JP2008086967A - Manufacturing method of laminate and scratch preventing method of base material - Google Patents

Manufacturing method of laminate and scratch preventing method of base material Download PDF

Info

Publication number
JP2008086967A
JP2008086967A JP2006273771A JP2006273771A JP2008086967A JP 2008086967 A JP2008086967 A JP 2008086967A JP 2006273771 A JP2006273771 A JP 2006273771A JP 2006273771 A JP2006273771 A JP 2006273771A JP 2008086967 A JP2008086967 A JP 2008086967A
Authority
JP
Japan
Prior art keywords
fine particles
inorganic fine
coating liquid
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006273771A
Other languages
Japanese (ja)
Other versions
JP5151109B2 (en
Inventor
Takumi Shibuta
匠 渋田
Taiichi Sakatani
泰一 阪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006273771A priority Critical patent/JP5151109B2/en
Publication of JP2008086967A publication Critical patent/JP2008086967A/en
Application granted granted Critical
Publication of JP5151109B2 publication Critical patent/JP5151109B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method which is capable of manufacturing a laminate excellent in scratch resistance. <P>SOLUTION: A manufacturing method of the laminate comprises making a layer comprising a composition containing a resin and inorganic particulates overlie a base material. The manufacturing method of the laminate includes preparing a coating liquid which satisfies all the specified 4 conditions by mixing (A) inorganic particulates, (B) inorganic particulates, and (C) a polymer having a hydrophilic group in a liquid dispersion medium, coating the base material with the coating liquid, and forming the layer comprising the composition containing the resin and the inorganic particulates on the base material by removing the liquid dispersion medium from the coating liquid coating the base material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、基材とその上に形成された樹脂および無機微粒子を含む組成物からなる層とを有する積層体の製造方法、さらに基材上に樹脂および無機微粒子を含む組成物からなる層を形成して基材の傷つきを防止する方法に関する。 The present invention relates to a method for producing a laminate having a substrate and a layer comprising a resin and inorganic fine particles formed thereon, and further comprising a layer comprising a resin and inorganic fine particles on the substrate. The present invention relates to a method for forming and preventing damage to a substrate.

熱可塑性樹脂で構成される成形品は、一般に表面硬度が不十分であり、耐傷つき性に劣るものが多い。耐傷つき性に優れるシートとして、例えば特許文献1には、成形品としたときに表層となる保護層が、電離放射線硬化型樹脂からなる加飾シートが開示されている。 Molded articles composed of thermoplastic resins generally have insufficient surface hardness and are often inferior in scratch resistance. As a sheet excellent in scratch resistance, for example, Patent Document 1 discloses a decorative sheet in which a protective layer that is a surface layer when formed into a molded product is made of an ionizing radiation curable resin.

特開2000−326446号公報JP 2000-326446 A

しかしながら特許文献1に開示された加飾シートを得るためには、保護層を形成するために用いる組成物における硬化成分の配合比や組成物の混合分散処理、保護層を硬化させるためのエネルギー線照射条件といった精密な反応条件制御が必要であるという問題点があった。   However, in order to obtain the decorative sheet disclosed in Patent Document 1, the mixing ratio of the curing components in the composition used for forming the protective layer, the mixing and dispersing treatment of the composition, and the energy beam for curing the protective layer There was a problem that precise reaction condition control such as irradiation conditions was necessary.

本発明は、かかる問題点を解決し、耐傷つき性に優れる積層体を製造する簡便な方法を提供するものである。さらに本発明は、基材の傷つきを防止することのできる簡便な方法を提供するものである。   The present invention solves this problem and provides a simple method for producing a laminate having excellent scratch resistance. Furthermore, this invention provides the simple method which can prevent the damage of a base material.

すなわち本発明は、基材上に、樹脂および無機微粒子を含む組成物からなる層が積層されてなる積層体の製造方法において、
無機微粒子(A)、無機微粒子(B)および親水基を有する重合体(C)を液体分散媒中に混合して、下記の条件(1)〜(4)を全て満たす塗工液を調製すること、
該塗工液を基材上に塗布すること、および
前記基材に塗布した前記塗工液から液体分散媒を除去して、基材上に樹脂および無機微粒子を含む組成物からなる層を形成すること
を含む積層体の製造方法である。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:塗工液中の無機微粒子(A)の重量、Wb:塗工液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:塗工液の重量
(4)0.01≦Wc/(Wa+Wb)≦0.10
但し、Wc:塗工液中の親水基を有する重合体(C)の重量
さらに本発明は、無機微粒子(A)、無機微粒子(B)および親水基を有する重合体(C)を液体分散媒中に混合して、下記の条件(1)〜(4)を全て満たす塗工液を調製すること、
該塗工液を基材上に塗布すること、および
前記基材に塗布した前記塗工液から液体分散媒を除去して、基材上に樹脂および無機微粒子を含む組成物からなる層を形成すること
を含む、基材上に樹脂および無機微粒子を含む組成物からなる層を形成して該基材の傷つきを防止する方法である。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:塗工液中の無機微粒子(A)の重量、Wb:塗工液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:塗工液の重量
(4)0.01≦Wc/(Wa+Wb)≦0.10
但し、Wc:塗工液中の親水基を有する重合体(C)の重量
That is, the present invention provides a method for producing a laminate in which a layer comprising a composition containing a resin and inorganic fine particles is laminated on a substrate.
The inorganic fine particles (A), the inorganic fine particles (B), and the polymer (C) having a hydrophilic group are mixed in a liquid dispersion medium to prepare a coating liquid that satisfies all of the following conditions (1) to (4). thing,
Applying the coating liquid onto a substrate, and removing the liquid dispersion medium from the coating liquid applied onto the substrate to form a layer made of a composition containing a resin and inorganic fine particles on the substrate. It is the manufacturing method of the laminated body including doing.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: weight of inorganic fine particles (A) in the coating liquid, Wb: weight of inorganic fine particles (B) in the coating liquid, da: Density of inorganic fine particles (A), db: Density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
However, Wt: Weight of coating solution (4) 0.01 ≦ Wc / (Wa + Wb) ≦ 0.10
However, Wc: Weight of polymer (C) having hydrophilic group in coating liquid Furthermore, the present invention uses inorganic fine particles (A), inorganic fine particles (B) and a polymer (C) having hydrophilic groups as a liquid dispersion medium. Mixing in and preparing a coating solution that satisfies all of the following conditions (1) to (4),
Applying the coating liquid onto a substrate, and removing the liquid dispersion medium from the coating liquid applied onto the substrate to form a layer made of a composition containing a resin and inorganic fine particles on the substrate. And forming a layer made of a composition containing a resin and inorganic fine particles on the base material to prevent the base material from being damaged.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: weight of inorganic fine particles (A) in the coating liquid, Wb: weight of inorganic fine particles (B) in the coating liquid, da: Density of inorganic fine particles (A), db: Density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
However, Wt: Weight of coating solution (4) 0.01 ≦ Wc / (Wa + Wb) ≦ 0.10
However, Wc: Weight of the polymer (C) having a hydrophilic group in the coating solution

本発明によれば、耐傷つき性に優れる積層体を簡便な方法により製造することができる。また本発明によれば、簡便な方法により基材の傷つきを防止することができる。   According to the present invention, a laminate having excellent scratch resistance can be produced by a simple method. Moreover, according to this invention, the damage of a base material can be prevented by a simple method.

本発明は、基材上に樹脂および無機微粒子を含む組成物からなる層が積層されてなる積層体の製造方法である。本発明で用いる基材の素材はガラスや金属部材等の硬質材料でもよいが、加工や取扱の容易さから熱可塑性樹脂が好ましい。基材を構成する熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、エチレンおよび/またはα−オレフィンと他の重合性単量体との共重合体などのオレフィン系樹脂;ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの塩素含有樹脂;テトラフルオロエチレンの単独重合体、テトラフルオロエチレンと他の重合性単量体(例えばエチレンやα−オレフィンなど)との共重合体などのフッ素含有樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリメタクリル酸メチルやメタクリル酸メチルと他の重合性単量体との共重合体などのアクリル系樹脂;ポリスチレンやスチレンと他の重合性単量体との共重合体などのスチレン系樹脂;トリアセチルセルロースやジアセチルセルロースなどのセルロース系樹脂;ポリカーボネート樹脂;ポリアミド樹脂;ウレタン系樹脂;これらの混合物などが挙げられる。   The present invention is a method for producing a laminate in which a layer made of a composition containing a resin and inorganic fine particles is laminated on a substrate. The base material used in the present invention may be a hard material such as glass or a metal member, but a thermoplastic resin is preferred from the viewpoint of ease of processing and handling. Examples of the thermoplastic resin constituting the substrate include polyethylene resins, polypropylene resins, ethylene and / or olefin resins such as copolymers of α-olefins and other polymerizable monomers; polyvinyl chloride resins, polychlorinated resins Chlorine-containing resins such as vinylidene; Fluorine-containing resins such as tetrafluoroethylene homopolymers, copolymers of tetrafluoroethylene and other polymerizable monomers (for example, ethylene, α-olefins, etc.); polyethylene terephthalate, polyethylene Polyester resins such as naphthalate; Acrylic resins such as polymethyl methacrylate and copolymers of methyl methacrylate and other polymerizable monomers; Copolymerization of polystyrene and styrene with other polymerizable monomers Styrenic resins such as coalesce; Cellulose such as triacetyl cellulose and diacetyl cellulose Examples thereof include: a roulose resin; a polycarbonate resin; a polyamide resin; a urethane resin; and a mixture thereof.

透明性に優れる積層体を製造する場合には、オレフィン系樹脂、塩素含有樹脂、フッ素含有樹脂、ポリエステル系樹脂、アクリル系樹脂、スチレン系樹脂、セルロース系樹脂、ポリカーボネート樹脂等からなる基材を使用することが好ましい。
基材は、単一の層からなる単層基材であってもよく、また、2層以上の層からなる多層基材であってもよい。多層基材の例としては、各々が熱可塑性樹脂からなる2以上の層からなる多層基材や、熱可塑性樹脂からなる一層以上の層と、熱可塑性樹脂以外の材料(例えば金属)からなる一層以上の層とからなる複合多層基材が挙げられる。基材の形状、大きさ、厚さは特に限定されるものではない。
When manufacturing a laminate with excellent transparency, use a substrate made of olefin resin, chlorine-containing resin, fluorine-containing resin, polyester resin, acrylic resin, styrene resin, cellulose resin, polycarbonate resin, etc. It is preferable to do.
The base material may be a single layer base material composed of a single layer, or may be a multilayer base material composed of two or more layers. Examples of the multilayer substrate include a multilayer substrate composed of two or more layers, each composed of a thermoplastic resin, one or more layers composed of a thermoplastic resin, and a layer composed of a material (for example, metal) other than the thermoplastic resin. A composite multilayer substrate composed of the above layers can be mentioned. The shape, size, and thickness of the substrate are not particularly limited.

本発明において、樹脂および無機微粒子を含む組成物からなる層を形成するために用いる塗工液は、下記の条件(1)〜(4)の全てを満たす。
(1)無機微粒子(A)の平均粒子径Daが1〜20nmであり、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Dbである。
(2)0.01≦Va/(Va+Vb)≦0.40であり、かつ0.60≦Vb/(Va+Vb)≦0.99である。
(但し、VaおよびVbは、それぞれ、塗工液の調製に使用した無機微粒子(A)と(B)の体積の合計に対する、無機微粒子(A)の体積の分率および無機微粒子(B)の体積の分率である。)
(3)0.01≦(Wa+Wb)/Wt≦0.20である。
(但し、Waは塗工液中の無機微粒子(A)の重量であり、Wbは塗工液中の無機微粒子(B)の重量であり、Wtは塗工液の重量である。)
(4)0.01≦Wc/(Wa+Wb)≦0.10である。
(但し、Wcは塗工液中の親水基を有する重合体(C)の重量)
In this invention, the coating liquid used in order to form the layer which consists of a composition containing resin and inorganic fine particle satisfy | fills all the following conditions (1)-(4).
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db.
(2) 0.01 ≦ Va / (Va + Vb) ≦ 0.40 and 0.60 ≦ Vb / (Va + Vb) ≦ 0.99.
(However, Va and Vb are respectively the volume fraction of the inorganic fine particles (A) and the inorganic fine particles (B) with respect to the total volume of the inorganic fine particles (A) and (B) used in the preparation of the coating liquid. Volume fraction.)
(3) 0.01 ≦ (Wa + Wb) /Wt≦0.20.
(Wa is the weight of the inorganic fine particles (A) in the coating liquid, Wb is the weight of the inorganic fine particles (B) in the coating liquid, and Wt is the weight of the coating liquid.)
(4) 0.01 ≦ Wc / (Wa + Wb) ≦ 0.10.
(Wc is the weight of the polymer (C) having a hydrophilic group in the coating solution)

前記塗工液の調製では、平均粒子径Daが1〜20nmである無機微粒子(A)と、平均粒子径Dbが30〜300nmである無機微粒子(B)とをDa≦0.15Dbを満たすように選択し、これらを上記条件(2)および(3)を満たすような量関係で混合する。
無機微粒子(A)の化学組成と無機微粒子(B)の化学組成とは同じであってもよく、また異なってもよい。無機微粒子(A)および無機微粒子(B)として使用される無機微粒子の例としては、金属微粒子、金属酸化物微粒子、金属水酸化物微粒子、金属炭酸塩微粒子、金属硫酸塩微粒子等が挙げられる。金属微粒子の金属元素としては、金、パラジウム、白金、銀などが例示される。金属酸化物微粒子、金属水酸化物微粒子、金属炭酸塩微粒子、金属硫酸塩微粒子における金属元素としては、珪素、アルミニウム、亜鉛、マグネシウム、カルシウム、バリウム、チタン、ジルコニウム、マンガン、鉄、セリウム、ニッケル、スズなどが例示される。得られる積層体の耐傷つき性の観点から、金属酸化物微粒子または金属水酸化物微粒子を用いることが好ましく、特に珪素またはアルミニウムの酸化物微粒子もしくは水酸化物微粒子が好ましい。特に耐傷つき性に優れ、かつ透明性にも優れる樹脂および無機微粒子を含む組成物からなる層を形成するためには、無機微粒子(A)および無機微粒子(B)として、シリカ微粒子を用いることがより好ましい。
In the preparation of the coating liquid, the inorganic fine particles (A) having an average particle diameter Da of 1 to 20 nm and the inorganic fine particles (B) having an average particle diameter Db of 30 to 300 nm satisfy Da ≦ 0.15 Db. These are mixed in a quantitative relationship so as to satisfy the above conditions (2) and (3).
The chemical composition of the inorganic fine particles (A) and the chemical composition of the inorganic fine particles (B) may be the same or different. Examples of the inorganic fine particles used as the inorganic fine particles (A) and the inorganic fine particles (B) include metal fine particles, metal oxide fine particles, metal hydroxide fine particles, metal carbonate fine particles, metal sulfate fine particles and the like. Examples of the metal element of the metal fine particles include gold, palladium, platinum, and silver. As metal elements in metal oxide fine particles, metal hydroxide fine particles, metal carbonate fine particles, metal sulfate fine particles, silicon, aluminum, zinc, magnesium, calcium, barium, titanium, zirconium, manganese, iron, cerium, nickel, Examples include tin. From the viewpoint of scratch resistance of the obtained laminate, it is preferable to use metal oxide fine particles or metal hydroxide fine particles, and particularly, silicon or aluminum oxide fine particles or hydroxide fine particles are preferable. In order to form a layer made of a composition containing a resin and inorganic fine particles that are particularly excellent in scratch resistance and transparency, silica fine particles are used as the inorganic fine particles (A) and the inorganic fine particles (B). More preferred.

前記塗工液の調製に用いられる親水基を有する重合体(C)は、水酸基(−OH)、カルボキシル基(−COOH)、アミノ基(−NH2)、カルボニル基(>CO)、スルホ基(−SO3H)などの極性基や解離基を含む重合体である。親水基を有する重合体としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリスチレンスルホン酸、ポリビニルアミン、ポリビニルピロリドン、ポリエチレンイミン、ポリエチレンオキサイドなどが例示される。 The polymer (C) having a hydrophilic group used for the preparation of the coating solution includes a hydroxyl group (—OH), a carboxyl group (—COOH), an amino group (—NH 2 ), a carbonyl group (> CO), and a sulfo group. It is a polymer containing a polar group or a dissociating group such as (—SO 3 H). Examples of the polymer having a hydrophilic group include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polystyrene sulfonic acid, polyvinyl amine, polyvinyl pyrrolidone, polyethylene imine, and polyethylene oxide.

塗工液の調整方法は特に限定されるものではない。例えば、無機微粒子(A)および無機微粒子(B)を液体分散媒に分散させた分散液に、親水基を有する重合体(C)を混合する方法や、親水基を有する重合体(C)を液体分散媒に混合した混合液に、無機微粒子(A)、無機微粒子(B)を順次または同時に分散させる方法、無機微粒子(A)、無機微粒子(B)をそれぞれ液体分散媒に分散させた分散液を予め調整し、これら分散液と、親水基を有する重合体(C)とを混合する方法等が挙げられる。
超音波分散、超高圧分散等の強分散手法を適用することにより、塗工液中において、無機微粒子を特に均一に分散させることができる。
より均一な分散を達成するために、塗工液中で無機微粒子はコロイド状態であることが好ましい。
The adjustment method of a coating liquid is not specifically limited. For example, a method of mixing a polymer (C) having a hydrophilic group with a dispersion obtained by dispersing inorganic fine particles (A) and inorganic fine particles (B) in a liquid dispersion medium, or a polymer (C) having a hydrophilic group. A method of dispersing inorganic fine particles (A) and inorganic fine particles (B) sequentially or simultaneously in a mixed liquid mixed with a liquid dispersion medium, dispersion in which inorganic fine particles (A) and inorganic fine particles (B) are dispersed in a liquid dispersion medium, respectively. Examples of the method include preparing the liquid in advance and mixing the dispersion and the polymer (C) having a hydrophilic group.
By applying a strong dispersion method such as ultrasonic dispersion or ultrahigh pressure dispersion, the inorganic fine particles can be dispersed particularly uniformly in the coating liquid.
In order to achieve more uniform dispersion, the inorganic fine particles are preferably in a colloidal state in the coating solution.

無機微粒子(A)および(B)を予め液体分散媒に分散させた分散液を用いる場合において、該分散液がコロイダルアルミナである場合には、陽性に帯電するアルミナ粒子を安定化させるため、コロイダルアルミナ中に塩素イオン、硫酸イオン、酢酸イオンなどの陰イオンを対アニオンとして添加することが好ましい。コロイダルアルミナのpHは特に限定されるものではないが、分散液の安定性の観点からpH2〜6であることが好ましい。   In the case of using a dispersion in which inorganic fine particles (A) and (B) are previously dispersed in a liquid dispersion medium, when the dispersion is colloidal alumina, colloidal is used to stabilize positively charged alumina particles. It is preferable to add anions such as chloride ions, sulfate ions and acetate ions as counter anions in alumina. The pH of colloidal alumina is not particularly limited, but is preferably 2 to 6 from the viewpoint of the stability of the dispersion.

無機微粒子(A)および(B)を予め液体分散媒に分散させた分散液を用いる場合において、該分散液ががコロイダルシリカである場合には、陰性に帯電するシリカ粒子を安定化させるため、コロイダルシリカ中にアンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオンなどの陽イオンを対カチオンとして添加することが好ましい。コロイダルシリカのpHは特に限定されるものではないが、分散液の安定性の観点からpH8〜11であることが好ましい。   In the case of using a dispersion in which the inorganic fine particles (A) and (B) are previously dispersed in a liquid dispersion medium, when the dispersion is colloidal silica, in order to stabilize the negatively charged silica particles, It is preferable to add a cation such as ammonium ion, alkali metal ion, or alkaline earth metal ion as a counter cation in colloidal silica. The pH of the colloidal silica is not particularly limited, but is preferably pH 8 to 11 from the viewpoint of the stability of the dispersion.

本発明において、無機微粒子(A)の平均粒子径Daは1〜20nmであり、無機微粒子(B)の平均粒子径Dbは30〜300nmであり、かつDa≦0.15Dbであることが必要である。ここで、無機微粒子(A)の平均粒子径Daは動的光散乱法またはシアーズ法により求められる。動的光散乱法による平均粒子径の測定は、市販の粒度分布測定装置を使用して行なうことができる。シアーズ法とは、Analytical Chemistry,vol.28,P.1981−1983,1956に記載された方法であって、シリカ粒子の平均粒子径の測定に適用される分析手法であり、pH=3のコロイダルシリカ分散液をpH=9にするまでに消費されるNaOHの量から表面積を求め、求めた表面積から球相当径を算出する方法である。このようにして求められた球相当径を平均粒子径とする。また、無機微粒子(B)の平均粒子径DbはBET法またはレーザー回折散乱法で求められる球相当径である。   In the present invention, the inorganic fine particles (A) have an average particle diameter Da of 1 to 20 nm, the inorganic fine particles (B) have an average particle diameter Db of 30 to 300 nm, and Da ≦ 0.15 Db. is there. Here, the average particle diameter Da of the inorganic fine particles (A) is obtained by a dynamic light scattering method or a Sears method. The measurement of the average particle diameter by the dynamic light scattering method can be performed using a commercially available particle size distribution measuring apparatus. The Sears method is referred to Analytical Chemistry, vol. 28, p. 1981-1983, 1956, which is an analytical technique applied to the measurement of the average particle size of silica particles, and is consumed before the pH = 3 colloidal silica dispersion is brought to pH = 9. In this method, the surface area is determined from the amount of NaOH, and the equivalent sphere diameter is calculated from the determined surface area. The sphere equivalent diameter thus determined is taken as the average particle diameter. The average particle diameter Db of the inorganic fine particles (B) is a sphere equivalent diameter determined by the BET method or the laser diffraction scattering method.

本発明で用いる塗工液は、下記の条件(2)を満たす。
(2)0.01≦Va/(Va+Vb)≦0.40であり、かつ0.60≦Vb/(Va+Vb)≦0.99である。
但し、VaおよびVbは、それぞれ、塗工液の調製に使用した無機微粒子(A)と(B)の体積の合計に対する、無機微粒子(A)の体積の分率および無機微粒子(B)の体積の分率である。
無機微粒子(A)および(B)の体積分率は、それぞれの無機微粒子の密度と質量とから算出することができる。すなわち、Vca=Wa/da、Vcb=Wb/dbであり、Wa:塗工液中の無機微粒子(A)の重量、Wb:塗工液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度 である。無機微粒子の密度は定容積膨張法で求めることができる。なお、無機微粒子(A)および(B)が同じ化学種であれば、一般に、無機微粒子(A)および(B)の体積分率は、無機微粒子(A)および(B)の重量分率と等しいため、式(2)におけるVaをWaに、VbをWbに置き換えることができる。この条件(2)は、塗工液の調製に使用する無機微粒子(A)および無機微粒子(B)のそれぞれの密度と量を適宜選択することにより充足させることができる。
The coating solution used in the present invention satisfies the following condition (2).
(2) 0.01 ≦ Va / (Va + Vb) ≦ 0.40 and 0.60 ≦ Vb / (Va + Vb) ≦ 0.99.
However, Va and Vb are the volume fraction of the inorganic fine particles (A) and the volume of the inorganic fine particles (B), respectively, with respect to the total volume of the inorganic fine particles (A) and (B) used for the preparation of the coating liquid. Is a fraction of.
The volume fraction of the inorganic fine particles (A) and (B) can be calculated from the density and mass of each inorganic fine particle. That is, Vca = Wa / da, Vcb = Wb / db, Wa: weight of inorganic fine particles (A) in the coating liquid, Wb: weight of inorganic fine particles (B) in the coating liquid, da: inorganic fine particles (A) density, db: density of inorganic fine particles (B). The density of the inorganic fine particles can be determined by a constant volume expansion method. In general, if the inorganic fine particles (A) and (B) are the same chemical species, the volume fraction of the inorganic fine particles (A) and (B) is generally equal to the weight fraction of the inorganic fine particles (A) and (B). Since they are equal, Va in equation (2) can be replaced with Wa and Vb can be replaced with Wb. This condition (2) can be satisfied by appropriately selecting the density and amount of the inorganic fine particles (A) and inorganic fine particles (B) used for the preparation of the coating liquid.

本発明で用いる塗工液は、下記の条件(3)を満たす。
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Waは塗工液中の無機微粒子(A)の重量であり、Wbは塗工液中の無機微粒子(B)の重量であり、Wtは塗工液の重量である。この条件(3)は、塗工液の調製に使用する無機微粒子(A)、無機微粒子(B)および液体分散媒の量を適宜選択することにより充足させることができる。
The coating solution used in the present invention satisfies the following condition (3).
(3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
However, Wa is the weight of the inorganic fine particles (A) in the coating liquid, Wb is the weight of the inorganic fine particles (B) in the coating liquid, and Wt is the weight of the coating liquid. This condition (3) can be satisfied by appropriately selecting the amount of inorganic fine particles (A), inorganic fine particles (B) and liquid dispersion medium used for preparing the coating liquid.

本発明で用いる塗工液は、下記の条件(4)を満たす。
(4)0.01≦Wc/(Wa+Wb)≦0.10
但し、Waは塗工液中の無機微粒子(A)の重量であり、Wbは塗工液中の無機微粒子(B)の重量であり、Wcは塗工液中の親水基を有する重合体(C)の重量である。この条件(4)は、塗工液の調製に使用する無機微粒子(A)、無機微粒子(B)、親水基を有する重合体(C)および液体分散媒の量を適宜選択することにより充足させることができる。
The coating solution used in the present invention satisfies the following condition (4).
(4) 0.01 ≦ Wc / (Wa + Wb) ≦ 0.10
However, Wa is the weight of the inorganic fine particles (A) in the coating liquid, Wb is the weight of the inorganic fine particles (B) in the coating liquid, and Wc is a polymer having a hydrophilic group in the coating liquid ( C). This condition (4) is satisfied by appropriately selecting the amount of the inorganic fine particles (A), the inorganic fine particles (B), the polymer (C) having a hydrophilic group and the liquid dispersion medium used for the preparation of the coating liquid. be able to.

本発明で用いる塗工液には、無機微粒子の分散の安定化などを目的として、例えば界面活性剤、有機系電解質などの添加剤を添加してもよい。
塗工液が界面活性剤を含む場合、その含有量は液体分散媒100重量部に対し、通常0.1重量部以下である。用いられる界面活性剤は特に限定されるものではなく、例えばアニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤などが挙げられる。
アニオン性界面活性剤としては、カルボン酸のアルカリ金属塩が挙げられ、具体的にはカプリル酸ナトリウム、カプリル酸カリウム、デカン酸ナトリウム、カプロン酸ナトリウム、ミリスチン酸ナトリウム、オレイン酸カリウム、ステアリン酸テトラメチルアンモニウム、ステアリン酸ナトリウムなどが挙げられる。特に、炭素原子数6〜10のアルキル鎖を有するカルボン酸のアルカリ金属塩が好ましい。
For the purpose of stabilizing the dispersion of the inorganic fine particles, an additive such as a surfactant or an organic electrolyte may be added to the coating liquid used in the present invention.
When the coating liquid contains a surfactant, the content thereof is usually 0.1 parts by weight or less with respect to 100 parts by weight of the liquid dispersion medium. The surfactant used is not particularly limited, and examples thereof include an anionic surfactant, a cationic surfactant, a nonionic surfactant, and an amphoteric surfactant.
Examples of the anionic surfactant include alkali metal salts of carboxylic acid, specifically sodium caprylate, potassium caprylate, sodium decanoate, sodium caproate, sodium myristate, potassium oleate, tetramethyl stearate. Examples include ammonium and sodium stearate. In particular, an alkali metal salt of a carboxylic acid having an alkyl chain having 6 to 10 carbon atoms is preferable.

カチオン性界面活性剤としては、例えば、塩化セチルトリメチルアンモニウム、塩化ジオクタデシルジメチルアンモニウム、臭化−N−オクタデシルピリジニウム、臭化セチルトリエチルホスホニウムなどが挙げられる。
非イオン性界面活性剤としては、例えば、ソルビタン脂肪酸エステルグリセリン脂肪酸エステルなどが挙げられる。
両性界面活性剤としては、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタインなどが挙げられる。
Examples of the cationic surfactant include cetyltrimethylammonium chloride, dioctadecyldimethylammonium chloride, -N-octadecylpyridinium bromide, cetyltriethylphosphonium bromide, and the like.
Examples of the nonionic surfactant include sorbitan fatty acid ester glycerin fatty acid ester and the like.
Examples of amphoteric surfactants include 2-alkyl-N-carboxymethyl-N-hydroxyethyl imidazolinium betaine and lauric acid amidopropyl betaine.

塗工液が有機系電解質を含む場合、その含有量は分散媒100重量部に対し、通常0.01重量部以下である。本発明における有機系電解質とは、電離性イオン性基を有する有機化合物のうちで界面活性剤でないものを指す。例えば、p−トルエンスルホン酸ナトリウム、ベンゼンスルホン酸ナトリウム、ブチルスルホン酸カリウム、フェニルホスフィン酸ナトリウム、ジエチルリン酸ナトリウムなどが挙げられる。該有機系電解質はベンゼンスルホン酸誘導体であることが好ましい。   When the coating liquid contains an organic electrolyte, the content is usually 0.01 parts by weight or less with respect to 100 parts by weight of the dispersion medium. The organic electrolyte in the present invention refers to an organic compound having an ionizable ionic group that is not a surfactant. Examples thereof include sodium p-toluenesulfonate, sodium benzenesulfonate, potassium butylsulfonate, sodium phenylphosphinate, sodium diethylphosphate, and the like. The organic electrolyte is preferably a benzenesulfonic acid derivative.

本発明において、基材上に塗工液を塗布する方法は特に限定されるものではなく、例えば、基材表面に、グラビアコーティング、リバースコーティング、刷毛ロールコーティング、スプレーコーティング、キスコーティング、ダイコーティング、ディッピング、バーコーティングなどの公知の方法で塗布することができる。塗工液の塗布量は特に限定されるものではないが、1回の塗工で塗布する量は、分散液の状態で1〜20g/m2であることが好ましい。 In the present invention, the method for applying the coating liquid on the substrate is not particularly limited. For example, gravure coating, reverse coating, brush roll coating, spray coating, kiss coating, die coating, It can apply | coat by well-known methods, such as dipping and bar coating. The application amount of the coating liquid is not particularly limited, but the amount applied in one application is preferably 1 to 20 g / m 2 in the state of dispersion.

基材に塗工液を塗布する前に、基材表面にコロナ処理、オゾン処理、プラズマ処理、フレーム処理、電子線処理、アンカーコート処理、洗浄処理などの前処理を行なうことが好ましい。   Before applying the coating liquid to the substrate, it is preferable to perform pretreatment such as corona treatment, ozone treatment, plasma treatment, flame treatment, electron beam treatment, anchor coating treatment, and washing treatment on the surface of the substrate.

基材上に塗布した塗工液から、適宜の方法により液体分散媒を除去することにより、基材上に、樹脂および無機微粒子を含む組成物からなる層を形成することができる。液体分散媒の除去は、例えば、常圧下、または減圧下における加熱により行なうことができる。液体分散媒を除去する際の圧力、加熱温度は、使用する無機微粒子(A)、無機微粒子(B)、親水基を有する重合体(C)および液体分散媒に応じて適宜選択することができる。例えば、分散媒が水であるときは、一般的には50〜80℃で、好ましくは約60℃で乾燥することができる。   By removing the liquid dispersion medium from the coating liquid applied on the substrate by an appropriate method, a layer made of a composition containing a resin and inorganic fine particles can be formed on the substrate. The removal of the liquid dispersion medium can be performed, for example, by heating under normal pressure or reduced pressure. The pressure and heating temperature for removing the liquid dispersion medium can be appropriately selected according to the inorganic fine particles (A), the inorganic fine particles (B), the polymer (C) having a hydrophilic group, and the liquid dispersion medium. . For example, when the dispersion medium is water, it can be dried generally at 50 to 80 ° C, preferably at about 60 ° C.

本発明では、基材の種類や、樹脂および無機微粒子を含む組成物からなる層の形成に使用する無機微粒子(A)、無機微粒子(B)および親水基を有する重合体(C)の種類を適宜選択することにより、様々な用途に適した積層体を製造することができる。例えば無機微粒子として、一般に光半導体と称されるような酸化チタンを用いた場合には、得られる積層体は特定の光線吸収バンドを有する膜となり、光線透過制御性に優れる材料として好適である。   In the present invention, the kind of base material and the kind of inorganic fine particles (A), inorganic fine particles (B) and polymer (C) having a hydrophilic group used for forming a layer comprising a composition containing a resin and inorganic fine particles are selected. By selecting appropriately, it is possible to manufacture a laminate suitable for various applications. For example, when titanium oxide, which is generally called an optical semiconductor, is used as the inorganic fine particles, the resulting laminate is a film having a specific light absorption band and is suitable as a material having excellent light transmission controllability.

細孔を有する無機微粒子を用いる場合には、光学的、電子的、磁気的、生物学的などの機能付与を目的に、前記細孔に目的に応じた材料を導入してもよい。細孔に材料を導入する場合には、樹脂および無機微粒子を含む組成物からなる層の形成前の無機微粒子に導入してもよいし、基材上に形成された樹脂および無機微粒子を含む組成物からなる層を構成する無機微粒子に導入してもよい。   When inorganic fine particles having pores are used, a material corresponding to the purpose may be introduced into the pores for the purpose of imparting optical, electronic, magnetic, or biological functions. When the material is introduced into the pores, it may be introduced into the inorganic fine particles before the formation of the layer comprising the composition containing the resin and the inorganic fine particles, or the composition containing the resin and the inorganic fine particles formed on the substrate. You may introduce | transduce into the inorganic fine particle which comprises the layer which consists of a thing.

本発明で基材上に形成する樹脂および無機微粒子を含む組成物からなる層の厚みは特に限定されず、目的とする強度によって適宜設定することができるが、通常0.5μm〜10μmである。   The thickness of the layer formed of the composition containing the resin and inorganic fine particles formed on the substrate in the present invention is not particularly limited and can be appropriately set depending on the intended strength, but is usually 0.5 μm to 10 μm.

前記した方法で基材上に形成される樹脂および無機微粒子を含む組成物からなる層は、耐傷つき性に優れる。したがって、前記樹脂および無機微粒子を含む組成物からなる層により、基材の傷つきを防止することができる。特に基材にトリアセチルセルロース等のセルロース系樹脂、ポリエチレンテレフタレート等のエステル系樹脂、ポリメタクリル酸メチル等のアクリル系樹脂を用いた場合、前記無機微粒子層は、LCD、PDP、CRT、有機EL、無機EL、FEDのような各種ディスプレイ表面を保護するハードコート材として好適である。   The layer formed of the composition containing the resin and inorganic fine particles formed on the substrate by the above-described method is excellent in scratch resistance. Therefore, damage to the substrate can be prevented by the layer comprising the composition containing the resin and the inorganic fine particles. In particular, when a cellulose resin such as triacetyl cellulose, an ester resin such as polyethylene terephthalate, or an acrylic resin such as polymethyl methacrylate is used as the base material, the inorganic fine particle layer is composed of LCD, PDP, CRT, organic EL, It is suitable as a hard coat material for protecting various display surfaces such as inorganic EL and FED.

本発明における樹脂および無機微粒子を含む組成物からなる層は耐傷つき性に優れるため、該層を積層する基材として透明性に優れる熱可塑性樹脂基材を選択することにより、該積層体を各種ディスプレイのガラス代替材料として、具体的には透明基板や、建造物や自動車の窓ガラス、自動車の外板等として利用することができる。   Since the layer comprising the composition containing the resin and inorganic fine particles in the present invention is excellent in scratch resistance, the laminate can be variously selected by selecting a thermoplastic resin substrate having excellent transparency as the substrate on which the layer is laminated. Specifically, it can be used as a glass substitute material for a display, as a transparent substrate, a window glass of a building or a car, an outer panel of a car, or the like.

以下に、本発明を実施例を挙げて説明するが、本発明はこれらの例に限定されない。なお実施例及び比較例中の試験方法は次の通りである。また、各実施例および比較例における無機微粒子の平均粒子径と、塗工液中の無機微粒子の全無機微粒子に対する体積分率は表1にまとめた。なお、全ての例において、樹脂および無機微粒子を含む組成物からなる層の形成に使用した無機微粒子(A)および(B)は、共にシリカであったので、各無機微粒子の重量分率を体積分率として使用した。
<鉛筆硬度評価>
耐傷つき性を評価する方法として、鉛筆硬度評価を行なった。測定は、JISK5400に準拠し、荷重500gfにて実施した。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, the test method in an Example and a comparative example is as follows. Further, the average particle diameter of the inorganic fine particles and the volume fraction of the inorganic fine particles in the coating liquid with respect to the total inorganic fine particles in each Example and Comparative Example are summarized in Table 1. In all the examples, since the inorganic fine particles (A) and (B) used for forming the layer made of the composition containing the resin and the inorganic fine particles were both silica, the weight fraction of each inorganic fine particle was determined by volume. Used as a fraction.
<Pencil hardness evaluation>
As a method of evaluating scratch resistance, pencil hardness evaluation was performed. The measurement was performed according to JISK5400 with a load of 500 gf.

[実施例1]
無機微粒子(A)として日産化学社製コロイダルシリカ(スノーテックスST−XS(平均粒径4〜6nm、固形分濃度20重量%)を600g、無機微粒子(B)として日産化学社製コロイダルシリカ(スノーテックスST−ZL(平均粒径78nm、固形分濃度40wt%)を1200g、親水基を有する重合体として株式会社クラレ製ポリビニルアルコール117Hの5wt%水溶液を240g秤量し、3960gの水と混合、攪拌し、塗工液を調製した。上記塗工液中の無機微粒子(A)および(B)および親水基を有する重合体(C)の割合は表1のとおりである。該塗工液を、富士フィルム社製トリアセチルセルロースフィルム上にマイクログラビアロール(株式会社康井精機社製、120メッシュ)を用いて塗布し、60℃で乾燥し、積層体を得た。該積層体上にさらに前記塗工液の塗布および乾燥の操作をそれぞれ9回行い、基材上に樹脂および無機微粒子を含む組成物からなる層が積層されてなる積層体を得た。積層体の断面観察によれば、樹脂および無機微粒子を含む組成物からなる層の膜厚は約3μmであった。なお本実施例に用いたトリアセチルセルロースフィルムの鉛筆硬度はHBであったが、本実施例で得られた積層体の鉛筆硬度は5Hであった。
[Example 1]
Colloidal silica (Snowtex ST-XS (average particle size 4 to 6 nm, solid content concentration 20% by weight) 600 g produced by Nissan Chemical Co., Ltd. as inorganic fine particles (A), colloidal silica (Snow produced by Nissan Chemical Co., Ltd.) as inorganic fine particles (B) 1200 g of Tex ST-ZL (average particle size 78 nm, solid content concentration 40 wt%), 240 g of a 5 wt% aqueous solution of polyvinyl alcohol 117H manufactured by Kuraray Co., Ltd. as a polymer having a hydrophilic group, weighed and mixed with 3960 g water The ratio of the inorganic fine particles (A) and (B) and the polymer (C) having a hydrophilic group in the coating liquid is as shown in Table 1. It apply | coats on a triacetyl cellulose film made from a film company using a micro gravure roll (the Yasui Seiki Co., Ltd. make, 120 mesh), and is 60 degreeC. The laminate was dried to obtain a laminate, and the coating liquid was further applied and dried nine times on the laminate, and a layer comprising a composition containing a resin and inorganic fine particles was laminated on the substrate. According to the cross-sectional observation of the laminate, the thickness of the layer made of the composition containing resin and inorganic fine particles was about 3 μm, and the pencil of the triacetyl cellulose film used in this example was used. The hardness was HB, but the pencil hardness of the laminate obtained in this example was 5H.

[比較例1]
無機微粒子(A)として日産化学社製コロイダルシリカ(スノーテックスST−XS(平均粒径4〜6nm、固形分濃度20重量%)を650g、無機微粒子(B)として日産化学社製コロイダルシリカ(スノーテックスST−ZL(平均粒径78nm、固形分濃度40wt%)を1300g秤量し、4550gの水と混合、攪拌し、混合無機微粒子分散液を調製した。上記混合無機微粒子分散液中の全無機微粒子に占める無機微粒子(A)および(B)の割合は表1のとおりである。該混合無機微粒子分散液を塗工液として用い、富士フィルム社製トリアセチルセルロースフィルム上にマイクログラビアロール(株式会社康井精機社製、120メッシュ)を用いて塗布し、60℃で乾燥し、積層体を得た。該積層体上にさらに前記塗工液の塗布および乾燥の操作をそれぞれ9回行い、基材上に無機微粒子層が積層されてなる積層体を得た。積層体の断面観察によれば、無機微粒子層の膜厚は約3μmであった。なお本比較例に用いたトリアセチルセルロースフィルムの鉛筆硬度はHBであり、本比較例で得られた積層体の鉛筆硬度は3Hであった。
[Comparative Example 1]
650 g of colloidal silica (Snowtex ST-XS (average particle size 4 to 6 nm, solid content concentration 20% by weight) manufactured by Nissan Chemical Co., Ltd. as inorganic fine particles (A) and colloidal silica (Snow manufactured by Nissan Chemical Co., Ltd.) as inorganic fine particles (B) 1300 g of Tex ST-ZL (average particle size 78 nm, solid content concentration 40 wt%) was weighed, mixed with 4550 g of water and stirred to prepare a mixed inorganic fine particle dispersion.All inorganic fine particles in the mixed inorganic fine particle dispersion The ratio of inorganic fine particles (A) and (B) in the composition is as shown in Table 1. Using the mixed inorganic fine particle dispersion as a coating liquid, a microgravure roll (Co., Ltd.) on a triacetyl cellulose film manufactured by Fuji Film Co., Ltd. Was applied at 120 ° C., and dried at 60 ° C. to obtain a laminate. Each of the cloth and drying operations was performed nine times to obtain a laminate in which the inorganic fine particle layer was laminated on the base material.According to the cross-sectional observation of the laminate, the film thickness of the inorganic fine particle layer was about 3 μm. The pencil hardness of the triacetyl cellulose film used in this comparative example was HB, and the pencil hardness of the laminate obtained in this comparative example was 3H.

Figure 2008086967
V=Vca+Vcb
Figure 2008086967
V = Vca + Vcb

Claims (3)

基材上に、樹脂および無機微粒子を含む組成物からなる層が積層されてなる積層体の製造方法において、
無機微粒子(A)、無機微粒子(B)および親水基を有する重合体(C)を液体分散媒中に混合して、下記の条件(1)〜(4)を全て満たす塗工液を調製すること、
該塗工液を基材上に塗布すること、および
前記基材に塗布した前記塗工液から液体分散媒を除去して、基材上に樹脂および無機微粒子を含む組成物からなる層を形成すること
を含む積層体の製造方法。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:塗工液中の無機微粒子(A)の重量、Wb:塗工液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:塗工液の重量
(4)0.01≦Wc/(Wa+Wb)≦0.10
但し、Wc:塗工液中の親水基を有する重合体(C)の重量
In the method for producing a laminate in which a layer made of a composition containing a resin and inorganic fine particles is laminated on a substrate,
The inorganic fine particles (A), the inorganic fine particles (B), and the polymer (C) having a hydrophilic group are mixed in a liquid dispersion medium to prepare a coating liquid that satisfies all of the following conditions (1) to (4). thing,
Applying the coating liquid onto a substrate, and removing the liquid dispersion medium from the coating liquid applied onto the substrate to form a layer made of a composition containing a resin and inorganic fine particles on the substrate. The manufacturing method of the laminated body including doing.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: weight of inorganic fine particles (A) in the coating liquid, Wb: weight of inorganic fine particles (B) in the coating liquid, da: Density of inorganic fine particles (A), db: Density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
However, Wt: Weight of coating solution (4) 0.01 ≦ Wc / (Wa + Wb) ≦ 0.10
However, Wc: Weight of the polymer (C) having a hydrophilic group in the coating solution
無機微粒子(A)および無機微粒子(B)がシリカである請求項1に記載の積層体の製造方法。 The method for producing a laminate according to claim 1, wherein the inorganic fine particles (A) and the inorganic fine particles (B) are silica. 無機微粒子(A)、無機微粒子(B)および親水基を有する重合体(C)を液体分散媒中に混合して、下記の条件(1)〜(4)を全て満たす塗工液を調製すること、
該塗工液を基材上に塗布すること、および
前記基材に塗布した前記塗工液から液体分散媒を除去して、基材上に樹脂および無機微粒子を含む組成物からなる層を形成すること
を含む、基材上に樹脂および無機微粒子を含む組成物からなる層を形成して該基材の傷つきを防止する方法。
(1)無機微粒子(A)の平均粒子径Daが1〜20nm、無機微粒子(B)の平均粒子径Dbが30〜300nmであり、かつDa≦0.15Db
(2)0.01≦Vca/(Vca+Vcb)≦0.40、かつ0.60≦Vcb/(Vca+Vcb)≦0.99
但し、Vca=Wa/da、Vcb=Wb/dbであり、ここでWa:塗工液中の無機微粒子(A)の重量、Wb:塗工液中の無機微粒子(B)の重量、da:無機微粒子(A)の密度、db:無機微粒子(B)の密度
(3)0.01≦(Wa+Wb)/Wt≦0.20
但し、Wt:塗工液の重量
(4)0.01≦Wc/(Wa+Wb)≦0.10
但し、Wc:塗工液中の親水基を有する重合体(C)の重量
The inorganic fine particles (A), the inorganic fine particles (B), and the polymer (C) having a hydrophilic group are mixed in a liquid dispersion medium to prepare a coating liquid that satisfies all of the following conditions (1) to (4). thing,
Applying the coating liquid onto a substrate, and removing the liquid dispersion medium from the coating liquid applied onto the substrate to form a layer made of a composition containing a resin and inorganic fine particles on the substrate. Forming a layer comprising a composition containing a resin and inorganic fine particles on the base material to prevent the base material from being damaged.
(1) The average particle diameter Da of the inorganic fine particles (A) is 1 to 20 nm, the average particle diameter Db of the inorganic fine particles (B) is 30 to 300 nm, and Da ≦ 0.15 Db
(2) 0.01 ≦ Vca / (Vca + Vcb) ≦ 0.40 and 0.60 ≦ Vcb / (Vca + Vcb) ≦ 0.99
However, Vca = Wa / da, Vcb = Wb / db, where Wa: weight of inorganic fine particles (A) in the coating liquid, Wb: weight of inorganic fine particles (B) in the coating liquid, da: Density of inorganic fine particles (A), db: Density of inorganic fine particles (B) (3) 0.01 ≦ (Wa + Wb) /Wt≦0.20
However, Wt: Weight of coating solution (4) 0.01 ≦ Wc / (Wa + Wb) ≦ 0.10
However, Wc: Weight of the polymer (C) having a hydrophilic group in the coating solution
JP2006273771A 2006-10-05 2006-10-05 LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD Expired - Fee Related JP5151109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006273771A JP5151109B2 (en) 2006-10-05 2006-10-05 LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006273771A JP5151109B2 (en) 2006-10-05 2006-10-05 LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD

Publications (2)

Publication Number Publication Date
JP2008086967A true JP2008086967A (en) 2008-04-17
JP5151109B2 JP5151109B2 (en) 2013-02-27

Family

ID=39371673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006273771A Expired - Fee Related JP5151109B2 (en) 2006-10-05 2006-10-05 LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD

Country Status (1)

Country Link
JP (1) JP5151109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103827A1 (en) * 2014-12-26 2016-06-30 富士フイルム株式会社 Aqueous coating liquid, film and method for producing same, laminate, and solar cell module
JPWO2017010459A1 (en) * 2015-07-13 2017-07-20 富士シリシア化学株式会社 Bio-adhesion-suppressing paint, method for producing the same, and bio-adhesion-suppressing coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198904A (en) * 1993-12-28 1995-08-01 Dainippon Printing Co Ltd Close-packed coating film, its production and close-packed coating film forming film
JPH11281802A (en) * 1998-03-31 1999-10-15 Fuji Photo Film Co Ltd Antireflection film, antireflection member and production of antireflection member
JP2006116781A (en) * 2004-10-20 2006-05-11 Sony Corp Forming method for particle structure, particle structure and screen
US20060193987A1 (en) * 2005-02-28 2006-08-31 Sumitomo Chemical Company, Limited Process for producing a layered article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198904A (en) * 1993-12-28 1995-08-01 Dainippon Printing Co Ltd Close-packed coating film, its production and close-packed coating film forming film
JPH11281802A (en) * 1998-03-31 1999-10-15 Fuji Photo Film Co Ltd Antireflection film, antireflection member and production of antireflection member
JP2006116781A (en) * 2004-10-20 2006-05-11 Sony Corp Forming method for particle structure, particle structure and screen
US20060193987A1 (en) * 2005-02-28 2006-08-31 Sumitomo Chemical Company, Limited Process for producing a layered article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103827A1 (en) * 2014-12-26 2016-06-30 富士フイルム株式会社 Aqueous coating liquid, film and method for producing same, laminate, and solar cell module
JP2016123928A (en) * 2014-12-26 2016-07-11 富士フイルム株式会社 Aqueous coating liquid, film, and its manufacturing method, laminate, and solar cell module
JPWO2017010459A1 (en) * 2015-07-13 2017-07-20 富士シリシア化学株式会社 Bio-adhesion-suppressing paint, method for producing the same, and bio-adhesion-suppressing coating
CN107849366A (en) * 2015-07-13 2018-03-27 富士硅化学株式会社 Plural gel, coating, the preparation method of film and plural gel
US10759910B2 (en) 2015-07-13 2020-09-01 Fuji Silysia Chemical Ltd. Organism adhesion reduction paint, method for manufacturing the same, and organism adhesion reduction coating

Also Published As

Publication number Publication date
JP5151109B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP6861941B2 (en) Decorative sheet and manufacturing method of decorative sheet
EP2944668B1 (en) Thin film material for processing use
JP2018506732A (en) Electromagnetic energy absorbing optical product and manufacturing method
JP4816223B2 (en) Method for manufacturing antireflection laminate
JP5983158B2 (en) Optical laminated film
WO2013146355A1 (en) Heat-ray-shielding material and laminated structure
TWI461727B (en) Method for manufacturing laminated body
JP2017042917A (en) Decorative sheet
TWI691410B (en) Electromagnetic energy-absorbing optical product
TWI691409B (en) Electromagnetic energy-absorbing optical product
JP6480657B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5151109B2 (en) LAMINATE MANUFACTURING METHOD AND SUBSTRATE PREVENTION METHOD
JP2011218610A (en) Film for transfer, laminated glass and method for producing the glass
JP4894298B2 (en) Manufacturing method of laminate
KR101142719B1 (en) Process for producing a layered article
JP4830540B2 (en) Method for producing antiglare film
JP5050602B2 (en) Laminated body
KR101234971B1 (en) Method for producing an antireflective layered material
JP4872739B2 (en) Manufacturing method of laminate
JP5422941B2 (en) Manufacturing method of laminate
JP2005096430A (en) Inorganic fine particle laminate and composite laminate of inorganic fine particle
CN100592938C (en) Process for producing a layered article
JP2008272741A (en) Method of manufacturing composite silica particle film
JPH04201250A (en) Antistatic film
JP2018144267A (en) Decorative sheet, transparent resin sheet, and method for producing them

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120808

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees