09-25 Mitsubishi Electric Corp Elevator driving device
JP2006035362A (en) * 2004-07-26 2006-02-09 Nippon Sheet Glass Co Ltd Grinding wheel and grinding method using the same
JP2006123018A (en) * 2004-10-26 2006-05-18 Sumitomo Electric Ind Ltd Chamfering device
JP2007238296A (en) * 2006-03-10 2007-09-20 Mitsubishi Electric Building Techno Service Co Ltd Elevator rope groove processing device and elevator rope groove processing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113219A2 (en) * 2003-06-18 2004-12-29 Toshiba Elevator Kabushiki Kaisha Sheave for elevator
EP1754560A4 (en) * 2004-06-08 2012-02-08 Mitsubishi Electric Corp Grooving apparatus for elevator hoist

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637268A (en) * 1986-06-25 1988-01-13 Inoue Japax Res Inc Grinding device
JPH05261656A (en) * 1992-03-19 1993-10-12 Hitachi Ltd Curved-surface form finishing method and device therefor
JPH081513A (en) * 1994-06-22 1996-01-09 Maruichi Koki Kk Movable grinding machine
JPH0929592A (en) * 1995-07-18 1997-02-04 Canon Inc Method of polishing diamond film
JP2000033570A (en) * 1998-05-12 2000-02-02 Mitsubishi Heavy Ind Ltd Ground chip collecting device
JP2000061796A (en) * 1998-08-20 2000-02-29 Canon Inc Processing method of spherical surface shape and horizontal positioning jig
JP2003267649A (en) * 2002-03-15 2003-09-25 Mitsubishi Electric Corp Elevator driving device
JP2006035362A (en) * 2004-07-26 2006-02-09 Nippon Sheet Glass Co Ltd Grinding wheel and grinding method using the same
JP2006123018A (en) * 2004-10-26 2006-05-18 Sumitomo Electric Ind Ltd Chamfering device
JP2007238296A (en) * 2006-03-10 2007-09-20 Mitsubishi Electric Building Techno Service Co Ltd Elevator rope groove processing device and elevator rope groove processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000679A (en) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp Apparatus for correction processing of rope groove undercut, and method for correction processing of rope groove undercut using the correction processing apparatus
JP2013112471A (en) * 2011-11-29 2013-06-10 Mitsubishi Electric Corp Elevator device having groove processing device
JP2015168528A (en) * 2014-03-07 2015-09-28 株式会社日立製作所 Groove polishing device and elevator device
JP2015214418A (en) * 2014-05-13 2015-12-03 三菱電機ビルテクノサービス株式会社 Method for processing groove formed on guide pulley
WO2018154658A1 (en) * 2017-02-22 2018-08-30 三菱電機株式会社 Elevator repairing device
JPWO2018154658A1 (en) * 2017-02-22 2019-06-27 三菱電機株式会社 Elevator repair equipment
CN107344693A (en) * 2017-07-07 2017-11-14 长江润发(张家港)机械有限公司 A kind of roller for traction elevator steel wire rope and preparation method thereof
CN107445036A (en) * 2017-07-07 2017-12-08 长江润发(张家港)机械有限公司 A kind of roller and its processing technology for traction elevator steel wire rope

Also Published As

Publication number Publication date
CN101157193A (en) 2008-04-09
CN101157193B (en) 2011-01-12
KR101475949B1 (en) 2014-12-23
KR20080031633A (en) 2008-04-10
JP4835365B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835365B2 (en) Elevator rope groove processing apparatus and processing method thereof
JP4844183B2 (en) Elevator rope groove processing equipment
JP2007238296A5 (en)
KR102014274B1 (en) Polishing device and abrasion detecting method
US7699685B1 (en) Method and apparatus for grinding a workpiece
JP4979617B2 (en) Rope groove processing apparatus and rope groove processing method for grooved wheel
CN112643548B (en) Dust removal cooling method of self-adaptive dust removal cooling grinding wheel device of dry grinding machine
KR20170129825A (en) Method and grinding machine for grinding workpieces with grooves
JPH10217095A (en) Wire saw and work cutting method by wire saw
JP5762264B2 (en) Elevator device with grooving device
JP5534965B2 (en) Rope groove undercut correction processing apparatus and rope groove undercut correction processing method using this correction processing apparatus
CN111360608B (en) Control method for double-sided thinning grinding water flow
US6932675B1 (en) Plated grinding wheel life maximization method
JP5275788B2 (en) Wet grinding apparatus and grinding wheel segment therefor
JP2016129926A (en) Groove working device, groove working method, and groove working system
JP2003267649A (en) Elevator driving device
JP5589717B2 (en) Grinding method and grinding machine
JP2011218468A (en) Apparatus and method for detecting guide pulley abrasion of wire saw
JP4576503B2 (en) Surface grinding method
JPH08168966A (en) Electrodeposition grinding wheel for cast iron
JP4225210B2 (en) Truing device and truing method for grinding wheel
JP2009291915A (en) Machine tool
CN219725769U (en) High-precision horizontal steel ball grinding machine
CN214443528U (en) Driven wheel structure of sawing machine
CN212945904U (en) Multi-wire-groove wire passing wheel mechanism for machine tool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4835365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250