JP2008082251A - Electric power plant - Google Patents

Electric power plant Download PDF

Info

Publication number
JP2008082251A
JP2008082251A JP2006263447A JP2006263447A JP2008082251A JP 2008082251 A JP2008082251 A JP 2008082251A JP 2006263447 A JP2006263447 A JP 2006263447A JP 2006263447 A JP2006263447 A JP 2006263447A JP 2008082251 A JP2008082251 A JP 2008082251A
Authority
JP
Japan
Prior art keywords
rotor
blade
rotation
rotation axis
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006263447A
Other languages
Japanese (ja)
Other versions
JP4441516B2 (en
Inventor
Masaharu Kato
政春 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006263447A priority Critical patent/JP4441516B2/en
Publication of JP2008082251A publication Critical patent/JP2008082251A/en
Application granted granted Critical
Publication of JP4441516B2 publication Critical patent/JP4441516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric power plant having run-out of a shaft and cogging not easily arise, stabilizing power generating characteristics during rotation, reducing torsional load on a rotary shaft, and having drop of power generating efficiency due to eddy current loss not easily arise. <P>SOLUTION: This electric power plant is provided with a first rotor 41 provided with a field magnet 101 connected to a windmill rotating in reverse direction respectively, and a second rotor 42 provided with a power generation coil 102 rotating in a reverse direction to the first rotor 41 as one unit with a second rotation input part 30 and excited by the field magnet 101. An axial gap type generator 40 is constructed to make the power generation coil 102 and the field coil 101 oppose in a rotation axis line M direction by arranging a plurality of power generating coil 102 constructed in a flat hollow shape in such a manner that each axis line direction is kept consistent with the rotation axis line M direction around the rotation axis line M in the second rotor 42, and arranging a plurality of field magnet 101 in such a manner that the same is magnetized in each rotation axis line M direction around the rotation axis line M in the first rotor 41. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、発電装置に関する。   The present invention relates to a power generator.

特開2004−211707号Japanese Patent Application Laid-Open No. 2004-211707

特許文献1には、界磁用マグネットを設けた第一ロータと、発電用コイルを設けたロータとを、同一方向からの風を受けた場合に互いに逆方向に回転する風車にそれぞれ接続し、界磁用マグネットと発電用コイルとの相対回転速度を、風車回転速度に対して倍速化し、発電効率を高めるようにした風力発電装置が開示されている。また、効果としては次のようなことが謳われている。
・比較的重量の大きい界磁用マグネットと発電用コイルとが、それぞれ第一ロータ及び第二ロータの形で風車回転軸線周りに集中する結果、一種のフライホイール効果が生じ、風速が一定しない場合でも回転の安定化を図ることができる。
・特に、回転軸線を鉛直に設定することでジャイロ効果が生じやすく、強風時でも回転軸線の軸ぶれが生じにくく、安定した回転が可能となる。
・第一ロータ及び第二ロータが上下の風車とともに互いに逆方向に回転するので、風車回転軸への回転ねじれ負荷荷重をキャンセルでき、構造強度上も有利である。
In Patent Document 1, a first rotor provided with a field magnet and a rotor provided with a power generating coil are connected to wind turbines that rotate in opposite directions when receiving wind from the same direction, respectively. There has been disclosed a wind turbine generator in which the relative rotational speed between the field magnet and the power generating coil is doubled with respect to the wind turbine rotational speed to increase the power generation efficiency. In addition, the following has been described as an effect.
When a relatively heavy field magnet and power generation coil are concentrated around the windmill rotation axis in the form of a first rotor and a second rotor, respectively, resulting in a kind of flywheel effect and the wind speed is not constant However, the rotation can be stabilized.
-In particular, by setting the rotation axis to be vertical, the gyro effect is likely to occur, and even when the wind is strong, the rotation axis is less likely to be shaken and stable rotation is possible.
Since the first rotor and the second rotor rotate in the opposite directions together with the upper and lower wind turbines, it is possible to cancel the rotational torsional load on the wind turbine rotating shaft, which is advantageous in terms of structural strength.

特許文献1の風力発電装置で採用されている発電機はいわゆるラジアルギャップ型であり、第一ロータの外周面に取り付けられた界磁用マグネットに対し、第二ロータ側の発電用コイルがラジアル方向外側に対向する構造となっている。その結果、次のよう問題を生ずる。
(1)界磁用マグネットのラジアル方向外側に発電用コイルが位置するので、発電用コイルが設けられる第二ロータの回転半径が必然的に第一ロータの回転半径よりも大きくなる。そして、第二ロータでは有鉄心型の重いコイルの荷重が大半径位置に集中する結果、第一ロータよりも慣性モーメントが大幅に大きくなり、上下の風車の回転慣性力にアンバランスを生じやすく、低風速時の発電特性が安定しにくい問題がある。また、風車回転軸への回転ねじれ負荷荷重のキャンセル効果も十分達成できない。
(2)発電用コイルと界磁用マグネットとのアキシャル方向寸法が増大しやすく、また、発電用コイルが有芯型なので、発電装置全体の軽量化を図る上で不利である。また、荷重がアキシャル方向に分散しやすいので、フライホイール効果(あるいはジャイロ効果)が必ずしも十分でない(特に、回転半径の小さい第二ロータ側)。その結果、強風時等における回転軸ぶれも生じやすい。
(3)コイルとマグネットとの界磁反発力がラジアル方向に発生するので、回転軸ぶれやコギングを生じやすい。
(4)発電用コイルが有鉄心型なので、渦電流損失が大きく発電効率が悪化しやすい。また、発電機の発熱も生じやすい。
The generator adopted in the wind power generator of Patent Document 1 is a so-called radial gap type, and the generator coil on the second rotor side is in the radial direction with respect to the field magnet attached to the outer peripheral surface of the first rotor. It has a structure facing the outside. As a result, the following problems occur.
(1) Since the power generation coil is located outside the field magnet in the radial direction, the rotation radius of the second rotor provided with the power generation coil is necessarily larger than the rotation radius of the first rotor. And in the second rotor, the load of the heavy iron core type coil concentrates on the large radius position, and as a result, the moment of inertia becomes significantly larger than that of the first rotor, and the rotational inertia force of the upper and lower wind turbines is likely to be unbalanced, There is a problem that power generation characteristics at a low wind speed are difficult to stabilize. Further, the effect of canceling the rotational torsional load applied to the windmill rotating shaft cannot be sufficiently achieved.
(2) The axial dimensions of the power generating coil and the field magnet are likely to increase, and the power generating coil is cored, which is disadvantageous in reducing the weight of the entire power generating device. Further, since the load is likely to be dispersed in the axial direction, the flywheel effect (or gyro effect) is not always sufficient (particularly on the second rotor side having a small turning radius). As a result, the rotation axis is likely to be shaken during a strong wind.
(3) Since the field repulsive force between the coil and the magnet is generated in the radial direction, it is likely to cause rotational axis fluctuation and cogging.
(4) Since the power generation coil is a cored type, the eddy current loss is large and the power generation efficiency tends to deteriorate. Also, the generator is likely to generate heat.

本発明の課題は、回転軸ぶれやコギングが生じにくく、風速回転時の発電特性を一層安定化させることができるとともに、回転軸へのねじれ負荷も軽減でき、さらに渦電流損失による発電効率の低下も生じにくい発電装置を提供することにある。   The problems of the present invention are that the rotating shaft shake and cogging are less likely to occur, the power generation characteristics during wind speed rotation can be further stabilized, the torsional load on the rotating shaft can be reduced, and the power generation efficiency is reduced due to eddy current loss. Another object of the present invention is to provide a power generation device that is less likely to cause a problem.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を解決するために、本発明の発電装置は、
基準軸線上の第一位置に回転軸線を一致させる形で配置され、発電駆動源となる流体の流れを受けて第一方向に回転する第一回転入力部と、
基準軸線上の第一位置とは異なる第二位置に配置されるとともに、同一方向から流体の流れを受けたとき、第一回転入力部とは逆方向に回転する第二回転入力部と、
界磁用マグネットが設けられた第一ロータと、該第一ロータと逆方向に第二回転入力部と一体回転するとともに界磁用マグネットにより励磁される発電用コイルが設けられた第二ロータと、を備えた発電機とを備え、
発電機は、発電用コイルと界磁用マグネットとが回転軸線方向にエアギャップを形成する形で対向するよう、第二ロータにおいて、空芯扁平に構成された複数の発電用コイルが回転軸線周りに各々軸線方向が回転軸線方向と一致する形で配列し、第一ロータにおいて、回転軸線周りに複数の界磁用マグネットが各々回転軸線方向に着磁された形で配列したアキシャルギャップ型発電機として構成されてなることを特徴とする。
In order to solve the above problems, the power generation device of the present invention includes:
A first rotation input unit that is arranged in a form that coincides with the rotation axis at a first position on the reference axis, and that rotates in a first direction in response to a fluid flow serving as a power generation drive source;
A second rotation input unit that is arranged at a second position different from the first position on the reference axis, and that rotates in a direction opposite to the first rotation input unit when receiving a fluid flow from the same direction;
A first rotor provided with a field magnet, and a second rotor provided with a power generation coil that rotates integrally with the second rotation input portion in the opposite direction to the first rotor and is excited by the field magnet; And a generator with
In the generator, a plurality of power generation coils configured in an air-core flat shape are arranged around the rotation axis so that the power generation coil and the field magnet are opposed to each other so as to form an air gap in the rotation axis direction. An axial gap generator in which the axial direction is aligned with the rotational axis direction and a plurality of field magnets are magnetized around the rotational axis in the first rotor. It is comprised as follows.

上記本発明の構成によると、発電機が上記のごとくアキシャルギャップ型発電機として構成されていることから、次のような効果を達成することができる。
(1)界磁用マグネットと発電用コイルとがアキシャル方向に対向するため、界磁用マグネットが設けられる第一ロータと発電用コイルが設けられる第二ロータとは、ほぼ同じ半径位置に界磁用マグネットと発電用コイルの各重量が集中し、回転軸線周りの慣性モーメントに差が生じにくい。その結果、上下の回転入力部(例えば風車)の回転慣性力にアンバランスを生じにくく、低速回転時の発電特性が安定しやすい。また、回転軸への回転ねじれ負荷荷重のキャンセル効果も大幅に高められ、構造強度的にも有利に作用する。
(2)発電用コイルと界磁用マグネットとをいずれも薄型に構成でき、かつ、発電用コイルが空芯型なので、発電装置全体の軽量化に大きく寄与する。また、発電用コイルと界磁用マグネットとの荷重がアキシャル方向に比較的集中するので、フライホイール効果が大幅に高められる。その結果、強風時等における回転軸ぶれも効果的に抑制できる。
(3)コイルとマグネットとの界磁反発力がアキシャル方向に発生するので、回転軸ぶれやコギングを生じにくい。
(4)発電用コイルが空芯型なので、渦電流損失が小さく発電効率も良好である。また、発電機の発熱も抑制される。
According to the configuration of the present invention, since the generator is configured as an axial gap generator as described above, the following effects can be achieved.
(1) Since the field magnet and the power generation coil face each other in the axial direction, the first rotor provided with the field magnet and the second rotor provided with the power generation coil are arranged at substantially the same radial position. The weights of the magnet for power generation and the coil for power generation are concentrated, and the difference in the moment of inertia around the rotation axis is unlikely to occur. As a result, the rotational inertia force of the upper and lower rotational input units (for example, windmills) is less likely to be unbalanced, and the power generation characteristics during low-speed rotation are likely to be stable. In addition, the effect of canceling the rotational torsional load on the rotating shaft can be greatly enhanced, and this has an advantageous effect on the structural strength.
(2) Since both the power generation coil and the field magnet can be made thin and the power generation coil is an air-core type, it greatly contributes to the weight reduction of the entire power generation apparatus. Further, since the loads of the power generating coil and the field magnet are relatively concentrated in the axial direction, the flywheel effect is greatly enhanced. As a result, it is possible to effectively suppress the rotational shaft shake during strong winds and the like.
(3) Since the field repulsive force between the coil and the magnet is generated in the axial direction, it is difficult to cause rotational shaft shake and cogging.
(4) Since the power generation coil is an air-core type, eddy current loss is small and power generation efficiency is good. Moreover, the heat generation of the generator is also suppressed.

この場合、第二ロータと第二回転入力部とを結合する第二回転軸上に、複数の発電用コイルに各々つながるスリップリングを設け、第二回転軸上にて該スリップリング上を摺動するブラシを介し、発電用コイルからの発電出力を取り出すよう構成できる。これにより、第一ロータと第二ロータとが双方ともに回転する発電機構造において、その発電出力を問題なく取り出すことができる。   In this case, a slip ring connected to each of the plurality of power generating coils is provided on the second rotation shaft that couples the second rotor and the second rotation input unit, and slides on the slip ring on the second rotation shaft. The power generation output from the power generation coil can be taken out through the brush. Thereby, in the generator structure in which both the first rotor and the second rotor rotate, the power generation output can be taken out without any problem.

また、第一ロータは、第二ロータの発電用コイルとの対向面に界磁用マグネットが取り付けられる円板状のロータ本体を有し、第二回転軸と分離形成された第一回転軸が該ロータ本体に一体回転可能に結合されている構造とすることができる。円板状のロータ本体に界磁用マグネットを取り付けることで第一ロータの扁平化を図ることができ、フライホイール効果の更なる向上に寄与する。界磁用マグネットは厚さ方向に着磁された扁平永久磁石にて構成するとよい。特に、扁平型磁石でも強磁界を発生できる希土類磁石(例えば、希土類(Nd,Dy,Pr)−Fe−B系磁石、あるいは希土類(Sm)−Co系磁石など)を採用することが、小形で高出力の発電機を実現する上で有効である。なお、扁平磁石とは、主表面(着磁面)断面積の平方根をsとし、厚さ方向寸法をtとして、t/sが1未満(特に、0.5未満)の磁石のことをいう。   The first rotor has a disk-shaped rotor body to which a field magnet is attached on a surface facing the power generating coil of the second rotor, and the first rotating shaft formed separately from the second rotating shaft is It can be set as the structure couple | bonded with this rotor main body so that integral rotation is possible. By attaching a field magnet to the disc-shaped rotor body, the first rotor can be flattened, which contributes to further improvement of the flywheel effect. The field magnet may be composed of a flat permanent magnet magnetized in the thickness direction. In particular, it is small to employ a rare earth magnet (for example, a rare earth (Nd, Dy, Pr) -Fe-B magnet or a rare earth (Sm) -Co magnet) that can generate a strong magnetic field even with a flat magnet. It is effective in realizing a high-output generator. The flat magnet refers to a magnet having t / s of less than 1 (particularly less than 0.5), where s is the square root of the cross-sectional area of the main surface (magnetized surface) and t is the dimension in the thickness direction. .

また、第一ロータは、第二ロータの発電用コイルに対し、アキシャル方向にてロータ本体と反対側から対向する形で円板状の補助ロータ本体を有し、該補助ロータ本体の発電用コイルとの対向面において、ロータ本体側の界磁用マグネットに対応する位置に、該界磁用マグネットとは逆極性の補助界磁用マグネットが取り付けられた構成とすることができる。この場合、ロータ本体と補助ロータ本体とが外周縁にて第二ロータを周方向に取り囲む周壁部により一体回転可能に連結されてなり、それらロータ本体、周壁部及び補助ロータ本体が軟磁性金属材料からなる界磁ヨークを構成するものとできる。上記のように構成すると、界磁用マグネットと補助界磁用マグネットとの間でアキシャル方向により強力で集中した磁界を発生でき、かつ、ロータ本体、補助ロータ本体及び周壁部が、軟磁性金属材料(例えばパーマロイなど)からなる界磁ヨークを構成することで、漏洩磁界が大幅に減じられ、発電効率を一層高めることができる。   The first rotor has a disk-shaped auxiliary rotor body facing the power generation coil of the second rotor in the axial direction from the opposite side of the rotor body, and the power generation coil of the auxiliary rotor body The auxiliary field magnet having a polarity opposite to that of the field magnet can be installed at a position corresponding to the field magnet on the rotor main body side on the opposite surface. In this case, the rotor main body and the auxiliary rotor main body are connected to each other by a peripheral wall portion that surrounds the second rotor in the circumferential direction at the outer peripheral edge so that the rotor main body, the peripheral wall portion, and the auxiliary rotor main body are soft magnetic metal materials. A field yoke made of When configured as described above, a strong and concentrated magnetic field can be generated in the axial direction between the field magnet and the auxiliary field magnet, and the rotor body, the auxiliary rotor body, and the peripheral wall portion are made of a soft magnetic metal material. By configuring a field yoke made of (for example, permalloy), the leakage magnetic field can be greatly reduced, and the power generation efficiency can be further increased.

この場合、より具体的には次のように構成できる。すなわち、ロータ本体の第二ロータに面しているのと反対側の主表面において回転軸線を取り囲む形で筒状の第一軸受スリーブが突出形成され、第二回転軸と分離形成された第一回転軸が第一軸受スリーブの先端を塞ぐ軸結合遮蔽部に一体回転可能に結合される。また、補助ロータ本体の第二ロータに面しているのと反対側の主表面において筒状の第二軸受スリーブが突出形成される。そして、第二回転軸が第二回転入力部側から第二軸受スリーブ及び第二ロータを貫通して先端部が第一軸受スリーブ内に入り込み、アキシャル方向における第二ロータの両側にて、それら第一軸受スリーブ及び第二軸受スリーブと第二回転軸との間に、第一ロータを第二ロータに対し、両者の相対回転摺動を許容した形で支持させる主軸受が配置される。この構造により、第一ロータは、前述の界磁ヨーク部分、第一軸受スリーブ及び第二軸受スリーブにより第二ロータ、ひいては発電機能部をなす界磁用マグネット及び発電用コイルを包み込む形状となり、回転摺動部分が主軸受により封止されるので、外部から水滴や異物等が発電機能部に侵入することを抑制できる。特に、界磁用マグネットが、酸化劣化しやすい希土類(Nd,Dy,Pr)−Fe−B系磁石にて構成されている場合は、有効な構造であるといえる。   In this case, more specifically, it can be configured as follows. That is, a cylindrical first bearing sleeve protrudes from the main surface of the rotor body opposite to the second rotor and surrounds the rotation axis, and is separated from the second rotation shaft. The rotary shaft is coupled to a shaft coupling shield that blocks the tip of the first bearing sleeve so as to be integrally rotatable. A cylindrical second bearing sleeve projects from the main surface of the auxiliary rotor body opposite to the second rotor. Then, the second rotating shaft passes through the second bearing sleeve and the second rotor from the second rotating input portion side, the tip portion enters the first bearing sleeve, and the second rotating shaft is on both sides of the second rotor in the axial direction. Between the one bearing sleeve and the second bearing sleeve and the second rotating shaft, there is disposed a main bearing that supports the first rotor with respect to the second rotor in a form allowing relative rotational sliding of both of them. With this structure, the first rotor has a shape that encloses the field rotor and the power generation coil forming the power generation function section by the field yoke portion, the first bearing sleeve, and the second bearing sleeve, and rotates. Since the sliding portion is sealed by the main bearing, it is possible to prevent water droplets, foreign matter, and the like from entering the power generation function unit from the outside. In particular, when the field magnet is composed of a rare earth (Nd, Dy, Pr) -Fe-B based magnet that easily undergoes oxidative degradation, it can be said that the structure is effective.

上記構造においては、第一ロータを外側から覆う形で非回転の発電機ケースが設けるとさらによい。この場合、第二回転軸と第一回転軸とが該発電機ケースの内部から各々該発電機ケースの壁部に形成された対応する軸貫通穴にてアキシャル方向外向きに延出するとともに、第二回転軸及び第一回転軸と対応する各貫通穴との間に補助軸受を配置した構造とすることができる。このようにすると、第一ロータの外側がさらに発電機ケースで保護されるとともに、発電機ケースと第二回転軸及び第一回転軸との間が補助軸受で封止されるので、外部からの水滴や異物は補助軸受と主軸受との双方を突破しなければ発電機能部に侵入できず、保護効果が一層高められる。   In the above structure, it is further preferable that a non-rotating generator case is provided so as to cover the first rotor from the outside. In this case, the second rotating shaft and the first rotating shaft extend outward in the axial direction from the inside of the generator case at corresponding shaft through holes formed in the wall portion of the generator case, respectively. It can be set as the structure which has arrange | positioned the auxiliary bearing between each through-hole corresponding to a 2nd rotating shaft and a 1st rotating shaft. In this way, the outer side of the first rotor is further protected by the generator case, and the space between the generator case and the second rotating shaft and the first rotating shaft is sealed by the auxiliary bearing. Water droplets and foreign matter cannot enter the power generation function section unless they break through both the auxiliary bearing and the main bearing, and the protection effect is further enhanced.

この場合、発電機ケースの壁部外面からアキシャル方向に突出する筒状の補助軸受スリーブの内周面に軸貫通穴を形成し、該補助軸受スリーブ内に補助軸受が配置することができる。この場合、補助軸受スリーブの外周面と発電機ケースの壁部外面とを繋ぐ形で補強用及び放熱促進用の複数のフィンを放射状に設けることができる。このようにすると、回転軸に加わるラジアル方向荷重を、補助軸受を介して受け止める補助軸受スリーブの折損強度を高めることができるとともに、大出力発電中においても発電機の放熱を効率良く行なうことができる。   In this case, a shaft through hole can be formed in the inner peripheral surface of the cylindrical auxiliary bearing sleeve projecting in the axial direction from the outer surface of the wall portion of the generator case, and the auxiliary bearing can be arranged in the auxiliary bearing sleeve. In this case, a plurality of fins for reinforcement and heat dissipation can be provided radially so as to connect the outer peripheral surface of the auxiliary bearing sleeve and the outer wall surface of the generator case. In this way, it is possible to increase the breakage strength of the auxiliary bearing sleeve that receives the radial load applied to the rotating shaft via the auxiliary bearing, and it is possible to efficiently radiate the generator even during high-output power generation. .

本発明の発電装置は、第一回転入力部と第二回転入力部とが、各々回転軸線と直交する向きに受風する風車翼を該回転軸線周りに複数配置してなるサポニウス型風車であって、同一方向に受風することにより互いに逆方向に回転する第一風車及び第二風車とされた風力発電装置として構成することができる。風力発電装置に適用することで、さらに具体的な以下の効果を達成できる。
(1)風車の回転慣性力にアンバランスを生じにくく、低風速時の発電特性が安定しやすい。また、風車回転軸への回転ねじれ負荷荷重のキャンセル効果も大幅に高められ、構造強度的にも有利に作用する。
(2)前述のフライホイール効果が大幅に高められる結果、強風時や風が舞う場合における回転軸ぶれも効果的に抑制できる。特に、第一風車及び第二風車と発電機とを、回転軸線が鉛直となるように支持する支持フレームを設けた構成とした場合、回転軸に対するジャイロ効果が著しく高められ、回転軸ぶれ抑制効果が非常に顕著である。
なお、第一回転入力部と第二回転入力部とは風車に限らず、例えば水車やタービンブレードとして構成することで、他の発電方式に適用することも可能である。
The power generation device of the present invention is a Saponius type windmill in which a plurality of wind turbine blades that receive wind in directions orthogonal to the rotation axis are arranged around the rotation axis. Thus, the wind turbine generator can be configured as a first wind turbine and a second wind turbine that rotate in opposite directions by receiving wind in the same direction. By applying it to a wind turbine generator, the following more specific effects can be achieved.
(1) Unbalance in the rotational inertia force of the windmill is unlikely to occur, and power generation characteristics at low wind speeds are likely to be stable. In addition, the effect of canceling the rotational torsion load applied to the windmill rotating shaft is greatly enhanced, and the structure strength is also advantageous.
(2) As a result of the above-mentioned flywheel effect being greatly enhanced, it is possible to effectively suppress rotational shaft shake during strong winds or when the wind flies. In particular, when the first windmill, the second windmill, and the generator are provided with a support frame that supports the rotation axis to be vertical, the gyro effect on the rotation shaft is remarkably enhanced, and the rotation shaft shake is suppressed. Is very prominent.
Note that the first rotation input unit and the second rotation input unit are not limited to wind turbines, and may be applied to other power generation methods by being configured as a water turbine or a turbine blade, for example.

風力発電装置として構成する場合、第一風車及び第二風車はそれぞれ、以下のように構成することができる。まず、各風車翼の回転軸線周りに定められるとともに、第一風車及び第二風車とで互いに逆に定められた基準回転方向において、前方側に位置する翼面を前方翼面とし、同じく後方側に位置する翼面を後方翼面とし、また、各風車翼の回転軸線に近い側の端縁を翼内縁とし、同じく遠い側の端縁を翼外縁と定義する。回転軸線の周りにおいて複数の風車翼は、翼内縁が該回転軸線から半径方向に一定距離だけ離れて位置するよう翼支持体により一体回転可能に支持される。また、回転軸線と直交する断面において、各風車翼は、後方翼面が基準回転方向前方側に引っ込む凹湾曲面とされ、前方翼面が基準回転方向前方側に突出するとともに後方翼面よりも湾曲深さが大きい凸湾曲面とされ、さらに、前方翼面は、湾曲ノーズ部において曲率が極大となり、該湾曲ノーズ部から翼内縁側及び翼外縁側に向けてそれぞれ曲率が減少するとともに、該湾曲ノーズ部から翼外縁に至る第一面の面長が同じく翼内縁に至る第二面の面長よりも大きい流線形状をなす。前方翼面にて基準回転方向前方側から相対気流を受けた場合に、第一面と第二面とは、湾曲ノーズ部から翼外縁に向けて当該第一面に沿って生ずる相対気流の速度が、同じく翼内縁に向けて第二面に沿って生ずる相対気流の速度よりも大きくなるよう、それぞれ高速気流通過面及び低速気流通過面として機能するとともに、それら高速気流通過面と低速気流通過面との相対気流の流速差に基づく揚力トルクを、後方翼面側にて風車翼を基準回転方向に回転させる向きに生じさせるようにしたサポニウス型風車として構成する。   When comprised as a wind power generator, the first windmill and the second windmill can each be constructed as follows. First, in the reference rotation direction that is determined around the rotation axis of each wind turbine blade and opposite to each other in the first wind turbine and the second wind turbine, the blade surface located on the front side is defined as the front blade surface, and also on the rear side The blade surface located at the rear is defined as the rear blade surface, the edge on the side close to the rotational axis of each wind turbine blade is defined as the blade inner edge, and the edge on the far side is defined as the blade outer edge. Around the rotation axis, the plurality of wind turbine blades are supported so as to be integrally rotatable by the blade support so that the blade inner edge is located at a certain distance in the radial direction from the rotation axis. Further, in the cross section orthogonal to the rotation axis, each wind turbine blade has a concave curved surface in which the rear blade surface is retracted to the front side in the reference rotation direction, the front blade surface protrudes to the front side in the reference rotation direction, and is more than the rear blade surface. Further, the front wing surface has a maximum curvature at the curved nose portion, and the curvature decreases from the curved nose portion toward the blade inner edge side and the blade outer edge side, respectively. The surface length of the first surface from the curved nose portion to the outer edge of the blade is also a streamline shape larger than the surface length of the second surface to the inner edge of the blade. When a relative airflow is received from the front side in the reference rotation direction on the front blade surface, the first surface and the second surface are the velocity of the relative airflow generated along the first surface from the curved nose portion toward the outer edge of the blade. Are functioning as a high-speed airflow passage surface and a low-speed airflow passage surface so as to be larger than the velocity of the relative airflow generated along the second surface toward the blade inner edge, respectively. The Savonius type wind turbine is configured such that the lift torque based on the difference in flow velocity of the relative air flow is generated in the direction of rotating the wind turbine blade in the reference rotational direction on the rear blade surface side.

上記の構成によると、サポニウス型風車の風車翼を、前方翼面を上記高速気流通過面及び低速気流通過面が形成された特有形態の湾曲流線型状とすることで、前方翼面側から見て向かい風形態で風を受ける場合は、高速気流通過面と低速気流通過面との相対気流の流速差に基づく揚力トルクを、受風による直接的な回転トルクに重畳することができ、また、後方翼面を凹状湾曲面とすることで、追い風形態で風を受ける場合に効率よく風を受けることができる。その結果、風力の風車回転力への変換効率を大幅に高めることができ、低風速時の風車の始動性も劇的に向上する。   According to the above configuration, the wind turbine blade of the Saponius type wind turbine is viewed from the front blade surface side by making the front blade surface into a curved streamline shape having a specific shape in which the high-speed airflow passage surface and the low-speed airflow passage surface are formed. When wind is received in the headwind mode, the lift torque based on the difference in the flow velocity of the relative airflow between the high-speed airflow passage surface and the low-speed airflow passage surface can be superimposed on the direct rotational torque due to the wind. By making the surface a concave curved surface, it is possible to receive wind efficiently when wind is received in a tailwind mode. As a result, the conversion efficiency of wind power into wind turbine rotational force can be significantly increased, and the startability of the wind turbine at low wind speeds can be dramatically improved.

上記の効果を高めるには、高速気流通過面の受風断面積を低速気流通過面よりも大きくすることが有効である。このためには、高速気流通過面の平均曲率を低速気流通過面の平均曲率よりも大きく設定しておくとよい。また、回転軸線と直交する断面において、該回転軸線と翼内縁とを繋ぐ直線を第一直線として、回転軸線を通って前方翼面に外接する第二直線と第一直線とのなす第一角度が、回転軸線を通って翼外縁を通る第三直線と第一直線とのなす第二角度よりも小さく設定することも有効である。   In order to enhance the above effect, it is effective to make the wind receiving cross-sectional area of the high-speed airflow passage surface larger than that of the low-speed airflow passage surface. For this purpose, the average curvature of the high-speed airflow passage surface should be set larger than the average curvature of the low-speed airflow passage surface. Further, in a cross section orthogonal to the rotation axis, a straight line connecting the rotation axis and the blade inner edge is defined as a first straight line, and a first angle formed by a second straight line circumscribing the front blade surface through the rotation axis and the first straight line is It is also effective to set the angle smaller than the second angle formed by the third straight line passing through the blade outer edge and the first straight line.

この場合、上記流速差を揚力に効率的に寄与させるには、低速気流通過面を通過した気流が後方翼面側で渦流を形成しにくくさせることが重要であり、この観点から、回転軸線と直交する断面において、各風車翼は、後方翼面の平均曲率を前方翼面の平均曲率よりも小さく設定しておくと、つまり、後方翼面の湾曲深さを大きくしすぎないことが望ましい。また、渦流(あるいは乱流)抑制の観点から、風車翼は、翼内縁と翼外縁とが、各々湾曲形態の前方翼面と後方翼面との交線をなす稜線部として形成しておくとよい。   In this case, in order to efficiently contribute to the lift by the flow velocity difference, it is important to make it difficult for the airflow that has passed through the low-speed airflow passage surface to form a vortex on the rear wing surface side. In the cross section perpendicular to each other, it is desirable that each wind turbine blade has an average curvature of the rear blade surface smaller than an average curvature of the front blade surface, that is, the curved depth of the rear blade surface is not excessively increased. Further, from the viewpoint of suppressing vortex flow (or turbulent flow), the wind turbine blade may be formed as a ridge line portion in which the blade inner edge and the blade outer edge form an intersection line between the curved front blade surface and the rear blade surface, respectively. Good.

翼支持体は、回転軸線の周りに配列する各風車翼の翼内縁を含む円筒状の空間に対し、隣接する風車翼の間に気流出入り口を有する風洞部が形成されるように、風車翼を一体回転可能に支持するものとして構成するとよい。風洞部の形成により、受風方向に対して風車回転軸線の後方に位置する風車翼に風を当てることができ、風力の風車回転力への変換効率をさらに高めることができる。この効果をより顕著に達成するには、風車翼は回転軸線周りに3枚以上の等角度間隔で複数配置され、2枚の風車翼の間に形成される気流出入り口から風洞部を経て2枚の風車翼とは別の風車翼が後方翼面にて受風可能とする構造を採用するとよい。この場合、後方翼面が上記のような凹湾曲形態となっていることで、後方翼面に当たった風は回転軸線方向に巻き込まれるように方向変換され、風洞を通過した風が、上記別の風車翼に効果的に導かれる。例えば、上記別の風車翼回転軸線と直交する断面において、曲率一定の部分円筒面状に形成し、後方翼面を包含する仮想円筒面上に回転軸線を位置させると、該効果を高める上で有利である。   The blade support body is configured such that a wind tunnel having an air outflow entrance is formed between adjacent wind turbine blades with respect to a cylindrical space including the blade inner edge of each wind turbine blade arranged around the rotation axis. It is good to comprise as what supports so that integral rotation is possible. By forming the wind tunnel portion, wind can be applied to the wind turbine blades located behind the wind turbine rotation axis with respect to the wind receiving direction, and the conversion efficiency of wind power into wind turbine rotational force can be further increased. In order to achieve this effect more remarkably, two or more wind turbine blades are arranged at equal angular intervals around the rotation axis, and two wind turbine blades pass through the wind tunnel from the air outflow entrance formed between the two wind turbine blades. It is preferable to adopt a structure in which a wind turbine blade different from the wind turbine blade can receive wind on the rear blade surface. In this case, since the rear wing surface has the concave curved shape as described above, the wind hitting the rear wing surface is redirected so as to be wound in the rotation axis direction, and the wind passing through the wind tunnel is Effectively guided by the windmill wings. For example, in the cross section orthogonal to the other wind turbine blade rotation axis, if it is formed in a partial cylindrical surface with a constant curvature and the rotation axis is positioned on a virtual cylindrical surface including the rear blade surface, the effect is enhanced. It is advantageous.

上記のような風洞部を有効形成するには、風洞部形成位置に余分な障害物が生じないよう、翼支持体は、各風車翼を回転軸線方向の端面にて支持するものとして形成することが望ましい。翼支持体は、具体的には、風洞部の軸線方向端部を形成するとともに風車の回転支持部を形成する本体プレートと、該本体プレートの外周縁から半径方向外向きに放射状に延びるとともに各々風車翼の端面に取り付けられる支持アームプレートとを備えるものとして構成できる。支持アームプレートは風車翼の端面に対し翼内縁に沿って取り付けることができる。   In order to effectively form the wind tunnel part as described above, the blade support body should be formed so as to support each wind turbine blade on the end surface in the rotation axis direction so that an extra obstacle does not occur at the wind tunnel part forming position. Is desirable. Specifically, the wing support body includes a main body plate that forms an axial end portion of the wind tunnel portion and a rotation support portion of the windmill, and radially extends radially outward from the outer peripheral edge of the main body plate. It can comprise as a thing provided with the support arm plate attached to the end surface of a windmill blade. The support arm plate can be attached to the end face of the wind turbine blade along the blade inner edge.

風車翼は、アルミニウム合金からなる板金中空体とすることで、受風面積の大きい風車翼を軽量かつ高強度に構成するができる。薄肉化による軽量化と強度向上効果を高める観点から、使用するアルミニウム合金は時効析出強化型アルミニウム合金(例えば、Al−Cu系合金(JIS:A2017(ジュラルミン))、Al−Cu−Mg系合金(JIS:A2024(超ジュラルミン))、Al−Zn−Mg−Cu系合金(JIS:A7075(超々ジュラルミン)))を採用することが望ましい。   By using a sheet metal hollow body made of an aluminum alloy as the wind turbine blade, the wind turbine blade having a large wind receiving area can be configured with light weight and high strength. From the viewpoint of reducing the weight and improving the strength by reducing the thickness, the aluminum alloy used is an aging precipitation strengthened aluminum alloy (for example, Al-Cu alloy (JIS: A2017 (duralumin)), Al-Cu-Mg alloy ( JIS: A2024 (super duralumin)), Al—Zn—Mg—Cu alloy (JIS: A7075 (extra super duralumin))) is preferably used.

また、風車翼は、空気(ガス比重:1、ガス密度:1.2935kg/Nm)よりもガス比重の小さい充填ガスを密封した板金中空体とすることもできる。充填ガスによる浮力により、風車翼の見かけ重量を一層小さくでき、軽量化にさらに寄与する。充填ガスとしてはヘリウムガス(ガス比重:0.1382、ガス密度:0.1786kg/m)、あるいは水素ガス(ガス比重:0.0695、ガス密度:0.0899kg/m)を採用することができる。また、「空気よりもガス比重の小さい充填ガスを密封した板金中空体からなる風車翼」は、本発明とは独立して実施可能な発明である。 Further, the wind turbine blade may be a sheet metal hollow body sealed with a filling gas having a gas specific gravity smaller than that of air (gas specific gravity: 1, gas density: 1.2935 kg / Nm 3 ). The apparent weight of the wind turbine blade can be further reduced by the buoyancy caused by the filling gas, which further contributes to weight reduction. As the filling gas, helium gas (gas specific gravity: 0.1382, gas density: 0.1786 kg / m 3 ) or hydrogen gas (gas specific gravity: 0.0695, gas density: 0.0899 kg / m 3 ) should be adopted. Can do. Further, “a wind turbine blade made of a sheet metal hollow body in which a filling gas having a smaller gas specific gravity than air is sealed” is an invention that can be implemented independently of the present invention.

図6に示すように、発電装置10は、支持フレーム12、第一風車20、第二風車30、及び、発電機40を備えた風力発電装置として構成されている。図11の分解斜視図に示すごとく、第一風車20は、基準軸線上の第一位置(上側)に回転軸線Mを一致させる形で配置され、どの方向から風を受けても一定の第一方向に回転する。一方、第二風車30は、基準軸線上の第一位置とは異なる第二位置(下側)に配置されるとともに、同一方向から風を受けたとき、どの方向から風を受けても第一風車20とは逆方向に回転するように構成されている。   As shown in FIG. 6, the power generation device 10 is configured as a wind power generation device including a support frame 12, a first windmill 20, a second windmill 30, and a generator 40. As shown in the exploded perspective view of FIG. 11, the first windmill 20 is arranged in such a manner that the rotation axis M coincides with the first position (upper side) on the reference axis, and the first windmill 20 is constant regardless of the direction from which the wind is received. Rotate in the direction. On the other hand, the second wind turbine 30 is disposed at a second position (lower side) different from the first position on the reference axis, and when receiving wind from the same direction, the first wind turbine 30 receives the wind from any direction. The wind turbine 20 is configured to rotate in the opposite direction.

図1は、発電機40の内部を拡大して示すもので、界磁用マグネット101が設けられた第一ロータ41と、該第一ロータ41と逆方向に第二回転入力部30と一体回転するとともに界磁用マグネット101により励磁される発電用コイル102が設けられた第二ロータ42とを備える。そして、発電用コイル102と界磁用マグネット101とが回転軸線M方向にエアギャップを形成する形で対向するよう、第二ロータ42において、空芯扁平に構成された複数の発電用コイル102が回転軸線M周りに各々軸線方向が回転軸線M方向と一致する形で配列し、第一ロータ41において、回転軸線M周りに複数の界磁用マグネット101が各々回転軸線M方向に着磁された形で配列したアキシャルギャップ型発電機40として構成されている。   FIG. 1 is an enlarged view of the inside of the generator 40. The first rotor 41 provided with a field magnet 101 and the second rotation input unit 30 rotate integrally with the first rotor 41 in the opposite direction. And a second rotor 42 provided with a power generating coil 102 excited by the field magnet 101. In the second rotor 42, a plurality of power generating coils 102 that are flat in the air core are arranged so that the power generating coil 102 and the field magnet 101 face each other in a form that forms an air gap in the rotation axis M direction. A plurality of field magnets 101 are magnetized in the direction of the rotation axis M around the rotation axis M in the first rotor 41. The first rotor 41 is arranged around the rotation axis M so that the axis direction coincides with the direction of the rotation axis M. It is comprised as the axial gap type generator 40 arranged in the form.

第二ロータ42と第二回転入力部30とを結合する第二回転軸52上には、複数の発電用コイル102に各々つながるスリップリング136が設けられており、第二回転軸52上にて該スリップリング136上を摺動するブラシ135を介し、発電用コイル102からの発電出力を取り出すよう構成されている。   A slip ring 136 connected to each of the plurality of power generating coils 102 is provided on the second rotation shaft 52 that couples the second rotor 42 and the second rotation input unit 30. The power generation output from the power generation coil 102 is taken out via a brush 135 that slides on the slip ring 136.

第一ロータ41は、第二ロータ42の発電用コイル102との対向面に界磁用マグネット101が取り付けられる円板状のロータ本体103を有し、第二回転軸52と分離形成された第一回転軸50が該ロータ本体103に接着により一体回転可能に結合されている。界磁用マグネット101は厚さ方向に着磁された扁平永久磁石、具体的には、希土類(Nd,Dy,Pr)−Fe−B系磁石にて構成されており、図2に示すように、回転周方向に隣接するもの同士の着磁極性が交互に反転してなる。また、図3に示すように、第二ロータ42は第二回転軸52が一体回転可能に固着されたコイル支持枠106を有し、該コイル支持枠106の周方向に複数形成されたコイル装着窓130に、前述の空芯扁平の発電用コイル102が、コイル軸線方向(キャビティ開口方向)が、アキシャル方向を向くように、かつ隣接するコイルの巻線方向が互いに逆となるように組み付けられている。   The first rotor 41 has a disk-shaped rotor body 103 to which the field magnet 101 is attached on the surface of the second rotor 42 facing the power generation coil 102, and is separated from the second rotating shaft 52. One rotary shaft 50 is coupled to the rotor body 103 so as to be integrally rotatable by bonding. The field magnet 101 is composed of a flat permanent magnet magnetized in the thickness direction, specifically, a rare earth (Nd, Dy, Pr) -Fe-B system magnet, as shown in FIG. The poledness between adjacent ones in the rotational circumferential direction is alternately reversed. As shown in FIG. 3, the second rotor 42 has a coil support frame 106 to which the second rotating shaft 52 is fixed so as to be integrally rotatable, and a plurality of coil attachments are formed in the circumferential direction of the coil support frame 106. The aforementioned air-core flat power generating coil 102 is assembled to the window 130 so that the coil axial direction (cavity opening direction) faces the axial direction and the winding directions of adjacent coils are opposite to each other. ing.

図1に戻り、第一ロータ41は、第二ロータ42の発電用コイル102に対し、アキシャル方向にてロータ本体103と反対側から対向する形で円板状の補助ロータ本体104を有する。該補助ロータ本体104の発電用コイル102との対向面において、ロータ本体103側の界磁用マグネット101に対応する位置に、該界磁用マグネット101とは逆方向に着磁された複数の補助界磁用マグネット105が取り付けられている(取り付け形態は、図2に示す界磁用マグネット102と同じであるが、界磁用マグネット102の発電用コイル102に面する着磁面がN(S)であれば、対応する補助界磁用マグネット105の着磁面はS(N)となる。   Returning to FIG. 1, the first rotor 41 has a disk-like auxiliary rotor body 104 facing the power generation coil 102 of the second rotor 42 from the opposite side to the rotor body 103 in the axial direction. A plurality of auxiliary magnets magnetized in a direction opposite to the field magnet 101 at positions corresponding to the field magnet 101 on the rotor body 103 side on the surface of the auxiliary rotor body 104 facing the power generation coil 102. A field magnet 105 is mounted (the mounting form is the same as the field magnet 102 shown in FIG. 2, but the magnetized surface of the field magnet 102 facing the power generation coil 102 is N (S ), The magnetized surface of the corresponding auxiliary field magnet 105 is S (N).

ロータ本体103と補助ロータ本体104とは、外周縁にて第二ロータ42を周方向に取り囲む周壁部106により一体回転可能に連結されている。そして、それらロータ本体103、周壁部106及び補助ロータ本体104が軟磁性金属材料(本実施形態では、パーマロイ)からなる界磁ヨークを構成する。ロータ本体103の第二ロータ42に面しているのと反対側の主表面において回転軸線Mを取り囲む形で筒状の第一軸受スリーブ122が突出形成され、第二回転軸52と分離形成された第一回転軸50が第一軸受スリーブ122の先端を塞ぐ軸結合遮蔽部108に一体回転可能に結合される。また、補助ロータ本体104の第二ロータ42に面しているのと反対側の主表面において筒状の第二軸受スリーブ109が突出形成される。そして、第二回転軸52が第二回転入力部30側から第二軸受スリーブ109及び第二ロータ42を貫通して先端部が第一軸受スリーブ122内に入り込んでいる。アキシャル方向における第二ロータ42の両側にて、それら第一軸受スリーブ122及び第二軸受スリーブ109と第二回転軸52との間に、第一ロータ41を第二ロータ42に対し、両者の相対回転摺動を許容した形で支持させる主軸受110が配置される。第一ロータ41は、前述の界磁ヨーク部分、第一軸受スリーブ122及び第二軸受スリーブ109により第二ロータ42、ひいては発電機40能部をなす界磁用マグネット101及び発電用コイル102を包み込む形状となっており、回転摺動部分が主軸受110により封止されるので、外部から水滴や異物等が発電機40能部に侵入することが抑制されている。   The rotor main body 103 and the auxiliary rotor main body 104 are coupled to each other by a peripheral wall portion 106 that surrounds the second rotor 42 in the circumferential direction at the outer peripheral edge. The rotor body 103, the peripheral wall portion 106, and the auxiliary rotor body 104 constitute a field yoke made of a soft magnetic metal material (permalloy in this embodiment). A cylindrical first bearing sleeve 122 projects from the main surface of the rotor body 103 opposite to the second rotor 42 so as to surround the rotation axis M, and is separated from the second rotation shaft 52. Further, the first rotary shaft 50 is coupled to the shaft coupling shield 108 that closes the tip of the first bearing sleeve 122 so as to be integrally rotatable. In addition, a cylindrical second bearing sleeve 109 is formed to protrude from the main surface of the auxiliary rotor body 104 opposite to the main surface facing the second rotor 42. The second rotation shaft 52 penetrates the second bearing sleeve 109 and the second rotor 42 from the second rotation input portion 30 side, and the tip portion enters the first bearing sleeve 122. On both sides of the second rotor 42 in the axial direction, between the first bearing sleeve 122 and the second bearing sleeve 109 and the second rotating shaft 52, the first rotor 41 is relative to the second rotor 42. A main bearing 110 is arranged to be supported in a form that allows rotational sliding. The first rotor 41 wraps the field magnet 101 and the power generating coil 102 that form the function section of the generator 40 by the field yoke portion, the first bearing sleeve 122 and the second bearing sleeve 109 described above. Since it has a shape and the rotary sliding portion is sealed by the main bearing 110, it is possible to prevent water droplets, foreign matter, and the like from entering the generator 40 function section from the outside.

また、第一ロータ41を外側から覆う形で非回転の発電機ケース120が設けられている。第二回転軸52と第一回転軸50とが該発電機ケース120の内部から各々該発電機ケース120の壁部に形成された対応する軸貫通穴にてアキシャル方向外向きに延出するとともに、第二回転軸52及び第一回転軸50と対応する各貫通穴との間に補助軸受124が配置されている。なお、本実施形態では、発電機ケース120の壁部外面からアキシャル方向に突出する筒状の補助軸受124スリーブの内周面に軸貫通穴が形成され、該補助軸受124スリーブ内に補助軸受124が配置されている。   A non-rotating generator case 120 is provided so as to cover the first rotor 41 from the outside. The second rotating shaft 52 and the first rotating shaft 50 extend outward in the axial direction from the inside of the generator case 120 through corresponding shaft through holes formed in the wall portion of the generator case 120, respectively. The auxiliary bearing 124 is disposed between the second rotating shaft 52 and the first rotating shaft 50 and the corresponding through holes. In the present embodiment, a shaft through hole is formed in the inner peripheral surface of the cylindrical auxiliary bearing 124 sleeve protruding in the axial direction from the outer surface of the wall of the generator case 120, and the auxiliary bearing 124 is provided in the auxiliary bearing 124 sleeve. Is arranged.

また、図4及び図5に示すように、補助軸受124スリーブの外周面と発電機ケース120の壁部外面とを繋ぐ形で、補強用及び放熱促進用の複数のフィン125が放射状に設けられている。フィン125の組は、発電機ケース120の上面側と下面側との双方に設けられている。   Also, as shown in FIGS. 4 and 5, a plurality of fins 125 for reinforcing and promoting heat dissipation are provided radially so as to connect the outer peripheral surface of the auxiliary bearing 124 sleeve and the outer surface of the wall of the generator case 120. ing. The set of fins 125 is provided on both the upper surface side and the lower surface side of the generator case 120.

次に、図6に示すように、発電装置10は、第一風車20及び第二風車30が、各々回転軸線Mと直交する向きに受風する風車翼22を該回転軸線M周りに複数配置してなるサポニウス型風車して構成されている。また、発電装置10は、第一風車20及び第二風車30と発電機40とは、回転軸線Mが鉛直となるように支持する支持フレーム12を有する。支持フレーム12は、台14上に鉛直方向に立設された3本の柱121、及び、各々の柱121の間を連結する複数の梁122を備えている。3本の柱121は、鉛直方向からみて実質正三角形の頂点位置に配置されており、梁122は、柱121の上端部を含む3カ所の高さ位置で各々の柱121を連結している。各高さ位置の3本の梁122により、正三角形状の枠体が構成されている。   Next, as shown in FIG. 6, in the power generation apparatus 10, the first windmill 20 and the second windmill 30 each have a plurality of windmill blades 22 that receive wind in a direction orthogonal to the rotation axis M around the rotation axis M. It is configured as a Saponius type windmill. Moreover, the power generator 10 has the support frame 12 which supports the 1st windmill 20, the 2nd windmill 30, and the generator 40 so that the rotating shaft M may become vertical. The support frame 12 includes three columns 121 erected in the vertical direction on the table 14, and a plurality of beams 122 that connect the columns 121 to each other. The three columns 121 are arranged at the vertex positions of a substantially equilateral triangle when viewed from the vertical direction, and the beam 122 connects the columns 121 at three height positions including the upper end of the column 121. . The three beams 122 at each height position constitute a regular triangular frame.

第一風車20は、3枚の風車翼22及び2枚の翼支持体24を備えている。第二風車30は、第一風車20を仮想鉛直面に関して鏡像反転した立体形状を有している点を除き、第一風車20とほぼ同様に構成されているので、共通する構成要素には、第一風車20の対応する構成要素と一位以下の数字ないし文字を共通させ、十位の数字を「2」から「3」に変えた符号を付与している。そして、この点を除き、同種の部材であって取り付け位置の異なる部材には原則として同一の符号を付与するが、同種の複数部材を互いに区別する場合は、説明の便宜上、必要に応じて、その符号の末尾にアルファベット(A,B,C)を付与した符号を用いる。   The first windmill 20 includes three windmill blades 22 and two blade support bodies 24. The second windmill 30 is configured in substantially the same manner as the first windmill 20 except that it has a three-dimensional shape that is a mirror image of the first windmill 20 with respect to the virtual vertical plane. The corresponding constituent elements of the first windmill 20 are made to share the number or letter of the first place or less, and the code of the tenth place number is changed from “2” to “3”. And, except for this point, the same reference numerals are given to members of the same type and different mounting positions in principle, but when distinguishing multiple members of the same type from each other, for convenience of explanation, as necessary, The code | symbol which added the alphabet (A, B, C) to the end of the code | symbol is used.

以下、風車構造の要部を第一風車20側で代表させて説明する。まず、図9(平面図)に示すように、各風車翼22の回転軸線M周りに、第一風車20及び第二風車30とで互いに逆に基準回転方向X(風力を受けたときの、各風車20,30の実際の回転方向となる)を定める。この基準回転方向Xにおいて、前方側に位置する翼面を前方翼面26とし、同じく後方側に位置する翼面を後方翼面28とし、また、各風車翼22の回転軸線Mに近い側の端縁を翼内縁ELとし、同じく遠い側の端縁を翼外縁EHと定義する。回転軸線Mの周りにおいて複数の風車翼22は、翼内縁ELが該回転軸線Mから半径方向に一定距離だけ離れて位置するよう翼支持体24により一体回転可能に支持される。また、回転軸線Mと直交する断面において、各風車翼22は、後方翼面28が基準回転方向X前方側に引っ込む凹湾曲面とされ、前方翼面26が基準回転方向X前方側に突出するとともに後方翼面28よりも湾曲深さが大きい凸湾曲面とされる。   Hereinafter, the main part of a windmill structure is demonstrated on the 1st windmill 20 side, and is demonstrated. First, as shown in FIG. 9 (plan view), the first wind turbine 20 and the second wind turbine 30 around the rotation axis M of each wind turbine blade 22 are opposite to each other in the reference rotation direction X (when receiving wind force). The actual rotation direction of each windmill 20, 30) is determined. In this reference rotational direction X, the blade surface located on the front side is the front blade surface 26, the blade surface located on the rear side is the rear blade surface 28, and the wind turbine blades 22 on the side close to the rotation axis M The edge is defined as the blade inner edge EL, and the edge on the far side is defined as the blade outer edge EH. Around the rotation axis M, the plurality of wind turbine blades 22 are supported by the blade support 24 so as to be integrally rotatable so that the blade inner edge EL is located at a certain distance in the radial direction from the rotation axis M. In the cross section orthogonal to the rotation axis M, each wind turbine blade 22 has a concave curved surface in which the rear blade surface 28 is retracted forward in the reference rotational direction X, and the front blade surface 26 projects forward in the reference rotational direction X. At the same time, a convex curved surface having a larger curvature depth than the rear blade surface 28 is formed.

前方翼面26は、湾曲ノーズ部263において曲率が極大となり、該湾曲ノーズ部263から翼内縁EL側及び翼外縁EH側に向けてそれぞれ曲率が減少するとともに、該湾曲ノーズ部263から翼外縁EHに至る第一面の面長が同じく翼内縁ELに至る第二面の面長よりも大きい流線形状をなす。前方翼面26にて基準回転方向X前方側から相対気流を受けた場合に、第一面と第二面とは、湾曲ノーズ部263から翼外縁EHに向けて当該第一面に沿って生ずる相対気流の速度が、同じく翼内縁ELに向けて第二面に沿って生ずる相対気流の速度よりも大きくなるよう、それぞれ高速気流通過面261及び低速気流通過面262として機能する。   The front blade surface 26 has a maximum curvature at the curved nose portion 263, and the curvature decreases from the curved nose portion 263 toward the blade inner edge EL side and the blade outer edge EH side, respectively, and from the curved nose portion 263 to the blade outer edge EH. The surface length of the first surface reaching the same is a streamline shape larger than the surface length of the second surface reaching the blade inner edge EL. When the front blade surface 26 receives a relative airflow from the front side in the reference rotational direction X, the first surface and the second surface are generated along the first surface from the curved nose portion 263 toward the blade outer edge EH. It functions as a high-speed airflow passage surface 261 and a low-speed airflow passage surface 262, respectively, so that the relative airflow velocity becomes larger than the relative airflow velocity generated along the second surface toward the blade inner edge EL.

図10に示すように、それら高速気流通過面261と低速気流通過面262との相対気流の流速差に基づく揚力トルクが、後方翼面28側にて風車翼22を基準回転方向Xに回転させる向きに生じる。つまり、回転に伴う相対風の向きをAK、自然風をASとすると、風車翼22には揚力Fが作用して、回転軸線Mの周りを基準回転方向Xに回転する。なお、風車翼22は、鉛直方向からみた断面は、どの水平断面位置でも同様の形状とされている。前方翼面26及び後方翼面28はいずれも湾曲形状に加工されたアルミニウム合金板(ここではジュラルミン板)からなる翼プレートにより形成され、中空形状となっている。風車翼22の上端面及び下端面は、図3に示すように、蓋プレート27で構成され、空間Rを閉鎖している。蓋プレートの継ぎ目は、例えばリベット止めにより縫合されている。   As shown in FIG. 10, the lift torque based on the relative flow velocity difference between the high-speed airflow passage surface 261 and the low-speed airflow passage surface 262 causes the windmill blade 22 to rotate in the reference rotation direction X on the rear blade surface 28 side. It occurs in the direction. In other words, if the relative wind direction associated with the rotation is AK and the natural wind is AS, lift F acts on the wind turbine blade 22 and rotates around the rotation axis M in the reference rotation direction X. The wind turbine blades 22 have the same cross-section viewed from the vertical direction at any horizontal cross-section position. Both the front blade surface 26 and the rear blade surface 28 are formed of a blade plate made of an aluminum alloy plate (here, duralumin plate) processed into a curved shape, and have a hollow shape. As shown in FIG. 3, the upper end surface and the lower end surface of the wind turbine blade 22 are configured by a lid plate 27 and close the space R. The seam of the lid plate is stitched by, for example, riveting.

なお、風車翼22は、空気(ガス比重:1、ガス密度:1.2935kg/Nm)よりもガス比重の小さい充填ガスを密封した板金中空体とすることもできる。この場合も、風車翼22は、前方翼面26、後方翼面28及び上端面及び下端面をなす蓋プレート27をアルミニウム合金板で構成することができ、その内部に、ヘリウムガスないし水素ガスを充填する。この場合の蓋プレートの継ぎ目(シーム部)は、内部にガスを充填後、全周溶接に縫合し、密封構造とする。 In addition, the windmill blade 22 can also be made into the sheet metal hollow body which sealed the filling gas whose gas specific gravity is smaller than air (gas specific gravity: 1, gas density: 1.2935 kg / Nm < 3 >). Also in this case, in the wind turbine blade 22, the front blade surface 26, the rear blade surface 28, and the lid plate 27 that forms the upper end surface and the lower end surface can be formed of an aluminum alloy plate, and helium gas or hydrogen gas is contained therein. Fill. In this case, the seam (seam portion) of the lid plate is filled with gas and then stitched to the entire circumference to form a sealed structure.

高速気流通過面261の平均曲率は低速気流通過面262の平均曲率よりも大きく設定され、高速気流通過面261の受風断面積は低速気流通過面262よりも大きくなっている。また、回転軸線Mと直交する断面において、該回転軸線Mと翼内縁ELとを繋ぐ直線を第一直線C1として、回転軸線Mを通って前方翼面26に外接する第二直線C2と第一直線C1とのなす第一角度θ1が、回転軸線Mを通って翼外縁EHを通る第三直線C3と第一直線C1とのなす第二角度θ2よりも小さく設定されている。このような取り付け角度にすることにより、後述する第一風洞20Fへ入った気流を、風下側に配置された風車翼22の後方翼面28に効率よく当てることができ、風車翼22を効率よく回転させることができる。   The average curvature of the high-speed airflow passage surface 261 is set larger than the average curvature of the low-speed airflow passage surface 262, and the wind receiving cross-sectional area of the high-speed airflow passage surface 261 is larger than that of the low-speed airflow passage surface 262. Further, in a cross section orthogonal to the rotational axis M, a straight line connecting the rotational axis M and the blade inner edge EL is defined as a first straight line C1, and a second straight line C2 circumscribing the front blade surface 26 through the rotational axis M and the first straight line C1. Is set smaller than a second angle θ2 formed by the third straight line C3 passing through the rotation axis M and passing through the blade outer edge EH and the first straight line C1. By setting the mounting angle as described above, an airflow entering the first wind tunnel 20F, which will be described later, can be efficiently applied to the rear blade surface 28 of the windmill blade 22 arranged on the leeward side. Can be rotated.

高速気流通過面261は、回転軸線Mから遠い側に配置されており、湾曲ノーズ部263から進行方向の後ろ側に向かって連続形成されている。高速気流通過面261は、鉛直方向からみて、図4に示すように、翼型WIの翼弦WGを考えた場合、低速気流通過面262よりも翼弦WGから離れる方向に大きく膨らむ曲面形状とされている。また、高速気流通過面261の長さは、低速気流通過面262よりも進行方向後側に延びている。高速気流通過面261の進行方向後端部EHは、風車翼22のなかで最も回転軸線Mから遠い位置に配置され、低速気流通過面262の翼内縁ELよりも進行方向の後側に配置されている。   The high-speed airflow passage surface 261 is disposed on the side far from the rotation axis M, and is continuously formed from the curved nose portion 263 toward the rear side in the traveling direction. As shown in FIG. 4, the high-speed airflow passage surface 261 has a curved surface shape that swells larger in the direction away from the chord WG than the low-speed airflow passage surface 262 when considering the chord WG of the airfoil WI as shown in FIG. 4. Has been. Further, the length of the high-speed airflow passage surface 261 extends rearward in the traveling direction from the low-speed airflow passage surface 262. The rear end EH in the traveling direction of the high-speed airflow passage surface 261 is disposed at a position farthest from the rotation axis M in the wind turbine blade 22 and is disposed on the rear side in the traveling direction from the blade inner edge EL of the low-speed airflow passage surface 262. ing.

また、回転軸線Mと直交する断面において、各風車翼22は、後方翼面28の平均曲率を前方翼面26の平均曲率よりも小さく設定され、低速気流通過面262を通過した気流が後方翼面28側で渦流を形成しにくくしてある。また、風車翼22は、翼内縁ELと翼外縁EHとが、各々湾曲形態の前方翼面26と後方翼面28との交線をなす稜線部として形成されている。   Further, in the cross section orthogonal to the rotation axis M, each wind turbine blade 22 is set such that the average curvature of the rear blade surface 28 is smaller than the average curvature of the front blade surface 26, and the airflow that has passed through the low-speed airflow passage surface 262 It is difficult to form a vortex on the surface 28 side. Further, the wind turbine blade 22 is formed as a ridge line portion in which the blade inner edge EL and the blade outer edge EH form an intersection line between the curved front blade surface 26 and the rear blade surface 28, respectively.

図9に示すように、翼支持体24は、回転軸線Mの周りに配列する各風車翼22の翼内縁ELを含む円筒状の空間に対し、隣接する風車翼22の間に気流出入り口を有する風洞部20Fが形成されるように、風車翼22を一体回転可能に支持するものとして構成されている。風車翼22は回転軸線M周りに3枚以上(ここでは、3枚:4枚でもよい)の等角度間隔で複数配置され、2枚の風車翼22の間に形成される気流出入り口から風洞部20Fを経て2枚の風車翼22とは別の風車翼22が後方翼面28にて受風可能となっている。後方翼面28が上記のような凹湾曲形態となっていることで、後方翼面28に当たった風は回転軸線M方向に巻き込まれるように方向変換され、風洞を通過した風が、上記別の風車翼22に効果的に導かれる。本実施形態では、後方翼面28は、回転軸線Mと直交する断面において、曲率一定の部分円筒面状に形成し、後方翼面28を包含する仮想円筒面上に回転軸線Mが位置している。   As shown in FIG. 9, the blade support 24 has an air outflow inlet between adjacent wind turbine blades 22 with respect to a cylindrical space including the blade inner edge EL of each wind turbine blade 22 arranged around the rotation axis M. The wind turbine blade 22 is configured to support the wind turbine blade 22 so as to be integrally rotatable so that the wind tunnel portion 20F is formed. A plurality of wind turbine blades 22 are arranged around the rotation axis M at equal angular intervals of three or more (here, three may be four), and a wind tunnel portion is formed from an air outflow entrance formed between the two wind turbine blades 22. A wind turbine blade 22 other than the two wind turbine blades 22 can be received by the rear blade surface 28 through 20F. Since the rear wing surface 28 has the concave curved shape as described above, the wind hitting the rear wing surface 28 is redirected so as to be wound in the direction of the rotation axis M, and the wind passing through the wind tunnel is The wind turbine blades 22 are effectively guided. In the present embodiment, the rear blade surface 28 is formed in a partial cylindrical surface shape having a constant curvature in a cross section orthogonal to the rotation axis M, and the rotation axis M is positioned on a virtual cylindrical surface including the rear blade surface 28. Yes.

翼支持体24は、各風車翼22を回転軸線M方向の端面にて支持するものとして形成されている。具体的には、図11に示すように、風洞部20Fの軸線方向端部を形成するとともに風車の回転支持部を形成する本体プレート241と、該本体プレート241の外周縁から半径方向外向きに放射状に延びるとともに各々風車翼22の端面に取り付けられる支持アームプレート242とを備える。支持アームプレート242は風車翼22の端面に対し翼内縁ELに沿って取り付けられている。支持アームプレート242の前端縁部には、弧状に沿って取付孔243が複数(本実施形態では4個)形成されている。この前端縁部と風車翼22の蓋プレー卜27の後端縁が重ねられ、取付孔243からビス(不図示)を差し込んで蓋プレート27に固定することにより、風車翼22が支持アームプレート242に取り付けられている。3枚の風車翼22A、22B、22Cは、同様にして他の支持アームプレート242に取り付けられ、風車翼22の上面及び下面に翼支持体24A、24Bが各々配置される。   The blade support 24 is formed to support each wind turbine blade 22 on the end surface in the direction of the rotation axis M. Specifically, as shown in FIG. 11, a main body plate 241 that forms an end portion in the axial direction of the wind tunnel portion 20 </ b> F and a rotation support portion of the windmill, and radially outward from the outer peripheral edge of the main body plate 241. Support arm plates 242 that extend radially and are each attached to the end face of the wind turbine blade 22. The support arm plate 242 is attached to the end face of the wind turbine blade 22 along the blade inner edge EL. A plurality of attachment holes 243 (four in this embodiment) are formed along the arc shape at the front edge of the support arm plate 242. The front edge and the rear edge of the lid plate 27 of the wind turbine blade 22 are overlapped, and screws (not shown) are inserted into the mounting holes 243 and fixed to the lid plate 27, so that the wind turbine blade 22 is supported by the support arm plate 242. Is attached. The three wind turbine blades 22A, 22B, and 22C are similarly attached to the other support arm plate 242, and the blade support members 24A and 24B are disposed on the upper and lower surfaces of the wind turbine blade 22, respectively.

次に、図8にも示すように、翼支持体24A、24Bの間の、風車翼22に囲まれた中間部分には、回転軸が配置されない空洞部である第一風洞20Fが構成されている。翼支持体24Aの中央部上側には、図7に示すように、回転軸線Mに沿って配置された補助第一回転軸51が固定され、翼支持体24Bの中央部下側には、回転軸線Mに沿って配置された第一回転軸50が固定されている。   Next, as shown in FIG. 8, a first wind tunnel 20 </ b> F that is a hollow portion in which the rotation shaft is not arranged is formed in an intermediate portion surrounded by the wind turbine blades 22 between the blade supports 24 </ b> A and 24 </ b> B. Yes. As shown in FIG. 7, an auxiliary first rotating shaft 51 arranged along the rotation axis M is fixed to the upper side of the center portion of the blade support 24A, and the rotation axis line is positioned below the center portion of the blade support 24B. A first rotating shaft 50 arranged along M is fixed.

支持アームプレート242の前端縁部には、弧状に沿って取付孔243が複数(本実施形態では4個)形成されている。この前端縁部と風車翼22の蓋プレー卜27後端縁が重ねられ、取付孔243からビス(不図示)を差し込んで蓋プレート27に固定することにより、風車翼22が支持アームプレート242に取り付けられている。3枚の風車翼22A、22B、22Cは、同様にして他の支持アームプレート242に取り付けられ、風車翼22の上面及び下面に翼支持体24A、24Bが各々配置される。   A plurality of attachment holes 243 (four in this embodiment) are formed along the arc shape at the front edge of the support arm plate 242. The front edge and the rear edge of the lid plate 27 of the wind turbine blade 22 are overlapped, and screws (not shown) are inserted into the mounting holes 243 and fixed to the lid plate 27, so that the wind turbine blade 22 is attached to the support arm plate 242. It is attached. The three wind turbine blades 22A, 22B, and 22C are similarly attached to the other support arm plate 242, and the blade support members 24A and 24B are disposed on the upper and lower surfaces of the wind turbine blade 22, respectively.

図8に示すように、翼支持体24A,24Bの間の、風車翼22に囲まれた中間部分には、回転軸が配置されず、空洞部である第一風洞20Fが構成されている。翼支持体24Aの中央部上側には、図7に示すように、回転軸線Mに沿って配置された補助第一回転軸51が固定され、翼支持体24Bの中央部下側には、回転軸線Mに沿って配置された第一回転軸50が固定されている。   As illustrated in FIG. 8, the first wind tunnel 20 </ b> F, which is a hollow portion, is formed in an intermediate portion between the blade supports 24 </ b> A and 24 </ b> B and surrounded by the wind turbine blade 22. As shown in FIG. 7, an auxiliary first rotating shaft 51 arranged along the rotation axis M is fixed to the upper side of the center portion of the blade support 24A, and the rotation axis line is positioned below the center portion of the blade support 24B. A first rotating shaft 50 arranged along M is fixed.

第二風車30は、図8に示すように、3枚の風車翼32A,32B,32C及び2枚の翼支持体34A,34Bを備えている。翼支持体34A,34Bは、第一風車20の翼支持体24A,24Bと同一形状とされている。風車翼32A,32B、32Cは、第一風車20の風車翼22A,22B,22Cとほぼ同様の形状とされており、前方翼面36、後方翼面38をなす翼プレートと蓋プレート37とを備えている。本実施形態では、風車翼32は鉛直方向の長さのみ風車翼22と異なっており、風車翼32の鉛直方向の長さは、風車翼22の同方向の長さよりも長く構成されている。風車翼32の翼支持体34への取り付けも第一風車20と同様にされており、翼支持体34A,34Bの間の風車翼32に囲まれた空間が第二風洞30Fとされている。   As shown in FIG. 8, the second windmill 30 includes three windmill blades 32A, 32B, and 32C and two blade support bodies 34A and 34B. The blade supports 34A and 34B have the same shape as the blade supports 24A and 24B of the first windmill 20. The wind turbine blades 32A, 32B, and 32C have substantially the same shape as the wind turbine blades 22A, 22B, and 22C of the first wind turbine 20, and include a blade plate that forms a front blade surface 36 and a rear blade surface 38, and a lid plate 37. I have. In the present embodiment, the wind turbine blade 32 is different from the wind turbine blade 22 only in the vertical direction, and the vertical length of the wind turbine blade 32 is longer than the length of the wind turbine blade 22 in the same direction. The wind turbine blade 32 is attached to the blade support 34 in the same manner as the first wind turbine 20, and a space surrounded by the wind turbine blade 32 between the blade supports 34A and 34B is a second wind tunnel 30F.

図7に示すように、翼支持体34Aの中央部上側には、回転軸線Mに沿って配置された第二回転軸52が固定され、翼支持体34Bの中央部下側には、回転軸線Mに沿って配置された補助第二回転軸53が固定されている。第二風車30は、第一風車20とは逆方向に回転するように、前述のごとく、回転軸線を含む平面に対し第一風車20を鏡像反転(ただし、高さ方向寸法は除く)したものに相当するよう、構成されている。   As shown in FIG. 7, a second rotation shaft 52 arranged along the rotation axis M is fixed to the upper side of the central part of the blade support 34A, and the rotation axis M is fixed to the lower side of the central part of the blade support 34B. The auxiliary second rotating shaft 53 arranged along the axis is fixed. As described above, the second windmill 30 is obtained by reversing the mirror image of the first windmill 20 with respect to the plane including the rotation axis (excluding the height direction dimension) so as to rotate in the opposite direction to the first windmill 20. It is comprised so that it may correspond to.

図8に示すように、第一風車20、発電機40及び第二風車30は、上側からこの順で支持フレーム12内に配置されている。図6に示すように、支持フレーム12の上端部に配置された梁122の中心部には、軸支持部16が設けられている。軸支持部16は、各柱121の上端部からから水平方向内側に向かって延びる3本の梁13と連結されて支持されている。軸支持部16の下側には、軸受511が設けられている(図2参照)。軸受511は、補助第一回転軸51の上端部を軸支持する。最下部に配置された梁122と同じ高さに配置され、各柱121から内側に向かって水平方向に延びる梁17の上には、台18が固定されている。台18上には、軸受531が設けられている。軸受531は、補助第二回転軸53の下端部を軸支持する。   As shown in FIG. 8, the first windmill 20, the generator 40, and the second windmill 30 are disposed in the support frame 12 in this order from the upper side. As shown in FIG. 6, the shaft support portion 16 is provided at the center portion of the beam 122 arranged at the upper end portion of the support frame 12. The shaft support portion 16 is connected to and supported by three beams 13 extending from the upper end portion of each column 121 toward the inner side in the horizontal direction. A bearing 511 is provided below the shaft support 16 (see FIG. 2). The bearing 511 supports the upper end portion of the auxiliary first rotating shaft 51. A table 18 is fixed on the beam 17 that is arranged at the same height as the beam 122 arranged at the bottom and extends in the horizontal direction from each column 121 inward. A bearing 531 is provided on the table 18. The bearing 531 supports the lower end portion of the auxiliary second rotary shaft 53.

次に、本実施形態の発電装置10の作用について説明する。
図12〜図14は、矢印WIND方向の風に対して、第一風車20の各風車翼22が回転して異なる位置に配置されたときの気流を示す図である。矢印Aは、気流を示す。
まず、図12左は、風上方向から風洞部20Fを見たとき、回転軸線Mと平行で風向WINDと直交する投影面K上での風洞部20Fの視認幅(回転軸線Mと直交する向きに見た寸法)が最大となるよう風車回転位相を定めたときの(以下、第一位相という)、トルク発生関係を示す図である。風車翼22Aでは、後方翼面28Aが前方翼面26の高速気流通過面26Aにほぼ遮られる形になるので、翼外縁から後方翼面28A側に回り込む気流を除けば、大半の気流が後方翼面28A側に当たり(A)、基準回転方向への成分を含んだ矢印AA方向の力が作用する。
Next, the effect | action of the electric power generating apparatus 10 of this embodiment is demonstrated.
12-14 is a figure which shows an airflow when each windmill blade 22 of the 1st windmill 20 rotates and is arrange | positioned with respect to the wind of the arrow WIND direction at a different position. Arrow A indicates airflow.
First, FIG. 12 left shows the viewing width of the wind tunnel portion 20F on the projection plane K parallel to the rotation axis M and perpendicular to the wind direction WIND when viewed from the windward direction (direction perpendicular to the rotation axis M). It is a figure which shows a torque generation relationship when a windmill rotation phase is defined so that the dimension (viewed in 1) may become the maximum (henceforth a 1st phase). In the wind turbine blade 22A, the rear blade surface 28A is substantially shielded by the high-speed airflow passage surface 26A of the front blade surface 26. Therefore, most of the airflow is removed from the outer edge of the blade except for the airflow that wraps around the rear blade surface 28A. It strikes the surface 28A side (A), and a force in the direction of arrow AA including a component in the reference rotation direction acts.

一方、上記翼外縁から後方翼面28A側に回り込んだ気流は、第一風洞20Fを通過して風車翼22Bの後方翼面28Bに当たる。風車翼22Bでは、風車翼22Aに当たった後に流れてきた気流Aと、風車翼22Aと風車翼22Cとの間から流入して第一風洞20Fを通過してきた気流Aとが当たる。前者の気流Aは、後方翼面28Bに当たり、後者の気流Aは後方翼面28Bと前方翼面26Bの低速気流通過面262に当たる。この両者の回転トルクへの寄与は互いに逆であるが、図12左の位置関係では、後方翼面28Bの方が低速気流通過面262よりも受風断面積が大きいので、結果的に風車翼22Bには基準回転方向への成分を含んだ矢印ABの力が作用することになる。   On the other hand, the airflow that circulates from the blade outer edge toward the rear blade surface 28A passes through the first wind tunnel 20F and hits the rear blade surface 28B of the wind turbine blade 22B. In the windmill blade 22B, the airflow A that has flowed after hitting the windmill blade 22A and the airflow A that has flowed in between the windmill blade 22A and the windmill blade 22C and passed through the first wind tunnel 20F are hit. The former airflow A hits the rear blade surface 28B, and the latter airflow A hits the low-speed airflow passage surface 262 of the rear blade surface 28B and the front blade surface 26B. The contributions of both of these to the rotational torque are opposite to each other. However, in the positional relationship on the left in FIG. 12, the rear blade surface 28B has a larger wind receiving cross-sectional area than the low-speed airflow passage surface 262. A force indicated by an arrow AB including a component in the reference rotation direction acts on 22B.

また、風車翼22Cでは、気流Aが前方翼面26C側に当たり、回転方向に対して向かい風となる。この向かい風により、前方翼面26Cに直接作用する力は、基準回転方向への風車の回転を妨げるように働くが、他方、風車翼22Cの低速気流通過面262側と高速気流通過面261側とに分かれて後方へ流れた気流は、前述のごとく、低速気流通過面262側に流れる気流と高速気流通過面261側に流れる気流との速度差により後方翼面28C側に揚力を生じさせ、この揚力によるトルクが基準回転方向に発生するので、前方翼面26Cに作用する向かい風による反力トルクを少なくとも部分的に相殺する。本実施形態で採用する翼断面形状は図10の形状であり、湾曲ノーズの頂点法線方向に気流を受けたときの揚力トルクが向かい風による反力トルクに打ち勝つように設計されているので、風車翼22Cでも小さいながら進行方向の成分を含んだ矢印AC方向の力が作用する。その結果、図12右に示すように、前述の矢印BA(右のAAに対応)、BB(右のABに対応)、BC(右のACに対応)方向の力が全て基準回転方向Xへのトルク発生に寄与する結果、風車翼22は矢印X方向に回転する。   Further, in the wind turbine blade 22C, the airflow A strikes the front blade surface 26C side, and the wind is opposed to the rotation direction. The force directly acting on the front blade surface 26C due to the head wind acts to prevent the windmill from rotating in the reference rotation direction. On the other hand, the low-speed airflow passage surface 262 side and the high-speed airflow passage surface 261 side of the windmill blade 22C As described above, the airflow that has flown rearward in the rear direction generates lift on the rear blade surface 28C side due to the speed difference between the airflow flowing on the low-speed airflow passage surface 262 side and the airflow flowing on the high-speed airflow passage surface 261 side. Since the torque due to the lift is generated in the reference rotational direction, the reaction torque due to the head wind acting on the front blade surface 26C is at least partially offset. The blade cross-sectional shape employed in the present embodiment is the shape of FIG. 10, and the wind turbine is designed so that the lift torque when receiving the airflow in the direction of the vertex normal of the curved nose overcomes the reaction torque caused by the head wind. Even in the blade 22C, a force in the direction of the arrow AC including a component in the traveling direction is applied although it is small. As a result, as shown on the right side of FIG. 12, the forces in the directions of the arrows BA (corresponding to the right AA), BB (corresponding to the right AB), and BC (corresponding to the right AC) are all in the reference rotation direction X. As a result, the wind turbine blades 22 rotate in the arrow X direction.

なお、風洞部20Fの寸法は、上記第一位相において、上記投影面K上での風洞部20Fの視認幅Wが、風洞部20Fの風下側に位置する風車翼22Bの投影幅Uの30%以上100%未満となっていることが望ましい。30%以上では風下側に位置する風車翼22Bの風洞部20Fを介した受風効率が悪化し、100%を超えると、風洞部20Fから風車翼22Bに当たらずに通過してしまう気流が増加し、受風効率が同様に悪化する。   The size of the wind tunnel portion 20F is such that, in the first phase, the visual width W of the wind tunnel portion 20F on the projection plane K is 30% of the projection width U of the wind turbine blade 22B located on the leeward side of the wind tunnel portion 20F. It is desirable that it is less than 100%. If it is 30% or more, the wind receiving efficiency of the wind turbine blade 22B located on the leeward side through the wind tunnel portion 20F deteriorates, and if it exceeds 100%, the airflow passing through the wind tunnel portion 20F without hitting the wind turbine blade 22B increases. However, the wind receiving efficiency is similarly deteriorated.

続いて、図13左は、風上方向から風洞部20Fを見たとき、風洞部20Fの風下側に風車翼22Bが視認されず、かつ、回転軸線Mと平行で風向WINDと直交する投影面K上での風洞部20Fの視認幅Wが最大となるよう風車回転位相を定めたときの(以下、第二位相という)、トルク発生関係を示す図である。風車翼22Aは主として後方翼面28Aで受ける風力により、比較的大きな基準回転方向Xへ後からCAが加わる。また、風車翼22Cは、図12左における風車翼22Cと原理的には同様に揚力の寄与を受け、矢印CC方向の力が作用する。風車翼22Bについては、風上側の風車翼22Cに遮られる位置関係にあるため、風洞部20Fを通過してきた気流は、そのまま直進すれば風車翼22Bに当たらず通過してしまうことになる。しかし、基準回転方向Xの前方側に位置する風車翼22Aの、向心方向に凹状湾曲する後方翼面28Aに沿って流れる気流により、風洞部20Fを通過する気流も風車翼22Cの後方翼面28側に曲げられ、風車翼22Bでも小さいながら基準回転方向Xの成分を含んだ矢印CB方向の力が作用する。その結果、図13右に示すように、矢印DA(右のCAに対応)、DB(右のCBに対応)、DC(右のCCに対応)方向の力が全て基準回転方向Xへのトルク発生に寄与する結果、風車翼22は矢印X方向に回転する。   Subsequently, FIG. 13 left shows a projection plane in which the wind turbine blade 22B is not visually recognized on the leeward side of the wind tunnel portion 20F when viewed from the windward direction, and is parallel to the rotation axis M and orthogonal to the wind direction WIND. It is a figure which shows a torque generation relationship when a windmill rotation phase is defined so that the visual recognition width W of the wind tunnel part 20F on K may become the maximum (henceforth a 2nd phase). The wind turbine blade 22A is subjected to CA in a relatively large reference rotational direction X afterward mainly by wind force received by the rear blade surface 28A. Further, the wind turbine blade 22C receives the contribution of lift in the same manner as the wind turbine blade 22C in the left of FIG. 12, and a force in the direction of the arrow CC acts. Since the wind turbine blade 22B is in a positional relationship blocked by the wind turbine blade 22C on the windward side, the airflow that has passed through the wind tunnel portion 20F passes through the wind turbine blade 22B without hitting it. However, due to the airflow that flows along the rear wing surface 28A that is concavely curved in the centripetal direction of the windmill blade 22A that is located on the front side in the reference rotation direction X, the airflow that passes through the wind tunnel portion 20F is also the rear wing surface of the windmill blade 22C. The force in the direction of the arrow CB including the component in the reference rotation direction X acts even though the wind turbine blade 22B is bent. As a result, as shown in the right of FIG. 13, the forces in the directions of the arrows DA (corresponding to the right CA), DB (corresponding to the right CB), and DC (corresponding to the right CC) are all in the reference rotational direction X. As a result of contributing to the generation, the wind turbine blade 22 rotates in the arrow X direction.

最後に、図14左は、風上方向から風洞部20Fを見たとき、風洞部20Fの風上側に視認される風車翼22Cの、回転軸線Mと平行で風向WINDと直交する投影面K上での視認幅が最大となるよう風車回転位相を定めたときの(以下、第三位相という)、トルク発生関係を示す図である。風車翼22Aには、気流Aが後方翼面28Aに当たり、風向きとほぼ一致する矢印EA方向の力が作用する。風車翼22Bでは、気流Aが前方翼面26B側に当たり、進行方向に対して向かい風となっている。この向かい風により、風車翼22Cには揚力が働き、基準回転方向前方側へ矢印EB方向の力が作用する。風車翼22Cでは、気流Aが前方翼面26Cに当たり、基準回転方向前方側へ向かって流れる。その結果、図14右に示すように、矢印FA(右のEAに対応)、FB(右のEBに対応)、FC(右のECに対応)方向の力が全て基準回転方向Xへのトルク発生に寄与する結果、風車翼22は矢印X方向に回転する。   Finally, FIG. 14 left shows a projection plane K parallel to the rotation axis M and perpendicular to the wind direction WIND of the wind turbine blade 22C visually recognized on the windward side of the wind tunnel portion 20F when the wind tunnel portion 20F is viewed from the windward direction. It is a figure which shows a torque generation relationship when a windmill rotation phase is defined so that the visual recognition width in may become the maximum (henceforth a 3rd phase). On the wind turbine blade 22A, the airflow A hits the rear blade surface 28A, and a force in the direction of the arrow EA that substantially matches the wind direction acts. In the wind turbine blade 22B, the airflow A hits the front blade surface 26B side, and the wind is against the traveling direction. Due to this head wind, lift acts on the wind turbine blade 22C, and a force in the direction of the arrow EB acts forward in the reference rotation direction. In the wind turbine blade 22C, the airflow A hits the front blade surface 26C and flows toward the front side in the reference rotation direction. As a result, as shown in the right of FIG. 14, the forces in the directions of arrows FA (corresponding to the right EA), FB (corresponding to the right EB), and FC (corresponding to the right EC) are all torques in the reference rotational direction X. As a result of contributing to the generation, the wind turbine blade 22 rotates in the arrow X direction.

このように、風向に対する第一風車20の上記主要な回転位相のそれぞれについて、各風車翼に生ずる回転トルクの合成トルクはいずれも基準回転方向Xの方向に生じることがわかる。その結果、第一風車20は、回転軸線周りのどの向きから風を受けても常に基準回転方向Xに回転することになる。第二風車30については、図16に示すごとく基準回転方向が逆になる(Y)点を除き、上記の事情は全く同じである。   Thus, it can be seen that for each of the main rotational phases of the first wind turbine 20 with respect to the wind direction, the combined torque of the rotational torque generated in each wind turbine blade is generated in the direction of the reference rotational direction X. As a result, the first wind turbine 20 always rotates in the reference rotation direction X regardless of the direction of wind around the rotation axis. As for the second windmill 30, the above situation is exactly the same except that the reference rotation direction is reversed (Y) as shown in FIG.

その結果、図1において発電機40の第一ロータ41と第二ロータ42とが風速に対応して互いに逆方向に回転し、片方が固定となる場合と比較して倍のロータ間相対回転速度が得られ、発電効率が向上する。また、上記のごとく発電機40において、界磁用マグネット101と発電用コイル102とがアキシャル方向に対向するため、界磁用マグネット101が設けられる第一ロータ41と発電用コイル102が設けられる第二ロータ42とは、ほぼ同じ半径位置に界磁用マグネット101と発電用コイル102の各重量が集中し、回転軸線M周りの慣性モーメントに差が生じにくくなる。その結果、上下の風車の回転慣性力にアンバランスを生じにくく、低速回転時の発電特性が安定しやすい。また、回転軸への回転ねじれ負荷荷重のキャンセル効果も大幅に高められ、構造強度的にも有利に作用する。さらに、発電用コイル102と界磁用マグネット101とをいずれも薄型に構成でき、かつ、発電用コイル102が空芯型なので、発電装置10全体の軽量化に大きく寄与する。発電用コイル102と界磁用マグネット101との荷重はアキシャル方向に比較的集中するので、フライホイール効果が大幅に高められる。その結果、強風時等における回転軸ぶれも効果的に抑制できる。コイルとマグネットとの界磁反発力がアキシャル方向に発生するので、回転軸ぶれやコギングを生じにくい。さらに、発電用コイル102が空芯型なので、渦電流損失が小さく発電効率も良好である。また、発電機40の発熱も抑制される。   As a result, the first rotor 41 and the second rotor 42 of the generator 40 in FIG. 1 rotate in opposite directions corresponding to the wind speed, and the relative rotational speed between the rotors is double that of the case where one of them is fixed. And the power generation efficiency is improved. Further, as described above, in the generator 40, the field magnet 101 and the power generation coil 102 face each other in the axial direction, so that the first rotor 41 provided with the field magnet 101 and the power generation coil 102 are provided. With the two rotors 42, the weights of the field magnet 101 and the power generating coil 102 are concentrated at substantially the same radial position, and a difference in the moment of inertia around the rotation axis M is less likely to occur. As a result, the rotational inertial forces of the upper and lower wind turbines are less likely to be unbalanced, and the power generation characteristics during low-speed rotation are likely to be stable. In addition, the effect of canceling the rotational torsional load on the rotating shaft can be greatly enhanced, and this has an advantageous effect on the structural strength. Furthermore, since both the power generating coil 102 and the field magnet 101 can be made thin and the power generating coil 102 is an air-core type, it greatly contributes to the weight reduction of the entire power generating device 10. Since the loads on the power generating coil 102 and the field magnet 101 are relatively concentrated in the axial direction, the flywheel effect is greatly enhanced. As a result, it is possible to effectively suppress the rotational shaft shake during strong winds and the like. Since the field repulsive force between the coil and the magnet is generated in the axial direction, it is difficult to cause rotational shaft shake and cogging. Furthermore, since the power generation coil 102 is an air-core type, eddy current loss is small and power generation efficiency is good. Moreover, the heat generation of the generator 40 is also suppressed.

次に、図15は、風車翼22が矢印WIND方向の風に対して、最も回転方向と逆方向の力を受けると考えられる位置に配置された場合の、風車翼22の重心Gと回転軸線Mとの関係を示す図である。図15左に示すように、高速気流通過面261の後端部から低速気流通過面262の最も離れた位置への仮想直線Lを考えた場合、この仮想直線Lが矢印WIND方向と直行する位置に配置されたときの風車翼22の位置(最も気流Aの直接当たる面積が広いと考えられる位置)では、矢印WIND方向からみて、重心Gが回転軸線Mに近い位置に配置されている。したがって、重心Gが回転軸線Mから遠い位置に配置された場合と比較して、矢印WIND方向の同じ力の風が風車翼22に当たった場合でも、進行方向逆方向への力の成分を小さくすることができる。   Next, FIG. 15 shows the center of gravity G and the rotation axis of the wind turbine blade 22 when the wind turbine blade 22 is disposed at a position where it is considered that the wind turbine blade 22 receives the force most opposite to the rotation direction with respect to the wind in the arrow WIND direction. It is a figure which shows the relationship with M. As shown on the left side of FIG. 15, when a virtual straight line L from the rear end portion of the high-speed airflow passage surface 261 to the farthest position of the low-speed airflow passage surface 262 is considered, the virtual straight line L is a position where the virtual straight line L is orthogonal to the arrow WIND direction. When the wind turbine blades 22 are arranged at the position (position where the area directly exposed to the airflow A is considered to be the largest), the center of gravity G is arranged at a position close to the rotation axis M as viewed from the arrow WIND direction. Therefore, compared with the case where the center of gravity G is arranged at a position far from the rotation axis M, the force component in the direction opposite to the traveling direction is reduced even when the wind of the same force in the arrow WIND direction hits the wind turbine blade 22. can do.

また、図15右に示すように、高速気流通過面261へ、これとほぼ直交する方向に気流が当たるときの風車翼22の位置(気流Aによる抗力が大きいと考えられる位置)では、矢印WIND方向からみて、重心Gが回転軸線Mとほぼ重なる位置に配置される。したがって、矢印WIND方向への力(矢印Dで示す)が風車翼22に作用した場合でも、進行方向逆方向への力の成分を小さくすることができる。   Further, as shown in the right of FIG. 15, at the position of the wind turbine blade 22 when the airflow strikes the high-speed airflow passage surface 261 in a direction substantially orthogonal thereto (position where the drag due to the airflow A is considered to be large), the arrow WIND When viewed from the direction, the center of gravity G is disposed at a position that substantially overlaps the rotation axis M. Therefore, even when a force in the direction of the arrow WIND (indicated by the arrow D) acts on the wind turbine blade 22, the component of the force in the direction opposite to the traveling direction can be reduced.

本発明の発電装置の要部をなす発電機の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the generator which makes the principal part of the electric power generating apparatus of this invention. 図1の第一ロータにおける界磁用マグネットの配置例を示す図。The figure which shows the example of arrangement | positioning of the field magnet in the 1st rotor of FIG. 図2の第二ロータにおける発電用コイルの配置例を示す図。The figure which shows the example of arrangement | positioning of the coil for electric power generation in the 2nd rotor of FIG. 図1の発電機の正面図。The front view of the generator of FIG. 同じく平面図。FIG. 本発明の発電装置を風力発電装置として構成した例を示す斜視図。The perspective view which shows the example which comprised the electric power generating apparatus of this invention as a wind power generator. 図6の正面図。The front view of FIG. 図6の要部の分解斜視図。The disassembled perspective view of the principal part of FIG. 第一風車の横断面図。The cross-sectional view of a 1st windmill. 風車翼の作用説明図。Action | operation explanatory drawing of a windmill blade. 翼支持体の取り付け態様の一例を示す平面図。The top view which shows an example of the attachment aspect of a wing | blade support body. 風車の第一作用説明図。1st action explanatory drawing of a windmill. 風車の第二作用説明図。Explanatory drawing of the 2nd effect | action of a windmill. 風車の第三作用説明図。Explanatory drawing of the third action of the windmill. 風車の第四作用説明図。Explanatory drawing of the 4th effect | action of a windmill. 第二風車の基準回転方向の説明図。Explanatory drawing of the reference | standard rotation direction of a 2nd windmill.

符号の説明Explanation of symbols

10 風力発電装置(発電装置)
20 第一風車(第一回転入力部)
30 第二風車(第二回転入力部)
20F,30F 風洞部
22 風車翼
261 高速気流通過面
262 低速気流通過面
263 湾曲ノーズ部
26 前方翼面(第一風車)
28 後方翼面(第一風車)
32 風車翼(第二風車)
36 前方翼面(第二風車)
38 後方翼面(第二風車)
40 発電機
41 第一ロータ
42 第二ロータ
101 界磁用マグネット
102 発電用コイル
10 Wind power generator (power generator)
20 First windmill (first rotation input part)
30 Second windmill (second rotation input part)
20F, 30F Wind tunnel portion 22 Wind turbine blade 261 High-speed airflow passage surface 262 Low-speed airflow passage surface 263 Curved nose portion 26 Front blade surface (first windmill)
28 Rear wing surface (first windmill)
32 Windmill Wings (Second Windmill)
36 Front wing surface (second windmill)
38 Rear wing surface (second windmill)
40 generator 41 first rotor 42 second rotor 101 field magnet 102 power generation coil

Claims (10)

基準軸線上の第一位置に回転軸線を一致させる形で配置され、発電駆動源となる流体の流れを受けて第一方向に回転する第一回転入力部と、
前記基準軸線上の前記第一位置とは異なる第二位置に配置されるとともに、同一方向から前記流体の流れを受けたとき、前記第一回転入力部とは逆方向に回転する第二回転入力部と、
界磁用マグネットが設けられた第一ロータと、該第一ロータと逆方向に前記第二回転入力部と一体回転するとともに前記界磁用マグネットにより励磁される発電用コイルが設けられた第二ロータとを有した発電機と、を備え、
前記発電機は、前記発電用コイルと前記界磁用マグネットとが前記回転軸線方向にエアギャップを形成する形で対向するよう、前記第二ロータにおいて、空芯扁平に構成された複数の前記発電用コイルが前記回転軸線周りに各々前記軸線方向が前記回転軸線方向と一致する形で配列し、前記第一ロータにおいて、前記回転軸線周りに複数の前記界磁用マグネットが各々前記回転軸線方向に着磁された形で配列したアキシャルギャップ型発電機として構成されてなることを特徴とする発電装置。
A first rotation input unit that is arranged in a form that coincides with the rotation axis at a first position on the reference axis, and that rotates in a first direction in response to a fluid flow serving as a power generation drive source;
A second rotation input that is disposed at a second position different from the first position on the reference axis and that rotates in a direction opposite to the first rotation input section when receiving the flow of the fluid from the same direction. And
A first rotor provided with a field magnet, and a second rotor provided with a power generating coil that rotates integrally with the second rotation input portion in the opposite direction to the first rotor and is excited by the field magnet. A generator having a rotor,
The generator includes a plurality of the power generators configured in an air-core flat shape in the second rotor such that the power generation coil and the field magnet face each other in a form forming an air gap in the rotation axis direction. Coils are arranged around the rotation axis such that the axis direction coincides with the rotation axis direction, and in the first rotor, a plurality of field magnets are arranged around the rotation axis in the rotation axis direction. A power generator configured as an axial gap generator arranged in a magnetized form.
前記第二ロータと前記第二回転入力部とを結合する第二回転軸上に、複数の前記発電用コイルに各々つながるスリップリングが設けられ、前記第二回転軸上にて該スリップリング上を摺動するブラシを介し、前記発電用コイルからの発電出力を取り出すようにした請求項1記載の発電装置。   A slip ring connected to each of the plurality of power generating coils is provided on a second rotation shaft that couples the second rotor and the second rotation input unit, and on the slip rotation on the second rotation shaft. The power generation device according to claim 1, wherein a power generation output from the power generation coil is taken out through a sliding brush. 前記第一ロータは、前記第二ロータの前記発電用コイルとの対向面に前記界磁用マグネットが取り付けられる円板状のロータ本体を有し、前記第二回転軸と分離形成された第一回転軸が該ロータ本体に一体回転可能に結合されている請求項1又は請求項2に記載の発電装置。   The first rotor has a disk-shaped rotor body to which the field magnet is attached to a surface of the second rotor facing the power generating coil, and is separated from the second rotating shaft. The power generator according to claim 1 or 2, wherein the rotary shaft is coupled to the rotor body so as to be integrally rotatable. 前記第一ロータは、前記第二ロータの前記発電用コイルに対し、アキシャル方向にて前記ロータ本体と反対側から対向する形で円板状の補助ロータ本体が設けられ、該補助ロータ本体の前記発電用コイルとの対向面において、前記ロータ本体側の界磁用マグネットに対応する位置に、該界磁用マグネットとは逆極性の補助界磁用マグネットが取り付けられ、前記ロータ本体と前記補助ロータ本体とが外周縁にて前記第二ロータを周方向に取り囲む周壁部により一体回転可能に連結されてなり、それらロータ本体、周壁部及び補助ロータ本体が軟磁性金属材料からなる界磁ヨークを構成してなる請求項1ないし請求項3のいずれか1項に記載の発電装置。   The first rotor is provided with a disk-shaped auxiliary rotor body facing the power generation coil of the second rotor in an axial direction from the opposite side of the rotor body, and the auxiliary rotor body An auxiliary field magnet having a polarity opposite to that of the field magnet is attached to a position corresponding to the field magnet on the rotor body side on the surface facing the power generation coil, and the rotor body and the auxiliary rotor The main body is connected to the outer peripheral edge by a peripheral wall portion surrounding the second rotor in the circumferential direction so as to be integrally rotatable, and the rotor main body, the peripheral wall portion, and the auxiliary rotor main body constitute a field yoke made of a soft magnetic metal material. The power generator according to any one of claims 1 to 3. 前記ロータ本体の前記第二ロータに面しているのと反対側の主表面において前記回転軸線を取り囲む形で筒状の第一軸受スリーブが突出形成され、前記第二回転軸と分離形成された第一回転軸が前記第一軸受スリーブの先端を塞ぐ軸結合遮蔽部に一体回転可能に結合されるとともに、
前記補助ロータ本体の前記第二ロータに面しているのと反対側の主表面において筒状の第二軸受スリーブが突出形成され、
前記第二回転軸が前記第二回転入力部側から前記第二軸受スリーブ及び前記第二ロータを貫通して先端部が前記第一軸受スリーブ内に入り込み、アキシャル方向における前記第二ロータの両側にて、それら第一軸受スリーブ及び第二軸受スリーブと前記第二回転軸との間に、前記第一ロータを前記第二ロータに対し、両者の相対回転摺動を許容した形で支持させる主軸受が配置されている請求項4記載の発電装置。
A cylindrical first bearing sleeve is formed to protrude from the main surface of the rotor body opposite to the second rotor so as to surround the rotation axis, and is separated from the second rotation shaft. The first rotary shaft is coupled to a shaft coupling shield that closes the tip of the first bearing sleeve so as to be integrally rotatable,
A cylindrical second bearing sleeve protrudes from the main surface opposite to the second rotor of the auxiliary rotor body,
The second rotation shaft penetrates the second bearing sleeve and the second rotor from the second rotation input portion side, and a tip portion enters the first bearing sleeve, and is on both sides of the second rotor in the axial direction. A main bearing that supports the first rotor with respect to the second rotor between the first bearing sleeve and the second bearing sleeve and the second rotating shaft in a manner allowing relative rotational sliding of both of them. The power generation device according to claim 4, wherein
前記第一ロータを外側から覆う形で非回転の発電機ケースが設けられ、前記第二回転軸と前記第一回転軸とが該発電機ケースの内部から各々該発電機ケースの壁部に形成された対応する軸貫通穴にてアキシャル方向外向きに延出するとともに、前記第二回転軸及び前記第一回転軸と対応する各貫通穴との間に補助軸受が配置されている請求項5記載の発電装置。   A non-rotating generator case is provided so as to cover the first rotor from the outside, and the second rotating shaft and the first rotating shaft are formed on the wall of the generator case from the inside of the generator case, respectively. The auxiliary bearing is disposed between the second rotating shaft and the first rotating shaft and the corresponding through holes while extending outward in the axial direction at the corresponding shaft through holes formed. The power generator described. 前記発電機ケースの壁部外面から前記アキシャル方向に突出する筒状の補助軸受スリーブの内周面が前記軸貫通穴とされ、該補助軸受スリーブ内に前記補助軸受が配置されるとともに、該補助軸受スリーブの外周面と前記発電機ケースの壁部外面とを繋ぐ形で補強用及び放熱促進用の複数のフィンが放射状に設けられている請求項6記載の発電装置。   An inner peripheral surface of a cylindrical auxiliary bearing sleeve protruding in the axial direction from the outer surface of the wall of the generator case serves as the shaft through hole, and the auxiliary bearing is disposed in the auxiliary bearing sleeve. The power generator according to claim 6, wherein a plurality of fins for reinforcement and heat dissipation are provided radially so as to connect the outer peripheral surface of the bearing sleeve and the outer surface of the wall of the generator case. 前記第一回転入力部と前記第二回転入力部とが、各々回転軸線と直交する向きに受風する風車翼を該回転軸線周りに複数配置してなるサポニウス型風車であって、同一方向に受風することにより互いに逆方向に回転する第一風車及び第二風車とされた風力発電装置として構成された請求項1ないし請求項7のいずれか1項に記載の発電装置。   The first rotation input unit and the second rotation input unit are Saponius type wind turbines in which a plurality of wind turbine blades that receive wind in directions orthogonal to the rotation axis are arranged around the rotation axis, respectively, in the same direction The power generator according to any one of claims 1 to 7, wherein the power generator is configured as a first wind turbine and a second wind turbine that rotate in opposite directions by receiving wind. 前記第一風車及び第二風車と前記発電機とを、前記回転軸線が鉛直となるように支持する支持フレームを有する請求項8記載の発電装置。   The power generator according to claim 8, further comprising a support frame that supports the first windmill, the second windmill, and the generator so that the rotation axis is vertical. 前記第一風車及び第二風車はそれぞれ、
各前記風車翼の前記回転軸線周りに定められるとともに、前記第一風車及び第二風車とで互いに逆に定められた基準回転方向において、前方側に位置する翼面を前方翼面とし、同じく後方側に位置する翼面を後方翼面とし、また、各風車翼の前記回転軸線に近い側の端縁を翼内縁とし、同じく遠い側の端縁を翼外縁と定義したとき、
前記回転軸線の周りにおいて複数の前記風車翼は、前記翼内縁が該回転軸線から半径方向に一定距離だけ離れて位置するよう翼支持体により一体回転可能に支持され、
また、前記回転軸線と直交する断面において、各前記風車翼は、前記後方翼面が前記基準回転方向前方側に引っ込む凹湾曲面とされ、前記前方翼面が前記基準回転方向前方側に突出するとともに前記後方翼面よりも湾曲深さが大きい凸湾曲面とされ、さらに、前記前方翼面は、湾曲ノーズ部において曲率が極大となり、該湾曲ノーズ部から前記翼内縁側及び前記翼外縁側に向けてそれぞれ曲率が減少するとともに、該湾曲ノーズ部から前記翼外縁に至る第一面の面長が同じく翼内縁に至る第二面の面長よりも大きい流線形状をなし、
前記前方翼面にて前記基準回転方向前方側から相対気流を受けた場合に、前記第一面と前記第二面とは、前記湾曲ノーズ部から前記翼外縁に向けて当該第一面に沿って生ずる相対気流の速度が、同じく前記翼内縁に向けて前記第二面に沿って生ずる相対気流の速度よりも大きくなるよう、それぞれ高速気流通過面及び低速気流通過面として機能するとともに、それら高速気流通過面と低速気流通過面との前記相対気流の流速差に基づく揚力トルクを、前記後方翼面側にて前記風車翼を前記基準回転方向に回転させる向きに生じさせるようにしたサポニウス型風車である請求項8記載の発電装置。
The first windmill and the second windmill are respectively
A blade surface located on the front side is defined as a front blade surface in a reference rotation direction that is determined around the rotation axis of each of the wind turbine blades and opposite to each other in the first wind turbine and the second wind turbine. When the blade surface located on the side is defined as the rear blade surface, the edge on the side close to the rotational axis of each wind turbine blade is defined as the blade inner edge, and the edge on the far side is defined as the blade outer edge,
Around the rotation axis, the plurality of wind turbine blades are supported so as to be integrally rotatable by a blade support so that the blade inner edge is located at a certain distance in the radial direction from the rotation axis,
Further, in the cross section orthogonal to the rotation axis, each wind turbine blade has a concave curved surface in which the rear blade surface is retracted forward in the reference rotation direction, and the front blade surface protrudes forward in the reference rotation direction. In addition, the front wing surface has a maximum curvature at the curved nose portion, and is curved from the curved nose portion to the blade inner edge side and the blade outer edge side. Each of the curvatures decreases toward the surface, and the surface length of the first surface from the curved nose portion to the blade outer edge is also larger than the surface length of the second surface to the blade inner edge,
When receiving a relative airflow from the front side in the reference rotation direction on the front blade surface, the first surface and the second surface are along the first surface from the curved nose portion toward the outer edge of the blade. In addition, each of the high-speed airflow passage surface and the low-speed airflow passage surface functions so that the velocity of the relative airflow generated is larger than the velocity of the relative airflow generated along the second surface toward the blade inner edge. A Saponius type windmill in which lift torque based on the flow velocity difference of the relative airflow between the airflow passage surface and the low-speed airflow passage surface is generated in the direction in which the windmill blade is rotated in the reference rotation direction on the rear blade surface side. The power generator according to claim 8.
JP2006263447A 2006-09-27 2006-09-27 Power generator Active JP4441516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263447A JP4441516B2 (en) 2006-09-27 2006-09-27 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263447A JP4441516B2 (en) 2006-09-27 2006-09-27 Power generator

Publications (2)

Publication Number Publication Date
JP2008082251A true JP2008082251A (en) 2008-04-10
JP4441516B2 JP4441516B2 (en) 2010-03-31

Family

ID=39353366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263447A Active JP4441516B2 (en) 2006-09-27 2006-09-27 Power generator

Country Status (1)

Country Link
JP (1) JP4441516B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073743A1 (en) * 2008-12-25 2010-07-01 のあい株式会社 Coaxial inversion coreless generator
KR100978316B1 (en) 2009-12-23 2010-08-26 (주) 하승 Vertical-shaft wind power generator
WO2011010675A1 (en) * 2009-07-21 2011-01-27 株式会社エコ・テクノロジー Hydroelectric power generating equipment
KR101014138B1 (en) 2008-08-20 2011-02-14 충주대학교 산학협력단 Double coil type wind generator
WO2011122726A1 (en) * 2010-04-01 2011-10-06 Ryu Byung-Sue Electric power generation system using balance of magnetic force
JP2012062910A (en) * 2010-09-14 2012-03-29 Winpro Co Ltd Planetary magnet gear drive type generator and wind power generator device using the same
JP2012516128A (en) * 2009-01-23 2012-07-12 ソクホ ジャン Power generation equipment with improved power generation efficiency and rotational power
CN102787980A (en) * 2012-08-06 2012-11-21 青岛博峰风力发电机有限公司 Flying saucer type antipole double speed direct-driven wind driven generator
PT106274A (en) * 2012-04-26 2013-10-28 Fusa Consultores E Investimentos Unip Lda ELECTRIC AXLE GENERATOR VERTICAL
JP2014161220A (en) * 2009-03-13 2014-09-04 Bridgestone Corp In-tire power generator
JP2014230442A (en) * 2013-05-24 2014-12-08 皓二 反田 Power generator
KR101492160B1 (en) 2013-03-07 2015-02-12 주식회사 씨윈피에스 Windmill aerogenerator
KR101693272B1 (en) * 2016-04-05 2017-01-05 홍쿠이 진 Wind power generator and hybrid generator using the same
WO2017083984A1 (en) * 2015-11-20 2017-05-26 Kelso Energy Ltd. Recessed-magnet flywheel construction for vertical axis wind turbines
CN106870293A (en) * 2017-04-27 2017-06-20 张男 Wind power generation plant
CN108894924A (en) * 2018-07-04 2018-11-27 南京国电南自新能源工程技术有限公司 A kind of wind-power distributed generation resource and working method
CN109058047A (en) * 2018-07-10 2018-12-21 四川绿源科技有限公司 The commutation of Bidirectional power permanent magnetism is opened and closed from pressure release misconstruction wind power generation plant
JP2019525722A (en) * 2016-08-16 2019-09-05 宇生自然能源科技股▲分▼有限公司 Coaxial electromagnetic device
KR20200030307A (en) * 2018-09-12 2020-03-20 강용수 Vertical wind power generator
WO2022163043A1 (en) 2021-01-29 2022-08-04 株式会社エコ・テクノロジー Rotary vane, rotating device, and power generation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5124888B2 (en) * 2010-05-31 2013-01-23 株式会社エコ・テクノロジー Signs and traffic signs
JP4748747B1 (en) * 2010-12-01 2011-08-17 株式会社 マルヨシ商会 Drag type wind vane for wind power generator and wind power generator using this wind vane
CN107605651B (en) * 2017-09-14 2019-08-16 窦学华 A kind of continental shelf is surged tital generator
KR101944098B1 (en) * 2018-03-28 2019-01-30 (주) 하이코 Vertical Type Wind Turbine with Contra-Rotating

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014138B1 (en) 2008-08-20 2011-02-14 충주대학교 산학협력단 Double coil type wind generator
JP5543371B2 (en) * 2008-12-25 2014-07-09 のあい株式会社 Coaxial reversal type coreless generator
JPWO2010073743A1 (en) * 2008-12-25 2012-06-14 のあい株式会社 Coaxial reversal type coreless generator
KR101548348B1 (en) 2008-12-25 2015-08-31 노아이 주식회사 Coaxial inversion coreless generator
WO2010073743A1 (en) * 2008-12-25 2010-07-01 のあい株式会社 Coaxial inversion coreless generator
JP2012516128A (en) * 2009-01-23 2012-07-12 ソクホ ジャン Power generation equipment with improved power generation efficiency and rotational power
JP2014161220A (en) * 2009-03-13 2014-09-04 Bridgestone Corp In-tire power generator
EP2458197A1 (en) * 2009-07-21 2012-05-30 Eco Technology Co., Ltd. Hydroelectric power generating equipment
CN102575637A (en) * 2009-07-21 2012-07-11 生态技术株式会社 Hydroelectric power generating equipment
EP2458197A4 (en) * 2009-07-21 2013-04-24 Eco Technology Co Ltd Hydroelectric power generating equipment
WO2011010675A1 (en) * 2009-07-21 2011-01-27 株式会社エコ・テクノロジー Hydroelectric power generating equipment
KR100978316B1 (en) 2009-12-23 2010-08-26 (주) 하승 Vertical-shaft wind power generator
CN103270677A (en) * 2010-04-01 2013-08-28 柳荣实 Electric power generation system using balance of magnetic force
WO2011122726A1 (en) * 2010-04-01 2011-10-06 Ryu Byung-Sue Electric power generation system using balance of magnetic force
JP2012062910A (en) * 2010-09-14 2012-03-29 Winpro Co Ltd Planetary magnet gear drive type generator and wind power generator device using the same
PT106274A (en) * 2012-04-26 2013-10-28 Fusa Consultores E Investimentos Unip Lda ELECTRIC AXLE GENERATOR VERTICAL
CN102787980A (en) * 2012-08-06 2012-11-21 青岛博峰风力发电机有限公司 Flying saucer type antipole double speed direct-driven wind driven generator
KR101492160B1 (en) 2013-03-07 2015-02-12 주식회사 씨윈피에스 Windmill aerogenerator
JP2014230442A (en) * 2013-05-24 2014-12-08 皓二 反田 Power generator
WO2017083984A1 (en) * 2015-11-20 2017-05-26 Kelso Energy Ltd. Recessed-magnet flywheel construction for vertical axis wind turbines
US11092137B2 (en) 2015-11-20 2021-08-17 Kelso Energy Ltd. Recessed-magnet flywheel construction for vertical axis wind turbines
KR101693272B1 (en) * 2016-04-05 2017-01-05 홍쿠이 진 Wind power generator and hybrid generator using the same
JP2019525722A (en) * 2016-08-16 2019-09-05 宇生自然能源科技股▲分▼有限公司 Coaxial electromagnetic device
CN106870293A (en) * 2017-04-27 2017-06-20 张男 Wind power generation plant
CN108894924A (en) * 2018-07-04 2018-11-27 南京国电南自新能源工程技术有限公司 A kind of wind-power distributed generation resource and working method
CN109058047A (en) * 2018-07-10 2018-12-21 四川绿源科技有限公司 The commutation of Bidirectional power permanent magnetism is opened and closed from pressure release misconstruction wind power generation plant
KR20200030307A (en) * 2018-09-12 2020-03-20 강용수 Vertical wind power generator
KR102093473B1 (en) * 2018-09-12 2020-03-25 강용수 Vertical wind power generator
WO2022163043A1 (en) 2021-01-29 2022-08-04 株式会社エコ・テクノロジー Rotary vane, rotating device, and power generation device

Also Published As

Publication number Publication date
JP4441516B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4441516B2 (en) Power generator
JP3986548B1 (en) Wind power generator for vehicle and vehicle with wind power generator
JP3905121B1 (en) Wind turbine blades, wind turbine, and wind power generator
JP2008190518A (en) Vehicular wind power generator and vehicle with wind power generator
JP4041838B2 (en) Wind turbine and wind power generator for wind power generation
ES2348252T3 (en) TENSION WHEEL IN A ROTOR SYSTEM FOR WIND AND HYDRAULIC TURBINES.
JP5659428B2 (en) Hydroelectric generator
WO2016076425A1 (en) Fluid power generation method and fluid power generation device
JP2008025518A (en) Wind turbine generator
WO2016148015A1 (en) Turbine rotor and natural energy generating device equipped with same
CA2607628C (en) Wind-turbine with load-carrying skin
JP2006300030A (en) Windmill device and wind power generation device using the same
JP2004084590A (en) Wind mill with winglet
US8556572B2 (en) Wind power turbine
JP2007107496A (en) Wind power generation device
KR102026954B1 (en) System of wind focus type electricity from wind energy
JP5124888B2 (en) Signs and traffic signs
JP2004211707A (en) Wind power generator
JP2007321659A (en) Wind power generator
KR101391256B1 (en) Wind power eletric generator with noise reduced
JPWO2012073320A1 (en) Vertical axis windmill
JPH084647A (en) Wind power generation device
JP2016176369A (en) Blade wheel and natural energy generator
JP2005105911A (en) Vertical shaft type wind power generation device
KR102507781B1 (en) Vertical Axis wind power turbin generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091211

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250