JP2008082974A - Object detector, object detecting method, and program executed by computer - Google Patents

Object detector, object detecting method, and program executed by computer Download PDF

Info

Publication number
JP2008082974A
JP2008082974A JP2006265734A JP2006265734A JP2008082974A JP 2008082974 A JP2008082974 A JP 2008082974A JP 2006265734 A JP2006265734 A JP 2006265734A JP 2006265734 A JP2006265734 A JP 2006265734A JP 2008082974 A JP2008082974 A JP 2008082974A
Authority
JP
Japan
Prior art keywords
relative speed
vehicle
stationary object
acquired
azimuth angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006265734A
Other languages
Japanese (ja)
Other versions
JP4992367B2 (en
Inventor
Koji Suzuki
浩二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006265734A priority Critical patent/JP4992367B2/en
Publication of JP2008082974A publication Critical patent/JP2008082974A/en
Application granted granted Critical
Publication of JP4992367B2 publication Critical patent/JP4992367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an object detector, an object detecting method, a program executed by computer, capable of determining precisely a stopped object, irrespective of an azimuth of the object. <P>SOLUTION: This object detector of the present invention is provided with the first relative speed acquisition means for transmitting a signal wave and for acquiring a relative speed between own vehicle and the object, based on a reflected wave of the transmitted signal wave, an azimuth acquisition means for acquiring the azimuth of the object, an own vehicle speed detecting means for detecting an own vehicle speed, and the first stationary object determination means for determining whether the object is a stationary object or not, based on the own vehicle speed acquired by the own vehicle speed detecting means, the relative speed acquired by the first relative speed acquisition means, and the azimuth acquired by the azimuth acquisition means, taking azimuth dependency of the relative speed into consideration. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラムに関し、詳細には、物体の方位角に拘わらず、高精度に停止物を検出することが可能な物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラムに関する。   The present invention relates to an object detection device, an object detection method, and a program executed by a computer, and more specifically, an object detection device capable of detecting a stationary object with high accuracy regardless of the azimuth angle of the object, The present invention relates to an object detection method and a program executed by a computer.

従来より、先行車を検知して車間距離を適切に保つACC(自動車間制御)、車間距離が必要以上に接近した場合に作動させるPBA(プリクラッシュブレーキアシスト)やPSB(プリクラッシュシートベルト)等の車両走行安全システムに利用される車載レーダの一つとして、ミリ波帯を使用するFMCW方式のレーダ(以下「FMCWレーダ」という)が知られている。   Conventionally, ACC (previous car control) that detects the preceding vehicle and keeps the inter-vehicle distance appropriate, PBA (pre-crash brake assist) and PSB (pre-crash seat belt) that are activated when the inter-vehicle distance approaches more than necessary As one of the on-vehicle radars used in the vehicle travel safety system, an FMCW radar using a millimeter wave band (hereinafter referred to as “FMCW radar”) is known.

かかるFMCWレーダでは、時間に対して周波数が三角波状に直線的に増減するよう変調されたレーダ波を使用し、このレーダ波の送信信号と、物標に反射したレーダ波(反射波)の受信信号とを混合することにより得られるビート信号に基づいて、レーダ波を反射した物標についての情報を得るようにされている。   In such FMCW radar, a radar wave modulated so that the frequency linearly increases and decreases in a triangular shape with respect to time is used, and the transmission signal of this radar wave and the radar wave (reflected wave) reflected on the target are received. Based on the beat signal obtained by mixing the signal, information on the target reflecting the radar wave is obtained.

具体的には、レーダ波の周波数が増加する上り区間、及び周波数が減少する下り区間のそれぞれについて、ビート信号に対し高速フーリエ変換(FFT)に代表される周波数解析処理を施すことにより、ビート信号の区間毎のパワースペクトルを求める。そして、パワースペクトルから抽出したピーク周波数成分を両区間の間で適宜組み合わせて、その組み合わせたピーク周波数成分(以下では「ピークペア」という)の周波数を、FMCWレーダにおいて周知の計算式に当てはめることにより、そのピークペアにて特定される物標との距離や相対速度を求めている。   Specifically, the beat signal is subjected to frequency analysis processing represented by Fast Fourier Transform (FFT) for each of the upstream section where the frequency of the radar wave increases and the downstream section where the frequency decreases. The power spectrum for each section is obtained. Then, the peak frequency components extracted from the power spectrum are appropriately combined between the two sections, and the frequency of the combined peak frequency components (hereinafter referred to as “peak pairs”) is applied to a well-known calculation formula in the FMCW radar, The distance and relative speed with the target specified by the peak pair is obtained.

例えば、特許文献1のFM−CWレーダ装置では、車速のデータと個々の物標の相対速度のデータを比較し、両者が実質的に等しい物標を静止物標と判定し、それ以外の物標を移動物標と判定している。   For example, in the FM-CW radar apparatus of Patent Document 1, vehicle speed data is compared with relative speed data of individual targets, a target that is substantially equal to each other is determined as a stationary target, and other objects are detected. The target is determined as a moving target.

特許文献1のように、レーダ装置を車両に対して前方方向に配置する場合は、自車進行方向に対する物体の方位角はあまり問題とならないが、レーダ装置を、車両に対して前側方方向や側方方向に配置する場合は、そのレーダ中心軸は自車両の進行方向と異なり、自車両が走行していると、車両前方路側物に対する相対速度が距離に応じて変化するため、自車両に接近してくる物体が路側物(静止物)か否かの判定が難しい。これは、レーダ中心軸と自車両の進行方向が異なることにより、物体の方位角によって相対速度が自車両速度からゼロまで変化するためである(相対速度の方位角依存性)。   When the radar apparatus is arranged in the forward direction with respect to the vehicle as in Patent Document 1, the azimuth angle of the object with respect to the traveling direction of the own vehicle is not a problem, but the radar apparatus is When arranged in the lateral direction, the radar central axis is different from the traveling direction of the host vehicle, and when the host vehicle is traveling, the relative speed with respect to the object on the road ahead of the vehicle changes according to the distance. It is difficult to determine whether the approaching object is a roadside object (stationary object). This is because the relative speed changes from the own vehicle speed to zero according to the azimuth angle of the object due to the difference between the radar central axis and the traveling direction of the own vehicle (azimuth angle dependence of the relative speed).

特開2004−233090号公報JP 2004-233090 A

本発明は、上記に鑑みてなされたものであり、物体の方位角に拘わらず、高精度に停止物体を判定することが可能な物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラムを提供することを目的とする。   The present invention has been made in view of the above, and an object detection apparatus, an object detection method, and a program executed by a computer that can determine a stopped object with high accuracy regardless of the azimuth angle of the object. The purpose is to provide.

上記した課題を解決して、本発明の目的を達成するために、本発明は、車両に搭載される物体検出装置において、信号波を送信し、この送信した信号波の反射波に基づいて、自車両と物体との相対速度を取得する第1の相対速度取得手段と、前記物体の方位角を取得する方位角取得手段と、自車速度を検出する自車速度検出手段と、相対速度の方位角依存性を考慮して、前記自車速度検出手段で取得した自車速度、前記第1の相対速度取得手段で取得した相対速度、および前記方位角取得手段で取得した方位角に基づいて、前記物体が静止物であるか否かを判定する第1の静止物判定手段と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object of the present invention, the present invention transmits a signal wave in an object detection device mounted on a vehicle, and based on the reflected wave of the transmitted signal wave, A first relative speed acquisition means for acquiring a relative speed between the host vehicle and the object; an azimuth angle acquisition means for acquiring an azimuth angle of the object; a host vehicle speed detection means for detecting the host vehicle speed; In consideration of azimuth angle dependency, based on the own vehicle speed acquired by the own vehicle speed detection means, the relative speed acquired by the first relative speed acquisition means, and the azimuth angle acquired by the azimuth angle acquisition means And a first stationary object judging means for judging whether or not the object is a stationary object.

また、本発明の好ましい態様によれば、前記第1の静止物判定手段は、前記取得した相対速度を前記取得した方位角で補正した値と、前記自車速度との差分が所定範囲内である場合に、前記物体を静止物であると判定することが望ましい。   Further, according to a preferred aspect of the present invention, the first stationary object determination means has a difference between the value obtained by correcting the acquired relative speed with the acquired azimuth angle and the own vehicle speed within a predetermined range. In some cases, it is desirable to determine that the object is a stationary object.

また、本発明の好ましい態様によれば、前記第1の相対速度取得手段は、自車両に対して第1の方向に配されており、さらに、自車両に対して第2の方向に配されており、信号波を送信し、この送信した信号波の反射波に基づいて、自車両と前記物体との相対速度を取得する第2の相対速度取得手段と、自車速度および前記第2の相対速度取得手段で取得した相対速度に基づいて、前記物体が静止物であるか否かを判定する第2の静止物判定手段と、を備え、前記第1の静止物判定手段は、前記第2の静止物判定手段が静止物であると判定した物体については、静止物であると仮定して静止物であるか否かを判定することが望ましい。   According to a preferred aspect of the present invention, the first relative speed acquisition means is disposed in the first direction with respect to the host vehicle, and is further disposed in the second direction with respect to the host vehicle. A second relative speed acquisition means for transmitting a signal wave and acquiring a relative speed between the host vehicle and the object based on the reflected wave of the transmitted signal wave; Second stationary object determining means for determining whether or not the object is a stationary object based on the relative speed acquired by the relative speed acquiring means, wherein the first stationary object determining means is the first stationary object determining means. It is desirable to determine whether or not the object determined by the second stationary object determination unit is a stationary object, assuming that the object is a stationary object.

また、本発明の好ましい態様によれば、前記第1の方向は、前方方向であり、前記第2の方向は、前側方方向または側方方向であることが望ましい。   According to a preferred aspect of the present invention, it is desirable that the first direction is a forward direction and the second direction is a front side direction or a side direction.

上記した課題を解決して、本発明の目的を達成するために、本発明は、信号波を送信し、この送信した信号波の反射波に基づいて、自車両と物体との相対速度を取得する第1の相対速度取得工程と、前記物体の方位角を取得する方位角取得工程と、自車速度を検出する自車速度検出工程と、相対速度の方位角依存性を考慮して、前記自車速度検出工程で取得した自車速度、前記第1の相対速度取得工程で取得した相対速度、および前記方位角取得工程で取得した方位角に基づいて、前記物体が静止物であるか否かを判定する第1の静止物判定工程と、を含むことを特徴とする。   In order to solve the above-described problems and achieve the object of the present invention, the present invention transmits a signal wave, and acquires the relative speed between the vehicle and the object based on the reflected wave of the transmitted signal wave. In consideration of the first relative speed acquisition step, the azimuth angle acquisition step of acquiring the azimuth angle of the object, the own vehicle speed detection step of detecting the own vehicle speed, and the azimuth angle dependency of the relative speed, Whether the object is a stationary object based on the own vehicle speed acquired in the own vehicle speed detection step, the relative speed acquired in the first relative speed acquisition step, and the azimuth angle acquired in the azimuth angle acquisition step And a first stationary object determination step for determining whether or not.

また、本発明の好ましい態様によれば、前記第1の静止物判定工程では、前記取得した相対速度を前記取得した方位角で補正した値と、前記自車速度との差分が所定範囲内である場合に、前記物体を静止物であると判定することが望ましい。   According to a preferred aspect of the present invention, in the first stationary object determination step, a difference between the acquired relative speed corrected by the acquired azimuth angle and the own vehicle speed is within a predetermined range. In some cases, it is desirable to determine that the object is a stationary object.

また、本発明の好ましい態様によれば、信号波を送信し、この送信した信号波の反射波に基づいて、自車両と前記物体との相対速度を取得する第2の相対速度取得工程と、自車速度および前記第2の相対速度取得工程で取得した相対速度に基づいて、前記物体が静止物であるか否かを判定する第2の静止物判定工程と、を含み、前記第1の静止物判定工程では、前記第2の静止物判定手段が静止物であると判定した物体については、静止物であると仮定して静止物であるか否かを判定することが望ましい。   According to a preferred aspect of the present invention, a second relative speed acquisition step of transmitting a signal wave and acquiring a relative speed between the host vehicle and the object based on the reflected wave of the transmitted signal wave; A second stationary object determination step for determining whether or not the object is a stationary object based on the own vehicle speed and the relative speed acquired in the second relative speed acquisition step. In the stationary object determination step, it is desirable to determine whether the object determined by the second stationary object determination unit as a stationary object is a stationary object on the assumption that it is a stationary object.

また、本発明の好ましい態様によれば、本発明の各工程をコンピュータがプログラムを実行することにより実現することが望ましい。   Moreover, according to a preferable aspect of the present invention, it is desirable that each step of the present invention is realized by a computer executing a program.

本発明によれば、信号波を送信し、この送信した信号波の反射波に基づいて、自車両と物体との相対速度および当該物体の方位角を取得する第1の相対速度取得手段と、自車速度を検出する自車速度検出手段と、相対速度の方位角依存性を考慮して、前記自車速度検出手段で取得した自車速度、前記第1の相対速度取得手段で取得した相対速度および方位角に基づいて、前記物体が静止物であるか否かを判定する第1の静止物判定手段と、を備えているので、物標の方位角に拘わらず、高精度に停止物を判定することが可能となるという効果を奏する。   According to the present invention, a first relative speed acquisition unit that transmits a signal wave and acquires a relative speed between the host vehicle and the object and an azimuth angle of the object based on the reflected wave of the transmitted signal wave; In consideration of the vehicle speed detection means for detecting the vehicle speed and the azimuth angle dependency of the relative speed, the vehicle speed acquired by the vehicle speed detection means, the relative speed acquired by the first relative speed acquisition means And a first stationary object judging means for judging whether or not the object is a stationary object based on the speed and the azimuth angle, so that the stationary object can be accurately detected regardless of the azimuth angle of the target. There is an effect that it is possible to determine.

以下に、この発明に係る物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラムについて、図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が容易に想定できるものまたは実質的に同一のものが含まれる。   Hereinafter, an object detection apparatus, an object detection method, and a program executed by a computer according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or that are substantially the same.

(実施の形態1)
図1は、本発明の実施の形態1に係る物体検出装置の機能構成を示すブロック図である。同図に示す物体検出装置1は、四輪自動車等の車両に搭載され、車両の周囲の所定の範囲に存在する物体を検出する装置である。物体検出装置1は、ミリ波を用いて、車両進行方向に対して前方方向の物標を検出するための前方ミリ波レーダ11(第2の相対速度取得手段)と、ミリ波を用いて、車両進行方向に対して前側方方向の物標を検出するための前側方ミリ波レーダ12(第1の相対速度取得手段、方位角取得手段)と、自車両の速度を検出する車速センサ20(自車速度検出手段)と、前方ミリ波レーダ11および前側方ミリ波レーダ12から出力される信号を用いて物標を検出するための演算を行う演算部30(第1の相対速度取得手段、第2の相対速度取得手段、第1の静止物判定手段、第2の静止物判定手段)と、演算部30における演算結果や各種設定情報を記憶する記憶部40と、を備える。
(Embodiment 1)
FIG. 1 is a block diagram showing a functional configuration of the object detection apparatus according to Embodiment 1 of the present invention. An object detection apparatus 1 shown in the figure is an apparatus that is mounted on a vehicle such as a four-wheeled vehicle and detects an object that exists in a predetermined range around the vehicle. The object detection device 1 uses a millimeter wave and a forward millimeter wave radar 11 (second relative velocity acquisition means) for detecting a target in the forward direction with respect to the vehicle traveling direction using the millimeter wave, A front side millimeter wave radar 12 (first relative speed acquisition means, azimuth angle acquisition means) for detecting a target in the front side direction with respect to the vehicle traveling direction, and a vehicle speed sensor 20 (for detecting the speed of the host vehicle) Own vehicle speed detection means) and a calculation unit 30 (first relative speed acquisition means, which performs calculation for detecting a target using signals output from the front millimeter wave radar 11 and the front side millimeter wave radar 12; A second relative speed acquisition unit, a first stationary object determination unit, and a second stationary object determination unit), and a storage unit 40 that stores a calculation result in the calculation unit 30 and various setting information.

前方ミリ波レーダ11および前側方ミリ波レーダ12は、所定の範囲にミリ波を送信アンテナから送出する一方、物標からの反射波を受信アンテナ(送信アンテナと同じで場合もある)によって受信し、この受信した反射波のフィルタリングやA/D変換などの信号処理を行う。かかる前方ミリ波レーダ11および前側方ミリ波レーダ12としては、FMCW(Frequency Modulated Continuous Wave)方式などの通常用いられる方式を適用することができる。   The front millimeter wave radar 11 and the front side millimeter wave radar 12 transmit a millimeter wave from a transmission antenna to a predetermined range, while receiving a reflected wave from a target by a reception antenna (which may be the same as the transmission antenna). Then, signal processing such as filtering of the received reflected wave and A / D conversion is performed. As the forward millimeter wave radar 11 and the front side millimeter wave radar 12, a commonly used method such as an FMCW (Frequency Modulated Continuous Wave) method can be applied.

演算部30は、前方ミリ波レーダ11および前側方ミリ波レーダ12で受信した信号を用いて物標を検出する検出部31と、検出部31の検出結果に基づいて物標をトラッキング(追尾)する物標追尾処理部32とを備える。検出部31は、前方ミリ波レーダ11で受信した信号を用いて物標の物標情報(相対速度、相対距離)を取得するとともに、前側方ミリ波レーダ12で受信した信号を用いて物標の物標情報(相対速度、相対距離、物標の方位角)を取得する。また、検出部31は、前方ミリ波レーダ11および前側方ミリ波レーダ12から受信した信号に基づいて検出した物標の物標情報と、車速センサ20で検出された自車速度とに基づいて、物標が静止物であるか否かを判定し、前方ミリ波レーダ11と前側方ミリ波レーダ12のフュージョンにより静止物標の確定を行う。   The calculation unit 30 detects a target using signals received by the front millimeter wave radar 11 and the front side millimeter wave radar 12, and tracks the target based on the detection result of the detection unit 31 (tracking). And a target tracking processing unit 32. The detection unit 31 acquires target information (relative speed and relative distance) of the target using the signal received by the front millimeter wave radar 11 and also uses the signal received by the front side millimeter wave radar 12. Target information (relative speed, relative distance, target azimuth). Further, the detection unit 31 is based on the target information of the target detected based on the signals received from the front millimeter wave radar 11 and the front side millimeter wave radar 12 and the own vehicle speed detected by the vehicle speed sensor 20. Then, it is determined whether or not the target is a stationary object, and the stationary target is determined by the fusion of the front millimeter wave radar 11 and the front side millimeter wave radar 12.

かかる演算部30は、CPU(Central Processing Unit)等を用いて実現され、各種演算処理プログラムを記憶部40から読み出すことにより、その読み出したプログラムに対応する処理を実行する。   The calculation unit 30 is realized by using a CPU (Central Processing Unit) or the like, and reads various calculation processing programs from the storage unit 40, thereby executing processing corresponding to the read program.

記憶部40は、演算処理プログラムが記録されたROM(Read Only Memory)および各種パラメータやデータ等を記憶するRAM(Random Access Memory)を用いて実現される。   The storage unit 40 is realized using a ROM (Read Only Memory) in which an arithmetic processing program is recorded and a RAM (Random Access Memory) that stores various parameters and data.

物体検出装置1で検出した物標情報は、車両制御装置50に出力される。車両制御装置50は、物体検出装置1からの出力に応じて車間距離制御や自動ブレーキ制御等の制御を行う。このように、物体検出装置1および車両制御装置50は、全体として、ACC(自動車間制御装置)、PBA(プリクラッシュブレーキアシスト)、PSB(プリクラッシュシートベルト)等のシステムを構成する。この意味で、物体検出装置1は、センサとしての機能を有している。   The target information detected by the object detection device 1 is output to the vehicle control device 50. The vehicle control device 50 performs control such as inter-vehicle distance control and automatic brake control in accordance with the output from the object detection device 1. As described above, the object detection device 1 and the vehicle control device 50 constitute a system such as ACC (inter-vehicle control device), PBA (pre-crash brake assist), PSB (pre-crash seat belt) as a whole. In this sense, the object detection device 1 has a function as a sensor.

図2は、物体検出装置1に搭載される前方ミリ波レーダ11および前側方ミリ波レーダ12の配置位置を説明するための図である。前方ミリ波レーダ11は、車両C0に対して、前方に配置され、そのレーダ光軸L1と車両進行方向との角度は略一致している。前側方ミリ波レーダ12は、車両C0に対して、左側前側方に配置され、そのレーダ光軸L2と車両進行方向とは、所定角度α(0<α<90°)を有している。 FIG. 2 is a diagram for explaining the arrangement positions of the front millimeter wave radar 11 and the front side millimeter wave radar 12 mounted on the object detection device 1. The front millimeter wave radar 11 is disposed in front of the vehicle C 0 , and the angle between the radar optical axis L 1 and the vehicle traveling direction is substantially the same. The front side millimeter wave radar 12 is disposed on the left front side with respect to the vehicle C 0 , and the radar optical axis L 2 and the vehicle traveling direction have a predetermined angle α (0 <α <90 °). .

図3は、前方ミリ波レーダ11と前側方ミリ波レーダ12の検出範囲および相対速度の方位角依存性を説明するための図である。同図において、R1は前方ミリ波レーダ11の検出範囲、R2は前側方ミリ波レーダ12の検出範囲を示している。検出範囲R1と検出範囲R2とは、検出範囲が一部重複しており、同図において、重複範囲をR12で図示している。前方ミリ波レーダ11は、遠距離狭角レーダであり、検出角度は小さく遠距離の検出が可能となっている。また、前側方ミリ波レーダ12は、近距離広角レーダであり、検出角度が大きく近距離の検出が可能となっている。   FIG. 3 is a diagram for explaining the azimuth angle dependence of the detection ranges and relative speeds of the front millimeter wave radar 11 and the front side millimeter wave radar 12. In the figure, R1 indicates the detection range of the front millimeter wave radar 11, and R2 indicates the detection range of the front side millimeter wave radar 12. The detection range R1 and the detection range R2 partially overlap the detection range. In FIG. The forward millimeter wave radar 11 is a long-distance narrow-angle radar, and has a small detection angle and can detect a long distance. The front side millimeter wave radar 12 is a short-distance wide-angle radar, and has a large detection angle and can detect a short distance.

同図において、自車C0が道路Rdに沿って速さV0で走行しており、前側方ミリ波レーダ12の中心軸L2に対して角度βの方向に路側物(静止物)Sが存在しているものとする。方位角βは、検出部31において前側方ミリ波レーダ12で受信した信号に基づいて検出される。同図は、路側物(静止物)Sが前方ミリ波レーダ11の検出範囲R1から前側方ミリ波レーダ12の検出範囲R2に切り替わる場合を示している。ここで、V0を自車C0の車速、Vrを前側方ミリ波レーダ12で測定される自車と路側物(静止物)Sの相対速度とすると、車速V0と相対速度Vrの間には下記(1)式の関係が成立つ。 In the figure, the host vehicle C 0 is traveling at a speed V 0 along the road Rd, and a roadside object (stationary object) S is in the direction of an angle β with respect to the central axis L2 of the front side millimeter wave radar 12. Suppose it exists. The azimuth angle β is detected based on the signal received by the front side millimeter wave radar 12 in the detection unit 31. The figure shows a case where the roadside object (stationary object) S is switched from the detection range R1 of the front millimeter wave radar 11 to the detection range R2 of the front side millimeter wave radar 12. Here, when V 0 is the vehicle speed of the host vehicle C 0 and Vr is the relative speed of the host vehicle and the roadside object (stationary object) S measured by the front side millimeter wave radar 12, the distance between the vehicle speed V 0 and the relative speed Vr is assumed. The following equation (1) is established.

Vr=V0・cos(α−β)・・・(1) Vr = V 0 · cos (α−β) (1)

ここで、自車C0と路側物(静止物)Sの相対速度Vrは、自車の車速V0となるはずであるが、前側方ミリ波レーダ12では、自車C0と路側物(静止物)Sの相対速度Vrは、Vr=V0・cos(α−β)と測定される。このように、前側方ミリ波レーダ12で検出される自車C0と路側物(静止物)の相対速度Vrは、相対速度の方位角依存性、具体的には、cos(α−β)により、V0〜0の間で変位してしまう。 Here, the vehicle C 0 and the roadside object (stationary object) relative speed Vr S is should become the vehicle speed V 0 which the vehicle, the front-side millimeter-wave radar 12, the vehicle C 0 and the roadside object ( The relative velocity Vr of the stationary object S is measured as Vr = V 0 · cos (α−β). Thus, the relative speed Vr between the vehicle C 0 and the roadside object (stationary object) detected by the front side millimeter wave radar 12 is dependent on the azimuth angle of the relative speed, specifically, cos (α−β). As a result, displacement occurs between V 0 and 0.

本実施の形態では、前側方ミリ波レーダ12の検出結果に基づいて、物標が路側物(静止物)か否かを判定する場合に、相対速度の方位角依存性を考慮して、前側方ミリ波レーダ12で検出した相対速度Vrを下式(2)のように補正(角度変換)した相対速度Vr’を算出する。   In the present embodiment, when determining whether or not the target is a roadside object (stationary object) based on the detection result of the front side millimeter wave radar 12, the front side is considered in consideration of the azimuth angle dependency of the relative speed. A relative speed Vr ′ obtained by correcting (angle conversion) the relative speed Vr detected by the millimeter wave radar 12 as shown in the following equation (2) is calculated.

Vr’=Vr/cos(α−β) ・・・(2)   Vr ′ = Vr / cos (α−β) (2)

そして、下式(3)を満たす場合、すなわち、補正(角度変換)した相対速度Vr’と、車速センサ20で検出された自車速度V0との差分の絶対値が閾値範囲内となる場合に、物標を停止物と判定する。 When the following expression (3) is satisfied, that is, when the absolute value of the difference between the corrected (angle-converted) relative speed Vr ′ and the vehicle speed V 0 detected by the vehicle speed sensor 20 is within the threshold range. Then, the target is determined to be a stopped object.

|Vr’−V0|<N(閾値) ・・・(3) | Vr′−V 0 | <N (threshold value) (3)

図4は、上記構成の物体検出装置1の検出部31が行う処理のうち、上記図3に示すように、路側物(静止物)Sが前方ミリ波レーダ11の検出範囲R1から前側方ミリ波レーダ12の検出範囲R2に切り替わる場合に、前側方ミリ波レーダ12でその路側物(静止物)Sの検出を行う静止物検出処理の概要を示すフローチャートである。   FIG. 4 shows that the roadside object (stationary object) S from the detection range R1 of the front millimeter-wave radar 11 out of the processing performed by the detection unit 31 of the object detection apparatus 1 configured as described above is shown in FIG. 6 is a flowchart showing an outline of stationary object detection processing in which the roadside object (stationary object) S is detected by the front side millimeter wave radar 12 when switching to the detection range R2 of the wave radar 12.

図4において、まず、前方ミリ波レーダ11の検出範囲R1で路側物標(静止物)を検知したか否かを判定する(ステップS1)。前方ミリ波レーダ11で受信した信号に基づいて検出した物標の相対速度Vrと、車速センサ20で検出された自車速度V0の差分の絶対値が、閾値範囲内の場合に、静止物と判定する。 In FIG. 4, first, it is determined whether or not a roadside target (stationary object) is detected in the detection range R1 of the forward millimeter wave radar 11 (step S1). When the absolute value of the difference between the relative speed Vr of the target detected based on the signal received by the forward millimeter wave radar 11 and the vehicle speed V 0 detected by the vehicle speed sensor 20 is within the threshold range, the stationary object Is determined.

前方ミリ波レーダ11の検知範囲R1で路側物標(静止物)を検知していない場合には(ステップS1の「No」)、当該フローを終了する一方、路側物標(静止物)を検知した場合には(ステップS1の「Yes」)、前方ミリ波レーダ11により検出した路側物標(停止物)の今回位置または今回予測位置が前側方ミリ波レーダ12の検出範囲R2内にあるか否かを判定する(ステップS2)。   When the roadside target (stationary object) is not detected in the detection range R1 of the forward millimeter wave radar 11 (“No” in step S1), the flow ends, while the roadside target (stationary object) is detected. If this is the case ("Yes" in step S1), whether the current position or the current predicted position of the roadside target (stopped object) detected by the forward millimeter wave radar 11 is within the detection range R2 of the front side millimeter wave radar 12 It is determined whether or not (step S2).

前方ミリ波レーダ11が検知した路側物標(静止物)の今回位置または今回予測位置が前側方ミリ波レーダ12の検出範囲D2内にない場合には(ステップS2の「No」)、当該フローを終了する一方、前方ミリ波レーダ11が検知した路側物標(静止物)の今回位置または今回予測位置が前側方ミリ波レーダ12の検出範囲R2内にある場合には(ステップS2の「Yes」)、今回位置または今回予測位置±閾値範囲内で、前側方ミリ波レーダ12で物標を検知したか否かを判定する(ステップS3)。すなわち、前方ミリ波レーダ11が検出した路側物標(静止物)が、前側方ミリ波レーダ12の検出範囲R2内に入った場合に、前側方ミリ波レーダ12の検出範囲R2内に該当する物標があるか否かを確認する。   When the current position or the current predicted position of the roadside target (stationary object) detected by the forward millimeter wave radar 11 is not within the detection range D2 of the front side millimeter wave radar 12 ("No" in step S2), the flow On the other hand, if the current position or the current predicted position of the roadside target (stationary object) detected by the forward millimeter-wave radar 11 is within the detection range R2 of the front-side millimeter-wave radar 12 (“Yes in step S2”). ]), It is determined whether or not the target has been detected by the front side millimeter wave radar 12 within the current position or the current predicted position ± threshold range (step S3). That is, when the roadside target (stationary object) detected by the front millimeter wave radar 11 falls within the detection range R2 of the front side millimeter wave radar 12, it falls within the detection range R2 of the front side millimeter wave radar 12. Check if there is a target.

今回位置または今回予測位置±閾値範囲内で、前側方ミリ波レーダ11が物標を検出していない場合には(ステップS3の「No」)、当該フローを終了する。他方、今回位置または今回予測位置±閾値範囲内で、前側方ミリ波レーダ12が物標を検出している場合には(ステップS3の「Yes」)、相対速度の方位角依存性を考慮し、上記式(2)および式(3)により、前側方ミリ波レーダ12で検出した相対速度Vrを補正(角度変換)した相対速度Vr’=Vr/cos(α−β)を算出し、補正した相対速度Vr’と車速センサ20で検出された自車速度V0との差分の絶対値が、閾値範囲内であるか否かを判定する(ステップS4)。すなわち、前側方ミリ波レーダ12の検出範囲R2内に路側物標(静止物)と予想される物標がある場合には、実際に路側物標(静止物)であるか否かを確認する。このように、前方ミリ波レーダ11で路側物標(静止物)であると判定された物標については、前側方ミリ波レーダ12でも路側物標(静止物)と仮定して、路側物標(静止物)か否かの判定を行っている。 If the front side millimeter-wave radar 11 has not detected a target within the current position or the current predicted position ± threshold range (“No” in step S3), the flow ends. On the other hand, when the front side millimeter wave radar 12 detects the target within the current position or the current predicted position ± threshold range (“Yes” in step S3), the azimuth angle dependency of the relative speed is considered. The relative velocity Vr ′ = Vr / cos (α−β) obtained by correcting (angle conversion) the relative velocity Vr detected by the front side millimeter wave radar 12 is calculated by the above equations (2) and (3), and the correction is performed. It is determined whether or not the absolute value of the difference between the detected relative speed Vr ′ and the vehicle speed V 0 detected by the vehicle speed sensor 20 is within the threshold range (step S4). That is, when there is a target that is expected to be a roadside target (stationary object) within the detection range R2 of the front side millimeter wave radar 12, it is confirmed whether or not it is actually a roadside target (stationary object). . As described above, a target that is determined to be a roadside target (stationary object) by the forward millimeter wave radar 11 is assumed to be a roadside target (stationary object) by the front side millimeter wave radar 12, and the roadside target is assumed. Judgment whether or not (stationary object).

補正した相対速度Vr’と車速センサ20で検出された自車速度V0との差分の絶対値が、閾値範囲内にない場合には(ステップS4の「No」)、当該フローを終了する。他方、補正した相対速度Vr’と車速センサ20で検出された自車速度V0との差分の絶対値が、閾値範囲内にある場合には(ステップS4の「Yes」)、路側物(静止物)として、物標を即時に確定する(ステップS5)。 If the absolute value of the difference between the corrected relative speed Vr ′ and the vehicle speed V 0 detected by the vehicle speed sensor 20 is not within the threshold range (“No” in step S4), the flow ends. On the other hand, if the absolute value of the difference between the corrected relative speed Vr ′ and the vehicle speed V 0 detected by the vehicle speed sensor 20 is within the threshold range (“Yes” in step S4), the roadside object (stationary The target is immediately determined as an object (step S5).

図5は、上記構成の物体検出装置1の物標追尾処理部32が行う処理のうち、前側方ミリ波レーダ12の検出結果に基づく路側物(静止物)のトラッキングの概略を説明するためのフローチャートである。図6は、路側物(停止物)による相対速度変化を考慮した次回予測ピークを説明するための図である。同図は、前側方ミリ波レーダ12の受信信号の周波数スペクトルを示しており、横軸は周波数f、縦軸は受信パワー(dBV)を示している。同図において、P1は今回実測ピークを示しており、P2は路側物(停止物)による相対速度変化を考慮した次回予測ピークを示している。   FIG. 5 is a diagram for explaining an outline of tracking of a roadside object (stationary object) based on the detection result of the front side millimeter wave radar 12 among the processes performed by the target tracking processing unit 32 of the object detection apparatus 1 having the above configuration. It is a flowchart. FIG. 6 is a diagram for explaining a next predicted peak in consideration of a relative speed change due to a roadside object (stopped object). The figure shows the frequency spectrum of the reception signal of the front side millimeter wave radar 12, where the horizontal axis shows the frequency f and the vertical axis shows the reception power (dBV). In the same figure, P1 shows the actual measurement peak this time, and P2 shows the next prediction peak considering the relative speed change by the roadside object (stopping object).

図5において、まず、前方ミリ波レーダ11とのフュージョンにより確定した路側物(静止物)が存在するか否かを判定する(ステップS11)。前方ミリ波レーダ11とのフュージョンにより確定した路側物(静止物)が存在しない場合には(ステップS11の「No」)、当該フローを終了する一方、前方ミリ波レーダ11とのフュージョンにより確定した路側物(静止物)が存在する場合には(ステップS11の「Yes」)、次回予測ピーク位置を推定する際に、路側物(静止物)であることを考慮し、トラッキングピーク位置を算出する(ステップS12)。すなわち、前方ミリ波レーダ11とのフュージョンにより確定した路側物(静止物)については、前側方ミリ波レーダ12の検出範囲R2を外れるまで自車速度V0と、カーブRから今回予測位置を追従する。この場合、前側方ミリ波レーダ12の中心軸L2と自車両進行方向が異なることにより発生する相対速度変化に追従するため、上述した角度変換を行って、路側物(静止物)の次回予測ピーク位置を正確に推定して、トラッキングを容易にする。 In FIG. 5, first, it is determined whether or not there is a roadside object (stationary object) determined by fusion with the forward millimeter wave radar 11 (step S11). When there is no roadside object (stationary object) determined by the fusion with the forward millimeter wave radar 11 (“No” in step S11), the flow is terminated while the roadside object is confirmed by the fusion with the forward millimeter wave radar 11. When a roadside object (stationary object) exists (“Yes” in step S11), the tracking peak position is calculated in consideration of the roadside object (stationary object) when estimating the next predicted peak position. (Step S12). That is, for the roadside object (stationary object) determined by the fusion with the front millimeter wave radar 11, the vehicle speed V 0 and the current predicted position are tracked from the curve R until the detection range R2 of the front side millimeter wave radar 12 is removed. To do. In this case, in order to follow the relative speed change generated when the traveling direction of the host vehicle is different from the central axis L2 of the front side millimeter wave radar 12, the next predicted peak of the roadside object (stationary object) is performed by performing the angle conversion described above. Estimate location accurately to facilitate tracking.

以上説明したように、実施の形態1によれば、前側方ミリ波レーダ12の検出範囲R2については、相対速度の方位角依存性を考慮し、車速センサ20で取得した自車速度V0および前側方ミリ波レーダ12で取得した相対速度Vrおよび方位角βに基づいて、物体が静止物であるか否かを判定することとしたので、物標の相対速度の方位角依存性に拘わらず、高精度に停止物を判定することが可能となる。付言すると、広角型やレーダ中心軸が自車両進行方向と異なるレーダ装置において、検出される相対速度が物標の方位角により大きく変動する場合においても、高精度に停止物を判定することが可能となる。 As described above, according to the first embodiment, for the detection range R2 of the front side millimeter wave radar 12, the vehicle speed V 0 acquired by the vehicle speed sensor 20 and the azimuth angle dependency of the relative speed are taken into consideration. Since it is determined whether or not the object is a stationary object based on the relative velocity Vr and the azimuth angle β acquired by the front side millimeter wave radar 12, regardless of the azimuth dependency of the relative velocity of the target. It is possible to determine a stationary object with high accuracy. In addition, in a radar system with a wide-angle type or a radar center axis different from the traveling direction of the host vehicle, it is possible to determine a stationary object with high accuracy even when the detected relative speed varies greatly depending on the azimuth angle of the target. It becomes.

また、前側方ミリ波レーダ12で取得した相対速度Vrを取得した方位角βで補正した相対速度Vr’と、自車速度V0との差分が閾値範囲内である場合に、物体を静止物であると判定することとしたので、簡単かつ高精度に停止物を判定することが可能となる。 Further, when the difference between the relative speed Vr ′ acquired by the front side millimeter wave radar 12 and the relative speed Vr ′ corrected by the acquired azimuth angle β and the own vehicle speed V 0 is within the threshold range, the object is set as a stationary object. Therefore, it is possible to determine a stationary object easily and with high accuracy.

また、前方ミリ波レーダ11の検出範囲R1で停止物と判定された物標については、前側方ミリ波レーダ12の検出範囲R2でも停止物と仮定して、停止物か否かの判定を行うこととしたので、前側方ミリ波レーダ12の検出範囲R2において、自車両に向かってくる接近移動物または路側物(停止物)かの判定を短時間で行うことができ、路側物(停止物)を確実かつ即時に確定させることができる。また、路側物(停止物)を早い段階で見極めることができるので、前側方ミリ波レーダ12の中心軸L2と自車両進行方向が異なることにより、相対速度が自車両速度からゼロまで変化するトラッキングに予測追従することができる。   For a target that is determined to be a stopped object in the detection range R1 of the front millimeter wave radar 11, it is determined whether or not the target is a stopped object even in the detection range R2 of the front side millimeter wave radar 12. Therefore, in the detection range R2 of the front side millimeter wave radar 12, it can be determined in a short time whether it is an approaching moving object or a roadside object (stopping object) that approaches the host vehicle. ) Can be confirmed reliably and immediately. Further, since roadside objects (stopped objects) can be identified at an early stage, tracking in which the relative speed changes from the own vehicle speed to zero due to the difference in the traveling direction of the own vehicle from the central axis L2 of the front side millimeter wave radar 12 is performed. It is possible to follow the prediction.

なお、実施の形態1では、前側方ミリ波レーダ12が相対速度Vrおよび方位角βを取得することとしたが、方位角βを検出するための方位角取得手段を別個に設ける構成としてもよい。   In the first embodiment, the front side millimeter wave radar 12 acquires the relative velocity Vr and the azimuth angle β. However, a configuration may be provided in which azimuth angle acquisition means for detecting the azimuth angle β is separately provided. .

(実施の形態2)
上記実施の形態1では、前方ミリ波レーダ11と車両前方左側に配置した前側方ミリ波レーダ12をフュージョンさせて路側物標(静止物)を確定することとしたが、路側物標(静止物)を確定する場合にフュージョンさせるレーダの組み合わせは、必ずしも上述した組み合わせに限定されるわけではなく、レーダの検出範囲が異なり、かつ検出範囲が一部重複していれば如何なる形式のレーダを組み合わせることにしてもよい。
(Embodiment 2)
In the first embodiment, the roadside target (stationary object) is determined by fusing the front millimeter wave radar 11 and the front side millimeter wave radar 12 disposed on the left side in front of the vehicle. ) Is not necessarily limited to the combinations described above, and any type of radar can be combined as long as the radar detection ranges are different and the detection ranges partially overlap. It may be.

図7は、本発明の実施の形態2に係る物体検出装置の機能構成を示すブロック図である。図7において、図1と同等機能を有する部位には同一符号を付している。図8は、図7の物体検出装置に搭載されるレーダの配置位置を説明するための図である。   FIG. 7 is a block diagram showing a functional configuration of the object detection apparatus according to Embodiment 2 of the present invention. In FIG. 7, parts having the same functions as those in FIG. FIG. 8 is a diagram for explaining the arrangement position of the radar mounted on the object detection apparatus of FIG.

図7に示す物体検出装置1は、図8に示すように、さらに、車両前方右側に配置された前側方ミリ波レーダ13、車両左側側方に配置された側方ミリ波レーダ14、車両右側側方に配置された側方ミリ波レーダ15、車両後方に配置された後方ミリ波レーダ16、車両後方左側に配置された後側方ミリ波レーダ17、車両後方右側に配置された後側方ミリ波レーダ18を備えている。レーダ13〜18は、近距離広角レーダであり、前側方ミリ波レーダ12と同様に、相対速度の方位角依存性を考慮して、路側物標(静止物)の判定を行う。   As shown in FIG. 8, the object detection apparatus 1 shown in FIG. 7 further includes a front side millimeter wave radar 13 disposed on the front right side of the vehicle, a side millimeter wave radar 14 disposed on the left side of the vehicle, and a right side of the vehicle. Side millimeter wave radar 15 disposed on the side, rear millimeter wave radar 16 disposed on the rear side of the vehicle, rear side millimeter wave radar 17 disposed on the left side behind the vehicle, rear side disposed on the right side behind the vehicle A millimeter wave radar 18 is provided. Radars 13 to 18 are short-range wide-angle radars, and determine roadside targets (stationary objects) in consideration of the azimuth angle dependency of relative speed, as with front side millimeter wave radar 12.

図8において、L13、L14,L15,L16,L17,L18は、前側方ミリ波レーダ13、側方ミリ波レーダ14、側方ミリ波レーダ15、後方ミリ波レーダ16、後側方ミリ波レーダ17、後側方ミリ波レーダ18のレーダ中心軸をそれぞれ示している。   In FIG. 8, L13, L14, L15, L16, L17, and L18 are a front side millimeter wave radar 13, a side millimeter wave radar 14, a side millimeter wave radar 15, a rear millimeter wave radar 16, and a rear side millimeter wave radar. 17 shows the radar central axes of the rear side millimeter wave radar 18.

前方ミリ波レーダ11と前側方ミリ波レーダ12、前側方ミリ波レーダ12と側方ミリ波レーダ14、側方ミリ波レーダ14と後側方ミリ波レーダ17、後側方ミリ波レーダ17と後方ミリ波レーダ16は、それぞれ検出範囲が一部重複しており、実施の形態1と同様に、路側物標(静止物)を確定する際にフュージョンさせる。   Front millimeter wave radar 11 and front side millimeter wave radar 12, front side millimeter wave radar 12 and side millimeter wave radar 14, side millimeter wave radar 14 and rear side millimeter wave radar 17, rear side millimeter wave radar 17 and The rear millimeter wave radar 16 partially overlaps the detection range, and as in the first embodiment, fusion is performed when a roadside target (stationary object) is determined.

また、前方ミリ波レーダ11と前側方ミリ波レーダ13、前側方ミリ波レーダ13と側方ミリ波レーダ15、側方ミリ波レーダ15と後側方ミリ波レーダ18、後側方ミリ波レーダ18と後方ミリ波レーダ16は、それぞれ検出範囲が一部重複しており、実施の形態1と同様に、路側物標(静止物)を確定する際にフュージョンさせる。   Further, the front millimeter wave radar 11 and the front side millimeter wave radar 13, the front side millimeter wave radar 13 and the side millimeter wave radar 15, the side millimeter wave radar 15 and the rear side millimeter wave radar 18, and the rear side millimeter wave radar. 18 and the rear millimeter wave radar 16 are partially overlapped in detection ranges, and are fused when a roadside target (stationary object) is determined as in the first embodiment.

なお、上記した実施の形態では、レーダとして、FMCW(Frequency Modulated Continuous Wave)方式を使用することとしたが、本発明はこれに限られるものではなく、他の方式のレーダを使用することにしてもよい。   In the above-described embodiment, the FMCW (Frequency Modulated Continuous Wave) method is used as the radar. However, the present invention is not limited to this, and another type of radar is used. Also good.

本発明に係る物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラムは、ACC(自動車間制御)、PBA(プリクラッシュブレーキアシスト)、PSB(プリクラッシュシートベルト)等の走行安全システムに使用されるレーダ装置に有用である。   An object detection apparatus, an object detection method, and a program to be executed by a computer according to the present invention are applied to a traveling safety system such as ACC (inter-vehicle control), PBA (pre-crash brake assist), and PSB (pre-crash seat belt). It is useful for the radar device used.

本発明の実施の形態1に係る物体検出装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the object detection apparatus which concerns on Embodiment 1 of this invention. 前方ミリ波レーダおよび前側方ミリ波レーダの配置位置を説明するための図である。It is a figure for demonstrating the arrangement position of a front millimeter wave radar and a front side millimeter wave radar. 前方ミリ波レーダと前側方ミリ波レーダの検出範囲および相対速度の方位角依存性を説明するための図である。It is a figure for demonstrating the azimuth angle dependence of the detection range and relative velocity of a front millimeter wave radar and a front side millimeter wave radar. 静止物検出処理の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of a stationary object detection process. 前側方ミリ波レーダにおける追跡処理の概略を説明するためのフローチャートである。It is a flowchart for demonstrating the outline of the tracking process in a front side millimeter wave radar. 路側物標(静止物)による相対速度変化を考慮した次回予測ピークを説明するための図である。It is a figure for demonstrating the next prediction peak which considered the relative speed change by a roadside target (stationary object). 本発明の実施の形態2に係る物体検出装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the object detection apparatus which concerns on Embodiment 2 of this invention. レーダの配置位置を説明するための図である。It is a figure for demonstrating the arrangement position of a radar.

符号の説明Explanation of symbols

1 物体検出装置
11 前方ミリ波レーダ
12 前側方ミリ波レーダ
13 前側方ミリ波レーダ
14 側方ミリ波レーダ
15 側方ミリ波レーダ
16 後方ミリ波レーダ
17 後側方ミリ波レーダ
18 後側方ミリ波レーダ
20 車速センサ
30 演算部
31 検出部
32 物標追尾処理部
40 記憶部
50 車両制御装置
R1、R2,R12 検出範囲
L11〜L18 レーダ中心軸
DESCRIPTION OF SYMBOLS 1 Object detection apparatus 11 Front millimeter wave radar 12 Front side millimeter wave radar 13 Front side millimeter wave radar 14 Side millimeter wave radar 15 Side millimeter wave radar 16 Rear millimeter wave radar 17 Rear side millimeter wave radar 18 Rear side millimeter Wave radar 20 Vehicle speed sensor 30 Calculation unit 31 Detection unit 32 Target tracking processing unit 40 Storage unit 50 Vehicle control device R1, R2, R12 Detection range L11 to L18 Radar central axis

Claims (8)

車両に搭載される物体検出装置において、
信号波を送信し、この送信した信号波の反射波に基づいて、自車両と物体との相対速度を取得する第1の相対速度取得手段と、
前記物体の方位角を取得する方位角取得手段と、
自車速度を検出する自車速度検出手段と、
相対速度の方位角依存性を考慮して、前記自車速度検出手段で取得した自車速度、前記第1の相対速度取得手段で取得した相対速度、および前記方位角取得手段で取得した方位角に基づいて、前記物体が静止物であるか否かを判定する第1の静止物判定手段と、
を備えたことを特徴とする物体検出装置。
In an object detection device mounted on a vehicle,
First relative speed acquisition means for transmitting a signal wave and acquiring a relative speed between the host vehicle and the object based on the reflected wave of the transmitted signal wave;
Azimuth angle obtaining means for obtaining the azimuth angle of the object;
Vehicle speed detection means for detecting the vehicle speed;
Considering the azimuth angle dependency of relative speed, the own vehicle speed acquired by the own vehicle speed detecting means, the relative speed acquired by the first relative speed acquiring means, and the azimuth angle acquired by the azimuth angle acquiring means Based on the first stationary object determination means for determining whether the object is a stationary object;
An object detection apparatus comprising:
前記第1の静止物判定手段は、前記取得した相対速度を前記取得した方位角で補正した値と、前記取得した自車速度との差分が所定範囲内である場合に、前記物体を静止物であると判定することを特徴とする請求項1に記載の物体検出装置。   The first stationary object determination means determines that the object is a stationary object when the difference between the acquired relative speed corrected by the acquired azimuth angle and the acquired vehicle speed is within a predetermined range. The object detection apparatus according to claim 1, wherein it is determined that 前記第1の相対速度取得手段は、車両に対して第1の方向に配置されており、
さらに、前記車両に対して第2の方向に配置され、信号波を送信し、この送信した信号波の反射波に基づいて、自車両と前記物体との相対速度を取得する第2の相対速度取得手段と、
前記自車速度検出手段で取得した自車速度および前記第2の相対速度取得手段で取得した相対速度に基づいて、前記物体が静止物であるか否かを判定する第2の静止物判定手段と、
を備え、
前記第1の静止物判定手段は、前記第2の静止物判定手段が静止物であると判定した物体については、静止物であると仮定して静止物であるか否かを判定することを特徴とする請求項1または請求項2に記載の物体検出装置。
The first relative speed acquisition means is arranged in a first direction with respect to the vehicle;
Further, a second relative speed that is arranged in a second direction with respect to the vehicle, transmits a signal wave, and acquires a relative speed between the host vehicle and the object based on a reflected wave of the transmitted signal wave. Acquisition means;
Second stationary object determining means for determining whether or not the object is a stationary object based on the own vehicle speed acquired by the own vehicle speed detecting means and the relative speed acquired by the second relative speed acquiring means. When,
With
The first stationary object determining means determines whether or not the object determined by the second stationary object determining means is a stationary object, assuming that the object is a stationary object. The object detection device according to claim 1, wherein the object detection device is a device.
前記第1の方向は前方方向であり、前記第2の方向は前側方方向または側方方向であることを特徴とする請求項3に記載の物体検出装置。   The object detection apparatus according to claim 3, wherein the first direction is a forward direction, and the second direction is a front side direction or a side direction. 信号波を送信し、この送信した信号波の反射波に基づいて、自車両と物体との相対速度を取得する第1の相対速度取得工程と、
前記物体の方位角を取得する方位角取得工程と、
自車速度を検出する自車速度検出工程と、
相対速度の方位角依存性を考慮して、前記自車速度検出工程で取得した自車速度、前記第1の相対速度取得工程で取得した相対速度、および前記方位角取得工程で取得した方位角に基づいて、前記物体が静止物であるか否かを判定する第1の静止物判定工程と、
を含むことを特徴とする物体検出方法。
A first relative speed acquisition step of transmitting a signal wave and acquiring a relative speed between the host vehicle and the object based on the reflected wave of the transmitted signal wave;
An azimuth angle obtaining step of obtaining an azimuth angle of the object;
A vehicle speed detection process for detecting the vehicle speed;
In consideration of the azimuth angle dependency of relative speed, the own vehicle speed acquired in the own vehicle speed detection step, the relative speed acquired in the first relative speed acquisition step, and the azimuth angle acquired in the azimuth angle acquisition step A first stationary object determination step for determining whether or not the object is a stationary object,
An object detection method comprising:
前記第1の静止物判定工程では、前記取得した相対速度を前記取得した方位角で補正した値と、前記自車速度との差分が所定範囲内である場合に、前記物体を静止物であると判定することを特徴とする請求項5に記載の物体検出方法。   In the first stationary object determination step, the object is a stationary object when a difference between the acquired relative speed corrected by the acquired azimuth angle and the vehicle speed is within a predetermined range. The object detection method according to claim 5, wherein the object detection method is determined. 信号波を送信し、この送信した信号波の反射波に基づいて、自車両と前記物体との相対速度を取得する第2の相対速度取得工程と、
前記自車速度検出工程で取得した自車速度および前記第2の相対速度取得工程で取得した相対速度に基づいて、前記物体が静止物であるか否かを判定する第2の静止物判定工程と、
を含み、
前記第1の静止物判定工程では、前記第2の静止物判定工程で静止物であると判定した物体については、静止物であると仮定して静止物であるか否かを判定することを特徴とする請求項5または請求項6に記載の物体検出方法。
A second relative speed acquisition step of transmitting a signal wave and acquiring a relative speed between the vehicle and the object based on the reflected wave of the transmitted signal wave;
Second stationary object determination step for determining whether or not the object is a stationary object based on the own vehicle speed acquired in the own vehicle speed detection step and the relative speed acquired in the second relative speed acquisition step. When,
Including
In the first stationary object determination step, for the object determined to be a stationary object in the second stationary object determination step, it is determined whether the object is a stationary object on the assumption that it is a stationary object. The object detection method according to claim 5 or claim 6, wherein
請求項5〜請求項7のいずれか1つに記載の物体検出方法の各工程をコンピュータに実行させることを特徴とするコンピュータが実行するためのプログラム。   A program for causing a computer to execute each step of the object detection method according to any one of claims 5 to 7.
JP2006265734A 2006-09-28 2006-09-28 Object detection apparatus, object detection method, and program executed by computer Expired - Fee Related JP4992367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006265734A JP4992367B2 (en) 2006-09-28 2006-09-28 Object detection apparatus, object detection method, and program executed by computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006265734A JP4992367B2 (en) 2006-09-28 2006-09-28 Object detection apparatus, object detection method, and program executed by computer

Publications (2)

Publication Number Publication Date
JP2008082974A true JP2008082974A (en) 2008-04-10
JP4992367B2 JP4992367B2 (en) 2012-08-08

Family

ID=39353984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006265734A Expired - Fee Related JP4992367B2 (en) 2006-09-28 2006-09-28 Object detection apparatus, object detection method, and program executed by computer

Country Status (1)

Country Link
JP (1) JP4992367B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117927A (en) * 2009-12-04 2011-06-16 Hyundai Motor Co Ltd Preceding-vehicle sensing system
JP2012159348A (en) * 2011-01-31 2012-08-23 Denso Corp Radar apparatus
WO2014069097A1 (en) * 2012-10-30 2014-05-08 株式会社デンソー Device for determining axial deviation in radar devices
JP2015155883A (en) * 2014-01-15 2015-08-27 パナソニック株式会社 Radar device
WO2016009987A1 (en) * 2014-07-16 2016-01-21 株式会社デンソー Vehicle-mounted radar device and notification system
JP2016200443A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Obstacle detection device
CN106646342A (en) * 2016-12-29 2017-05-10 成都理想境界科技有限公司 Positioning base station and positioning system
JP2018087759A (en) * 2016-11-29 2018-06-07 株式会社デンソー Curve prediction device
CN108291965A (en) * 2015-12-01 2018-07-17 奥托立夫开发公司 Vehicle radar system
JP2019020158A (en) * 2017-07-12 2019-02-07 ミツミ電機株式会社 Object detection method and object detection device
JP2021510824A (en) * 2018-01-18 2021-04-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Methods and devices for evaluating the angular position of objects, as well as driver assistance systems
US11262442B2 (en) 2017-05-25 2022-03-01 Mitsumi Electric Co., Ltd. Ghost removal method and radar device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989766B2 (en) 2017-09-29 2022-01-12 ミツミ電機株式会社 Radar device and target detection method
JP2019066290A (en) 2017-09-29 2019-04-25 ミツミ電機株式会社 Radar device and method for detecting target

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081480A (en) * 1998-09-07 2000-03-21 Denso Corp Fmcw radar, storage medium, and vehicle control device
JP2002228749A (en) * 2001-02-02 2002-08-14 Hitachi Ltd On-vehicle millimeter wave radar device
JP2004233090A (en) * 2003-01-28 2004-08-19 Fujitsu Ten Ltd Radar system
WO2006051603A1 (en) * 2004-11-12 2006-05-18 Mitsubishi Denki Kabushiki Kaisha Axial deviation angle estimating method and device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081480A (en) * 1998-09-07 2000-03-21 Denso Corp Fmcw radar, storage medium, and vehicle control device
JP2002228749A (en) * 2001-02-02 2002-08-14 Hitachi Ltd On-vehicle millimeter wave radar device
JP2004233090A (en) * 2003-01-28 2004-08-19 Fujitsu Ten Ltd Radar system
WO2006051603A1 (en) * 2004-11-12 2006-05-18 Mitsubishi Denki Kabushiki Kaisha Axial deviation angle estimating method and device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117927A (en) * 2009-12-04 2011-06-16 Hyundai Motor Co Ltd Preceding-vehicle sensing system
JP2012159348A (en) * 2011-01-31 2012-08-23 Denso Corp Radar apparatus
WO2014069097A1 (en) * 2012-10-30 2014-05-08 株式会社デンソー Device for determining axial deviation in radar devices
JP2014089114A (en) * 2012-10-30 2014-05-15 Denso Corp Axis deviation determination device
JP2015155883A (en) * 2014-01-15 2015-08-27 パナソニック株式会社 Radar device
CN106537182A (en) * 2014-07-16 2017-03-22 株式会社电装 Vehicle-mounted radar device and notification system
WO2016009987A1 (en) * 2014-07-16 2016-01-21 株式会社デンソー Vehicle-mounted radar device and notification system
JP2016023947A (en) * 2014-07-16 2016-02-08 株式会社デンソー In-vehicle radar system and alarm system
US10371809B2 (en) 2014-07-16 2019-08-06 Denso Corporation On-board radar apparatus and notification system
DE112015003262B4 (en) 2014-07-16 2023-03-23 Denso Corporation Onboard radar and notification system
JP2016200443A (en) * 2015-04-08 2016-12-01 トヨタ自動車株式会社 Obstacle detection device
CN108291965A (en) * 2015-12-01 2018-07-17 奥托立夫开发公司 Vehicle radar system
JP2018087759A (en) * 2016-11-29 2018-06-07 株式会社デンソー Curve prediction device
CN106646342A (en) * 2016-12-29 2017-05-10 成都理想境界科技有限公司 Positioning base station and positioning system
US11262442B2 (en) 2017-05-25 2022-03-01 Mitsumi Electric Co., Ltd. Ghost removal method and radar device
JP2019020158A (en) * 2017-07-12 2019-02-07 ミツミ電機株式会社 Object detection method and object detection device
JP7015929B2 (en) 2018-01-18 2022-02-03 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Methods and devices for assessing the angular position of objects, as well as driver assistance systems
JP2021510824A (en) * 2018-01-18 2021-04-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Methods and devices for evaluating the angular position of objects, as well as driver assistance systems
US11698451B2 (en) 2018-01-18 2023-07-11 Robert Bosch Gmbh Method and device for evaluating the angular position of an object, and driver assistance system

Also Published As

Publication number Publication date
JP4992367B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4992367B2 (en) Object detection apparatus, object detection method, and program executed by computer
US10429502B2 (en) Target detecting device for avoiding collision between vehicle and target captured by sensor mounted to the vehicle
JP5003674B2 (en) Radar device and moving body
US8112223B2 (en) Method for measuring lateral movements in a driver assistance system
JP5091651B2 (en) Radar apparatus and target azimuth measurement method
JP2009041981A (en) Object detection system and vehicle equipped with object detection system
JP6892600B2 (en) Object detection method and object detection device
US10473760B2 (en) Radar device and vertical axis-misalignment detecting method
WO2018181743A1 (en) Vehicle-mounted radar device
WO2006016445A1 (en) Radar
JP5846472B2 (en) Vehicle object detection device
US20190061748A1 (en) Collision prediction apparatus
TWI448715B (en) Motion parameter estimating method, angle estimating method and determination method
US8094000B2 (en) Surroundings monitoring apparatus for a motor vehicle
JP4779704B2 (en) Target detection apparatus and target detection method
WO2019065439A1 (en) Radar device and target detection method
JP2009211212A (en) Preceding vehicle detection device and vehicle speed control device using this
JP2008064743A (en) Vehicular radar device
JP2019020167A (en) Radar device and method for processing signal
JP5783163B2 (en) Target detection device
JP2012229947A (en) Target detection device, target detection method and program
JP2006058135A (en) Moving body detector and detecting method
JP2014211332A (en) Radar device and control method thereof
JP2000099875A (en) Vehicle detector
JP2007232747A (en) On-board radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4992367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees