JP2008084842A - Separator for nonaqueous secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery - Google Patents

Separator for nonaqueous secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008084842A
JP2008084842A JP2007203773A JP2007203773A JP2008084842A JP 2008084842 A JP2008084842 A JP 2008084842A JP 2007203773 A JP2007203773 A JP 2007203773A JP 2007203773 A JP2007203773 A JP 2007203773A JP 2008084842 A JP2008084842 A JP 2008084842A
Authority
JP
Japan
Prior art keywords
separator
lithium
secondary battery
lithium powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007203773A
Other languages
Japanese (ja)
Other versions
JP5256660B2 (en
Inventor
Mikio Aramata
幹夫 荒又
Shu Kashida
周 樫田
Satoru Miyawaki
悟 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007203773A priority Critical patent/JP5256660B2/en
Publication of JP2008084842A publication Critical patent/JP2008084842A/en
Application granted granted Critical
Publication of JP5256660B2 publication Critical patent/JP5256660B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator for a lithium secondary battery realizing a nonaqueous electrolyte secondary battery having high initial charge discharge efficiency and good cycle retentivity, and easy in handling, to provide the manufacturing method of the separator and to provide the lithium secondary battery. <P>SOLUTION: Lithium powder stabilized by applying an organic compound or an inorganic compound to the surface is adhered and fixed to the surface of the separator. Loadings of metallic lithium powder are the suitable amount compensating for the irreversible capacity calculated from the initial efficiency of a negative electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水系二次電池用セパレータ及びその製造方法、並びに非水電解質二次電池に関するものであり、詳しくはリチウムイオン二次電池用のセパレータ及びその製造方法、並びにリチウムイオン二次電池に関する。   The present invention relates to a separator for a non-aqueous secondary battery and a method for manufacturing the same, and a non-aqueous electrolyte secondary battery, and more particularly to a separator for a lithium ion secondary battery, a method for manufacturing the same, and a lithium ion secondary battery. .

近年、ノートパソコン、携帯電話、デジタルカメラのポータブル電源として、高エネルギー密度を有するリチウムイオン二次電池の使用が増大している。また、環境にやさしい自動車として実用化が期待される電気自動車用の電源としてもリチウムイオン二次電池が検討されている。
これまでのリチウムイオン二次電池は、炭素材料が負極活物質として使用されていたが、近年の容量向上の要求から高い充放電容量を期待することができる珪素などのリチウムと合金化する金属及びそれらの酸化物を負極活物質として用いることが考えられている。しかしながら、このような合金化する金属を活物質として用いると、高容量を期待することはできるが、初回の充電に正極材料中のリチウムが負極材料中に導入され、リチウムが全て放電によって取り出せずに一定量負極中に固定されてしまう不可逆の原因となるリチウムになってしまう。その結果、電池全体の放電容量が低下し、電池能力が低下するという課題を有している。
In recent years, the use of lithium ion secondary batteries having a high energy density as portable power sources for notebook computers, mobile phones, and digital cameras is increasing. Lithium ion secondary batteries are also being studied as a power source for electric vehicles that are expected to be put into practical use as environmentally friendly vehicles.
In conventional lithium ion secondary batteries, a carbon material has been used as a negative electrode active material, but a metal that can be alloyed with lithium, such as silicon, which can be expected to have a high charge / discharge capacity due to a recent demand for capacity enhancement, and It is considered to use these oxides as a negative electrode active material. However, when such an alloying metal is used as an active material, high capacity can be expected, but lithium in the positive electrode material is introduced into the negative electrode material for the first charge, and all lithium cannot be taken out by discharge. Therefore, lithium becomes an irreversible cause of being fixed in the negative electrode. As a result, there is a problem that the discharge capacity of the entire battery is reduced and the battery capacity is reduced.

この課題を解決する方策として、予め負極材料中にリチウム源を含有させておく方法が提案されている。リチウム源の形態としては、リチウム金属粉末(特許文献1:特開平5−67468号公報)、リチウム金属箔(特許文献2:特開平11−86847号公報、特許文献3:特開2004−303597号公報、特許文献4:特開2005−85508号公報)、リチウム化合物(特許文献5:特許第3287376号公報、特許文献6:特開平9−283181号公報)が挙げられる。
しかし、これらの方法は、製造工程が安全面で問題があったり、リチウムが反応しない環境での作業が複雑である等の理由で、工業化には種々の問題がある。
As a measure for solving this problem, a method of previously including a lithium source in the negative electrode material has been proposed. As a form of the lithium source, lithium metal powder (Patent Document 1: JP-A-5-67468), lithium metal foil (Patent Document 2: JP-A-11-86847, Patent Document 3: JP-A-2004-303597) And JP-A-2005-85508) and lithium compounds (Patent Document 5: Patent No. 3287376, Patent Document 6: JP-A-9-283181).
However, these methods have various problems in industrialization, for example, because the production process has a problem in safety and the work in an environment where lithium does not react is complicated.

特開平5−67468号公報JP-A-5-67468 特開平11−86847号公報Japanese Patent Laid-Open No. 11-86847 特開2004−303597号公報JP 2004-303597 A 特開2005−85508号公報JP-A-2005-85508 特許第3287376号公報Japanese Patent No. 3287376 特開平9−283181号公報JP-A-9-283181

本発明は上記事情に鑑みなされたもので、初期効率が高く、かつサイクル保持性に優れた非水系二次電池を可能とし、しかも取り扱い性の良好な非水系二次電池用セパレータ及びその製造方法、並びに非水電解質二次電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and enables a non-aqueous secondary battery having high initial efficiency and excellent cycle retention, and also has good handleability and a method for producing the same. And a non-aqueous electrolyte secondary battery.

本発明者らは、上記目的を達成するため鋭意検討した結果、簡便な方法で、かつ露点マイナス40℃程度で容易に取り扱える方法を見出し、本発明を完成した。即ち、表面を安定化処理した金属リチウム粉末を表面に有する非水系二次電池用セパレータを用いることにより、負極中に固定されてしまう不可逆のリチウムを補うことが可能となり、電池能力が向上する方法を見出した。   As a result of intensive studies to achieve the above object, the present inventors have found a method that can be easily handled at a dew point of about minus 40 ° C. and completed the present invention. That is, by using a non-aqueous secondary battery separator having a metal lithium powder with a stabilized surface on its surface, it is possible to compensate for irreversible lithium that is fixed in the negative electrode, and the battery capacity is improved. I found.

従って、本発明は、下記非水系二次電池用セパレータ及びその製造方法、並びに非水電解質二次電池を提供する。
請求項1:
表面にリチウム粉末を有する非水系二次電池用セパレータ。
請求項2:
リチウム粉末が、表面を安定化処理した金属リチウム粉末であることを特徴とする請求項1記載の非水系二次電池用セパレータ。
請求項3:
表面に粘着性を付与したリチウム粉末をセパレータに粘着固定したものである請求項1又は2記載の非水系二次電池用セパレータ。
請求項4:
リチウム粉末を粘着固定したセパレータが、離型性を有する基材に粘着固定された粘着性付与リチウム粉末をセパレータと接触させてセパレータ側へ転写することにより得られたものであることを特徴とする請求項3記載の非水系二次電池用セパレータ。
請求項5:
請求項1乃至4のいずれか1項記載のセパレータを用いた非水電解質二次電池。
請求項6:
請求項1乃至4のいずれか1項記載のセパレータと、リチウムイオンを吸蔵・放出することが可能な珪素及び/又は珪素酸化物を含有する負極活物質を用いた負極と、リチウムイオンを吸蔵・放出することが可能なリチウム複合酸化物もしくは硫化物を含有する正極活物質を用いた正極と、リチウム塩を含む非水電解液とを備えたことを特徴とする非水電解質二次電池。
請求項7:
粘着性を付与したリチウム粉末を、離型性を有する基材に粘着固定した後、セパレータと接触させて、リチウム粉末をセパレータ側へ転写することを特徴とする表面にリチウム粉末を有する非水系二次電池用セパレータの製造方法。
Accordingly, the present invention provides the following non-aqueous secondary battery separator, a method for producing the same, and a non-aqueous electrolyte secondary battery.
Claim 1:
A separator for a non-aqueous secondary battery having lithium powder on the surface.
Claim 2:
The separator for a non-aqueous secondary battery according to claim 1, wherein the lithium powder is a metallic lithium powder having a surface stabilized.
Claim 3:
The separator for a non-aqueous secondary battery according to claim 1 or 2, wherein a lithium powder having adhesiveness on the surface is adhesively fixed to the separator.
Claim 4:
The separator to which the lithium powder is adhesively fixed is obtained by transferring the tackified lithium powder adhesively fixed to the substrate having releasability to the separator and transferring it to the separator side. The separator for non-aqueous secondary batteries according to claim 3.
Claim 5:
The nonaqueous electrolyte secondary battery using the separator of any one of Claims 1 thru | or 4.
Claim 6:
A separator according to any one of claims 1 to 4, a negative electrode using a negative electrode active material containing silicon and / or silicon oxide capable of occluding and releasing lithium ions, and occluding and absorbing lithium ions. A non-aqueous electrolyte secondary battery comprising: a positive electrode using a positive electrode active material containing a lithium composite oxide or sulfide that can be released; and a non-aqueous electrolyte containing a lithium salt.
Claim 7:
A non-aqueous two-sided lithium powder having a lithium powder on the surface is characterized in that the lithium powder imparted with adhesiveness is adhesively fixed to a substrate having releasability and then brought into contact with a separator to transfer the lithium powder to the separator side. Manufacturing method of separator for secondary battery.

本発明によれば、初期効率及びサイクル保持率の高い非水電解質二次電池を得ることができる。   According to the present invention, a non-aqueous electrolyte secondary battery with high initial efficiency and high cycle retention can be obtained.

以下、本発明について詳細に説明する。
本発明の非水系二次電池用セパレータは、セパレータ表面にリチウム粉末を存在させたものであり、このような表面にリチウム粉末を有するセパレータを用いた本発明の非水電解質二次電池は、このセパレータと、リチウムイオンを吸蔵・放出することが可能な珪素及び/又は珪素酸化物を含有する負極活物質を用いた負極と、リチウムイオンを吸蔵・放出することが可能なリチウム複合酸化物もしくは硫化物を含有する正極活物質を用いた正極と、リチウム塩を含む非水電解液とを備える。
Hereinafter, the present invention will be described in detail.
The separator for a non-aqueous secondary battery of the present invention is one in which lithium powder is present on the separator surface, and the non-aqueous electrolyte secondary battery of the present invention using a separator having lithium powder on such a surface is Separator, negative electrode using negative electrode active material containing silicon and / or silicon oxide capable of occluding and releasing lithium ions, and lithium composite oxide or sulfide capable of occluding and releasing lithium ions A positive electrode using a positive electrode active material containing a product, and a non-aqueous electrolyte containing a lithium salt.

本発明の非水電解質二次電池において、セパレータの表面に有する金属リチウム粉末は充電と放電を繰り返すうちに電解液中に溶出し、結果的に負極中にドープされた形になり、負極の不可逆容量分を補うために利用される。このセパレータの表面に有する金属リチウム粉末は、負極の不可逆容量分を補うために利用されるものであるので、その添加量は負極の不可逆容量を補うだけの量以下であることが望ましい。金属リチウム粉末の最適な添加量は、負極活物質の量や材質によって変化し、添加量に応じて不可逆容量が減少するが、多過ぎると負極にリチウムが析出してしまい、逆に電池の容量が滅少する。従って、最適なリチウムの添加量は別途に負極の初期効率を求めてから後に定めることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, the lithium metal powder on the separator surface elutes into the electrolyte during repeated charging and discharging, resulting in a doped form in the negative electrode. Used to supplement the capacity. Since the metallic lithium powder on the surface of the separator is used to supplement the irreversible capacity of the negative electrode, it is desirable that the amount added is not more than an amount sufficient to supplement the irreversible capacity of the negative electrode. The optimal amount of metallic lithium powder added varies depending on the amount and material of the negative electrode active material, and the irreversible capacity decreases with the amount of addition, but if too much, lithium is deposited on the negative electrode, conversely the battery capacity. Disappears. Therefore, it is preferable to determine the optimum amount of lithium added after obtaining the initial efficiency of the negative electrode separately.

本発明に係わる金属リチウム粉末は、特に限定されるものではないが、薄く均一に塗布することができることから、平均粒径が0.1〜50μm、特に1〜10μmのものが好適に用いられる。   Although the metal lithium powder concerning this invention is not specifically limited, Since it can apply | coat thinly and uniformly, a thing with an average particle diameter of 0.1-50 micrometers, especially 1-10 micrometers is used suitably.

なお、本発明において、平均粒径は、例えばレーザー光回折法などの手法による粒度分布測定装置における累積重量平均値D50(又はメジアン径)等として求めることができる。 In the present invention, the average particle diameter can be determined as, for example, the cumulative weight average value D 50 (or median diameter) in a particle size distribution measuring apparatus using a technique such as laser light diffraction.

また、金属リチウム粉末としては、安定化したリチウム粉末を使用することが好ましい。リチウム粉末を安定化処理することで、露点−40℃程度のドライルームにおいてもリチウム粉末の変質が進行しなくなる。ここでリチウム粉末の安定化処理とは、リチウム粉末の表面が環境安定の良い物質、例えばNBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等の有機ゴム、EVA(エチレンビニルアルコール共重合樹脂)等の有機樹脂やLi2CO3などの金属炭酸塩等の無機化合物等でコーティングされたものである。また、このような安定化したリチウム粉末としては、市販品を用いることができ、例えばFMC社製のSLMP等を挙げることができる。 Moreover, it is preferable to use stabilized lithium powder as the metal lithium powder. By stabilizing the lithium powder, alteration of the lithium powder does not proceed even in a dry room having a dew point of about -40 ° C. Here, the stabilization treatment of the lithium powder is a material whose surface is excellent in environmental stability, for example, organic rubber such as NBR (nitrile butadiene rubber) and SBR (styrene butadiene rubber), EVA (ethylene vinyl alcohol copolymer resin). Or an inorganic compound such as a metal carbonate such as Li 2 CO 3 . Moreover, as such a stabilized lithium powder, a commercially available product can be used, and examples thereof include SLMP manufactured by FMC.

リチウム粉末を表面に含有させるセパレータは、正極と負極の間に用いられるものであり、その材質は保液性に優れていれば特に制限はないが、一般的にはポリエチレン、ポリプロピレン等のポリオレフィンの多孔質シート、又は不織布が挙げられる。   The separator containing lithium powder on the surface is used between the positive electrode and the negative electrode, and the material is not particularly limited as long as it has excellent liquid retention, but in general, a polyolefin such as polyethylene or polypropylene is used. A porous sheet or a nonwoven fabric is mentioned.

リチウム粉末をセパレータの表面に含有させる方法としては、リチウム粉末、特に安定化処理したリチウム粉末の表面に粘着性を付与し、その後、このリチウム粉末をセパレータと接触させて粘着固定する方法が好ましい。リチウム粉末の表面に粘着性を付与する方法としては、リチウム粉末を粘着性物質中へ浸漬して表面を粘着性物質で被覆した後、リチウム粉末を粘着性物質より取り出す。表面への被覆量は粘着性物質の粘着力により異なるが、セパレータの表面に粘着固定後、製造工程中にセパレータ表面から離脱しない程度の粘着力を付与すれば良い。表面への被覆量が必要以上に多すぎると、電解液中への溶解に時間を要するだけでなく、溶解した粘着物質が電池性能を阻害するおそれがある。より具体的には、粘着性物質のリチウム粉末に対する被覆量は、通常0.01〜10質量%、特には0.1〜5質量%程度が好ましい。   As a method for incorporating the lithium powder on the surface of the separator, a method is preferred in which tackiness is imparted to the surface of the lithium powder, particularly the stabilized lithium powder, and then the lithium powder is brought into contact with the separator to be adhesively fixed. As a method for imparting adhesiveness to the surface of the lithium powder, the lithium powder is immersed in an adhesive substance to coat the surface with the adhesive substance, and then the lithium powder is taken out from the adhesive substance. The amount of coating on the surface varies depending on the adhesive force of the adhesive substance, but after the adhesive is fixed to the surface of the separator, it is sufficient to apply an adhesive force that does not leave the separator surface during the manufacturing process. If the coating amount on the surface is too much than necessary, not only will it take time to dissolve in the electrolyte solution, but the dissolved adhesive substance may hinder battery performance. More specifically, the coating amount of the adhesive substance on the lithium powder is usually 0.01 to 10% by mass, and particularly preferably about 0.1 to 5% by mass.

粘着性物質としては、一般的なアクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤の他にホットメルトタイプの粘着剤が用いられるが、電解液の成分中に溶解するものであることが好ましい。   As an adhesive substance, a hot-melt type adhesive is used in addition to a general acrylic adhesive, rubber adhesive, and silicone adhesive, but it can be dissolved in a component of an electrolytic solution. preferable.

リチウム粉末を粘着性物質中へ浸漬する場合、粘着性物質を有機溶媒等で希釈したものを用いると、均一に表面を被覆しやすく、被覆量の制御も容易となる。   When the lithium powder is immersed in the adhesive substance, if the adhesive substance diluted with an organic solvent is used, the surface can be easily uniformly coated and the amount of coating can be easily controlled.

粘着性物質、特に溶媒で希釈した粘着性物質に浸漬されたリチウム粉末をセパレータに粘着固定するには、まず離型性を有する基材の表面に粘着性物質へ浸漬処理したリチウム粉末を、コーター方式又はスプレー方式等により均一に塗布する。その後、乾燥して希釈に用いた溶媒を除去する。次に、リチウム粉末を有する基材面とセパレータを圧着処理してリチウム粉末を基材面からセパレータ面に移行させる方法が好ましい。   In order to adhere and fix lithium powder immersed in an adhesive substance, particularly an adhesive substance diluted with a solvent, to a separator, first, a lithium powder immersed in the adhesive substance on the surface of a substrate having releasability is coated with a coater. Apply uniformly by a method or spray method. Thereafter, the solvent used for dilution is removed by drying. Next, a method in which the base material surface having lithium powder and the separator are pressure-bonded to transfer the lithium powder from the base material surface to the separator surface is preferable.

ホットメルトタイプの粘着剤を用いる場合は、リチウム粉末を有する基材面を所定の温度まで加熱して粘着性を発現させる必要がある。   In the case of using a hot-melt type pressure-sensitive adhesive, it is necessary to heat the base material surface having lithium powder to a predetermined temperature to express the pressure-sensitive adhesiveness.

離型性を有する基材としては、ポリエチレンテレフタレート(PET)フィルムや、ポリプロピレン(PP)フィルム、ポリエチレンでラミネートした紙等にシリコーン系の離型剤を塗布したものを用いることができる。   As the base material having releasability, a polyethylene terephthalate (PET) film, a polypropylene (PP) film, a paper laminated with polyethylene, and the like coated with a silicone release agent can be used.

用いる離型性を有する基材の離型性が不十分であると、セパレータと圧着した際にリチウム粉末がセパレータ面に移行しづらくなる。逆に、必要以上に基材の離型性が良好であると、セパレータと貼り合わせる工程で、リチウム粉末が基材から離脱するおそれがある。   When the mold release property of the base material having the mold release property used is insufficient, the lithium powder is difficult to move to the separator surface when pressure-bonded to the separator. On the contrary, if the release property of the base material is better than necessary, the lithium powder may be detached from the base material in the step of bonding to the separator.

本発明に係わる非水電解質二次電池に用いられる正極活物質としては、リチウムイオンを吸蔵及び放出することが可能な酸化物あるいは硫化物などが挙げられ、これらのいずれか1種又は2種以上が用いられる。具体的には、例えばTiS2、MoS2、NbS2、ZrS2、VS2あるいはV25、MoO3及びMg(V382などのリチウムを含有しない金属硫化物もしくは酸化物、又はリチウムを含有するリチウム複合酸化物が挙げられ、また、NbSe2などの複合金属も挙げられる。中でも、エネルギー密度を高くするためには、LixMetO2を主体とするリチウム複合酸化物が好ましい。なお、Metは具体的には、コバルト、ニッケル、鉄及びマンガンのうち少なくとも1種が好ましく、xは正数で、通常、0.05≦x≦1.10の範囲内の値である。このようなリチウム複合酸化物の具体例としては、層構造をもつLiCoO2、LiNiO2、LiFeO2、LixNiyCo1-y2(但し、xは上記と同じ意味であり、yは0<y<1の範囲の正数である。)、スピネル構造のLiMn24及び斜方晶のLiMnO2が挙げられる。更に高電圧対応型として置換スピネルマンガン化合物LiMetxMn1-x4(但し、ここでのxは0<x<1の範囲の正数である。)も使用されており、この場合のMetはチタン、クロム、鉄、コバルト、銅及び亜鉛などが挙げられる。 Examples of the positive electrode active material used in the non-aqueous electrolyte secondary battery according to the present invention include oxides or sulfides that can occlude and release lithium ions, and any one or more of these can be used. Is used. Specifically, for example, a metal sulfide or oxide containing no lithium such as TiS 2 , MoS 2 , NbS 2 , ZrS 2 , VS 2 or V 2 O 5 , MoO 3 and Mg (V 3 O 8 ) 2 , or lithium composite oxide is exemplified containing lithium and a composite metal such as NbSe 2 can also be mentioned. Among these, in order to increase the energy density, a lithium composite oxide mainly composed of Li x MetO 2 is preferable. Specifically, Met is preferably at least one of cobalt, nickel, iron and manganese, and x is a positive number and is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium composite oxide include LiCoO 2 , LiNiO 2 , LiFeO 2 , Li x Ni y Co 1-y O 2 having a layer structure (where x is the same as above, y is 0 <y <1 in the range)), spinel-structured LiMn 2 O 4 and orthorhombic LiMnO 2 . Furthermore, a substituted spinel manganese compound LiMet x Mn 1-x O 4 (where x is a positive number in the range of 0 <x <1) is also used as a high-voltage compatible type. In this case, Met Includes titanium, chromium, iron, cobalt, copper and zinc.

なお、上記のリチウム複合酸化物は、例えば、リチウムの炭酸塩、硝酸塩、塩化物あるいは水酸化物と、遷移金属の炭酸塩、硝酸塩、酸化物あるいは水酸化物とを所望の組成に応じて粉砕混合し、酸素雰囲気中において600〜1,000℃の範囲内の温度で焼成することにより調製される。   The lithium composite oxide is obtained by, for example, grinding lithium carbonate, nitrate, chloride or hydroxide and transition metal carbonate, nitrate, oxide or hydroxide according to a desired composition. It is prepared by mixing and baking at a temperature in the range of 600 to 1,000 ° C. in an oxygen atmosphere.

更に、正極活物質としては有機物も使用することができる。例示すると、ポリアセチレン、ポリピロール、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリアセン、ポリスルフィド化合物などである。   Furthermore, an organic substance can also be used as the positive electrode active material. Illustrative examples include polyacetylene, polypyrrole, polyparaphenylene, polyaniline, polythiophene, polyacene, polysulfide compound and the like.

本発明に係わる非水電解液二次電池に用いられる負極活物質としては、リチウムイオンを吸蔵及び放出することが可能な珪素を含む活物質が挙げられる。具体的には、金属不純物濃度が各々1ppm以下の高純度シリコン粉末、塩酸で洗浄した後、フッ化水素酸及びフッ化水素酸と硝酸の混合物で処理することで金属不純物を取り除いたケミカルグレードのシリコン粉末、冶金的に精製された金属珪素を粉末状に加工したもの、更にそれらの合金や珪素の低級酸化物や部分酸化物、珪素の窒化物や部分窒化物、更にそれらを導電化処理するため炭素材料と混合したり、メカニカルアロイング等により合金化したもの、スパッタリングやめっき法により金属等の導電剤で被覆したもの、有機ガスでカーボンを析出させたものを含む。これらの活物質は、従来より用いられていた黒鉛と比べ高い充放電容量を持つが、初回の充電で負極材料中に導入されたリチウムが、全て放電によって取り出せずに一定量負極中に残ってしまう不可逆容量のリチウムがあり、特に珪素の低級酸化物である酸化珪素は、優れたサイクル特性を示すが、不可逆容量のリチウムが大きく、実用化に問題があったが、上記表面にリチウム粉末を有するセパレータを使用することで、かかる問題が解消され、上記珪素を含む活物質、特に珪素、SiOx(0.6≦x<1.6)で示される酸化珪素、珪素の微粒子が二酸化珪素等の珪素化合物に分散した複合構造を有する粒子、これらを炭素等の導電性皮膜で覆ったもの等が負極活物質として好適に用いられるものである。 Examples of the negative electrode active material used in the non-aqueous electrolyte secondary battery according to the present invention include an active material containing silicon capable of inserting and extracting lithium ions. Specifically, after cleaning with high-purity silicon powder with a metal impurity concentration of 1 ppm or less, hydrochloric acid, and then treating with hydrofluoric acid and a mixture of hydrofluoric acid and nitric acid, a chemical grade of metal grade is removed. Silicon powder, metallurgically refined metal silicon processed into powder, alloys thereof, lower oxides and partial oxides of silicon, silicon nitrides and partial nitrides, and further conducting them For this reason, it includes a material mixed with a carbon material, alloyed by mechanical alloying or the like, a material coated with a conductive agent such as metal by sputtering or plating, and a material in which carbon is precipitated with an organic gas. These active materials have a charge / discharge capacity higher than that of conventionally used graphite. However, a certain amount of lithium introduced into the negative electrode material by the first charge remains in the negative electrode without being taken out by discharge. In particular, silicon oxide, which is a lower oxide of silicon, exhibits excellent cycle characteristics. However, the irreversible capacity of lithium is large and has a problem in practical use. This problem is solved by using the separator having the above, and the active material containing silicon, particularly silicon, silicon oxide represented by SiO x (0.6 ≦ x <1.6), and silicon fine particles such as silicon dioxide. Particles having a composite structure dispersed in the silicon compound, those covered with a conductive film such as carbon, and the like are suitably used as the negative electrode active material.

正極、負極の作製方法については特に制限はない。一般的には、溶媒に活物質、結着剤、導電剤等を加えてスラリー状とし、集電体シートに塗布し、乾燥、圧着して作製する。   There is no restriction | limiting in particular about the preparation methods of a positive electrode and a negative electrode. In general, an active material, a binder, a conductive agent or the like is added to a solvent to form a slurry, which is applied to a current collector sheet, dried and pressed.

本発明に係わる非水電解液二次電池に用いられる結着剤としては、一般的にポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン・ブタジエンゴム、イソプレンゴム、各種ポリイミド樹脂等が挙げられる。   Examples of the binder used in the non-aqueous electrolyte secondary battery according to the present invention generally include polyvinylidene fluoride, polytetrafluoroethylene, styrene / butadiene rubber, isoprene rubber, various polyimide resins, and the like.

本発明に係わる非水電解液二次電池に用いられる導電剤としては、一般的に黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル等の金属材料が挙げられる。   Examples of the conductive agent used in the non-aqueous electrolyte secondary battery according to the present invention generally include carbon materials such as graphite and carbon black, and metal materials such as copper and nickel.

本発明に係わる非水電解液二次電池に用いられる集電体としては、正極用にはアルミニウム、又はその合金、負極用には銅、ステンレス、ニッケル等の金属又はそれらの合金等が挙げられる。   Examples of the current collector used in the non-aqueous electrolyte secondary battery according to the present invention include aluminum for the positive electrode or an alloy thereof, and for the negative electrode, a metal such as copper, stainless steel, nickel, or an alloy thereof. .

本発明の非水電解液は、電解質塩及び非水溶媒を含有する。電解質塩としては、例えば、軽金属塩が挙げられる。軽金属塩にはリチウム塩、ナトリウム塩、あるいはカリウム塩等のアルカリ金属塩、又はマグネシウム塩あるいはカルシウム塩等のアルカリ土類金属塩、又はアルミニウム塩等があり、目的に応じて1種又は複数種が選択される。例えば、リチウム塩であれば、LiBF4、LiClO4、LiPF6、LiAsF6、CF3SO3Li、(CF3SO22NLi、C49SO3Li、CF3CO2Li、(CF3CO22NLi、C65SO3Li、C817SO3Li、(C25SO22NLi、(C49SO2)(CF3SO2)NLi、(FSO264)(CF3SO2)NLi、((CF32CHOSO22NLi、(CF3SO23CLi、(3,5−(CF32634BLi、LiCF3、LiAlCl4あるいはC4BO8Liが挙げられ、これらのうちのいずれか1種又は2種以上が混合して用いられる。 The nonaqueous electrolytic solution of the present invention contains an electrolyte salt and a nonaqueous solvent. Examples of the electrolyte salt include light metal salts. Light metal salts include alkali metal salts such as lithium salts, sodium salts, or potassium salts, alkaline earth metal salts such as magnesium salts or calcium salts, or aluminum salts. Selected. For example, in the case of a lithium salt, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, C 4 F 9 SO 3 Li, CF 3 CO 2 Li, ( CF 3 CO 2 ) 2 NLi, C 6 F 5 SO 3 Li, C 8 F 17 SO 3 Li, (C 2 F 5 SO 2 ) 2 NLi, (C 4 F 9 SO 2 ) (CF 3 SO 2 ) NLi , (FSO 2 C 6 F 4 ) (CF 3 SO 2 ) NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (CF 3 SO 2 ) 3 CLi, (3,5- (CF 3 ) 2 C 6 F 3 ) 4 BLi, LiCF 3 , LiAlCl 4, or C 4 BO 8 Li may be used, and any one or two of these may be used in combination.

非水電解液の電解質塩の濃度は、電気伝導性の点から、0.5〜2.0mol/Lが好ましい。なお、この電解質の温度25℃における導電率は0.01S/m以上であることが好ましく、電解質塩の種類あるいはその濃度により調整される。   The concentration of the electrolyte salt in the nonaqueous electrolytic solution is preferably 0.5 to 2.0 mol / L from the viewpoint of electrical conductivity. The conductivity of the electrolyte at 25 ° C. is preferably 0.01 S / m or more, and is adjusted by the type of electrolyte salt or its concentration.

本発明に使用される非水電解液用溶媒としては、非水電解液用として使用し得るものであれば特に制限はない。一般にエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の非プロトン性高誘電率溶媒や、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、ジプロピルカーボネート、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、メチルアセテート等の酢酸エステル類あるいはプロピオン酸エステル類等の非プロトン性低粘度溶媒が挙げられる。これらの非プロトン性高誘電率溶媒と非プロトン性低粘度溶媒を適当な混合比で併用することが望ましい。更には、イミダゾリウム、アンモニウム、及びピリジニウム型のカチオンを用いたイオン性液体を使用することができる。対アニオンは特に限定されるものではないが、BF4 -、PF6 -、(CF3SO22-等が挙げられる。イオン性液体は前述の非水電解液溶媒と混合して使用することが可能である。 The solvent for non-aqueous electrolyte used in the present invention is not particularly limited as long as it can be used for non-aqueous electrolyte. Generally, aprotic high dielectric constant solvents such as ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl propyl carbonate, dipropyl carbonate, diethyl ether, tetrahydrofuran, 1,2, -Aprotic low viscosity such as acetate ester or propionate ester such as dimethoxyethane, 1,2-diethoxyethane, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, methyl acetate A solvent is mentioned. It is desirable to use these aprotic high dielectric constant solvents and aprotic low viscosity solvents in combination at an appropriate mixing ratio. Furthermore, ionic liquids using imidazolium, ammonium, and pyridinium type cations can be used. The counter anion is not particularly limited, and examples thereof include BF 4 , PF 6 , (CF 3 SO 2 ) 2 N − and the like. The ionic liquid can be used by mixing with the aforementioned non-aqueous electrolyte solvent.

固体電解質やゲル電解質とする場合にはシリコーンゲル、シリコーンポリエーテルゲル、アクリルゲル、アクリロニトリルゲル、ポリ(ビニリデンフルオライド)等を高分子材料として含有することが可能である。なお、これらは予め重合していてもよく、注液後重合してもよい。これらは単独もしくは混合物として使用可能である。   In the case of a solid electrolyte or gel electrolyte, it is possible to contain silicone gel, silicone polyether gel, acrylic gel, acrylonitrile gel, poly (vinylidene fluoride) and the like as a polymer material. These may be polymerized in advance or may be polymerized after injection. These can be used alone or as a mixture.

更に、本発明の非水電解液中には必要に応じて各種添加剤を添加してもよい。例えば、サイクル寿命向上を目的としたビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4−ビニルエチレンカーボネート等や、過充電防止を目的としたビフェニル、アルキルビフェニル、シクロヘキシルベンゼン、t−ブチルベンゼン、ジフェニルエーテル、ベンゾフラン等や、脱酸や脱水を目的とした各種カーボネート化合物、各種カルボン酸無水物、各種含窒素及び含硫黄化合物が挙げられる。   Furthermore, you may add various additives in the non-aqueous electrolyte of this invention as needed. For example, vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4-vinylethylene carbonate and the like for the purpose of improving cycle life, biphenyl, alkylbiphenyl, cyclohexylbenzene, t-butylbenzene, diphenyl ether for the purpose of preventing overcharge, Examples include benzofuran, various carbonate compounds for the purpose of deoxidation and dehydration, various carboxylic acid anhydrides, various nitrogen-containing compounds, and sulfur-containing compounds.

本発明に係わる非水電解液二次電池の形状は任意であり、特に制限はない。一般的にはコイン形状に打ち抜いた電極とセパレータを積層したコインタイプ、電極シートとセパレータをスパイラル状にしたシリンダータイプ等が挙げられる。   The shape of the non-aqueous electrolyte secondary battery according to the present invention is arbitrary and is not particularly limited. In general, a coin type in which an electrode punched into a coin shape and a separator are stacked, a cylinder type in which an electrode sheet and a separator are spiraled, and the like can be given.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、下記例で%は質量%を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example. In the following examples,% indicates mass%.

[実施例1]
[表面にリチウム粉末を粘着固定したセパレータの作製]
シリコーン粘着剤KR−101(信越化学工業(株)製)を固形分で0.1%濃度になるようにトルエンで希釈して粘着性物質処理液1,000mLを得た。この中に、安定化処理した平均粒径20μmのリチウム粉末(FMC社製)を10g浸漬し、10分間撹拌した。
離型性を有する基材として、シリコーン系離型剤X−70−201(信越化学工業(株)製)を塗布したPETフィルムを用いて、この離型面に、粘着性物質処理済のリチウム粉末を、ドクターブレード法にて塗布し、減圧乾燥を行ってトルエンを除去した。
次に、得られた離型性を有する基材のリチウム粉末含有面と厚さ30μmのポリエチレン製微多孔質フィルムを用いたセパレータを圧着し、基材のリチウム粉末を全量セパレータ面に移行させて、表面にリチウム粉末を粘着固定したセパレータを作製した。
リチウム粉末の塗布前後のセパレータの質量増加より、粘着性物質処理済のリチウム粉末の塗布量は2032コイン型電池1個当り0.4mgであった。
[Example 1]
[Preparation of separator with lithium powder adhesively fixed on the surface]
Silicone pressure-sensitive adhesive KR-101 (manufactured by Shin-Etsu Chemical Co., Ltd.) was diluted with toluene so as to have a solid content of 0.1% to obtain 1,000 mL of a pressure-sensitive adhesive treatment solution. In this, 10 g of stabilized lithium powder (manufactured by FMC) with an average particle diameter of 20 μm was immersed and stirred for 10 minutes.
Using a PET film coated with a silicone-based mold release agent X-70-201 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a substrate having releasability, this release surface is treated with an adhesive-treated lithium. The powder was applied by a doctor blade method and dried under reduced pressure to remove toluene.
Next, a lithium powder-containing surface of the obtained base material having releasability and a separator using a polyethylene microporous film having a thickness of 30 μm are pressure-bonded, and the entire amount of the lithium powder of the base material is transferred to the separator surface. A separator having a lithium powder adhered and fixed to the surface was prepared.
From the increase in the mass of the separator before and after the application of the lithium powder, the amount of the lithium powder treated with the adhesive substance was 0.4 mg per 2032 coin-type battery.

[負極活物質(導電性珪素複合体)の作製]
二酸化珪素粉末と金属珪素粉末を等モルの割合で混合した混合粉末を、1,350℃、0.1Torrの高温減圧雰囲気で熱処理し、発生したSiOガスを水冷した析出槽に析出させた。次にこの析出物を、ヘキサン中ボールミルで粉砕し、D50=8μmの酸化珪素粉末(SiOx:x=1.02)を得た。ここで得られた粉末をCu−Kα線によるX線回折を行い、得られた粉末は無定形の酸化珪素(SiOx)粉末であることを確認した。得られた酸化珪素粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス通気下で1,150℃、2時間の条件で酸化珪素の不均化と同時に熱CVDを行い、黒色粉末を回収した。得られた黒色粉末の蒸着炭素量22.0%であり、X線回折パターンより、得られた黒色粉末は、酸化珪素粉末とは異なり、2θ=28.4°付近のSi(111)に帰属される回折線が存在し、この回折線の半価幅よりシェーラー法で結晶の大きさを求め、二酸化珪素中に分散した珪素の結晶の大きさは11nmであり、このことから微細な珪素(Si)の結晶が、二酸化珪素(SiO2)の中に分散している導電性珪素複合体粉末を作製した。
[Preparation of negative electrode active material (conductive silicon composite)]
A mixed powder in which silicon dioxide powder and metal silicon powder were mixed at an equimolar ratio was heat-treated in a high-temperature reduced pressure atmosphere at 1,350 ° C. and 0.1 Torr, and the generated SiO gas was deposited in a water-cooled deposition tank. Next, the precipitate was pulverized with a ball mill in hexane to obtain a silicon oxide powder (SiO x : x = 1.02) having D 50 = 8 μm. The powder obtained here was subjected to X-ray diffraction using Cu-Kα rays, and it was confirmed that the obtained powder was amorphous silicon oxide (SiO x ) powder. The obtained silicon oxide powder was subjected to thermal CVD at the same time as disproportionation of silicon oxide under a condition of 1,150 ° C. for 2 hours under a methane-argon mixed gas flow using a rotary kiln type reactor. It was collected. The amount of deposited carbon of the obtained black powder was 22.0%, and the obtained black powder was attributed to Si (111) near 2θ = 28.4 °, unlike the silicon oxide powder, from the X-ray diffraction pattern. The size of the crystal is obtained by the Scherrer method from the half width of the diffraction line, and the size of the silicon crystal dispersed in the silicon dioxide is 11 nm. A conductive silicon composite powder in which Si) crystals were dispersed in silicon dioxide (SiO 2 ) was produced.

[負極の作製]
導電性珪素複合体粉末にポリイミドを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間真空乾燥後、ローラープレスにより電極を加圧成形し、350℃で1時間真空乾燥し、負極とした。
[Production of negative electrode]
10% of polyimide is added to the conductive silicon composite powder, and further N-methylpyrrolidone is added to form a slurry. This slurry is applied to a copper foil having a thickness of 20 μm, dried in a vacuum at 80 ° C. for 1 hour, and then subjected to a roller press. Was formed into a negative electrode by vacuum molding at 350 ° C. for 1 hour.

[正極の作製]
正極材料として、LiCoO2を活物質とし、集電体としてアルミ箔を用いた単層シート(パイオニクス(株)製、商品名;ピオクセル C−100)を用いて2cm2に打ち抜き、正極とした。
[Production of positive electrode]
As a positive electrode material, a single layer sheet (Pionix Co., Ltd., trade name: Pioxel C-100) using LiCoO 2 as an active material and an aluminum foil as a current collector was punched into 2 cm 2 to obtain a positive electrode.

[単電池での正極、負極の容量確認]
得られた正極、負極の容量を確認するため、対極にリチウムを用いた単電池で正極、負極の容量確認を行った。即ち、グローブボックス(露点−80℃以下)中で、金属リチウム、セパレータ、正極の各材料と、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用いて、評価用2032型単電池を作製し、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、充電電流をテストセルの電圧が4.2Vに達するまで0.5mA/cm2の定電流で充電を行った。この時の充電容量を初期容量とした。放電は0.5mA/cm2の定電流で行い、セル電圧が2.5Vを下回った時点で放電を終了し、放電容量を求め、正極容量を測定したところ、充電容量4.6mAh、放電容量4.5mAh、初期効率98%、不可逆容量0.1mAhの正極であった。
同様にして金属リチウム、セパレータ、負極の各材料と、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用いて、評価用2032型単電池を作製し、充電電流をテストセルの電圧が0.005Vに達するまで0.5mA/cm2の定電流で充電を行った。この時の充電容量を初期容量とした。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求め、負極容量を測定したところ、充電容量6.0mAh、放電容量4.5mAh、初期効率75%、不可逆容量1.5mAhの負極であった。
[Verification of positive and negative electrode capacities in a single cell]
In order to confirm the capacities of the obtained positive electrode and negative electrode, the capacities of the positive electrode and the negative electrode were confirmed with a single battery using lithium as a counter electrode. That is, in a glove box (dew point -80 ° C or lower), metallic lithium, separator, and positive electrode materials and lithium hexafluorophosphate as a non-aqueous electrolyte were mixed in 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate. A 2032 type battery for evaluation was prepared using a non-aqueous electrolyte solution dissolved in a liquid at a concentration of 1 mol / L, and allowed to stand overnight at room temperature. Then, a secondary battery charge / discharge test apparatus (Nagano Co., Ltd.) was prepared. The product was charged at a constant current of 0.5 mA / cm 2 until the voltage of the test cell reached 4.2V. The charge capacity at this time was defined as the initial capacity. The discharge was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage dropped below 2.5 V, the discharge was terminated, the discharge capacity was obtained, and the positive electrode capacity was measured. As a result, the charge capacity was 4.6 mAh and the discharge capacity. The positive electrode was 4.5 mAh, initial efficiency 98%, and irreversible capacity 0.1 mAh.
Similarly, each material of metallic lithium, separator, and negative electrode and lithium hexafluorophosphate as a non-aqueous electrolyte are dissolved in a 1/1 (volume ratio) mixture of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / L. The non-aqueous electrolyte solution was used to produce a 2032 type battery for evaluation, and charging was performed at a constant current of 0.5 mA / cm 2 until the voltage of the test cell reached 0.005V. The charge capacity at this time was defined as the initial capacity. The discharge was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage exceeded 2.0 V, the discharge was terminated, the discharge capacity was determined, and the negative electrode capacity was measured. As a result, the charge capacity was 6.0 mAh and the discharge capacity. The negative electrode was 4.5 mAh, initial efficiency 75%, and irreversible capacity 1.5 mAh.

[リチウム入りセパレータを用いた電池性能評価]
グローブボックス(露点−80℃以下)中で、前記で得られた表面にリチウム粉末を粘着固定したセパレータ、負極、正極、及び、非水電解質として六フッ化リン酸リチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解させた非水電解質溶液を用いて、評価用2032型コイン電池を作製した。
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、充電電流をテストセルの電圧が4.2Vに達するまで0.5mA/cm2の定電流で充電を行った。この時の充電容量を初期容量とした。放電は0.5mA/cm2の定電流で行い、セル電圧が2.5Vを下回った時点で放電を終了し、放電容量を求めた。以上の本充放電試験を繰り返した。なお、初回の充電容量と放電容量との比(%)を初期効率とし、サイクル性能として、数回の充放電での最大放電容量と50サイクル後の放電容量の比を求め、サイクル保持率とした。その結果、初期効率は88%で、サイクル保持率は95%であった。
[Evaluation of battery performance using lithium-containing separator]
In a glove box (dew point -80 ° C. or lower), a separator in which lithium powder is adhered and fixed to the surface obtained above, a negative electrode, a positive electrode, and lithium hexafluorophosphate as a non-aqueous electrolyte are made of ethylene carbonate and diethyl carbonate. A 2032 type coin battery for evaluation was produced using a non-aqueous electrolyte solution dissolved in a 1/1 (volume ratio) mixture at a concentration of 1 mol / L.
The produced lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge test apparatus (manufactured by Nagano Co., Ltd.) until the voltage of the test cell reached 4.2V. Charging was performed at a constant current of 5 mA / cm 2 . The charge capacity at this time was defined as the initial capacity. Discharging was performed at a constant current of 0.5 mA / cm 2 , and when the cell voltage fell below 2.5 V, the discharging was terminated and the discharge capacity was determined. The above charge / discharge test was repeated. The initial charge capacity / discharge capacity ratio (%) is the initial efficiency, and the cycle performance is determined as the ratio of the maximum discharge capacity after several charge / discharge cycles and the discharge capacity after 50 cycles. did. As a result, the initial efficiency was 88% and the cycle retention was 95%.

[比較例1]
実施例1において、セパレータとして、表面にリチウム粉末を有しない厚さ30μmのポリエチレン製微多孔質フィルムを用いた他は、実施例1と同様の評価用2032型コイン電池を作製し、実施例1と同様の方法で電池の性能評価を行った。その結果、初期効率は72%で、サイクル保持率は95%であった。
[Comparative Example 1]
In Example 1, a 2032 type coin battery for evaluation similar to that in Example 1 was prepared except that a 30 μm thick polyethylene microporous film having no lithium powder on the surface was used as a separator. The battery performance was evaluated in the same manner as described above. As a result, the initial efficiency was 72% and the cycle retention was 95%.

[実施例2]
[表面にリチウム粉末を粘着固定したセパレータの作製]
アクリル粘着剤BPS−2411(東洋インキ社製)を固形分で0.1%濃度になるようにトルエンで希釈して粘着性物質処理液1,000mLを得た。この中に、安定化処理した平均粒径20μmのリチウム粉末(FMC社製)を10g浸漬し、10分間撹拌した。
離型性を有する基材として、シリコーン離型剤KS−837(信越化学工業(株)製)を塗布したPETフィルムを用いて、この離型面に、粘着性物質処理済のリチウム粉末を、ドクターブレード法にて塗布し、減圧乾燥を行ってトルエンを除去した。
次に、得られた離型性を有する基材のリチウム粉末含有面と厚さ30μmのポリエチレン製微多孔質フィルムを用いたセパレータを圧着し、基材のリチウム粉末を全量セパレータ面に移行させて、表面にリチウム粉末を粘着固定したセパレータを作製した。
リチウム粉末の塗布前後のセパレータの質量増加より、粘着性物質処理済のリチウム粉末の塗布量は2032コイン型電池1個当り0.4mgであった。
[Example 2]
[Preparation of separator with lithium powder adhesively fixed on the surface]
Acrylic pressure-sensitive adhesive BPS-2411 (manufactured by Toyo Ink Co., Ltd.) was diluted with toluene so as to have a solid content of 0.1% to obtain 1,000 mL of a pressure-sensitive adhesive treatment liquid. In this, 10 g of stabilized lithium powder (manufactured by FMC) with an average particle diameter of 20 μm was immersed and stirred for 10 minutes.
Using a PET film coated with a silicone release agent KS-837 (manufactured by Shin-Etsu Chemical Co., Ltd.) as a substrate having releasability, an adhesive substance-treated lithium powder is applied to this release surface, It apply | coated by the doctor blade method and reduced pressure toluene was removed by drying under reduced pressure.
Next, a lithium powder-containing surface of the obtained base material having releasability and a separator using a polyethylene microporous film having a thickness of 30 μm are pressure-bonded, and the entire amount of the lithium powder of the base material is transferred to the separator surface. A separator having a lithium powder adhered and fixed to the surface was prepared.
From the increase in the mass of the separator before and after the application of the lithium powder, the amount of the lithium powder treated with the adhesive substance was 0.4 mg per 2032 coin-type battery.

[リチウム入りセパレータを用いた電池性能評価]
セパレータとして、上記の方法で作製した他は、実施例1と同様の材料を用いて評価用2032型コイン電池を作製し、実施例1と同様の方法で電池の性能評価を行った。その結果、初期効率は87%で、サイクル保持率は95%であった。
[Evaluation of battery performance using lithium-containing separator]
A 2032 type coin battery for evaluation was produced using the same material as in Example 1 except that the separator was produced by the above method, and the performance of the battery was evaluated in the same manner as in Example 1. As a result, the initial efficiency was 87% and the cycle retention was 95%.

[実施例3]
表面にリチウム粉末を粘着固定したセパレータとして、実施例1記載のセパレータを用いた。負極として、実施例1で作製した負極活物質(導電性珪素複合体粉末)を用い、これにポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間真空乾燥後、ローラープレスにより負極電極を加圧成形した。その他の材料は、実施例1と同様の材料を用いて評価用2032型コイン電池を作製し、実施例1と同様の方法で電池の性能評価を行った。その結果、初期効率は89%で、サイクル保持率は75%であった。
[Example 3]
The separator described in Example 1 was used as a separator having lithium powder adhered and fixed to the surface. As the negative electrode, the negative electrode active material (conductive silicon composite powder) prepared in Example 1 was used. To this, 10% polyvinylidene fluoride was added, and N-methylpyrrolidone was further added to form a slurry. After being applied to a copper foil and vacuum-dried at 120 ° C. for 1 hour, the negative electrode was pressure-formed by a roller press. As other materials, evaluation 2032 type coin batteries were produced using the same materials as in Example 1, and the performance of the batteries was evaluated in the same manner as in Example 1. As a result, the initial efficiency was 89% and the cycle retention was 75%.

[比較例2]
実施例3において、セパレータとして、表面にリチウム粉末を有しない厚さ30μmのポリエチレン製微多孔質フィルムを用いた他は、実施例3と同様の評価用2032型コイン電池を作製し、実施例1と同様の方法で電池の性能評価を行った。その結果、初期効率は73%で、サイクル保持率は71%であった。
[Comparative Example 2]
In Example 3, a 2032-type coin battery for evaluation similar to that in Example 3 was prepared, except that a 30 μm thick polyethylene microporous film having no lithium powder on the surface was used as a separator. The battery performance was evaluated in the same manner as described above. As a result, the initial efficiency was 73% and the cycle retention was 71%.

[実施例4]
表面にリチウム粉末を粘着固定したセパレータとして、実施例2記載のセパレータを用いた。負極として、実施例3記載のものを用いた他は、実施例1と同様の材料を用いて評価用2032型コイン電池を作製し、実施例1と同様の方法で電池の性能評価を行った。その結果、初期効率は87%で、サイクル保持率は75%であった。
[Example 4]
The separator described in Example 2 was used as a separator having lithium powder adhered and fixed to the surface. A 2032 type coin battery for evaluation was produced using the same material as in Example 1 except that the negative electrode described in Example 3 was used, and the battery performance was evaluated in the same manner as in Example 1. . As a result, the initial efficiency was 87% and the cycle retention was 75%.

Claims (7)

表面にリチウム粉末を有する非水系二次電池用セパレータ。   A separator for a non-aqueous secondary battery having lithium powder on the surface. リチウム粉末が、表面を安定化処理した金属リチウム粉末であることを特徴とする請求項1記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 1, wherein the lithium powder is a metallic lithium powder having a surface stabilized. 表面に粘着性を付与したリチウム粉末をセパレータに粘着固定したものである請求項1又は2記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 1 or 2, wherein a lithium powder having adhesiveness on the surface is adhesively fixed to the separator. リチウム粉末を粘着固定したセパレータが、離型性を有する基材に粘着固定された粘着性付与リチウム粉末をセパレータと接触させてセパレータ側へ転写することにより得られたものであることを特徴とする請求項3記載の非水系二次電池用セパレータ。   The separator to which the lithium powder is adhesively fixed is obtained by transferring the tackified lithium powder adhesively fixed to the substrate having releasability to the separator and transferring it to the separator side. The separator for non-aqueous secondary batteries according to claim 3. 請求項1乃至4のいずれか1項記載のセパレータを用いた非水電解質二次電池。   The nonaqueous electrolyte secondary battery using the separator of any one of Claims 1 thru | or 4. 請求項1乃至4のいずれか1項記載のセパレータと、リチウムイオンを吸蔵・放出することが可能な珪素及び/又は珪素酸化物を含有する負極活物質を用いた負極と、リチウムイオンを吸蔵・放出することが可能なリチウム複合酸化物もしくは硫化物を含有する正極活物質を用いた正極と、リチウム塩を含む非水電解液とを備えたことを特徴とする非水電解質二次電池。   A separator according to any one of claims 1 to 4, a negative electrode using a negative electrode active material containing silicon and / or silicon oxide capable of occluding and releasing lithium ions, and occluding and absorbing lithium ions. A non-aqueous electrolyte secondary battery comprising: a positive electrode using a positive electrode active material containing a lithium composite oxide or sulfide that can be released; and a non-aqueous electrolyte containing a lithium salt. 粘着性を付与したリチウム粉末を、離型性を有する基材に粘着固定した後、セパレータと接触させて、リチウム粉末をセパレータ側へ転写することを特徴とする表面にリチウム粉末を有する非水系二次電池用セパレータの製造方法。   A non-aqueous two-sided lithium powder having a lithium powder on the surface is characterized in that the lithium powder imparted with adhesiveness is adhesively fixed to a substrate having releasability and then brought into contact with a separator to transfer the lithium powder to the separator Manufacturing method of separator for secondary battery.
JP2007203773A 2006-08-30 2007-08-06 Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery Expired - Fee Related JP5256660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007203773A JP5256660B2 (en) 2006-08-30 2007-08-06 Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006233579 2006-08-30
JP2006233579 2006-08-30
JP2007203773A JP5256660B2 (en) 2006-08-30 2007-08-06 Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008084842A true JP2008084842A (en) 2008-04-10
JP5256660B2 JP5256660B2 (en) 2013-08-07

Family

ID=39355448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007203773A Expired - Fee Related JP5256660B2 (en) 2006-08-30 2007-08-06 Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5256660B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538424A (en) * 2007-08-31 2010-12-09 エフエムシー・コーポレイション Stabilized lithium metal powder, composition and method of manufacture for lithium ion applications
WO2013054476A1 (en) * 2011-10-14 2013-04-18 信越化学工業株式会社 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
WO2014119274A1 (en) * 2013-01-31 2014-08-07 三洋電機株式会社 Lithium-ion battery and lithium-ion battery separator
JP2016504735A (en) * 2012-12-19 2016-02-12 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Lithium powder anode
KR20170067326A (en) * 2015-12-08 2017-06-16 주식회사 엘지화학 Electrode Assembly Comprising Separator Coated with Lithium or Lithium Compound and Method for Preparing the Same
US9722284B2 (en) 2012-09-12 2017-08-01 Hitachi, Ltd. Nonaqueous secondary battery and battery control system
JP2019046596A (en) * 2017-08-30 2019-03-22 株式会社豊田自動織機 Method for manufacturing lithium negative electrode composite
CN112174154A (en) * 2020-09-02 2021-01-05 江苏天鹏电源有限公司 Negative active material, negative pole piece and lithium ion secondary battery manufacturing method
WO2021034097A1 (en) 2019-08-19 2021-02-25 대주전자재료 주식회사 Secondary battery and manufacturing method therefor
KR20210022239A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Secondary battery and preparation method thereof
KR20210022238A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Preparation method of secondary battery
US11424474B2 (en) 2017-05-08 2022-08-23 Lg Energy Solution, Ltd. Secondary battery, and apparatus and method for manufacturing the same
JP2023505348A (en) * 2020-08-28 2023-02-08 重慶金美新材料科技有限公司 Lithium replenishment separator and method for manufacturing lithium replenishment separator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102378583B1 (en) * 2018-03-20 2022-03-23 주식회사 엘지에너지솔루션 Separator Having Coating Layer of Lithium-Containing Composite, and Lithium Secondary Battery Comprising the Separator and Preparation Method Thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317551A (en) * 2004-04-29 2005-11-10 Samsung Sdi Co Ltd Lithium secondary battery
JP2007502002A (en) * 2003-08-13 2007-02-01 エイビーエスエル パワー ソリューションズ リミテッド Electrode manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502002A (en) * 2003-08-13 2007-02-01 エイビーエスエル パワー ソリューションズ リミテッド Electrode manufacturing method
JP2005317551A (en) * 2004-04-29 2005-11-10 Samsung Sdi Co Ltd Lithium secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538424A (en) * 2007-08-31 2010-12-09 エフエムシー・コーポレイション Stabilized lithium metal powder, composition and method of manufacture for lithium ion applications
WO2013054476A1 (en) * 2011-10-14 2013-04-18 信越化学工業株式会社 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
JP2013089364A (en) * 2011-10-14 2013-05-13 Shin Etsu Chem Co Ltd Silicon oxide for negative electrode material of nonaqueous electrolyte secondary battery, production method therefor, lithium ion secondary battery and electrochemical capacitor
US9722284B2 (en) 2012-09-12 2017-08-01 Hitachi, Ltd. Nonaqueous secondary battery and battery control system
JP2016504735A (en) * 2012-12-19 2016-02-12 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH Lithium powder anode
WO2014119274A1 (en) * 2013-01-31 2014-08-07 三洋電機株式会社 Lithium-ion battery and lithium-ion battery separator
KR20170067326A (en) * 2015-12-08 2017-06-16 주식회사 엘지화학 Electrode Assembly Comprising Separator Coated with Lithium or Lithium Compound and Method for Preparing the Same
US11424474B2 (en) 2017-05-08 2022-08-23 Lg Energy Solution, Ltd. Secondary battery, and apparatus and method for manufacturing the same
JP2019046596A (en) * 2017-08-30 2019-03-22 株式会社豊田自動織機 Method for manufacturing lithium negative electrode composite
WO2021034097A1 (en) 2019-08-19 2021-02-25 대주전자재료 주식회사 Secondary battery and manufacturing method therefor
KR20210022239A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Secondary battery and preparation method thereof
KR20210022238A (en) 2019-08-19 2021-03-03 대주전자재료 주식회사 Preparation method of secondary battery
JP2023505348A (en) * 2020-08-28 2023-02-08 重慶金美新材料科技有限公司 Lithium replenishment separator and method for manufacturing lithium replenishment separator
JP7451706B2 (en) 2020-08-28 2024-03-18 重慶金美新材料科技有限公司 Lithium replenishment separator and method for manufacturing lithium replenishment separator
CN112174154A (en) * 2020-09-02 2021-01-05 江苏天鹏电源有限公司 Negative active material, negative pole piece and lithium ion secondary battery manufacturing method

Also Published As

Publication number Publication date
JP5256660B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5256660B2 (en) Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery
KR101329905B1 (en) Separator for non-aqueous secondary battery and method for manufacturing the same, and non-aqueous electrolyte secondary battery
KR101390057B1 (en) Non-aqueous electrolyte secondary battery and process for producing the same
JP5196118B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5882516B2 (en) Lithium secondary battery
WO2015152113A1 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2009099523A (en) Lithium secondary battery
KR100560546B1 (en) Electrode for lithium secondary battery and lithium secondary battery comprising same
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
WO2017149927A1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2015520921A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
CN106063014B (en) Non-aqueous electrolyte secondary battery
JPWO2015152115A1 (en) Lithium ion secondary battery
JP5564872B2 (en) Nonaqueous electrolyte secondary battery
WO2016021443A1 (en) Method for manufacturing negative electrode of lithium-ion cell, and method for manufacturing lithium-ion cell
JP7309258B2 (en) Method for manufacturing secondary battery
JP4725562B2 (en) Non-aqueous secondary battery
CN108539198B (en) Solvent for coating positive electrode active material for secondary battery, positive electrode active material slurry containing same, and secondary battery manufactured therefrom
WO2019065288A1 (en) Nonaqueous electrolyte for lithium ion secondary batteries, and lithium ion secondary battery using same
WO2019065287A1 (en) Lithium ion secondary battery
CN113784916A (en) Method for preparing negative active material
WO2015111166A1 (en) Polymer for positive electrode active material coating of lithium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5256660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees