JP2008083735A - Wide angle lens - Google Patents

Wide angle lens Download PDF

Info

Publication number
JP2008083735A
JP2008083735A JP2007325192A JP2007325192A JP2008083735A JP 2008083735 A JP2008083735 A JP 2008083735A JP 2007325192 A JP2007325192 A JP 2007325192A JP 2007325192 A JP2007325192 A JP 2007325192A JP 2008083735 A JP2008083735 A JP 2008083735A
Authority
JP
Japan
Prior art keywords
lens
focal length
wide angle
aberration
spherical aberration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007325192A
Other languages
Japanese (ja)
Inventor
Akiko Honda
亜紀子 本田
Shinji Kirihata
慎司 桐畑
Takahiro Sugiyama
孝浩 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007325192A priority Critical patent/JP2008083735A/en
Publication of JP2008083735A publication Critical patent/JP2008083735A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a wide angle lens of satisfactory performance in visible light and near infrared light even though the lens is small and inexpensive and tolerance is also loose. <P>SOLUTION: The wide angle lens successively comprises a first lens 11 that is a double-concave lens having negative power, and a second lens 12 that is a double-convex lens from an object side. One or more lens surfaces are aspheric, and the wide angle lens satisfies conditions; 0.6D2/f≤¾f2/f1¾/≤2.3D2/f and 0.6h2≤r2≤1.0h2 when the focal length of the entire system is defined as f, the focal length of the first lens is defined as f1, the focal length of the second lens is defined as f2, the radius of curvature of the surface of the first lens on an image side is defined as r2, the effective radius on the surface of the first lens on the image side is defined as h2, and a distance between the surfaces of the first lens and the second lens is defined as D2. The wide angle lens requires only two lenses and is small, and also provides a very satisfactory formed image even in the near infrared light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は屋外や屋内に設置するドア監視用カメラ、防犯カメラ、監視用カメラあるいはテレビ電話用カメラなどに用いる広角レンズ、殊に超広角のものに関する。   The present invention relates to a wide-angle lens used for a door surveillance camera, a security camera, a surveillance camera, a video phone camera, or the like installed outdoors or indoors, particularly an ultra-wide-angle lens.

ドア監視用カメラなどの監視カメラやテレビ電話用カメラなどに用いられる撮像レンズは、解像力の他に撮像エリアが広い超広角タイプの広角レンズが要求される。
従来このようなレンズはレンズ枚数が多く、小型化が困難である上に安価に製作することができなかった。
An imaging lens used for a monitoring camera such as a door monitoring camera or a video phone camera is required to be a super-wide-angle type wide-angle lens having a wide imaging area in addition to a resolving power.
Conventionally, such a lens has a large number of lenses and is difficult to reduce in size and cannot be manufactured at low cost.

また、その用途上、周辺に照明光のない状態で、例えばカメラ搭載の近赤外光によって照明して撮影する場合があるが、可視光のみで設計されたものでは近赤外光照明化での撮影ではぼけが生じる。   In addition, for some purposes, there are cases where there is no illumination light in the surroundings, for example, shooting with near-infrared light mounted on a camera, but for those designed with only visible light, near-infrared light illumination can be used. Shooting is blurred.

また特許第2015317号などに2群2枚レンズ構成のものが開示されているが、これらでは第1レンズにメニスカスレンズを用いており、このために小型化する場合、第1レンズの像側の曲率を非常にきつくする必要があって、軸ずれ公差に弱い、製造しにくいなどの問題がある。
特許第2015317号公報
Japanese Patent No. 2015317 discloses a two-group two-lens configuration. However, in this case, a meniscus lens is used as the first lens. For this reason, when downsizing, the image side of the first lens is arranged. It is necessary to make the curvature very tight, and there are problems such as weak tolerance for axis deviation and difficult to manufacture.
Japanese Patent No. 2015317

本発明は上記の従来の問題点に鑑みて発明したものであって、小型で安価である上に公差が緩くても可視光及び近赤外光において良好な性能を発揮する広角レンズを提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and provides a wide-angle lens that is small and inexpensive, and exhibits good performance in visible light and near-infrared light even if the tolerance is loose. This is a problem.

上記課題を解決するために本発明に係る広角レンズは、物体側から順に負のパワーを有する両凹レンズである第1レンズと、両凸レンズである第2レンズより構成され、少なくとも第1レンズの像側のレンズ面が非球面であり、全系の焦点距離をf、第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第1レンズの像側の面の曲率半径をr2、第1レンズの像側の面における有効半径をh2、第1レンズと第2レンズの面間距離をD2とする時、次の条件
0.6D2/f≦|f2/f1|≦2.3D2/f (iv)
0.6h2≦r2≦1.0h2 (v)
を満足することに特徴を有している。
In order to solve the above problems, a wide-angle lens according to the present invention includes a first lens that is a biconcave lens having negative power in order from the object side, and a second lens that is a biconvex lens, and at least an image of the first lens. The lens surface on the side is an aspheric surface, the focal length of the entire system is f, the focal length of the first lens is f1, the focal length of the second lens is f2, the radius of curvature of the image side surface of the first lens is r2, When the effective radius on the image side surface of the first lens is h2, and the distance between the surfaces of the first lens and the second lens is D2, the following conditions are satisfied: 0.6D2 / f ≦ | f2 / f1 | ≦ 2.3D2 / f (iv)
0.6h2 ≦ r2 ≦ 1.0h2 (v)
It has the feature in satisfying.

第1レンズを両凹レンズとしているために、像側の屈折パワーを物体側へ分配することになり、像側の曲率を弱くすることができるものであり、このために組立公差、特に軸ずれに強いものとなるほか、製造の面でも加工しやすいものである。ただし物体側を凹面とすると、広画角光線の入射角が大きくなり入射パワーの減少傾向があるが、緩い曲率、または平面とすることや、非球面とすることで回避できる。   Since the first lens is a biconcave lens, the refractive power on the image side is distributed to the object side, so that the curvature on the image side can be weakened. Besides being strong, it is easy to process in terms of manufacturing. However, if the object side is a concave surface, the incident angle of a wide-angle light beam increases and the incident power tends to decrease, but this can be avoided by using a gentle curvature, a flat surface, or an aspherical surface.

ここでの条件(iv)は、近赤外光を照射した時の性能を良好にするためのものである。一般的に可視光域だけの球面収差補正をしたレンズにおいては、近赤外光についての球面収差が可視光の像点よりもプラス側に大きくずれるが、可視光の像点とのバランスを取るために、可視光の球面収差をやや補正過剰とすることにより、目的の性能を得ている。ここにおいて、凹レンズでは球面収差がオーバーとなり、凸レンズでは球面収差がアンダーになることは周知のことであるが、本発明では第1レンズと第2レンズとの間隔D2が大きくなればなるほど凹レンズで発生した球面収差のオーバー量が強調される。   The condition (iv) here is for improving the performance when irradiated with near-infrared light. In general, in a lens with spherical aberration correction only in the visible light range, the spherical aberration for near-infrared light is greatly shifted to the plus side from the image point of visible light, but it is balanced with the image point of visible light. Therefore, the target performance is obtained by slightly overcorrecting the spherical aberration of visible light. Here, it is well known that spherical aberration is over in a concave lens and spherical aberration is under in a convex lens. However, in the present invention, the larger the distance D2 between the first lens and the second lens is, the larger the aberration occurs in the concave lens. The amount of spherical aberration over is emphasized.

そして、上記条件(iv)において、|f2/f1|の値が0.6D2/fの値よりも小さい時には、球面収差のオーバー量が小さすぎて、可視光域での球面収差は良好であるものの近赤外光での球面収差が大きすぎて著しい性能の低下を招く。逆に|f2/f1|の値が2.3D2/fの値よりも大きい時には、球面収差が補正過剰になりすぎ、結果として性能が悪くなってしまう。   In the condition (iv), when the value of | f2 / f1 | is smaller than the value of 0.6D2 / f, the amount of overspherical aberration is too small, and the spherical aberration in the visible light region is good. However, the spherical aberration in the near-infrared light is too large, leading to a significant performance degradation. Conversely, when the value of | f2 / f1 | is larger than the value of 2.3D2 / f, the spherical aberration is excessively corrected, resulting in poor performance.

さらに条件(v)は、条件(iv)と関連して、球面収差を良好に補正するための条件であって、上述のように球面収差をやや補正過剰とする時、球面収差の中間部と周縁部とのバランスを考えると、球面収差の周縁部が急激に補正過剰になってしまう。この点を良好に保つために、第1レンズの像側の面(第2面)を非球面形状として球面収差の高次の項を閉じ、周縁部の球面収差が急激に補正過剰となることがないようにしている。   Furthermore, the condition (v) is a condition for correcting spherical aberration satisfactorily in relation to the condition (iv), and when the spherical aberration is slightly overcorrected as described above, Considering the balance with the peripheral edge, the peripheral edge of the spherical aberration becomes abruptly overcorrected. In order to keep this point favorable, the surface on the image side (second surface) of the first lens is aspherical, and higher-order terms of spherical aberration are closed, and the spherical aberration at the peripheral portion is abruptly overcorrected. There is no such thing.

そして条件(v)において、第2面の曲率半径r2が有効半径h2よりも大きい時には、高次の項の影響が小さすぎて周縁部での球面収差が補正過剰になりすぎるのを補正することが困難となる。また、有効半径h2の0.6倍より小さい時には、周縁部の球面収差の補正には有利であるものの、第2面の曲率半径r2が小さくなりすぎてレンズ加工が困難となってしまう。   In the condition (v), when the curvature radius r2 of the second surface is larger than the effective radius h2, the influence of the higher-order term is too small and the spherical aberration at the peripheral portion is corrected too much. It becomes difficult. On the other hand, when the radius is smaller than 0.6 times the effective radius h2, it is advantageous for correcting the spherical aberration at the peripheral portion, but the curvature radius r2 of the second surface becomes too small, making lens processing difficult.

さらに請求項2の発明は、上記請求項1に加えて、
1.0≦D2/f≦1.5 (vi)
を満足することに特徴を有している。この条件は、上記条件(iv)と関連して球面収差の補正を良好にするとともに所要のバックフォーカスを得るためのものである。超広角レンズでは、焦点距離が小さく設定されるために、レンズのバックフォーカスも小さくなってしまうが、このバックフォーカスはある程度の大きさがないと、レンズと結像面との間にフィルターなどを挿入できなくなってしまうほか、結像面の出射角度が大きくなって周辺光量の低下も招いてしまう。
Furthermore, the invention of claim 2 is in addition to the above-mentioned claim 1,
1.0 ≦ D2 / f ≦ 1.5 (vi)
It has the feature in satisfying. This condition is for improving the spherical aberration in relation to the condition (iv) and obtaining a required back focus. In an ultra-wide-angle lens, the focal length is set small, so the back focus of the lens also becomes small.If this back focus is not large enough, a filter or the like is placed between the lens and the image plane. In addition to being unable to insert, the exit angle of the imaging surface becomes large, leading to a reduction in the amount of peripheral light.

そして条件(vi)において、D2/fの値を下限1.0よりも小さくすると、所要のバックフォーカスを得ることができなくなり、上限1.5より大きくするとバックフォーカスを得るためには有利となるものレンズ系が大きくなりすぎて好ましくない。   In the condition (vi), if the value of D2 / f is smaller than the lower limit 1.0, the required back focus cannot be obtained, and if it is larger than the upper limit 1.5, it is advantageous for obtaining the back focus. This is not preferable because the lens system becomes too large.

本発明は、2枚組という少ないレンズ枚数である上に第1レンズと第2レンズの面間距離が小さいために、安価で小型なものであり、しかも各レンズの屈折パワーが抑えられているために、加工が容易であるとともに組立公差に強いものである。また、固定焦点で可視光だけでなく、近赤外光においても非常に良好な結像を得ることができ、照度不足の際の照明光を被写体にまぶしさを感じさせることがない近赤外光とすることができる。   The present invention has a small number of lenses, ie, a set of two lenses, and the distance between the surfaces of the first lens and the second lens is small. Therefore, the present invention is inexpensive and small, and the refractive power of each lens is suppressed. Therefore, it is easy to process and strong against assembly tolerances. In addition, the near-infrared light that can obtain a very good image not only in the visible light but also in the near-infrared light with a fixed focus, and does not make the subject feel glare when the illumination is insufficient. Can be light.

また請求項2の発明において、2枚組という少ないレンズ枚数である上に第1レンズと第2レンズの面間隔が小さいために、安価で小型であるばかりか、所要のバックフォーカスを確保できており、色補正のためのフィルタ挿入も可能となっている。   Further, in the invention of claim 2, since the number of lenses is as small as two sets and the surface distance between the first lens and the second lens is small, not only is it inexpensive and small, but also the required back focus can be secured. It is also possible to insert a filter for color correction.

物体側から順に負のパワーを有する両凹レンズである第1レンズと、両凸レンズである第2レンズより構成され、1面以上のレンズ面が非球面であり、第2レンズの物体側の曲率半径をr3、第2レンズの像側の曲率半径をr4、第1レンズと第2レンズの面間距離をD2、全系の焦点距離をfとする時、次の条件
1<|r4|/r3<3 (i)
D2<1.5f (ii)
を満足させると、次のようなものを得ることができる。
A first lens that is a biconcave lens having negative power in order from the object side and a second lens that is a biconvex lens, one or more lens surfaces being aspherical, and a radius of curvature of the second lens on the object side Is r3, the radius of curvature of the image side of the second lens is r4, the distance between the surfaces of the first lens and the second lens is D2, and the focal length of the entire system is f, the following condition 1 <| r4 | / r3 <3 (i)
D2 <1.5f (ii)
If the above is satisfied, the following can be obtained.

すなわち、第1レンズを両凹レンズとしているために、像側の屈折パワーを物体側へ分配することになり、像側の曲率を弱くすることができるものであり、このために組立公差、特に軸ずれに強いものとなるほか、製造の面でも加工しやすいものである。ただし物体側を凹面とすると、広画角光線の入射角が大きくなり入射パワーの減少傾向があるが、緩い曲率、または平面とすることや、非球面とすることで回避できる。   That is, since the first lens is a biconcave lens, the refractive power on the image side is distributed to the object side, and the curvature on the image side can be weakened. In addition to being resistant to misalignment, it is easy to process in terms of manufacturing. However, if the object side is a concave surface, the incident angle of a wide-angle light beam increases and the incident power tends to decrease, but this can be avoided by using a gentle curvature, a flat surface, or an aspherical surface.

条件式(i)は面間距離D2を短くした場合に第2レンズの屈折パワーを抑える条件式である。下限を越えた場合について、面間距離D2が短くても充分な補正をするためには、第2レンズの像側の曲率r4を非常に強くしなくてはならず、そして曲率を強くすると軸ずれのような組立公差に弱くなってしまう。特に、絞りを第2レンズの後ろに配する場合、レンズ有効径が小さくなり、明るさを確保するために第2レンズを厚くせざるを得なくなって、全長が大きくなることから、望ましくない。一方、上限を越えると第2レンズの物体側の曲率が強くなり、組立公差、特に軸ずれに弱くなる。   Conditional expression (i) is a conditional expression for suppressing the refractive power of the second lens when the inter-surface distance D2 is shortened. When the lower limit is exceeded, the curvature r4 on the image side of the second lens must be very strong in order to perform sufficient correction even if the inter-plane distance D2 is short, and the axis increases when the curvature is increased. It becomes weak to assembly tolerances such as deviation. In particular, when the stop is arranged behind the second lens, the effective lens diameter is reduced, and the second lens must be thickened to ensure brightness, and the total length is increased, which is not desirable. On the other hand, when the upper limit is exceeded, the curvature of the second lens on the object side becomes strong, and it becomes weak against assembly tolerances, particularly axis deviation.

条件式(ii)は各収差を良好に保ちつつ、小型化を実現する。下限は0.5f<D2程度が良好である。上限を越えると全長が長くなり、望ましくない。   Conditional expression (ii) realizes downsizing while keeping each aberration good. The lower limit is preferably about 0.5f <D2. Exceeding the upper limit undesirably increases the overall length.

そして、第2レンズの焦点距離をf2とする時、
0.7f<f2<1.5f (iii)
という条件を満足させると、更に好ましいものとなる。
When the focal length of the second lens is f2,
0.7f <f2 <1.5f (iii)
It is more preferable to satisfy the above condition.

上記条件(iii)は、全系のパワー配分を決めるもので、第1レンズと第2レンズの面間距離D2を条件式(ii)の範囲に保つ条件である。特に全系の焦点距離fが小さい場合は、各レンズのパワー増大を抑えるために、f<f2の範囲が良好である。しかし全系の焦点距離fが比較的長い場合、小型化を可能にし、かつ収差補正を適切に行うことができる範囲がf2≦fである。下限を越えると第2レンズの屈折パワーが増大し、収差補正が困難になる。一方上限を越えると面間距離D2を長くせざるを得ず、全長が長くなり望ましくない。   The condition (iii) determines the power distribution of the entire system, and is a condition for keeping the inter-surface distance D2 between the first lens and the second lens within the range of the conditional expression (ii). In particular, when the focal length f of the entire system is small, the range of f <f2 is favorable in order to suppress the power increase of each lens. However, when the focal length f of the entire system is relatively long, the range in which the size can be reduced and aberrations can be corrected appropriately is f2 ≦ f. If the lower limit is exceeded, the refractive power of the second lens increases, making it difficult to correct aberrations. On the other hand, if the upper limit is exceeded, the inter-surface distance D2 must be increased, and the total length becomes longer.

CCDなどの撮像素子を用いたカメラ用で上記の条件を満足する具体的な例を図1に示す。図中11は物体側の第1レンズ、12は像側の第2レンズ、13は第2レンズ2の像側に配置した絞りであり、14はCCDなどの撮像素子のカバーガラス、15はCCDなどの撮像素子の撮像面であり、この広角レンズは図からも明らかなように、両凹レンズである第1レンズ11と、正のパワーを有する両凸レンズである第2レンズ12より構成されている。   A specific example satisfying the above conditions for a camera using an image sensor such as a CCD is shown in FIG. In the figure, 11 is a first lens on the object side, 12 is a second lens on the image side, 13 is a stop disposed on the image side of the second lens 2, 14 is a cover glass of an image sensor such as a CCD, and 15 is a CCD. The wide-angle lens is composed of a first lens 11 that is a biconcave lens and a second lens 12 that is a biconvex lens having a positive power, as is apparent from the drawing. .

図1の例の光学配置について表1に示す。物体側から第i番目の面の曲率半径をRi(i=1〜7)、面間隔をDi(i=1〜7)としており(ただし第5面は絞りの位置)、また、j=1、2はそれぞれ第1レンズ、第2レンズ、j=3はカバーガラス14とし、それぞれの材質のd線の屈折率をNj(j=1〜3)としている。また#印を付した面は非球面であり、その円錐係数K、及び非球面係数Aを表2に示す。   The optical arrangement of the example of FIG. The radius of curvature of the i-th surface from the object side is Ri (i = 1 to 7), the surface interval is Di (i = 1 to 7) (where the fifth surface is the aperture position), and j = 1. Reference numeral 2 denotes a first lens and second lens, and j = 3 denotes a cover glass 14, and the refractive index of the d-line of each material is Nj (j = 1 to 3). The surface marked with # is an aspherical surface, and its conical coefficient K and aspherical coefficient A are shown in Table 2.

Figure 2008083735
Figure 2008083735

Figure 2008083735
Figure 2008083735

上記非球面は、光軸との交点を原点として光軸方向の座標をX、上記原点を通り光軸に直行する方向の座標をYとするとき、以下の公知の非球面式で表される。   The aspherical surface is represented by the following known aspherical expression, where X is the coordinate in the optical axis direction with the intersection with the optical axis as the origin, and Y is the coordinate in the direction passing through the origin and perpendicular to the optical axis. .

X=[CY2/{1+(1-(K+1)(CY)2)1/2}] + AY4 + …
ただし、C=1/Ri
この広角レンズは|r4|/r3=1.75、D2=1.4f、f2=1.33fであり、前記条件式(i)、(ii)、(iii)を全て満足している。
X = [CY 2 / {1+ (1- (K + 1) (CY) 2 ) 1/2 }] + AY 4 + ...
However, C = 1 / Ri
This wide-angle lens has | r4 | /r3=1.75, D2 = 1.4f, f2 = 1.33f, and satisfies all the conditional expressions (i), (ii), and (iii).

そして上記広角レンズの光学特性における可視光の球面収差、非点収差、歪曲収差を図2に、横収差を図3に示す。図中CはC線、dはd線、FはF線での特性、mはメリジオナル面、sはサジッタル面での特性を示す。   FIG. 2 shows the spherical aberration, astigmatism, and distortion of visible light in the optical characteristics of the wide-angle lens, and FIG. 3 shows the lateral aberration. In the figure, C is the C-line characteristic, d is the d-line characteristic, F is the F-line characteristic, m is the meridional plane, and s is the sagittal plane.

図4に他例を示す。基本構成は前記のものと同じであり、両凹レンズである第1レンズ11と、正のパワーを有する両凸レンズである第2レンズ12より構成されている。このものにおける光学配置を表3に、#印を付した非球面の円錐係数K及び非球面係数Aを表4に示す。   FIG. 4 shows another example. The basic configuration is the same as that described above, and includes a first lens 11 that is a biconcave lens and a second lens 12 that is a biconvex lens having positive power. The optical arrangement of this is shown in Table 3, and the aspherical cone coefficient K and the aspherical coefficient A marked with # are shown in Table 4.

Figure 2008083735
Figure 2008083735

Figure 2008083735
Figure 2008083735

この広角レンズも|r4|/r3=1.1、D2=0.63f、f2=0.95fであることから、前記条件式(i)、(ii)、(iii)を全て満足している。また、その光学特性における可視光の球面収差、非点収差、歪曲収差を図5に、横収差を図6に示す。図中CはC線、dはd線、FはF線での特性、mはメリジオナル面、sはサジッタル面での特性を示す。   This wide-angle lens also satisfies | conditions (i), (ii), and (iii) because | r4 | /r3=1.1, D2 = 0.63f, and f2 = 0.95f. . FIG. 5 shows the spherical aberration, astigmatism, and distortion of visible light in the optical characteristics, and FIG. 6 shows the lateral aberration. In the figure, C is the C-line characteristic, d is the d-line characteristic, F is the F-line characteristic, m is the meridional plane, and s is the sagittal plane.

なお、上記の2例で示したものは、近赤外光照明波長を940nmとした際の各収差も同焦点位置でいずれも良く補正されており、近赤外光も併せて良好な特性を示すものとなっていた。   In the above two examples, each aberration when the near-infrared light illumination wavelength is 940 nm is well corrected at the same focal position, and the near-infrared light also has good characteristics. It was to show.

図7に本発明に係る例を示す。基本構成は前記のものと同じで両凹レンズである第1レンズ11と、正のパワーを有する両凸レンズである第2レンズ12より構成された最大画角130°のもので、ここでは第1レンズ11の第1面及び第2面、第2レンズ12の第1面と第2面の4面を非球面としている。   FIG. 7 shows an example according to the present invention. The basic configuration is the same as that described above, and is a first lens 11 that is a biconcave lens and a second lens 12 that is a biconvex lens having a positive power, and has a maximum field angle of 130 °. The four surfaces of the first and second surfaces 11 and the first and second surfaces of the second lens 12 are aspherical.

光学配置を表1に示す。物体側から第i番目の面の曲率半径をRi(i=1〜7)、面間隔をDi(i=1〜7)、有効半径をhi(i=1〜5)としており(ただし第5面は絞りの位置)、また、j=1,2はそれぞれ第1レンズと第2レンズ、j=3はCCDのカバーガラス14とし、それぞれの材質のd線の屈折率をNj(j=1〜3)としている。また#を付した面は非球面であり、その円錐係数K、及びk乗の非球面係数ARk(k=3、4、6、8、10)を表2に示す。   The optical arrangement is shown in Table 1. The radius of curvature of the i-th surface from the object side is Ri (i = 1-7), the surface interval is Di (i = 1-7), and the effective radius is hi (i = 1-5) (provided that The surface is the aperture position), j = 1 and 2 are the first and second lenses, respectively, j = 3 is the cover glass 14 of the CCD, and the refractive index of the d-line of each material is Nj (j = 1 ~ 3). The surface marked with # is an aspherical surface, and its conic coefficient K and the aspherical coefficient ARk (k = 3, 4, 6, 8, 10) of the k-th power are shown in Table 2.

Figure 2008083735
Figure 2008083735

Figure 2008083735
Figure 2008083735

上記非球面は、光軸との交点を原点として光軸方向の座標をX、上記原点を通り光軸に直交する方向の座標をYとするとき、以下の公知の非球面式で表される。   The aspherical surface is expressed by the following known aspherical expression, where X is the coordinate in the optical axis direction with the intersection with the optical axis as the origin, and Y is the coordinate in the direction passing through the origin and orthogonal to the optical axis. .

X=[CY2/{1+(1-(K+1)(CY)2)1/2}] +ΣARYk
ただし、C=1/Ri
この広角レンズ(超広角レンズ)は、|f2/f1|=0.788(d2/f)、r2=0.984hi、(d2/f)=1.255であり、前記条件式(iv)、(v)、(vi)を全て満足している。
X = [CY 2 / {1+ (1- (K + 1) (CY) 2 ) 1/2 }] + ΣARY k
However, C = 1 / Ri
This wide-angle lens (super-wide-angle lens) has | f2 / f1 | = 0.788 (d2 / f), r2 = 0.984hi, (d2 / f) = 1.255, and the conditional expression (iv), All of (v) and (vi) are satisfied.

そして上記広角レンズの光学特性における可視光の球面収差、非点収差、歪曲収差を図8に、横収差を図9に、また波長を940nmとした近赤外照明光での球面収差、非点収差、歪曲収差を図10に、横収差を図11に示す。図中CはC線、dはd線、FはF線での特性、mはメリジオナル面、sはサジッタル面での特性を示す。   The spherical aberration, astigmatism, and distortion of visible light in the optical characteristics of the wide-angle lens are shown in FIG. 8, the lateral aberration is shown in FIG. 9, and the spherical aberration and astigmatism in near-infrared illumination light having a wavelength of 940 nm. Aberration and distortion are shown in FIG. 10, and lateral aberration is shown in FIG. In the figure, C is the C-line characteristic, d is the d-line characteristic, F is the F-line characteristic, m is the meridional plane, and s is the sagittal plane.

図12に他例を示す。基本構成は前記のものと同じであり、両凹レンズである第1レンズ11と正のパワーを有する両凸レンズである第2レンズ12より構成されており、最大画角は130°である。このものにおける光学配置を表3に、#印を付した非球面の円錐係数K及びk乗の非球面係数ARk(k=3、4、6、8)を表4に示す。   FIG. 12 shows another example. The basic configuration is the same as that described above, and includes a first lens 11 that is a biconcave lens and a second lens 12 that is a biconvex lens having positive power, and the maximum field angle is 130 °. The optical arrangement of this is shown in Table 3, and the aspherical conical coefficient K and the k-th aspherical coefficient ARk (k = 3, 4, 6, 8) marked with # are shown in Table 4.

Figure 2008083735
Figure 2008083735

Figure 2008083735
Figure 2008083735

この超広角レンズも、|f2/f1|=0.722(d2/f)、r2=0.789hi、(d2/f)=1.459であり、前記条件式(iv)、(v)、(vi)を全て満足している。また、その光学特性における可視光の球面収差、非点収差、歪曲収差を図13、横収差を図14に、また波長を940nmとした近赤外照明光での球面収差、非点収差、歪曲収差を図15、横収差を図16に示す。図中CはC線、dはd線、FはF線での特性、mはメリジオナル面、sはサジッタル面での特性を示す。   This super wide-angle lens also has | f2 / f1 | = 0.722 (d2 / f), r2 = 0.789 hi, (d2 / f) = 1.659, and the conditional expressions (iv), (v), All of (vi) are satisfied. In addition, the spherical aberration, astigmatism, and distortion of visible light in the optical characteristics are shown in FIG. 13, the lateral aberration is shown in FIG. 14, and the spherical aberration, astigmatism, and distortion in near-infrared illumination light having a wavelength of 940 nm. The aberration is shown in FIG. 15, and the lateral aberration is shown in FIG. In the figure, C is the C-line characteristic, d is the d-line characteristic, F is the F-line characteristic, m is the meridional plane, and s is the sagittal plane.

上記2例において球面収差を始めとする各収差が可視光域はもちろん近赤外域においても良好に補正されていることが分かる。   In the above two examples, it can be seen that each aberration including spherical aberration is well corrected not only in the visible light region but also in the near infrared region.

本発明の実施の形態の一例の光路を同時に示した光学配置図である。It is the optical arrangement | positioning figure which showed the optical path of an example of embodiment of this invention simultaneously. 同上の球面収差、非点収差、歪曲収差図である。It is a spherical aberration, astigmatism, distortion aberration figure same as the above. 同上の横収差図である。It is a lateral aberration figure same as the above. 同上の他例における光路を同時に示した光学配置図である。It is an optical arrangement | positioning figure which showed the optical path in other examples same as the above simultaneously. 同上の球面収差、非点収差、歪曲収差図である。It is a spherical aberration, astigmatism, distortion aberration figure same as the above. 同上の横収差図である。It is a lateral aberration figure same as the above. 本発明の実施形態の他例の光路を同時に示した光学配置図である。It is the optical arrangement | positioning figure which showed simultaneously the optical path of the other example of embodiment of this invention. 同上の可視光での球面収差、非点収差、歪曲収差図である。It is a spherical aberration, astigmatism, distortion aberration figure in visible light same as the above. 同上の可視光での横収差図である。It is a transverse aberration figure in visible light same as the above. 同上の近赤外光での球面収差、非点収差、歪曲収差図である。It is a spherical aberration, astigmatism, distortion figure with near infrared light same as the above. 同上の近赤外光での横収差図である。It is a transverse aberration figure in near infrared light same as the above. 同上の他例における光路を同時に示した光学配置図である。It is an optical arrangement | positioning figure which showed the optical path in other examples same as the above simultaneously. 同上の可視光での球面収差、非点収差、歪曲収差図である。It is a spherical aberration, astigmatism, distortion aberration figure in visible light same as the above. 同上の可視光での横収差図である。It is a transverse aberration figure in visible light same as the above. 同上の近赤外光での球面収差、非点収差、歪曲収差図である。It is a spherical aberration, astigmatism, distortion figure with near infrared light same as the above. 同上の近赤外光での横収差図である。It is a transverse aberration figure in near infrared light same as the above.

符号の説明Explanation of symbols

11 第1レンズ
12 第2レンズ
11 First lens 12 Second lens

Claims (2)

物体側から順に負のパワーを有する両凹レンズである第1レンズと、両凸レンズである第2レンズより構成され、少なくとも第1レンズの像側のレンズ面が非球面であり、次の条件
0.6D2/f≦|f2/f1|/≦2.3D2/f
0.6h2≦r2≦1.0h2
ただし f :全系の焦点距離
f1:第1レンズの焦点距離
f2:第2レンズの焦点距離
r2:第1レンズの像側の面の曲率半径
h2:第1レンズの像側の面における有効半径
D2:第1レンズと第2レンズの面間距離
を満足することを特徴とする広角レンズ。
1. A first lens that is a biconcave lens having negative power in order from the object side and a second lens that is a biconvex lens, and at least the image side lens surface of the first lens is an aspheric surface. 6D2 / f ≦ | f2 / f1 | /≦2.3D2/f
0.6h2 ≦ r2 ≦ 1.0h2
Where f is the focal length of the entire system
f1: Focal length of the first lens
f2: focal length of the second lens
r2: radius of curvature of the image side surface of the first lens
h2: effective radius on the image side surface of the first lens
D2: A wide-angle lens satisfying the distance between the first lens and the second lens.
次の条件
1.0≦D2/f≦1.5
を満足することを特徴とする請求項1記載の広角レンズ。
Next condition 1.0 ≦ D2 / f ≦ 1.5
The wide-angle lens according to claim 1, wherein:
JP2007325192A 2000-12-26 2007-12-17 Wide angle lens Pending JP2008083735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325192A JP2008083735A (en) 2000-12-26 2007-12-17 Wide angle lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000396046 2000-12-26
JP2001222209 2001-07-23
JP2007325192A JP2008083735A (en) 2000-12-26 2007-12-17 Wide angle lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001386082A Division JP4123771B2 (en) 2000-12-26 2001-12-19 Wide angle lens

Publications (1)

Publication Number Publication Date
JP2008083735A true JP2008083735A (en) 2008-04-10

Family

ID=39354604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325192A Pending JP2008083735A (en) 2000-12-26 2007-12-17 Wide angle lens

Country Status (1)

Country Link
JP (1) JP2008083735A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211214A (en) * 1989-12-28 1992-08-03 Asahi Optical Co Ltd Image pickup lens
JP2000066097A (en) * 1999-09-10 2000-03-03 Asahi Optical Co Ltd Image pickup lens
JP2000258684A (en) * 1999-03-05 2000-09-22 Enplas Corp Image pickup lens
JP2000321489A (en) * 1999-05-06 2000-11-24 Enplas Corp Image pickup lens
JP2001100090A (en) * 1999-09-29 2001-04-13 Enplas Corp Image pickup lens
JP2002328299A (en) * 2001-04-27 2002-11-15 Milestone Kk Wide angle image pickup lens

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04211214A (en) * 1989-12-28 1992-08-03 Asahi Optical Co Ltd Image pickup lens
JP2000258684A (en) * 1999-03-05 2000-09-22 Enplas Corp Image pickup lens
JP2000321489A (en) * 1999-05-06 2000-11-24 Enplas Corp Image pickup lens
JP2000066097A (en) * 1999-09-10 2000-03-03 Asahi Optical Co Ltd Image pickup lens
JP2001100090A (en) * 1999-09-29 2001-04-13 Enplas Corp Image pickup lens
JP2002328299A (en) * 2001-04-27 2002-11-15 Milestone Kk Wide angle image pickup lens

Similar Documents

Publication Publication Date Title
JP3753842B2 (en) Super wide-angle lens system
JP3255490B2 (en) Retrofocus large aperture lens
JP2008242040A (en) Wide-angle imaging lens and imaging apparatus
EP2738586A1 (en) Imaging lens and imaging device using same
JP2008040033A (en) Wide-angle lens
JP4233062B2 (en) Imaging lens
JP6341712B2 (en) Imaging lens
JP4565262B2 (en) Fisheye lens
JP3725276B2 (en) Imaging lens
JP4217040B2 (en) Large aperture wide angle lens
JPH09230232A (en) Retrofocus lens
JP4125179B2 (en) Single focus lens for visible and near infrared light
JP4007468B2 (en) Wide-angle lens with long back focus
JP4123771B2 (en) Wide angle lens
JP2000002835A (en) Image-formation optical system
JP3295027B2 (en) Retrofocus type large aperture ratio wide-angle lens
JP2006058863A (en) Small-sized imaging lens system
JPH0443245B2 (en)
JPH07168095A (en) Triplet lens
JP2750775B2 (en) Compact zoom lens
JPH11295592A (en) Image forming lens
JP5006627B2 (en) Optical system and optical apparatus having the same
JPH04250408A (en) Small-sized super wide-angle lens
JP2001174701A (en) Wide angle photographic lens system
US7041958B2 (en) Lens system and image-taking apparatus having the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426