JP2008084829A - Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery - Google Patents

Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery Download PDF

Info

Publication number
JP2008084829A
JP2008084829A JP2007088376A JP2007088376A JP2008084829A JP 2008084829 A JP2008084829 A JP 2008084829A JP 2007088376 A JP2007088376 A JP 2007088376A JP 2007088376 A JP2007088376 A JP 2007088376A JP 2008084829 A JP2008084829 A JP 2008084829A
Authority
JP
Japan
Prior art keywords
dye
sensitized solar
solar cell
electrolyte
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007088376A
Other languages
Japanese (ja)
Inventor
Sei Kisaka
聖 木坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Jushi Corp
Original Assignee
Sekisui Jushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Jushi Corp filed Critical Sekisui Jushi Corp
Priority to JP2007088376A priority Critical patent/JP2008084829A/en
Publication of JP2008084829A publication Critical patent/JP2008084829A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a dye sensitized solar battery which can secure a smooth electron flow in an electrolyte solution for a long period and can maintain a high energy conversion efficiency, and to provide a dye sensitized solar battery. <P>SOLUTION: A photo electrode layer 2 is cleansed by an electrolyte solution which is used for filling the layer as an electrolyte solution 1 and a sensitized dye which is feared to be dissolved into the electrolyte solution 1 after the filling is certainly washed out and a smooth electron flow by the electrolyte solution 1 can be secured for a long period and a high energy conversion efficiency can be maintained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐久性が高められて長期に亘り高いエネルギー変換効率を保持できるようになされた色素増感型太陽電池に関するものである。   The present invention relates to a dye-sensitized solar cell that has improved durability and can maintain high energy conversion efficiency over a long period of time.

一般に用いられる色素増感型太陽電池としては、例えば金属の無機酸塩溶液に、導電性表面の基板を浸漬し、電気化学的手法により、1〜100m2/gの比表面積の多孔性光電変換半導体層を導電性の表面上に形成し、金属の無機酸塩溶液が、水溶性色素を含み、電気化学的手法により、水溶性色素が表面に担持された多孔性光電変換半導体層を形成する多孔性光電変換半導体層の作製方法、及びその作製方法により形成した多孔性光電変換半導体層を用いた色素増感型太陽電池が開示されている(例えば特許文献1)。   As a commonly used dye-sensitized solar cell, for example, a porous photoelectric conversion semiconductor having a specific surface area of 1 to 100 m <2> / g is obtained by immersing a conductive surface substrate in a metal inorganic acid salt solution and using an electrochemical method. A layer is formed on a conductive surface, a metal inorganic acid salt solution contains a water-soluble dye, and a porous photoelectric conversion semiconductor layer having a water-soluble dye supported on the surface is formed by an electrochemical method. A method for producing a photosensitive photoelectric conversion semiconductor layer and a dye-sensitized solar cell using a porous photoelectric conversion semiconductor layer formed by the production method are disclosed (for example, Patent Document 1).

特開2002−184476号公報JP 2002-184476 A

しかしながら、特許文献1に記載のような従来の色素増感型太陽電池では、多孔性光電変換半導体層に担持された増感色素が最適量となされていない場合には、使用中に半導体層から増感色素が電解液に流出し、流出した増感色素により電解液による円滑な電子の流れが阻害される恐れがあり、長期に亘り高いエネルギー変換効率を保持できにくいものであった。   However, in the conventional dye-sensitized solar cell as described in Patent Document 1, when the amount of the sensitizing dye carried on the porous photoelectric conversion semiconductor layer is not the optimum amount, The sensitizing dye flows out into the electrolytic solution, and the flow of electrons through the electrolytic solution may be hindered by the outflowing sensitizing dye, and it is difficult to maintain high energy conversion efficiency over a long period of time.

本発明は上記の如き課題に鑑みてなされたものであり、長期に亘り電解液における円滑な電子の流れを確保し、高いエネルギー変換効率を保持することができる色素増感型太陽電池の製造方法、及び色素増感型太陽電池を提供せんとするものである。   The present invention has been made in view of the above problems, and a method for producing a dye-sensitized solar cell that can ensure a smooth flow of electrons in an electrolyte and maintain high energy conversion efficiency over a long period of time. And a dye-sensitized solar cell.

上記目的を達成するため、本発明は以下のような構成としている。すなわち、本発明に係わる色素増感型太陽電池の製造方法は、透明基材の第一の導電性被膜上に形成した半導体層に増感色素を担持させて形成した光電極層を、対向基材の第二の導電性被膜と相対向させて配置し、該光電極層と第二の導電性被膜との間の空間に電解質を含む電解液を充填する色素増感型太陽電池の製造方法であって、前記電解液を用いて光電極層を洗浄し、該洗浄後に新たに電解液を充填することを特徴とするものである。   In order to achieve the above object, the present invention is configured as follows. That is, in the method for producing a dye-sensitized solar cell according to the present invention, a photoelectrode layer formed by supporting a sensitizing dye on a semiconductor layer formed on a first conductive film of a transparent substrate is used as a counter group. A method for producing a dye-sensitized solar cell, which is disposed opposite to a second conductive film of a material, and is filled with an electrolytic solution containing an electrolyte in a space between the photoelectrode layer and the second conductive film Then, the photoelectrode layer is washed with the electrolytic solution, and the electrolytic solution is newly filled after the washing.

本発明に係わる色素増感型太陽電池によれば、光電極層を充填するものと同じ電解液で洗浄することで、充填後に電解液に溶出する恐れのある分の増感色素が確実に洗い流されて、長期に亘り電解液による円滑な電子の流れを確保し、高いエネルギー変換効率を保持することができるようになり得る。   According to the dye-sensitized solar cell of the present invention, by washing with the same electrolytic solution that fills the photoelectrode layer, the sensitizing dye that can be eluted into the electrolytic solution after filling is surely washed away. Therefore, it is possible to secure a smooth flow of electrons by the electrolyte over a long period of time and maintain high energy conversion efficiency.

また前記洗浄は、発電に適する波長の光を含む光を照射しながら行われれば、光電極層が光により活性化された状態において溶出する恐れのある増感色素を予め除去することができ好ましい。   Further, if the washing is performed while irradiating light containing light having a wavelength suitable for power generation, it is preferable that a sensitizing dye that may be eluted in a state where the photoelectrode layer is activated by light can be removed in advance. .

また前記洗浄は、色素増感型太陽電池を組み上げた状態にて行い、電解液のみを一旦抜き取って再度電解液を充填するものであれば、実際の使用状態における色素増感型太陽電池において光電極層を洗浄することができ、光電極層を過不足なく洗浄することができ好ましい。   The washing is performed in a state where the dye-sensitized solar cell is assembled. If the electrolyte solution is once extracted and then filled with the electrolyte solution again, the dye-sensitized solar cell in the actual use state is subjected to light. The electrode layer can be washed, and the photoelectrode layer can be washed without excess or deficiency.

また本発明に係わる色素増感型太陽電池は、請求項1〜3のいずれかに記載の色素増感型太陽電池の製造方法により形成されたものであることを特徴とするものである。   The dye-sensitized solar cell according to the present invention is formed by the method for producing a dye-sensitized solar cell according to any one of claims 1 to 3.

本発明に係わる色素増感型太陽電池によれば、光電極層からの増感色素の溶出が起こりにくいことから、長期に亘り電解液による円滑な電子の流れを確保し、高いエネルギー変換効率を保持することができる。   According to the dye-sensitized solar cell according to the present invention, the elution of the sensitizing dye from the photoelectrode layer hardly occurs, so that a smooth electron flow by the electrolyte is ensured over a long period of time, and high energy conversion efficiency is achieved. Can be held.

本発明に係わる色素増感型太陽電池によれば、光電極層を充填するものと同じ電解液で洗浄することで、充填後に電解液に溶出する恐れのある分の増感色素が確実に洗い流されて、長期に亘り電解液による円滑な電子の流れを確保し、高いエネルギー変換効率を保持することができるようになり得る。   According to the dye-sensitized solar cell of the present invention, by washing with the same electrolytic solution that fills the photoelectrode layer, the sensitizing dye that can be eluted into the electrolytic solution after filling is surely washed away. Therefore, it is possible to secure a smooth flow of electrons by the electrolyte over a long period of time and maintain high energy conversion efficiency.

また本発明に係わる色素増感型太陽電池によれば、光電極層からの増感色素の溶出が起こりにくいことから、長期に亘り電解液による円滑な電子の流れを確保し、高いエネルギー変換効率を保持することができる。   Further, according to the dye-sensitized solar cell according to the present invention, since the elution of the sensitizing dye from the photoelectrode layer hardly occurs, a smooth electron flow by the electrolyte is ensured over a long period of time, and high energy conversion efficiency is achieved. Can be held.

本発明に係わる最良の実施の形態について、図面に基づき以下に具体的に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment according to the present invention will be specifically described below with reference to the drawings.

図1は、本発明に係わる色素増感型太陽電池の、実施の一形態における厚みを誇張して表現した縦断面図である。色素増感型太陽電池10は、多孔質の半導体材料に増感色素を担持させた光電極層2より光入射側αに透光性の透明基板32が設けられている。透明基板32と光電極層2との間にはITO(スズドープ酸化インジウム)からなる第一の導電性被膜31が設けられ、対向基板33に設けられた同じく白金からなる第二の導電性被膜31と、光電極層2との間には、ヨウ素水溶液である電解液1が充填されている。   FIG. 1 is a longitudinal sectional view of a dye-sensitized solar cell according to the present invention, exaggerating the thickness in one embodiment. In the dye-sensitized solar cell 10, a translucent transparent substrate 32 is provided on the light incident side α from the photoelectrode layer 2 in which a sensitizing dye is supported on a porous semiconductor material. A first conductive film 31 made of ITO (tin-doped indium oxide) is provided between the transparent substrate 32 and the photoelectrode layer 2, and a second conductive film 31 also made of platinum provided on the counter substrate 33. And between the photoelectrode layers 2 are filled with an electrolytic solution 1 that is an aqueous iodine solution.

本発明に係わる色素増感型太陽電池の製造方法においては、この電解液1が充填された状態から適宜の方法にて電解液1を抜き取り、新たに電解液1を充填することで光電極層2の洗浄を行うものである。また洗浄用の電解液1が充填された状態で、発電に適する波長の光を含む光、すなわち少なくとも用いる増感色素が励起される波長の光を含む可視光線を一定時間照射した後、電解液1を抜き取るようにすれば、更に効率よく溶出する恐れのある増感色素を除去することができる。   In the method for producing a dye-sensitized solar cell according to the present invention, the electrolytic solution 1 is extracted from the state in which the electrolytic solution 1 is filled by an appropriate method, and is newly filled with the electrolytic solution 1 to thereby form a photoelectrode layer. 2 is performed. In addition, after the cleaning electrolyte solution 1 is filled, after irradiation for a certain period of time with visible light including light having a wavelength suitable for power generation, that is, light having a wavelength at which the sensitizing dye to be used is excited, the electrolyte solution If 1 is extracted, a sensitizing dye that may be more efficiently eluted can be removed.

また光電極層2の洗浄は上記の方法に限定されず、増感色素を嘆じさせた光電極層2を形成した透明基板32を電解液1と同じ成分の洗浄液中に浸漬したり、その浸漬した状態で発電に適する波長の光を含む光を照射したりして洗浄を行うようにしてもよい。   Further, the cleaning of the photoelectrode layer 2 is not limited to the above method, and the transparent substrate 32 on which the photoelectrode layer 2 in which the sensitizing dye has been lamented is immersed in a cleaning solution having the same component as the electrolytic solution 1 or You may make it wash | clean by irradiating the light containing the light of the wavelength suitable for electric power generation in the immersed state.

電解液1としては、アセトニトリルとエチレンカーボネートの混合溶液や、メトキシプロピオニトリル等の溶媒に、ヨウ素等のハロゲン単体、ヨウ化リチウム、金属ヨウ素等の電解質を加えたもの等の液体電解質を好適に用いることができる。   As the electrolytic solution 1, a liquid electrolyte such as a mixed solution of acetonitrile and ethylene carbonate, or a solvent such as methoxypropionitrile and a halogen simple substance such as iodine, or an electrolyte such as lithium iodide or metallic iodine is suitably used. Can be used.

増感色素としては、クチナシ色素、スイカズラ色素等のカロテノイド系のものやクマリン343等のクマリン系色素等のものを用いることで黄色を発現させることができる。その他の色調を発現させるにおいては、赤色であればエオシン系等、青色であればスクレアリリウム系等の色素を用いて発現させることができ、またこれら三原色を適宜の割合で配合することで様々な色調を設定することが可能となり得る。   As a sensitizing dye, yellow can be expressed by using a carotenoid pigment such as gardenia pigment or honeysuckle pigment or a coumarin pigment such as coumarin 343. In developing other color tones, it can be expressed using dyes such as eosin and the like for red, and Scarylium for blue, and various combinations of these three primary colors at appropriate ratios. It may be possible to set different color tones.

また用いられる用途によっては、増感色素として一般に知られるルテニウム金属錯体色素として、N3、ブラックダイ、ビピリジン−カルボン酸基、ビピリジン系、フェナントロリン、キノリン、β−ジケトナート錯体等、他にOs金属錯体、Fe金属錯体、Cu金属錯体、Pt金属錯体、Re金属錯体等の金属錯体色素や、シアニン色素やメロシアニン色素等のメチン色素、マーキュロクロム色素、キサンテン系色素、ポルフィリン色素、フタロシアニン色素、アゾ系色素、クマリン系色素等の有機系色素などを用いることもできる。   Depending on the application used, ruthenium metal complex dyes generally known as sensitizing dyes include N3, black dye, bipyridine-carboxylic acid group, bipyridine series, phenanthroline, quinoline, β-diketonate complex, and other Os metal complexes, Metal complex dyes such as Fe metal complex, Cu metal complex, Pt metal complex, Re metal complex, methine dyes such as cyanine dyes and merocyanine dyes, mercurochrome dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, azo dyes, coumarins Organic dyes such as dyes can also be used.

また透明基板32については、透光性であれば特に限定されるものではないが、成形が容易であるポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメタクリレート、アクリル樹脂、ポリ塩化ビニル、ABS等の透光性を有する熱可塑性合成樹脂を好適に用いることができるが、電解液1であるヨウ素溶液に対する耐性の高い環状ポリオレフィン系樹脂が最も好適に用いることができる。また紫外線吸収剤を配合して更に耐久性を高めるようにしてもよい。透光性及び紫外線量の低減効果を発揮させる最適な組合せは、環状ポリオレフィン系樹脂に紫外線吸収剤としてベンゾトリアゾール系のものを配合したものである。   The transparent substrate 32 is not particularly limited as long as it is translucent. However, it is easy to mold, such as polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polymethacrylate, acrylic resin, polyvinyl chloride, and ABS. A thermoplastic synthetic resin having light properties can be preferably used, but a cyclic polyolefin resin having high resistance to the iodine solution as the electrolytic solution 1 can be most preferably used. Moreover, you may make it mix | blend durability further by mix | blending a ultraviolet absorber. The optimum combination for exhibiting the effect of reducing translucency and the amount of ultraviolet rays is obtained by blending a cyclic polyolefin-based resin with a benzotriazole-based one as an ultraviolet absorber.

また第一の導電性被膜31については、透明性に優れると共に高い導電性を備えるスズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、金、白金等やそれらを複数組み合わせたものを真空蒸着法、スパッタ蒸着法、イオンプレーティング法、CVD法、泳動電着法等の適宜の方法により基材11上に形成したり、またはそれらの薄膜が形成されたフィルムを基材11に貼着したりする等して形成することができる。   The first conductive coating 31 is vacuum-deposited with tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold, platinum, etc., which are excellent in transparency and high conductivity, and combinations thereof. The film is formed on the substrate 11 by an appropriate method such as a sputtering method, a sputter deposition method, an ion plating method, a CVD method, or an electrophoretic electrodeposition method, or a film on which these thin films are formed is adhered to the substrate 11. Or the like.

また対向基板33側に設けられる第二の導電性被膜31としては、白金、カーボン、導電性ポリマーや、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)等の金属酸化物と前記物質との複合材料等を用いて、真空蒸着法、スパッタ蒸着法、イオンプレーティング法、CVD法、泳動電着法等の適宜の方法により基材11上に形成したり、またそれらの薄膜が形成されたフィルムを基材11に貼着したりする等して形成することができる。   As the second conductive film 31 provided on the counter substrate 33 side, platinum, carbon, conductive polymer, metal oxide such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), and the above substances are used. These composite materials are used to form on the substrate 11 by an appropriate method such as a vacuum deposition method, a sputter deposition method, an ion plating method, a CVD method, an electrophoretic deposition method, or a thin film thereof. The film can be formed by sticking the film to the base material 11 or the like.

また光電極層2を形成する半導体層は、Fe、CuO、In、WO、FeTiO、PbO、V、FeTiO、Bi、Nb、SrTiO、ZnO、BaTiO、CaTiO、KTaO、SnO、ZrOなどの半導体材料を用いて形成された薄膜に増感色素を担持させることで形成でき、多孔質としておくのが好ましい。半導体材料としてはこれらの内、コストや作業性等から酸化チタン(TiO)、又は透明性の薄層の形成性に優れ且つ電析が可能である酸化亜鉛(ZnO)が好適であるが、それに限定されるものではなく適宜のものを用いることができる。 The semiconductor layers forming the photoelectrode layer 2 are Fe 2 O 3 , Cu 2 O, In 2 O 3 , WO 3 , Fe 2 TiO 3 , PbO, V 2 O 5 , FeTiO 3 , Bi 2 O 3 , Nb. It can be formed by supporting a sensitizing dye on a thin film formed using a semiconductor material such as 2 O 3 , SrTiO 3 , ZnO, BaTiO 3 , CaTiO 3 , KTaO 3 , SnO 2 , ZrO 2, and keep it porous. Is preferred. Of these, titanium oxide (TiO 2 ) or zinc oxide (ZnO), which is excellent in the formation of a transparent thin layer and can be electrodeposited, is preferable as the semiconductor material. The present invention is not limited to this, and appropriate ones can be used.

洗浄用の電解液1が充填された状態で、少なくとも用いる増感色素が励起される波長の光を含む可視光線を照射する時間としては、70〜100時間程度が好ましい。表1は、後述する実施例1に挙げた色素増感型太陽電池をソーラーシミュレータにて疑似太陽光を照射し、JIS C8917「結晶系太陽電池モジュールの環境試験方法及び耐久試験方法」に基づく光照射試験を行った後、UV−VIS(可視・紫外吸光光度法)により測定した光電極層2の、500nmの波長の光における吸光度の推移を示すもので、縦軸は吸光度、横軸は光照射時間(時間)を表している。   The time for irradiating visible light containing light having a wavelength at which the sensitizing dye to be used is excited at least in the state where the electrolytic solution 1 for cleaning is filled is preferably about 70 to 100 hours. Table 1 shows the light based on JIS C8917 “Environmental test method and durability test method for crystalline solar cell module” by irradiating pseudo-sunlight on the dye-sensitized solar cell listed in Example 1 described later with a solar simulator. After the irradiation test, the change in absorbance of light at a wavelength of 500 nm of the photoelectrode layer 2 measured by UV-VIS (visible / ultraviolet absorptiometry) is shown. The vertical axis represents absorbance and the horizontal axis represents light. It represents the irradiation time (time).

Figure 2008084829
Figure 2008084829

表1に示す如く、光照射試験の時間が経過するにつれて、当初は吸光度が上昇し、すなわち色素の脱離により光電極層2の赤色が少なくなってきているが、光照射試験72時間の時点から吸光度がほぼ一定となっている。従って、少なくとも70時間程度、余裕を考慮しても100時間程度の光照射試験を行って電解質を抜き取り且つ充填することで、会合体等となって吸着力の弱い増感色素が十分に除去されることが推定できる。   As shown in Table 1, as the time of the light irradiation test elapses, the absorbance initially increases, that is, the red color of the photoelectrode layer 2 decreases due to the desorption of the dye. Therefore, the absorbance is almost constant. Therefore, by taking a light irradiation test for at least about 70 hours and taking the allowance for about 100 hours to extract and fill the electrolyte, sensitizing dyes with weak adsorptive power are sufficiently removed as aggregates and the like. Can be estimated.

本発明に係わる色素増感型太陽電池の製造方法により得られる効果について、下記の実施例にて説明する。   The effects obtained by the method for producing a dye-sensitized solar cell according to the present invention will be described in the following examples.

(実施例1)
環状ポリオレフィン系樹脂板の表面に蒸着したITO(スズドープ酸化インジウム)製の第一の導電性皮膜上に、多孔質の酸化亜鉛からなる薄膜の半導体層を形成し、半導体層にクマリン系増感色素(D102)を500μM、1時間浸漬して透明基材を形成した。また同じく環状ポリオレフィン系樹脂板の表面に蒸着したITO(スズドープ酸化インジウム)製上に白金を蒸着した第二の導電性皮膜を設けて対向基材を形成した。この光電極層と第二の導電性被膜と相対向させて配置し、光電極層と第二の導電性被膜との間に、ヨウ素が0.025Mの濃度で、テトラプロピルアンモニウムヨージドが0.5Mの濃度で嵩高い電解質としてアセトニトリル系の溶媒に分散されている電解液を一旦充填し、電解質層の周囲をエポキシ系の封止材にて封止した。この状態で後述するJIS C8917に基づく光照射試験を72時間行った後、電解液を抜き取り、新たに電解液を充填することで、本発明の実施例1に係わる色素増感型太陽電池を得た。
(Example 1)
A thin semiconductor layer made of porous zinc oxide is formed on a first conductive film made of ITO (tin-doped indium oxide) deposited on the surface of a cyclic polyolefin resin plate, and a coumarin sensitizing dye is formed on the semiconductor layer. (D102) was immersed in 500 μM for 1 hour to form a transparent substrate. Similarly, a counter conductive substrate was formed by providing a second conductive film in which platinum was vapor-deposited on ITO (tin-doped indium oxide) vapor-deposited on the surface of the cyclic polyolefin resin plate. The photoelectrode layer and the second conductive film are arranged opposite to each other, and between the photoelectrode layer and the second conductive film, iodine is 0.025M and tetrapropylammonium iodide is 0. An electrolyte solution dispersed in an acetonitrile-based solvent as a bulky electrolyte at a concentration of 5 M was once filled, and the periphery of the electrolyte layer was sealed with an epoxy-based sealing material. In this state, after performing a light irradiation test based on JIS C8917 described later for 72 hours, the electrolyte solution was taken out and newly filled with the electrolyte solution, whereby the dye-sensitized solar cell according to Example 1 of the present invention was obtained. It was.

(比較例1)
光照射試験及び電解液の抜き取り及び新たに充填しない(電解液は最初に充填したそのまま)以外は実施例1と同じにして、比較例1の色素増感型太陽電池を得た。
(Comparative Example 1)
A dye-sensitized solar cell of Comparative Example 1 was obtained in the same manner as in Example 1 except that the light irradiation test, extraction of the electrolytic solution, and no new filling were performed (the electrolytic solution was filled as it was first).

実施例1及び比較例1の色素増感型太陽電池について、初期のエネルギー変換効率を測定し、更にソーラーシミュレータにて疑似太陽光を照射し、JIS C8917「結晶系太陽電池モジュールの環境試験方法及び耐久試験方法」に基づく光照射試験を行い、当該光照射試験144時間(実際の屋外暴露2年相当)及び316時間(実際の屋外暴露5年相当)照射時点のエネルギー変換効率をI−VカーブトレーサーMP−160(英弘精機社製)にて測定した。その光照射試験後のエネルギー変換効率の保持率を表2に示す。   For the dye-sensitized solar cell of Example 1 and Comparative Example 1, the initial energy conversion efficiency was measured, and further simulated sunlight was irradiated with a solar simulator, and JIS C8917 “Environmental test method for crystalline solar cell module and A light irradiation test based on the “endurance test method” was conducted, and the energy conversion efficiency at the time of irradiation for 144 hours (equivalent to actual outdoor exposure for 2 years) and 316 hours (equivalent to actual outdoor exposure for 5 years) was converted to an IV curve. Measurement was performed with a tracer MP-160 (manufactured by Eiko Seiki Co., Ltd.). Table 2 shows the retention rate of the energy conversion efficiency after the light irradiation test.

Figure 2008084829
Figure 2008084829

光照射試験144時間時点においては、実施例1と比較例1とはそれ程差はないものの、光照射試験312時間後においては比較例1と実施例1との間には著しい差が生じており、光照射試験312時間、すなわち屋外暴露5年相当時点においては、比較例1の従来の製造方法によって製造された色素増感型太陽電池では増感色素の電解液への溶出によりエネルギー変換効率の著しい低下が不可避であり、本発明に係わる製造方法による優位性が明確に顕わされている。   Although there is not much difference between Example 1 and Comparative Example 1 at the time of light irradiation test 144 hours, there is a significant difference between Comparative Example 1 and Example 1 after 312 hours of light irradiation test. In the light irradiation test of 312 hours, that is, at the time corresponding to outdoor exposure for 5 years, in the dye-sensitized solar cell manufactured by the conventional manufacturing method of Comparative Example 1, the energy conversion efficiency is improved by elution of the sensitizing dye into the electrolyte. A significant decrease is inevitable, and the superiority of the manufacturing method according to the present invention is clearly manifested.

更に以下の実施例を示して、本発明に係る色素増感型太陽電池の製造方法により得られる利点を説明する。   Further, the following examples will be shown to explain the advantages obtained by the method for producing a dye-sensitized solar cell according to the present invention.

(実施例2)
電解液のヨウ素濃度を0.25Mとした以外は実施例1と同じにして、本発明に係る実施例2の色素増感型太陽電池を得た。
(Example 2)
A dye-sensitized solar cell of Example 2 according to the present invention was obtained in the same manner as Example 1 except that the iodine concentration of the electrolytic solution was changed to 0.25M.

(比較例2)
電解液のヨウ素濃度を0.25Mとした以外は比較例1と同じにして、比較例2の色素増感型太陽電池を得た。
(Comparative Example 2)
A dye-sensitized solar cell of Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that the iodine concentration of the electrolytic solution was changed to 0.25M.

実施例2及び比較例2の色素増感型太陽電池について、初期のエネルギー変換効率を測定し、更にソーラーシミュレータにて疑似太陽光を照射し、JIS C8917「結晶系太陽電池モジュールの環境試験方法及び耐久試験方法」に基づく光照射試験を行い、当該光照射試験24時間、72時間、144時間(実際の屋外暴露2年相当)、216時間及び316時間(実際の屋外暴露5年相当)照射時点のエネルギー変換効率をI−VカーブトレーサーMP−160(英弘精機社製)にて測定した。その光照射試験後のエネルギー変換効率の保持率の推移を表3に示す。   About the dye-sensitized solar cell of Example 2 and Comparative Example 2, the initial energy conversion efficiency was measured, and further, simulated sunlight was irradiated with a solar simulator, and JIS C8917 “Environmental test method for crystalline solar cell module and Light irradiation test based on "Durability Test Method", and the irradiation time of the light irradiation test 24 hours, 72 hours, 144 hours (equivalent to actual outdoor exposure 2 years), 216 hours and 316 hours (equivalent to actual outdoor exposure 5 years) The energy conversion efficiency was measured with an IV curve tracer MP-160 (manufactured by Eiko Seiki Co., Ltd.). Table 3 shows the transition of the retention rate of the energy conversion efficiency after the light irradiation test.

Figure 2008084829
Figure 2008084829

本実施例においても、ヨウ素濃度を高めることで比較例2の変換効率の低下の度合いは比較例1より小さくはなされているものの、光照射試験312時間後においては実施例2と比較例2との間には著しい差が生じており、光照射試験312時間、すなわち屋外暴露5年相当時点においては、比較例2の従来の製造方法によって製造された色素増感型太陽電池では増感色素の電解液への溶出によりエネルギー変換効率の著しい低下が不可避であり、本発明に係わる製造方法による優位性が明確に顕わされている。また実施例2と比較例2との変換効率の乖離が開始するのは光照射試験72時間付近からであり、表1に示した増感色素の脱離と、表3に示したエネルギー変換効率とに相関関係があることも推定できる。   Also in this example, the degree of decrease in the conversion efficiency of Comparative Example 2 by increasing the iodine concentration was made smaller than that of Comparative Example 1, but after 312 hours of the light irradiation test, Example 2 and Comparative Example 2 In the light irradiation test of 312 hours, that is, at the time corresponding to 5 years of outdoor exposure, in the dye-sensitized solar cell manufactured by the conventional manufacturing method of Comparative Example 2, the sensitizing dye A significant decrease in energy conversion efficiency is inevitable due to elution into the electrolytic solution, and the superiority of the production method according to the present invention is clearly manifested. Further, the difference in conversion efficiency between Example 2 and Comparative Example 2 starts from around 72 hours of the light irradiation test. The desorption of the sensitizing dye shown in Table 1 and the energy conversion efficiency shown in Table 3 are shown. It can also be estimated that there is a correlation.

本発明に係わる色素増感型太陽電池の、実施の一形態における厚みを誇張して表した縦断面図である。It is the longitudinal cross-sectional view which exaggerated and represented the thickness in one Embodiment of the dye-sensitized solar cell concerning this invention.

符号の説明Explanation of symbols

1 電解質層
2 光電極層
31 (第一及び第二の)導電性被膜
32 透明基板
33 対向基板
10 色素増感型太陽電池
DESCRIPTION OF SYMBOLS 1 Electrolyte layer 2 Photoelectrode layer 31 (1st and 2nd) electroconductive film 32 Transparent substrate 33 Opposite substrate 10 Dye-sensitized solar cell

Claims (4)

透明基材の第一の導電性被膜上に形成した半導体層に増感色素を担持させて形成した光電極層を、対向基材の第二の導電性被膜と相対向させて配置し、該光電極層と第二の導電性被膜との間の空間に電解質を含む電解液を充填する色素増感型太陽電池の製造方法であって、前記電解液を用いて光電極層を洗浄し、該洗浄後に新たに電解液を充填することを特徴とする色素増感型太陽電池の製造方法。 A photoelectrode layer formed by supporting a sensitizing dye on a semiconductor layer formed on the first conductive film of the transparent substrate is disposed opposite to the second conductive film of the counter substrate, A method for producing a dye-sensitized solar cell in which a space between a photoelectrode layer and a second conductive coating is filled with an electrolyte containing an electrolyte, and the photoelectrode layer is washed with the electrolyte, A method for producing a dye-sensitized solar cell, which is newly filled with an electrolytic solution after the washing. 前記洗浄は、発電に適する波長の光を含む光を照射しながら行われることを特徴とする請求項1に記載の色素増感型太陽電池の製造方法。 The method for producing a dye-sensitized solar cell according to claim 1, wherein the cleaning is performed while irradiating light including light having a wavelength suitable for power generation. 前記洗浄は、色素増感型太陽電池を組み上げた状態にて行い、電解液のみを一旦抜き取って再度電解液を充填するものであることを特徴とする請求項1又は2に記載の色素増感型太陽電池の製造方法。 The dye sensitization according to claim 1 or 2, wherein the washing is performed in a state where the dye-sensitized solar cell is assembled, and only the electrolytic solution is once extracted and filled again. Type solar cell manufacturing method. 請求項1〜3のいずれかに記載の色素増感型太陽電池の製造方法により形成されたものであることを特徴とする色素増感型太陽電池。
It forms with the manufacturing method of the dye-sensitized solar cell in any one of Claims 1-3, The dye-sensitized solar cell characterized by the above-mentioned.
JP2007088376A 2006-08-31 2007-03-29 Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery Pending JP2008084829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088376A JP2008084829A (en) 2006-08-31 2007-03-29 Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006237074 2006-08-31
JP2007088376A JP2008084829A (en) 2006-08-31 2007-03-29 Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2008084829A true JP2008084829A (en) 2008-04-10

Family

ID=39355441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088376A Pending JP2008084829A (en) 2006-08-31 2007-03-29 Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2008084829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807634B (en) * 2009-02-17 2012-04-04 罗信明 High-brightness light emitting diode chip
WO2016121554A1 (en) * 2015-01-26 2016-08-04 田中貴金属工業株式会社 Dye-sensitized solar cell and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085551A (en) * 2003-09-05 2005-03-31 Mitsubishi Paper Mills Ltd Manufacturing method of semiconductor electrode, and photoelectric transfer element using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085551A (en) * 2003-09-05 2005-03-31 Mitsubishi Paper Mills Ltd Manufacturing method of semiconductor electrode, and photoelectric transfer element using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807634B (en) * 2009-02-17 2012-04-04 罗信明 High-brightness light emitting diode chip
WO2016121554A1 (en) * 2015-01-26 2016-08-04 田中貴金属工業株式会社 Dye-sensitized solar cell and method for producing same
JP2016139628A (en) * 2015-01-26 2016-08-04 田中貴金属工業株式会社 Dye-sensitization type solar battery and manufacturing method for the same

Similar Documents

Publication Publication Date Title
Balasingam et al. Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum
JP4287344B2 (en) Dye-sensitive solar cell
CN103764769B (en) Photo-electric conversion element and photoelectrochemical cell, pigment used in it
CN101965662A (en) Functional device and method for producing the same
CN101930854B (en) Dye-sensitized solar cells and manufacturing method for thereof
Matta et al. Dye-anchoring functional groups on the performance of dye-sensitized solar cells: comparison between alkoxysilyl and carboxyl groups
CN1970641A (en) Dye for use in dye sensitized photovoltaic cell and ye sensitized photovoltaic cell
JP2009245782A (en) Dye-sensitized solar cell
JP4963165B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
Baviskar et al. “Basic idea, advance approach”: efficiency boost by sensitization of blended dye on chemically deposited ZnO films
Fu et al. Enhanced light harvesting in panchromatic double dye-sensitized solar cells incorporated with bilayered TiO2 thin film-based photoelectrodes
Nonomura et al. Blocking the charge recombination with diiodide radicals by TiO2 compact layer in dye-sensitized solar cells
JP2008084829A (en) Manufacturing method of dye sensitized solar battery, and dye sensitized solar battery
Uchiyama et al. An increase in energy conversion efficiency by decreasing cobalt redox electrolyte diffusion resistance in dye-sensitized solar cells
JP2008311127A (en) Sensitizing dye used in dye-sensitized photoelectric conversion element, dye-sensitized photoelectric conversion element using sensitizing dye, and solar cell using dye-sensitized photoelectric conversion element
JP5156271B2 (en) Sensitizing dye used for dye-sensitized photoelectric conversion element and solar cell using the sensitizing dye
JP2007073198A (en) Dye-sensitized solar battery
KR101196819B1 (en) Photoelectrode for dye-sensitized solar cell having 1-dimensional pores, preparing method of the same, and dye-sensitized solar cell having the same
KR101068436B1 (en) Photochromic dye for dye-sensitized solar cell and dye-sensitized solar cell using them
JP2008111321A (en) Building board with solar cell
JP2006339074A (en) Manufacturing method for dye-sensitized solar cell
KR20100046776A (en) Substrate complex for solar cell, solar cell comprising the same and method of manufacturing the same
JP2007299671A (en) Dye-sensitized solar cell
Graetzel Transition metal complexes as sensitizers for efficient mesoscopic solar cells
Jyoti et al. A critical review on mesoporous photoanodes for dye-sensitized solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115