JP2008085265A - Quantum well type optical detector - Google Patents

Quantum well type optical detector Download PDF

Info

Publication number
JP2008085265A
JP2008085265A JP2006266578A JP2006266578A JP2008085265A JP 2008085265 A JP2008085265 A JP 2008085265A JP 2006266578 A JP2006266578 A JP 2006266578A JP 2006266578 A JP2006266578 A JP 2006266578A JP 2008085265 A JP2008085265 A JP 2008085265A
Authority
JP
Japan
Prior art keywords
quantum well
layer
multiple quantum
mqw
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006266578A
Other languages
Japanese (ja)
Other versions
JP5168868B2 (en
Inventor
Hiroshi Nishino
弘師 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006266578A priority Critical patent/JP5168868B2/en
Publication of JP2008085265A publication Critical patent/JP2008085265A/en
Application granted granted Critical
Publication of JP5168868B2 publication Critical patent/JP5168868B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quantum well type optical detector so designed that only by adding a simple alteration to a structure of the quantum well type optical detector for selectively operating a plurality of laminated MQW layers, and optical absorption in a non-selected MQW layer is not influenced by light incident on a selected MQW layer. <P>SOLUTION: A first MQW layer 33 composed of a multiple quantum well vertically sandwiched between n-type contact layers 32 and 34, for absorbing light of a prescribed wavelength, and a second MQW layer 37 vertically sandwiched between n-type contact layers 36 and 38, for absorbing the light of a wavelength different from the wavelength of the light absorbed by the first MQW layer 33, are laminated on each other via a p-type GaAs intermediate layer 35. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、入射光量に応じて光電流を発生させる光検知器に属し、光吸収を多重量子井戸(MQW:multiple quantum wells)層によって行う量子井戸型光検知器の改良に関する。   The present invention relates to a photodetector that generates a photocurrent according to the amount of incident light, and relates to an improvement of a quantum well photodetector that performs light absorption by a multiple quantum well (MQW) layer.

図16は従来の量子井戸型赤外線検知器を表す要部説明図であり、(A)は要部切断側面を、(B)はMQWの要部切断側面を、(C)は要部エネルギーバンドをそれぞれ示している。   FIGS. 16A and 16B are main part explanatory views showing a conventional quantum well infrared detector, in which FIG. 16A shows a cut side of the main part, FIG. 16B shows a cut side of the main part of MQW, and FIG. Respectively.

図に於いて、1はn型GaAsコンタクト層、2はMQW層、2Bは障壁、2Wは量子井戸、3はn型GaAsコンタクト層、4は負側(接地側)電極、5は正側電極、Ec は伝導帯の下端をそれぞれ示している。 In the figure, 1 is an n-type GaAs contact layer, 2 is an MQW layer, 2B is a barrier, 2W is a quantum well, 3 is an n-type GaAs contact layer, 4 is a negative side (ground side) electrode, and 5 is a positive side electrode. , E c indicate the lower end of the conduction band, respectively.

この検知器では、量子井戸2W内で光吸収によって基底準位から励起準位へと光励起された電子をバイアスを加えることで量子井戸2W外へ取り出し光電流を発生させている。   In this detector, an electron photoexcited from the ground level to the excited level by light absorption in the quantum well 2W is biased to extract out of the quantum well 2W and generate a photocurrent.

光応答の波長は、量子準位間のエネルギー差に依存することとなり、これはMQW層2に於ける量子井戸2Wの層厚と障壁2Bのエネルギー高さ(障壁2Bの材料組成に依存する)とに依って定まる。   The wavelength of the optical response depends on the energy difference between the quantum levels, which is the thickness of the quantum well 2W and the energy height of the barrier 2B in the MQW layer 2 (depending on the material composition of the barrier 2B). It depends on.

従って、目標とする波長に合せて量子井戸2Wの層厚及び障壁2Bの組成を調整することになるが、製造時の誤差等の影響により必ずしも設計通りの応答波長が得られるとは限らない。   Therefore, the layer thickness of the quantum well 2W and the composition of the barrier 2B are adjusted in accordance with the target wavelength, but the response wavelength as designed is not always obtained due to the influence of manufacturing errors and the like.

このような問題に対処する為、構造を異にするMQW層、即ち、応答波長を異にするMQW層を予め用意して積層しておき、目標とする波長に近い応答が得られるMQW層を選択して用いることが行われている(例えば、特許第3777889号明細書を参照。)。   In order to cope with such problems, MQW layers having different structures, that is, MQW layers having different response wavelengths are prepared and laminated in advance, and an MQW layer capable of obtaining a response close to the target wavelength is obtained. Selective use is performed (see, for example, Japanese Patent No. 3777889).

図17は応答波長が異なるMQW層を積層した量子井戸型赤外線検知器を表す要部説明図であり、図に於いて、11はn型GaAsコンタクト層、12は第1のMQW層、13はn型GaAsコンタクト層、14は第2のMQW層、15はn型GaAsコンタクト層、16は負側(接地側)電極、17はバイアス電圧印加用電極、18は正側電極をそれぞれ示している。   FIG. 17 is an explanatory view of a main part showing a quantum well infrared detector in which MQW layers having different response wavelengths are stacked. In FIG. 17, 11 is an n-type GaAs contact layer, 12 is a first MQW layer, and 13 is a first MQW layer. An n-type GaAs contact layer, 14 is a second MQW layer, 15 is an n-type GaAs contact layer, 16 is a negative side (ground side) electrode, 17 is a bias voltage application electrode, and 18 is a positive side electrode. .

図示の量子井戸型赤外線検知器では、第1のMQW層12及び第2のMQW層14の二つが積層された構造になっていて、第1のMQW層12の応答波長と第2のMQW層14の応答波長とは異なるように設計され、目標とする波長に近い応答が得られるMQW層を選択的に用いるようにしている(例えば、特許第3777889号明細書を参照。)。   The illustrated quantum well infrared detector has a structure in which two of the first MQW layer 12 and the second MQW layer 14 are laminated, and the response wavelength of the first MQW layer 12 and the second MQW layer. The MQW layer is designed so as to be different from the response wavelength of 14 and can obtain a response close to the target wavelength (see, for example, Japanese Patent No. 3777889).

図18は特許文献1に開示された発明の問題点を説明する為の量子井戸型赤外線検知器を表す要部説明図であり、(A)は要部切断側面を、(B)は第1のMQW層12の要部エネルギーバンドを、(C)は第2のMQW層14の要部エネルギーバンドをそれぞれ示している。   18A and 18B are explanatory views of a principal part showing a quantum well infrared detector for explaining the problems of the invention disclosed in Patent Document 1, wherein FIG. 18A is a sectional view of the principal part, and FIG. (C) shows the main energy band of the second MQW layer 14, respectively.

図に於いて、19は第1のMQW層12への電圧をオンオフするスイッチ、20は第2のMQW層14への電圧をオンオフするスイッチを示している。図では、スイッチ19が開放の状態、即ち、第1のMQW層12への印加電圧がオフの状態に在り、スイッチ20が閉成の状態、即ち、第2のMQW層14への印加電圧がオンの状態に在ることを示している。   In the figure, 19 is a switch for turning on and off the voltage to the first MQW layer 12, and 20 is a switch for turning on and off the voltage to the second MQW layer 14. In the figure, the switch 19 is open, that is, the applied voltage to the first MQW layer 12 is off, and the switch 20 is closed, that is, the applied voltage to the second MQW layer 14 is It shows that it is on.

図19は特許文献1に開示された発明の問題点を説明する為の検知光波長対感度の関係を表す線図であり、横軸に波長(μm)を、縦軸に感度をそれぞれ採ってあり、記号12は第1のMQW層12の応答特性、記号14は第2のMQW層14の応答特性、21は目標波長(破線の曲線)、22はクロストーク領域(破線の円)をそれぞれ示している。   FIG. 19 is a diagram showing the relationship between the detection light wavelength and sensitivity for explaining the problems of the invention disclosed in Patent Document 1. The horizontal axis represents wavelength (μm), and the vertical axis represents sensitivity. Yes, symbol 12 is the response characteristic of the first MQW layer 12, symbol 14 is the response characteristic of the second MQW layer 14, 21 is the target wavelength (dashed curve), 22 is the crosstalk region (dashed circle), respectively Show.

図18に見られる検知器では、所定の目標波長に近い設定の2つのMQW層12及び14を積層した構成になっている為、2つのMQW層12及び14の光応答スペクトル間に波長クロストークを生じやすい。   The detector shown in FIG. 18 has a configuration in which two MQW layers 12 and 14 having a setting close to a predetermined target wavelength are stacked, and therefore, wavelength crosstalk between the optical response spectra of the two MQW layers 12 and 14. It is easy to produce.

即ち、図19に見られるように目標に近い応答を示す第2のMQW層14のみにバイアス電圧を与えて光電流を発生させ、第1のMQW層12についてはバイアス電圧をオフにして光電流は取り出さないとしても、第1のMQW層12のMQW層内では量子井戸の基底準位から光励起された電子が再度量子井戸内に捕獲される状態になる為、常に光吸収は起こることになる。   That is, as shown in FIG. 19, a bias voltage is applied only to the second MQW layer 14 showing a response close to the target to generate a photocurrent, and the bias current is turned off for the first MQW layer 12 to generate a photocurrent. In the MQW layer of the first MQW layer 12, the electrons photoexcited from the ground level of the quantum well are again trapped in the quantum well, so that light absorption always occurs. .

従って、クロストーク領域22の波長領域では、第1のMQW層12側に於ける光吸収の影響で第2のMQW層14への光入射が減衰することになり、この部分に於ける感度は低下する旨の問題が発生する。
特許第3777889号明細書
Accordingly, in the wavelength region of the crosstalk region 22, the light incident on the second MQW layer 14 is attenuated due to the light absorption on the first MQW layer 12 side, and the sensitivity in this portion is The problem of degrading occurs.
Japanese Patent No. 3777889

本発明では、積層された複数のMQW層を選択的に動作させる量子井戸型光検知器の構造に簡単な改変を加えるのみで、選択したMQW層への光入射が非選択のMQW層に於ける光吸収が影響を与えないようにする。   In the present invention, only a simple modification is made to the structure of a quantum well photodetector that selectively operates a plurality of stacked MQW layers, and the light incident on the selected MQW layer is not selected in the MQW layer. Make sure that light absorption is not affected.

本発明に依る量子井戸型光検知器に於いては、上下を一導電型コンタクト層で挟まれ所要波長の光を吸収する多重量子井戸からなる第1の多重量子井戸層、及び、上下を一導電型コンタクト層で挟まれ第1の多重量子井戸層が吸収する光の波長と異なる波長の光を吸収する多重量子井戸からなる第2の多重量子井戸層を前記コンタクト層と反対導電型の半導体層を介して積層した構成を含んでなることを特徴とする。   In the quantum well-type photodetector according to the present invention, the first multiple quantum well layer composed of multiple quantum wells that are sandwiched between upper and lower one conductivity type contact layers and absorb light of a required wavelength, A second multiple quantum well layer composed of multiple quantum wells that are sandwiched between conductive type contact layers and absorb light having a wavelength different from the wavelength of light absorbed by the first multiple quantum well layer is a semiconductor having a conductivity type opposite to that of the contact layer. It comprises the structure laminated | stacked through the layer, It is characterized by the above-mentioned.

前記手段を採ることに依り、積層した複数の感度波長を異にするMQW層のうち、検知する波長に適応するMQW層を簡単な構成で選択的に動作状態に設定することができ、また、積層されたMQW層に於ける波長間のクロストークによる感度低下を充分に抑止することができ、更にまた、そのように優れた特性をもつ光検知器でありながら、製造容易な構造であることから、その生産性は良好である。   By adopting the above-mentioned means, it is possible to selectively set the MQW layer adapted to the wavelength to be detected among a plurality of stacked MQW layers having different sensitivity wavelengths to an operating state with a simple configuration, It is possible to sufficiently suppress the decrease in sensitivity due to crosstalk between wavelengths in the stacked MQW layer, and furthermore, it is a photodetector that has such excellent characteristics, but has a structure that is easy to manufacture. Therefore, its productivity is good.

図1は本発明に依る基本的な量子井戸型光検知器を表す要部切断側面説明図であり、図に於いて、32はn型GaAsコンタクト層、33は第1のMQW層、34はn型GaAsコンタクト層、35はp型GaAs中間層、36はn型GaAsコンタクト層、37は第2のMQW層、38はn型GaAsコンタクト層、39は正側電極、40及び41は負側(接地側)電極、42は正側電極、43及び44はスイッチをそれぞれ示している。   FIG. 1 is an explanatory side view of a principal part showing a basic quantum well photodetector according to the present invention. In FIG. 1, 32 is an n-type GaAs contact layer, 33 is a first MQW layer, and 34 is a first MQW layer. n-type GaAs contact layer, 35 p-type GaAs intermediate layer, 36 n-type GaAs contact layer, 37 second MQW layer, 38 n-type GaAs contact layer, 39 positive electrode, and 40 and 41 negative side (Ground side) electrode, 42 is a positive electrode, and 43 and 44 are switches.

図示の量子井戸型光検知器では、2つのMQW層33及び37を積層させる場合、各々のMQW層33及び37の上下にコンタクト層32と34、コンタクト層36と38をそれぞれ設けるように、そして、コンタクト層34とコンタクト層36との間に各コンタクト層とは逆導電型、即ち、p型にしたGaAs中間層35を設けた構造にしてある。ここで、p型GaAs中間層35は、n型GaAsコンタクト層34とn型GaAsコンタクト層36との間でnpn接合を生成し、そのnpn接合を逆バイアスすることで電流が流れるのを抑止する働きをさせる為のものであり、本発明に於ける重要な要素の一つになっている。   In the illustrated quantum well type photodetector, when two MQW layers 33 and 37 are stacked, contact layers 32 and 34, contact layers 36 and 38 are provided above and below each MQW layer 33 and 37, and The contact layer 34 and the contact layer 36 have a structure in which a GaAs intermediate layer 35 having a conductivity type opposite to that of each contact layer, that is, a p-type is provided. Here, the p-type GaAs intermediate layer 35 generates an npn junction between the n-type GaAs contact layer 34 and the n-type GaAs contact layer 36, and reversely biases the npn junction to prevent current from flowing. It is intended to make it work, and is one of the important elements in the present invention.

また、外部からバイアス電圧を印加するための電極は、2つのMQW層33及び37のそれぞれに於ける上下のコンタクト層32及び34とコンタクト層36及び38のそれぞれに、従って、計4箇所に形成されていて、中央部に於ける2箇所の電極40及び41はスイッチ43及び44の何れか一方を選択的に閉成することに依り、二つのMQW層33及び37の何れか一方を選択的に電源に接続できるようにしている。   In addition, electrodes for applying a bias voltage from the outside are formed in the upper and lower contact layers 32 and 34 and the contact layers 36 and 38 in the two MQW layers 33 and 37, respectively, and accordingly in a total of four locations. The two electrodes 40 and 41 in the central portion selectively select either one of the two MQW layers 33 and 37 by selectively closing one of the switches 43 and 44. To be able to connect to the power supply.

図2は図1に見られる量子井戸型光検知器の動作を説明する為のエネルギーバンドダイヤグラムであり、(A)は第2のMQW層に関するもの、(B)は第1のMQW層に関するものをそれぞれ表し、図1に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。尚、図に於いて、33W及び37Wは量子井戸、白丸は電子をそれぞれ示している。   FIG. 2 is an energy band diagram for explaining the operation of the quantum well photodetector shown in FIG. 1, wherein (A) relates to the second MQW layer, and (B) relates to the first MQW layer. The parts indicated by the same symbols as those used in FIG. 1 represent the same or equivalent parts. In the figure, 33W and 37W indicate quantum wells, and white circles indicate electrons.

本発明に依る量子井戸型光検知器に於いては、図1について説明したように、2つのMQW層33及び37が積層され、その両端の電極39及び42にバイアス電圧Vを印加してあり、電極40及び41では、片側のMQW層、図ではMQW層37に接するコンタクト層36の電極41が導通するようにスイッチ44がオン状態とされ、MQW層33のスイッチ43はオフ状態になっている。   In the quantum well photodetector according to the present invention, as described with reference to FIG. 1, two MQW layers 33 and 37 are stacked, and a bias voltage V is applied to the electrodes 39 and 42 at both ends thereof. In the electrodes 40 and 41, the switch 44 is turned on so that the MQW layer on one side, in the drawing, the electrode 41 of the contact layer 36 in contact with the MQW layer 37 is conductive, and the switch 43 of the MQW layer 33 is turned off. Yes.

MQW層37の光応答スペクトル特性が目標に近いものである場合、上記の接続状態でMQW層37が通常の動作状態となって、図2(A)に見られるように量子井戸37W内の電子が光励起されてコンタクト層38に流れ込むので光電流OCが発生する。   When the optical response spectrum characteristic of the MQW layer 37 is close to the target, the MQW layer 37 is in a normal operation state in the above connection state, and the electrons in the quantum well 37W as shown in FIG. Is photoexcited and flows into the contact layer 38, so that a photocurrent OC is generated.

また、MQW層33に於いては、MQW層37の下部に在るコンタクト層36と最下部のコンタクト層32間でバイアス電圧が加わることになる為、図示したようにnpn接合とMQW層33とが直列に接続され、バイアス電圧が印加された状態となる。   Further, in the MQW layer 33, a bias voltage is applied between the contact layer 36 under the MQW layer 37 and the lowermost contact layer 32, so that the npn junction and the MQW layer 33 are Are connected in series, and a bias voltage is applied.

この場合、図2(B)に見られるように、MQW層33の量子井戸33Wから光励起された電子が電界によって放出されるのであるが、その後、コンタクト層36からの電子の流入は、逆バイアス状態に在るnpn接合に依って阻止される為、光電流は生じないことになる。   In this case, as seen in FIG. 2B, the photoexcited electrons are emitted from the quantum well 33W of the MQW layer 33 by the electric field, but thereafter, the inflow of electrons from the contact layer 36 is reverse biased. Since it is blocked by the npn junction in the state, no photocurrent is generated.

即ち、MQW層33側では多重量子井戸33Wへの電子の補給は杜絶し、量子井戸33W内の電子は欠乏することになるから、MQW層33に於いて光吸収は起こらない。   That is, on the MQW layer 33 side, replenishment of electrons to the multiple quantum well 33W is interrupted, and electrons in the quantum well 33W are deficient, so that no light absorption occurs in the MQW layer 33.

前記説明した動作からすれば、MQW層33側のクロストークに起因するMQW層37の感度低下は抑止されることが理解できよう。   From the above-described operation, it can be understood that a decrease in sensitivity of the MQW layer 37 due to crosstalk on the MQW layer 33 side is suppressed.

図3は本発明に依る量子井戸型光検知器を作製するための半導体層積層構成を表す要部側面説明図であり、基本的には、面方位(100)であるGaAs基板31上に第1のMQW層51、npn接合を生成させる為の中間層52、第2のMQW層52を成長させてある。   FIG. 3 is a side view for explaining a principal part of a semiconductor layer laminated structure for producing a quantum well type photodetector according to the present invention. Basically, the second layer is formed on a GaAs substrate 31 having a plane orientation (100). One MQW layer 51, an intermediate layer 52 for generating an npn junction, and a second MQW layer 52 are grown.

第1のMQW層51は、不純物濃度が1×1018cm-3であるn型GaAs層上にi−AlGaAs(Al組成=0.255)障壁層、n型GaAs井戸層を20回繰り返し形成したものである。 In the first MQW layer 51, an i-AlGaAs (Al composition = 0.255) barrier layer and an n-type GaAs well layer are repeatedly formed 20 times on an n-type GaAs layer having an impurity concentration of 1 × 10 18 cm −3. It is a thing.

中間層52は、第1のMQW層51上にn型GaAs層/p型GaAs層(不純物濃度は5×1017cm-3)/n型GaAs層を順に形成したものである。 The intermediate layer 52 is formed by sequentially forming an n-type GaAs layer / p-type GaAs layer (impurity concentration of 5 × 10 17 cm −3 ) / n-type GaAs layer on the first MQW layer 51.

第2のMQW層53は、第1のMQW層51と比較してi−AlGaAs(Al組成=0.245)の組成が異なっている。   The second MQW layer 53 is different from the first MQW layer 51 in the composition of i-AlGaAs (Al composition = 0.245).

第2のMQW層53上には、n型GaAs層などを成長してウェーハを完成する。ここで、半導体層を結晶成長させる技術としては、MBE(molecular beam epitaxy)法、或いは、MOVPE(metalorganic vapor phase epitaxy)法を適用して良い。   An n-type GaAs layer or the like is grown on the second MQW layer 53 to complete the wafer. Here, as a technique for crystal growth of the semiconductor layer, an MBE (Molecular Beam Epitaxy) method or a MOVPE (Metalorganic Vapor Phase Epitaxy) method may be applied.

図4乃至図11は前記結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図であり、以下の説明では、上記各図を参照すると共に量子井戸型光検知器の構成については図1を、そして、第1のMQW層51、中間層52、第2のMQW層53については図3を随時参照することで理解が容易になる。   FIG. 4 to FIG. 11 are main parts showing a quantum well type photodetector in the process key points for explaining the process of manufacturing the quantum well type photodetector using the wafer produced by carrying out the crystal growth. FIG. 1 is a cut side view, and in the following description, reference is made to each of the above drawings, and FIG. 1 is shown for the configuration of the quantum well photodetector, and the first MQW layer 51, intermediate layer 52, and second MQW layer. 53 can be easily understood by referring to FIG. 3 as needed.

図4参照
量子井戸型光検知器に必要な光結合器を作製するため、図3を用いて説明した第1のMQW層51、中間層52、第2のMQW層53を含むウェーハの表面に回折構造(凹凸)を形成する。
Refer to FIG. 4. In order to fabricate an optical coupler necessary for the quantum well photodetector, on the surface of the wafer including the first MQW layer 51, the intermediate layer 52, and the second MQW layer 53 described with reference to FIG. A diffractive structure (unevenness) is formed.

即ち、ウェーハの表面にAlGaAs層(極薄いので図示を省略。以下、同様。)を介してGaAs層を成膜し、前記AlGaAs層をエッチングストッパとして前記GaAs層を選択ドライエッチング法を適用して加工することで回折構造54を形成する。   That is, a GaAs layer is formed on the surface of the wafer via an AlGaAs layer (not shown because it is extremely thin; the same applies hereinafter), and the selective dry etching method is applied to the GaAs layer using the AlGaAs layer as an etching stopper. The diffraction structure 54 is formed by processing.

図5参照
各n型GaAsコンタクト層36、34、32に対し電極を接触させる為のコンタクト穴A、B、Cを形成する。この場合、InGaP層(図3参照)をエッチングストッパとし、ドライエッチング法を適用してGaAs層/AlGaAs層を加工する。
See FIG. 5. Contact holes A, B, and C are formed for contacting the electrodes to the n-type GaAs contact layers 36, 34, and 32, respectively. In this case, the InGaP layer (see FIG. 3) is used as an etching stopper, and the GaAs layer / AlGaAs layer is processed by applying a dry etching method.

コンタクト穴B、Cを形成する場合、エッチングストッパであるInGaP層でドライエッチングが停止するので、HClをエッチャントにしてウェットエッチングを行い、再度、ドライエッチングを行うようにする。   When the contact holes B and C are formed, dry etching stops at the InGaP layer as an etching stopper. Therefore, wet etching is performed using HCl as an etchant, and dry etching is performed again.

図6参照
コンタクト穴A〜C内壁も含めて全面にSiON保護膜55を形成し、次いで、ドライエッチング法を適用してオーミック電極形成予定領域のSiON保護膜55を除去し、次いで、リフトオフ法を適用してAuGe/Auからなる電極42、41、40、39を形成する。
See FIG. 6. A SiON protective film 55 is formed on the entire surface including the inner walls of the contact holes A to C, and then the SiON protective film 55 in the ohmic electrode formation scheduled region is removed by applying a dry etching method, and then a lift-off method is performed. The electrodes 42, 41, 40 and 39 made of AuGe / Au are formed by application.

図7参照
ドライエッチング法を適用し、回折構造54を覆っているSiON保護膜55を除去してから、リフトオフ法を適用し、TiW/Auからなるミラー電極56を形成する。
See FIG. 7. After applying the dry etching method and removing the SiON protective film 55 covering the diffraction structure 54, the lift-off method is applied to form the mirror electrode 56 made of TiW / Au.

図8参照
表面全体をSiON保護膜57で覆い、ドライエッチング法を適用して電極42〜39と導通をとるのに必要な箇所に在るSiON保護膜57を除去してコンタクト穴を表出させる。
See FIG. 8. The entire surface is covered with a SiON protective film 57, and a dry etching method is applied to remove the SiON protective film 57 at a location necessary to establish electrical connection with the electrodes 42 to 39 to expose a contact hole. .

図9参照
スパッタリング法を適用することに依り、全面にTi/Pt膜を形成してから配線パターンのマスクを形成し、イオンミリング法を適用して不要な部分を除去することに依って電極42〜39から各コンタクト穴を介して表面に至る配線62、61、60、59を形成する。尚、配線62と配線59とは、図に現れていない箇所で共通接続されている。
See FIG. 9. By applying the sputtering method, a Ti / Pt film is formed on the entire surface, and then a mask for the wiring pattern is formed, and unnecessary portions are removed by applying the ion milling method. Wirings 62, 61, 60, 59 extending from ~ 39 through the contact holes to the surface are formed. Note that the wiring 62 and the wiring 59 are commonly connected at locations not shown in the figure.

図10参照
ドライエッチング法を適用することに依り、多数の画素を分離する為の分離溝を形成する予定領域に於けるSiON保護膜55を除去し、次いで、下地になっていた第2のMQW層53、中間層52、第1のMQW層51などの諸半導体層のエッチングを行って最下層のn型GaAsコンタクト層32を分断する素子分離溝63を形成する。尚、この際、エッチングストッパであるInGaP層でドライエッチングが停止した場合には、図5の工程で説明した方法と同じ方法を採って、HClをエッチャントにするウェットエッチング法を併用しつつドライエッチングを行うようにする。
See FIG. 10. By applying the dry etching method, the SiON protective film 55 in the region where the isolation trench for separating a large number of pixels is to be formed is removed, and then the second MQW that has been the base is removed. Etching of various semiconductor layers such as the layer 53, the intermediate layer 52, and the first MQW layer 51 is performed to form an element isolation groove 63 that divides the lowermost n-type GaAs contact layer 32. At this time, if dry etching is stopped at the InGaP layer as an etching stopper, the same method as described in the step of FIG. 5 is adopted, and the dry etching is performed while using the wet etching method using HCl as an etchant. To do.

図11参照
再度、全面をSiON保護膜58で覆ってから、読出し回路と接続する為に必要となるInバンプ電極59を形成する。その為には、Inバンプ電極形成予定部分に在るSiON保護膜58を除去してから、リフトオフ法を適用して作製すれば良い。
Refer to FIG. 11 again. After the entire surface is covered with the SiON protective film 58, an In bump electrode 59 necessary for connection to the readout circuit is formed. For that purpose, the lift-off method may be applied after removing the SiON protective film 58 in the portion where the In bump electrode is to be formed.

図12は本発明に依る量子井戸型光検知器と読み出し回路との接続関係を表す要部説明図であり、図1、図11に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIG. 12 is an explanatory view of the principal part showing the connection relation between the quantum well type photodetector and the readout circuit according to the present invention, and the parts indicated by the same symbols as those used in FIGS. 1 and 11 are the same or It shall represent the part with the same effect.

図に於いて、71は読み出し回路、72及び73はスイッチ用トランジスタ、74はバイアス電源印加用入力ゲート・トランジスタ、75は積分容量、76は電源リセット用トランジスタをそれぞれ示している。尚、スイッチ用トランジスタ72及び73は図1に見られるスイッチ43及び44に相当する。   In the figure, 71 is a readout circuit, 72 and 73 are switch transistors, 74 is a bias power supply input gate transistor, 75 is an integration capacitor, and 76 is a power reset transistor. The switching transistors 72 and 73 correspond to the switches 43 and 44 shown in FIG.

第2のMQW層53と第1のMQW層51とは図3について説明した量子井戸の構造に依り、それぞれ光応答ピーク波長が8.9μmと8.4μmとを標準にして得られるように設計されている。光検知器として使用する際の所望のピーク波長が8.6±0.2μm範囲であるとし、製造時の誤差でAl組成が大きくなった場合、第2のMQW層53側を活性化、即ち、スイッチ44(トランジスタ73)をオンにし、逆に、Al組成が小さくなった場合、第1のMQW層51側を活性化、即ち、スイッチ43(トランジスタ72)をオンにする。   The second MQW layer 53 and the first MQW layer 51 are designed so that the photoresponse peak wavelengths are obtained with 8.9 μm and 8.4 μm as standard, respectively, depending on the structure of the quantum well described with reference to FIG. Has been. If the desired peak wavelength when used as a photodetector is in the range of 8.6 ± 0.2 μm and the Al composition becomes large due to an error during manufacturing, the second MQW layer 53 side is activated, that is, Then, the switch 44 (transistor 73) is turned on. Conversely, when the Al composition becomes smaller, the first MQW layer 51 side is activated, that is, the switch 43 (transistor 72) is turned on.

図13はMQW層に於けるAl組成と光吸収波長との関係を表す線図であり、(A)は二つのMQW層をもつ本発明の場合、(B)は一つのMQW層をもつ従来例の場合をそれぞれ示している。   FIG. 13 is a diagram showing the relationship between the Al composition and the light absorption wavelength in the MQW layer. FIG. 13A shows the case of the present invention having two MQW layers, and FIG. 13B shows the conventional structure having one MQW layer. Each example is shown.

図の(A)に於いて、左側の数値は光の波長、その数値の右側に在る棒グラフの(1)で表示した範囲が第1のMQW層に於ける光応答ピーク波長の変化範囲、棒グラフの右側に在る数値が対応するAl組成の数値(0を0.245とし、それぞれの数値を0.01倍した値を0.245に加えた値がAl組成値)、その数値の右側に在る棒グラフの(2)で表示した範囲が第2のMQW層に於ける光応答ピーク波長の変化範囲、棒グラフの右側に在る数値が対応するAl組成の数値(0を0.255とし、それぞれの数値を0.01倍した値を0.245に加えた値がAl組成値)、その数値の右側に在る二つの曲線は第1のMQW層及び第2のMQW層の光吸収特性を表す線図である。尚、図の(B)については、MQW層が一つである場合の図で点を除き、図の(A)と同様な見方をすることができる。   In (A) of the figure, the numerical value on the left is the wavelength of light, and the range indicated by (1) in the bar graph on the right side of the numerical value is the change range of the photoresponse peak wavelength in the first MQW layer, The numerical value on the right side of the bar graph corresponds to the numerical value of the Al composition (0 is 0.245, and each numerical value is multiplied by 0.01 and the value obtained by adding 0.245 to the Al composition value). The range indicated by (2) of the bar graph in FIG. 2 is the change range of the photoresponse peak wavelength in the second MQW layer, and the numerical value on the right side of the bar graph is the corresponding Al composition value (0 is 0.255). The value obtained by multiplying each numerical value by 0.01 and adding to 0.245 is the Al composition value), and the two curves on the right side of the numerical values indicate the light absorption of the first MQW layer and the second MQW layer. It is a diagram showing a characteristic. Note that (B) in the figure can be viewed in the same way as (A) in the figure except for the point in the figure in the case where there is one MQW layer.

本発明の場合、第1のMQW層及び第2のMQW層を選択使用することに依り、図13(A)から看取できるように、標準のAl組成設定値=0として、Al組成のずれが−4〜+5の範囲に於いて、第1及び第2の何れかのMQW層が所望のピーク波長をもつ光検知器として機能させることができる。   In the case of the present invention, by selectively using the first MQW layer and the second MQW layer, as can be seen from FIG. In the range of -4 to +5, either the first or second MQW layer can function as a photodetector having a desired peak wavelength.

通常の量子井戸型光検知器、即ち、図16について説明したものでは、図13(B)から看取できるように、中心ピーク波長を8.6μmに設定して量子井戸構造を作製した場合、Al組成が−2〜+2の範囲でピーク波長=8.6±0.2μmを満足させることができるのみである。従って、本発明に依れば、ウェハの製造誤差、即ち、Al組成の誤差に対する許容範囲が大きく拡大されたことを理解できよう。   In the ordinary quantum well type photodetector, that is, the one described with reference to FIG. 16, as can be seen from FIG. 13B, when the quantum well structure is manufactured with the center peak wavelength set to 8.6 μm, It is only possible to satisfy the peak wavelength = 8.6 ± 0.2 μm when the Al composition is in the range of −2 to +2. Therefore, according to the present invention, it can be understood that the tolerance for wafer manufacturing error, that is, Al composition error, has been greatly expanded.

図14は本発明に依る量子井戸型光検知器の他の例を表す要部平面図であり、図4乃至図11に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIG. 14 is a plan view of the principal part showing another example of the quantum well type photodetector according to the present invention, and the parts indicated by the same symbols as those used in FIGS. 4 to 11 are the same or effective. It shall represent a part.

図に於いて、81は図10に見られる素子分離溝63で電気的に個別に分断されている量子井戸型光検知器の1個分、即ち、1画素を表していて、それぞれの画素81は前記説明したように積層された二つのMQW層を備えているものとする。   In the figure, reference numeral 81 denotes one quantum well photodetector, that is, one pixel electrically separated by the element isolation groove 63 shown in FIG. Is provided with two MQW layers stacked as described above.

各画素81に於いては、図5について説明したコンタクト穴A、B、Cを備えていて、コンタクト穴Aから引き出された配線は素子分離溝63の底を這う配線82で共通接続され、その配線82は検知器周辺に於ける一方の側に全て導出されてInバンプ65Aに接続され、そして、コンタクト穴Bから引き出された配線は同じく分離溝63の底を這う配線83で共通接続され、同じく周辺に於ける他方の側に全て導出されてInバンプ65Bに接続されている。   Each pixel 81 is provided with the contact holes A, B, and C described with reference to FIG. 5, and the wiring drawn out from the contact hole A is commonly connected by the wiring 82 across the bottom of the element isolation groove 63. The wiring 82 is all led out to one side in the vicinity of the detector and connected to the In bump 65A, and the wiring drawn out from the contact hole B is also commonly connected by the wiring 83 that extends over the bottom of the separation groove 63. Similarly, all are led out to the other side in the periphery and connected to the In bump 65B.

前記の配線82或いは83を形成することは容易であり、図9について説明した工程と図10について説明した工程の順序を入れ替える、即ち、素子分離溝63を形成してから配線の形成工程を実施することで簡単に実現することができる。   It is easy to form the wiring 82 or 83, and the order of the process described with reference to FIG. 9 and the process described with reference to FIG. 10 are switched, that is, the wiring forming process is performed after the element isolation groove 63 is formed. This can be realized easily.

このようにすると、コンタクト穴A、Bからの引出し配線は周辺部で一括して読み出し回路と接続するよう共通化でき、各個別の画素内に形成するInバンプは1 個のみになって簡略化を図ることができる。   In this way, the lead-out wiring from the contact holes A and B can be shared so as to be connected to the readout circuit in a lump at the periphery, and only one In bump is formed in each individual pixel. Can be achieved.

図15は図14について説明した光検知器を読み出し回路と接続する場合について説明する為の要部平面図であり、(A)は読み出し回路の周辺部に在るバンプ群を、(B)は光検知器の周辺部に在るバンプ群をそれぞれ示している。   FIG. 15 is a plan view of an essential part for explaining a case where the photodetector described with reference to FIG. 14 is connected to a readout circuit. FIG. 15 (A) shows a bump group in the periphery of the readout circuit, and FIG. Each of the bump groups in the periphery of the photodetector is shown.

図15の(A)に見られる読み出し回路の一方の側に在るバンプ89A及び対向する他方の側に在るバンプ89Bの間隔は、図15の(B)に見られる光検知器が備えるバンプ65Aとバンプ65Bとの間隔に比較して、少なくともバンプ1個分ずらせてある。従って、読み出し回路と光検知器との各バンプ側を対向させ、例えば、バンプ89Aとバンプ65Aとを接続した場合、バンプ89Bとバンプ65Bとは接続されないので回路オープンの状態になる。尚、図示例では、バンプ65B側が接続されている。   The interval between the bumps 89A on one side of the readout circuit shown in FIG. 15A and the bumps 89B on the other side facing each other is the bump provided in the photodetector shown in FIG. Compared to the distance between 65A and bump 65B, at least one bump is displaced. Accordingly, when the respective bump sides of the readout circuit and the photodetector are opposed to each other and, for example, the bump 89A and the bump 65A are connected, the bump 89B and the bump 65B are not connected, so the circuit is open. In the illustrated example, the bump 65B side is connected.

このように、実施例2では、読み出し回路と光検知器との貼り合わせ位置をずらせるだけで、第1のMQW層と第二のMQW層の何れを動作可能状態にするかを選択することができるので、図1について説明したスイッチ43及び44を別設する必要がなくなる。   As described above, in the second embodiment, it is possible to select which of the first MQW layer and the second MQW layer is in an operable state only by shifting the bonding position of the readout circuit and the photodetector. Therefore, it is not necessary to separately provide the switches 43 and 44 described with reference to FIG.

共通配線82及び83の何れを読み出し回路と接続するかは、画素を多数並べたチップと読出し回路チップをフリップチップ接続する前の状態で、予め第1のMQW層と第二のMQW層との素子特性を調べておき、所望の波長特性に近いMQW層側が通常通りに駆動できるような接続を選べば良い。   Which of the common wirings 82 and 83 is connected to the readout circuit depends on whether the first MQW layer and the second MQW layer are previously connected in a state before flip-chip connection of a chip in which a large number of pixels are arranged and the readout circuit chip. It is only necessary to examine the element characteristics and select a connection that can drive the MQW layer side close to the desired wavelength characteristic as usual.

本発明に於いては、前記説明した実施の形態を含め、多くの形態で実施することができるので、以下、それを付記として例示する。   Since the present invention can be implemented in many forms including the above-described embodiment, it will be exemplified as an additional note hereinafter.

(付記1)
上下一導電型コンタクト層で挟まれ所要波長の光を吸収する多重量子井戸からなる第1の多重量子井戸層、及び、上下を一導電型コンタクト層で挟まれ第1の多重量子井戸層が吸収する光の波長と異なる波長の光を吸収する多重量子井戸からなる第2の多重量子井戸層を前記コンタクト層と反対導電型の半導体層を介して積層した構成を含んでなること
を特徴とする量子井戸型光検知器。
(Appendix 1)
A first multiple quantum well layer composed of multiple quantum wells sandwiched between upper and lower one conductivity type contact layers and absorbing light of a required wavelength, and a first multiple quantum well layer sandwiched between upper and lower one conductivity type contact layers A second multi-quantum well layer composed of a multi-quantum well that absorbs light having a wavelength different from the wavelength of the light to be emitted is laminated via a semiconductor layer having a conductivity type opposite to that of the contact layer. Quantum well type photodetector.

(付記2)
第1の多重量子井戸層に於ける基板側一導電型コンタクト層及び第2の多重量子井戸層に於ける表面側一導電型コンタクト層に形成され同じバイアス電源に接続される電極と、 第1の多重量子井戸層に於ける表面側一導電型コンタクト層及び第2の多重量子井戸層に於ける基板側一導電型コンタクト層に形成され何れか一方が前記バイアス電源と異なる電位に接続され、且つ、他方が前記電位から開放されている電極と
を備えてなることを特徴とする(付記1)記載の量子井戸型光検知器。
(Appendix 2)
An electrode formed on the substrate-side one conductivity type contact layer in the first multiple quantum well layer and the surface-side one conductivity type contact layer in the second multiple quantum well layer and connected to the same bias power source; One of the surface-side one conductivity type contact layer in the multiple quantum well layer and the substrate side one conductivity type contact layer in the second multiple quantum well layer are connected to a potential different from that of the bias power source, In addition, the quantum well photodetector according to (Appendix 1), wherein the other is provided with an electrode opened from the potential.

(付記3)
積層された第1の多重量子井戸層及び第2の量子井戸層を含む画素が多数配列されたアレイ、及び、画素からの光電流信号を読み出す読み出し回路の接続構成に於いて、
アレイに於ける第1の多重量子井戸層の表面側コンタクト層に於ける各電極を共通に結ぶ配線、及び、アレイに於ける第2の多重量子井戸層の基板側コンタクト層に於ける各電極を共通に結ぶ配線が設けられ、前記各配線の何れか一方の配線が読み出し回路に接続されてなること
を特徴とする(付記1)或いは(付記2)記載の量子井戸型光検知器。
(Appendix 3)
In an array in which a plurality of pixels including a stacked first multiple quantum well layer and a second quantum well layer are arranged, and a connection configuration of a readout circuit that reads out a photocurrent signal from the pixel,
Wirings commonly connecting the electrodes in the surface side contact layer of the first multiple quantum well layer in the array, and the electrodes in the substrate side contact layer of the second multiple quantum well layer in the array The quantum well photodetector according to (Appendix 1) or (Appendix 2), characterized in that a common interconnect is provided, and any one of the interconnects is connected to a readout circuit.

(付記4)
各共通配線と読み出し回路との間に介在して前記共通配線の何れかを読み出し回路に接続するスイッチ
を備えてなることを特徴とする(付記1)乃至(付記3)の何れか1記載の量子井戸型光検知器。
(Appendix 4)
Any one of (Appendix 1) to (Appendix 3) is provided with a switch interposed between each common wiring and the readout circuit and connecting any one of the common wirings to the readout circuit. Quantum well type photodetector.

(付記5)
多重量子井戸層に於ける量子井戸及び障壁がGaAs、InAs、AlAs、InP、GaP、AlP及びこれ等の混晶から選択された材料からなること
を特徴とする(付記1)乃至(付記4)の何れか1記載の量子井戸型光検知器。
(Appendix 5)
The quantum well and the barrier in the multiple quantum well layer are made of a material selected from GaAs, InAs, AlAs, InP, GaP, AlP and mixed crystals thereof (Appendix 1) to (Appendix 4) The quantum well type photodetector according to any one of the above.

(付記6)
(付記1)乃至(付記5)の量子井戸型光検知器を製造する場合に於いて、
第1の多重量子井戸層及び第2多重量子井戸層の何れかを読み出し回路に接続する際、予め各多重量子井戸層の分光応答特性を測定して適切な多重量子井戸層を選択する工程
が含まれてなることを特徴とする量子井戸型光検知器の製造方法。
(Appendix 6)
In manufacturing the quantum well type photodetector of (Appendix 1) to (Appendix 5),
When connecting either the first multiple quantum well layer or the second multiple quantum well layer to the readout circuit, a step of measuring a spectral response characteristic of each multiple quantum well layer in advance and selecting an appropriate multiple quantum well layer A method for producing a quantum well photodetector, comprising:

本発明に依る基本的な量子井戸型光検知器を表す要部切断側面説明図である。It is principal part cutting side explanatory drawing showing the basic quantum well type | mold photodetector by this invention. 図1に見られる量子井戸型光検知器の動作を説明する為のエネルギーバンドダイヤグラムである。It is an energy band diagram for demonstrating operation | movement of the quantum well type | mold photodetector seen by FIG. 本発明に依る量子井戸型光検知器を作製するための半導体層積層構成を表す要部側面説明図である。It is principal part side explanatory drawing showing the semiconductor layer laminated structure for producing the quantum well type | mold photodetector by this invention. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a cut side view of a main part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth described with reference to FIG. FIG. 図3について説明した結晶成長を実施して作製したウェーハを用いて量子井戸型光検知器を製造する工程を説明する為の工程要所に於ける量子井戸型光検知器を表す要部切断側面図である。3 is a sectional side view of a principal part representing a quantum well photodetector in a process point for explaining a process of manufacturing a quantum well photodetector using a wafer produced by performing the crystal growth explained with reference to FIG. FIG. 本発明に依る量子井戸型光検知器と読み出し回路との接続関係を表す要部説明図である。It is principal part explanatory drawing showing the connection relation of the quantum well type | mold photodetector and read-out circuit by this invention. MQW層に於けるAl組成と光吸収波長との関係を表す線図である。It is a diagram showing the relationship between the Al composition and the light absorption wavelength in the MQW layer. 本発明に依る量子井戸型光検知器の他の例を表す要部平面図である。It is a principal part top view showing the other example of the quantum well type | mold photodetector by this invention. 図14について説明した光検知器を読み出し回路と接続する場合について説明する為の要部平面図である。It is a principal part top view for demonstrating the case where the photodetector demonstrated about FIG. 14 is connected with a readout circuit. 従来の量子井戸型赤外線検知器を表す要部説明図である。It is principal part explanatory drawing showing the conventional quantum well type | mold infrared detector. 応答波長が異なるMQW層を積層した量子井戸型赤外線検知器を表す要部説明図である。It is principal part explanatory drawing showing the quantum well type | mold infrared detector which laminated | stacked MQW layer from which a response wavelength differs. 特許文献1に開示された発明の問題点を説明する為の量子井戸型赤外線検知器を表す要部説明図である。It is principal part explanatory drawing showing the quantum well type | mold infrared detector for demonstrating the problem of the invention disclosed by patent document 1. FIG. 特許文献1に開示された発明の問題点を説明する為の検知光波長対感度の関係を表す線図である。It is a diagram showing the relationship between the detection light wavelength and sensitivity for explaining the problem of the invention disclosed in Patent Document 1.

符号の説明Explanation of symbols

32 n型GaAsコンタクト層
33 第1のMQW層
34 n型GaAsコンタクト層
35 p型GaAs中間層
36 n型GaAsコンタクト層
37 第2のMQW層
38 n型GaAsコンタクト層
39 正側電極
40及び41 負側(接地側)電極
42 正側電極
43及び44 スイッチ
32 n-type GaAs contact layer 33 first MQW layer 34 n-type GaAs contact layer 35 p-type GaAs intermediate layer 36 n-type GaAs contact layer 37 second MQW layer 38 n-type GaAs contact layer 39 positive side electrodes 40 and 41 negative Side (ground side) electrode 42 Positive side electrode 43 and 44 Switch

Claims (5)

上下を一導電型コンタクト層で挟まれ所要波長の光を吸収する多重量子井戸からなる第1の多重量子井戸層、及び、上下を一導電型コンタクト層で挟まれ第1の多重量子井戸層が吸収する光の波長と異なる波長の光を吸収する多重量子井戸からなる第2の多重量子井戸層を前記コンタクト層と反対導電型の半導体層を介して積層した構成を含んでなることを特徴とする量子井戸型光検知器。   A first multiple quantum well layer composed of multiple quantum wells that are sandwiched between upper and lower one conductivity type contact layers and absorbs light of a required wavelength, and a first multiple quantum well layer sandwiched between upper and lower one conductivity type contact layers And a structure in which a second multiple quantum well layer composed of multiple quantum wells that absorb light having a wavelength different from the wavelength of light to be absorbed is stacked via a semiconductor layer having a conductivity type opposite to that of the contact layer. Quantum well type photodetector. 第1の多重量子井戸層に於ける基板側一導電型コンタクト層及び第2の多重量子井戸層に於ける表面側一導電型コンタクト層に形成され同じバイアス電源に接続される電極と、 第1の多重量子井戸層に於ける表面側一導電型コンタクト層及び第2の多重量子井戸層に於ける基板側一導電型コンタクト層に形成され何れか一方が前記バイアス電源と異なる電位に接続され、且つ、他方が前記電位から開放されている電極と
を備えてなることを特徴とする請求項1記載の量子井戸型光検知器。
An electrode formed on the substrate-side one conductivity type contact layer in the first multiple quantum well layer and the surface-side one conductivity type contact layer in the second multiple quantum well layer and connected to the same bias power source; One of the surface-side one conductivity type contact layer in the multiple quantum well layer and the substrate side one conductivity type contact layer in the second multiple quantum well layer are connected to a potential different from that of the bias power source, 2. The quantum well photodetector according to claim 1, wherein the other is provided with an electrode opened from the potential.
積層された第1の多重量子井戸層及び第2の量子井戸層を含む画素が多数配列されたアレイ、及び、画素からの光電流信号を読み出す読み出し回路の接続構成に於いて、
アレイに於ける第1の多重量子井戸層の表面側コンタクト層に於ける各電極を共通に結ぶ配線、及び、アレイに於ける第2の多重量子井戸層の基板側コンタクト層に於ける各電極を共通に結ぶ配線が設けられ、前記各配線の何れか一方の配線が読み出し回路に接続されてなること
を特徴とする請求項1或いは請求項2記載の量子井戸型光検知器。
In an array in which a plurality of pixels including a stacked first multiple quantum well layer and a second quantum well layer are arranged, and a connection configuration of a readout circuit that reads out a photocurrent signal from the pixel,
Wirings commonly connecting the electrodes in the surface side contact layer of the first multiple quantum well layer in the array, and the electrodes in the substrate side contact layer of the second multiple quantum well layer in the array The quantum well photodetector according to claim 1 or 2, wherein a wiring connecting the two is commonly provided, and one of the wirings is connected to a readout circuit.
各共通配線と読み出し回路との間に介在して前記共通配線の何れかを読み出し回路に接続するスイッチ
を備えてなることを特徴とする請求項1乃至請求項3の何れか1記載の量子井戸型光検知器。
The quantum well according to any one of claims 1 to 3, further comprising a switch interposed between each common wiring and the readout circuit and connecting any one of the common wirings to the readout circuit. Type light detector.
多重量子井戸層に於ける量子井戸及び障壁がGaAs、InAs、AlAs、InP、GaP、AlP及びこれ等の混晶から選択された材料からなること
を特徴とする請求項1乃至請求項4の何れか1記載の量子井戸型光検知器。
5. The quantum well and the barrier in the multiple quantum well layer are made of a material selected from GaAs, InAs, AlAs, InP, GaP, AlP and mixed crystals thereof. The quantum well type photodetector according to claim 1.
JP2006266578A 2006-09-29 2006-09-29 Quantum well photodetector Expired - Fee Related JP5168868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266578A JP5168868B2 (en) 2006-09-29 2006-09-29 Quantum well photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266578A JP5168868B2 (en) 2006-09-29 2006-09-29 Quantum well photodetector

Publications (2)

Publication Number Publication Date
JP2008085265A true JP2008085265A (en) 2008-04-10
JP5168868B2 JP5168868B2 (en) 2013-03-27

Family

ID=39355754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266578A Expired - Fee Related JP5168868B2 (en) 2006-09-29 2006-09-29 Quantum well photodetector

Country Status (1)

Country Link
JP (1) JP5168868B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192815A (en) * 2009-02-20 2010-09-02 Fujitsu Ltd Image sensor
GB2575361A (en) * 2018-07-05 2020-01-08 Fujitsu Ltd Infrared detection device, infrared detection apparatus, and manufacturing method of infrared detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286373A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Infrared detecting device
JP2000188407A (en) * 1998-12-22 2000-07-04 Fujitsu Ltd Infrared ray sensing device
JP2000323742A (en) * 1999-05-06 2000-11-24 Fujitsu Ltd Infrared ray detecting device
JP2000323744A (en) * 1999-05-07 2000-11-24 Fujitsu Ltd Photosensor and image sensor
JP2001044485A (en) * 1999-07-28 2001-02-16 Fujitsu Ltd Semiconductor image sensor
JP2002503877A (en) * 1997-10-16 2002-02-05 カリフォルニア インスティチュート オブ テクノロジー Dual-band quantum well infrared sensing array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286373A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Infrared detecting device
JP2002503877A (en) * 1997-10-16 2002-02-05 カリフォルニア インスティチュート オブ テクノロジー Dual-band quantum well infrared sensing array
JP2000188407A (en) * 1998-12-22 2000-07-04 Fujitsu Ltd Infrared ray sensing device
JP2000323742A (en) * 1999-05-06 2000-11-24 Fujitsu Ltd Infrared ray detecting device
JP2000323744A (en) * 1999-05-07 2000-11-24 Fujitsu Ltd Photosensor and image sensor
JP2001044485A (en) * 1999-07-28 2001-02-16 Fujitsu Ltd Semiconductor image sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192815A (en) * 2009-02-20 2010-09-02 Fujitsu Ltd Image sensor
GB2575361A (en) * 2018-07-05 2020-01-08 Fujitsu Ltd Infrared detection device, infrared detection apparatus, and manufacturing method of infrared detection device
JP2020009860A (en) * 2018-07-05 2020-01-16 富士通株式会社 Infrared detector, infrared detection device, and manufacturing method for infrared detector
US10741714B2 (en) 2018-07-05 2020-08-11 Fujitsu Limited Infrared detection device, infrared detection apparatus, and manufacturing method of infrared detection device
GB2575361B (en) * 2018-07-05 2022-03-02 Fujitsu Ltd Infrared detection device, infrared detection apparatus, and manufacturing method of infrared detection device
JP7047639B2 (en) 2018-07-05 2022-04-05 富士通株式会社 Manufacturing method of infrared detector, infrared detector and infrared detector

Also Published As

Publication number Publication date
JP5168868B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5630213B2 (en) Photodetector
JP5293257B2 (en) Image sensor
US7936034B2 (en) Mesa structure photon detection circuit
JP5166687B2 (en) Beam detector
US9269739B2 (en) Access-resistant diode array device having enhanced stability
US20090243016A1 (en) Semiconductor device
JP5853454B2 (en) Infrared detector and method of manufacturing infrared detector
JP5168868B2 (en) Quantum well photodetector
JP6299238B2 (en) Image sensor
JP4812656B2 (en) Quantum dot photodetector and method for manufacturing the same
JP7136652B2 (en) Photodetector with Helmholtz resonator
JP2006196788A (en) Infrared ray detector
JP2000188407A (en) Infrared ray sensing device
JP2012069801A (en) Quantum well optical detector and manufacturing method therefor
JP4182596B2 (en) Infrared detector
JP2508579B2 (en) Method of manufacturing array type infrared detector
Bois et al. Technology of multiple quantum well infrared detectors
US11482638B2 (en) Dual band photodiode element and method of making the same
JP3669204B2 (en) Infrared image sensor
JP4331428B2 (en) Intersubband Transition Quantum Well Photodetector
JP6477211B2 (en) Image sensor and manufacturing method thereof
JP5609489B2 (en) Quantum photodetector
JP2019096758A (en) Compound semiconductor photodiode array
JP7327101B2 (en) infrared detector
JP2005123217A (en) Quantum well type infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

LAPS Cancellation because of no payment of annual fees