JP2008082023A - Recovery method of water soluble natural gas by carbon dioxide dissolved water - Google Patents

Recovery method of water soluble natural gas by carbon dioxide dissolved water Download PDF

Info

Publication number
JP2008082023A
JP2008082023A JP2006262960A JP2006262960A JP2008082023A JP 2008082023 A JP2008082023 A JP 2008082023A JP 2006262960 A JP2006262960 A JP 2006262960A JP 2006262960 A JP2006262960 A JP 2006262960A JP 2008082023 A JP2008082023 A JP 2008082023A
Authority
JP
Japan
Prior art keywords
water
natural gas
soluble natural
dissolved
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006262960A
Other languages
Japanese (ja)
Other versions
JP3908780B1 (en
Inventor
Takashi Baba
敬 馬場
Kohei Shakko
浩平 赤工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Exploration Co Ltd
Original Assignee
Japan Petroleum Exploration Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Exploration Co Ltd filed Critical Japan Petroleum Exploration Co Ltd
Priority to JP2006262960A priority Critical patent/JP3908780B1/en
Application granted granted Critical
Publication of JP3908780B1 publication Critical patent/JP3908780B1/en
Publication of JP2008082023A publication Critical patent/JP2008082023A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovery method of water soluble natural gas by carbon dioxide dissolved water capable of recovering the substantially whole quantity of water soluble natural gas and iodine buried without sinking the ground, and capable of stably storing CO<SB>2</SB>in a storage layer after development drilling without causing leakage over a long period of time. <P>SOLUTION: CO<SB>2</SB>dissolved water 3 of higher density than that of stratum water 2 is pressed in the stratum water 2 existing storage layer from a press-in well 4 arranged in a structural position lower than a production well 5, and the stratum water 2 is pushed up toward the production well 5 by this CO<SB>2</SB>dissolved water 3. At this time, a press-in quantity of the CO<SB>2</SB>dissolved water 3 and a pumping-up quantity of the stratum water 2 are adjusted so that pressure in the storage layer becomes hydrostatic pressure. Next, the stratum water 2 pumped up from the production well 5 is separated into the water soluble natural gas 12 and brackish water 13, and the iodine is also recovered from the brackish water 13. The brackish water after recovering the iodine is reused as the CO<SB>2</SB>dissolved water 3 by mixing CO<SB>2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二酸化炭素(CO)溶解水を地中に圧入して、地中の貯留層からメタン等の水溶性天然ガスを含有する地層水を汲み上げて、この地層水からメタン等の天然ガス及びヨウ素を回収するCO溶解水による水溶性天然ガスの回収方法に関する。 In the present invention, carbon dioxide (CO 2 ) -dissolved water is injected into the ground, formation water containing water-soluble natural gas such as methane is pumped up from the underground reservoir, and natural water such as methane is extracted from the formation water. The present invention relates to a method for recovering water-soluble natural gas using CO 2 dissolved water that recovers gas and iodine.

メタンを主成分とする水溶性天然ガスは、地下貯留層内の地層水中に存在しており、現在その生産量は、我が国で生産される天然ガス量(約30億m/年)の約30%(9億m/年)を占め、現在の年間生産量で600〜800年分(5000億m以上)の可採埋蔵量があると推定されている。また、水溶性天然ガスを含む地層水にはヨウ素も含まれており、通常、メタン等の天然ガスを分離した後の地層水(以下、かん水という。)からヨウ素の回収も行われている。我が国におけるヨウ素の推定埋蔵量は490万tとされており、現在、その生産量は、世界の生産量(約18000t/年)の40%(7200t/年)を占め、海外に輸出される重要な鉱物資源となっている。 Water-soluble natural gas mainly composed of methane exists in the formation water in the underground reservoir, and its production volume is about the amount of natural gas produced in Japan (about 3 billion m 3 / year). It accounts for 30% (900 million m 3 / year) and is estimated to have recoverable reserves of 600 to 800 years (over 500 billion m 3 ) in current annual production. In addition, the formation water containing water-soluble natural gas contains iodine, and iodine is usually recovered from formation water after separation of natural gas such as methane (hereinafter referred to as brine). Estimated reserves of iodine in Japan are estimated to be 4.9 million tons. Currently, the amount of production accounts for 40% (7200 t / year) of global production (about 18,000 t / year), and is important to be exported overseas. Mineral resources.

従来、このような水溶性天然ガス及びヨウ素を回収する際は、ポンプ等によりこれらを含む地層水を汲み上げ、先ず、メタンを回収する。そして、メタン分離後のかん水から更にヨウ素を回収し、その後、地盤沈下を抑制するために、ヨウ素回収後のかん水の一部を地下貯留層に戻している。具体的には、地層水の汲み上げ量(約5500万t/年)に対して、その10%程度(約550万t/年)が地下貯留層に戻されている。このように、地下貯留層に還元するかん水の量を、地層水の汲み上げ量の10%程度に制限しているのは、還元されたかん水によって水溶性天然ガス及びヨウ素鉱床が希釈されることを防止するためである。   Conventionally, when such water-soluble natural gas and iodine are recovered, formation water containing them is pumped up by a pump or the like, and methane is first recovered. And iodine is further collect | recovered from the brine after methane separation, and in order to suppress land subsidence, a part of the brine after iodine recovery is returned to the underground reservoir. Specifically, about 10% (about 5.5 million t / year) is returned to the underground reservoir with respect to the amount of formation water (about 55 million t / year). In this way, the amount of brine that is returned to the underground reservoir is limited to about 10% of the pumped-up amount of formation water because water-soluble natural gas and iodine deposits are diluted by the reduced brine. This is to prevent it.

一方、近時、COの大気中への排出量削減を目的として、COを地中に貯留する技術(例えば、特許文献1参照。)、及びCOを水に溶解させたり又はハイドレート化したりして、海洋或いは地底に隔離貯留する技術(例えば、特許文献2参照。)等が検討されている。また、原油と一緒に産出する油溶性天然ガス及び遊離性天然ガス等を採掘した後の構造性貯留層に、COを貯留する検討もなされている。更に、超臨界COが原油を溶解しやすい性質を利用して、油層の孔隙内に残存する原油の二次回収にCOを利用する技術も開発されている。 On the other hand, recently, for the purpose of reducing the emission amount of CO 2 into the atmosphere, a technique for storing CO 2 in the ground (see, for example, Patent Document 1) and CO 2 is dissolved in water or hydrated. The technology (for example, refer to patent document 2) etc. which are isolated and stored in the ocean or the ground, etc. is examined. In addition, studies have been made to store CO 2 in a structural reservoir after mining oil-soluble natural gas and free natural gas produced together with crude oil. Furthermore, a technique for utilizing CO 2 for secondary recovery of crude oil remaining in the pores of the oil layer has been developed by utilizing the property that supercritical CO 2 easily dissolves crude oil.

特開平6−170215号公報JP-A-6-170215 特開2004−50167号公報JP 2004-50167 A

しかしながら、前述した従来の技術及び検討されている技術には、以下に示す問題点がある。即ち、地層水を大量に汲み上げてその一部のみを地下貯留層に還元する従来の水溶性天然ガスの回収方法は、地下貯留層内に存在する全水溶性天然ガスの30〜40%程度しか回収できず、60〜70%程度が地下貯留層内に残存しており、水溶性天然ガスの回収率が低いという問題点がある。また、現在、水溶性天然ガスは、可採埋蔵量に比べて年間生産量が少なく、大幅に増産する余地があるが、前述したような従来の回収方法では、更なる地下水の大量汲み上げにより地盤沈下が発生する虞があるため、増産することができないという問題点もある。更に、地盤沈下を防止するためには、水溶性天然ガス及びヨウ素等を回収した後のかん水を、可能な限り地下貯留層に戻すことが必須とされているが、そのまま戻すと地下貯留層内に存在する水溶性天然ガス及びヨウ素鉱床を希釈することになるため、現状では、地層水の汲み上げ量に対して10%程度の量しか戻すことができない。   However, the above-described conventional technique and the technique being studied have the following problems. That is, the conventional water-soluble natural gas recovery method that draws a large amount of formation water and reduces only a part of it to the underground reservoir is only about 30 to 40% of the total water-soluble natural gas present in the underground reservoir. There is a problem that about 60 to 70% remains in the underground reservoir and cannot be recovered, and the recovery rate of water-soluble natural gas is low. At present, water-soluble natural gas has a small annual production compared to the recoverable reserves, and there is room for significant increase. However, the conventional recovery method as described above will further increase the groundwater by pumping a large amount of groundwater. There is also a problem that the production cannot be increased because there is a risk of settlement. Furthermore, in order to prevent land subsidence, it is essential to return the brine after recovering water-soluble natural gas and iodine to the underground reservoir as much as possible. Since the water-soluble natural gas and iodine deposits present in the seawater are diluted, at present, only about 10% of the amount of formation water pumped up can be returned.

一方、特許文献1及び2に記載されているような廃鉱となった油田・ガス田等の構造性貯留層にCOを貯留するという現在検討されているCOの貯留方法は、構造性貯留層の直上のシール層を利用して超臨界状態でCOを貯留しているため、地震等によりこのシール層が破壊された場合、貯留層内に圧入され高圧で貯留されているCOが漏洩する虞がある。 On the other hand, the CO 2 storage method currently being studied to store CO 2 in a structural reservoir such as an oil field or a gas field that has become abandoned ore as described in Patent Documents 1 and 2 is a structural storage. because utilizing the sealing layer directly above the layer are stored CO 2 at a supercritical state, if the sealing layer is destroyed by an earthquake or the like, CO 2, which is stored at high pressure is pressed into the reservoir layer There is a risk of leakage.

本発明は、上述した問題点に鑑みて案出されたものであり、地盤沈下を発生させずに、埋蔵されている水溶性天然ガス及びヨウ素のほぼ全量を回収することができ、更に、採掘後の貯留層にCOを長期間漏洩することなく安定的に貯留することができるCO溶解水による水溶性天然ガスの回収方法を提供することを目的とする。 The present invention has been devised in view of the above-described problems, and can recover almost all of the water-soluble natural gas and iodine that are buried without causing land subsidence. It is an object of the present invention to provide a method for recovering water-soluble natural gas using CO 2 dissolved water that can stably store CO 2 in a later reservoir without leaking for a long time.

本発明に係る二酸化炭素溶解水による水溶性天然ガスの回収方法は、地表下に存在する地層水から水溶性天然ガス及びヨウ素を回収する方法であって、生産井よりも構造下位に設けられた圧入井から前記地層水が存在する貯留層にCO溶解水を圧入し、このCO溶解水が前記地層水よりも高密度であることを利用して、前記CO溶解水により前記地層水を前記生産井に向けて押し上げる工程と、前記生産井から前記地層水を汲み上げ、水溶性天然ガスとかん水とに分離する工程と、前記かん水からヨウ素を回収する工程と、ヨウ素回収後のかん水にCOを混合し、前記CO溶解水とする工程とを有し、前記CO溶解水の圧入量と前記地層水の汲み上げ量とを調節して、前記貯留層内の圧力を静水圧に保持することを特徴とする。 The method for recovering water-soluble natural gas using carbon dioxide-dissolved water according to the present invention is a method for recovering water-soluble natural gas and iodine from formation water existing under the surface of the earth, and is provided at a lower structure than the production well. press-fitting the CO 2 dissolved water from injection well to a reservoir of the formation water is present, by utilizing the fact that the CO 2 dissolved water is denser than the formation water, the formation water by the CO 2 dissolved water To the production well, pumping the formation water from the production well, separating it into water-soluble natural gas and brine, recovering iodine from the brine, and brine after iodine recovery A step of mixing CO 2 to make the CO 2 dissolved water, and adjusting the pressure of the CO 2 dissolved water and the pumping amount of the formation water to adjust the pressure in the reservoir to a hydrostatic pressure. It is characterized by holding .

本発明においては、ヨウ素回収後のかん水にCOを溶解させてCO溶解水とし、この地層水よりも密度が高いCO溶解水を地下貯留層に還元圧入することにより、CO溶解水と地層水との密度差を利用して地層水を生産井に向かって押し上げる。このCO溶解水と地層水とは物性が同等であり、両者の間に界面張力及び粘性等には差が生じないため、還元圧入されていたCO溶解水は、貯留層を構成する鉱物粒子間に形成される間隙(粒子間孔隙)中に元々存在していた地層水をスムーズに押し出し、貯留層中に取り残される水溶性天然ガス及びヨウ素を含む地層水の量を限りなく少なくすることができる。即ち、本発明によれば、地盤沈下の発生を防止しつつ、水溶性天然ガス及びヨウ素を高収率で回収することができる。その結果、本発明の二酸化炭素溶解水による水溶性天然ガスの回収方法は、水溶性天然ガス及びヨウ素の可採埋蔵量を飛躍的に増加させることに寄与する。また、本発明の二酸化炭素溶解水による水溶性天然ガスの回収方法においては、CO溶解水の原料として、工場等から排出されたCOを使用することができるため、水溶性天然ガス田(水溶性天然ガスが埋蔵されていた非構造性貯留層)において、このようなCOを地下貯留することが可能となる。更に、本発明の二酸化炭素溶解水による水溶性天然ガスの回収方法においては、貯留層の圧力を全体として静水圧になるようにするため、地盤沈下及びCO漏洩の虞がなくなり、地震に対しても安全性を確保することができる。従って、大都市圏近傍の水溶性天然ガス田においても、安全に水溶性天然ガスを採掘しつつ、長期に安定してCOを地中隔離することができる。 In the present invention, by dissolving the CO 2 into brine after iodine recovered as CO 2 dissolved water, reducing pressed density than the formation water is a high CO 2 dissolved water underground reservoir, CO 2 dissolved water The formation water is pushed up toward the production well using the density difference between the water and the formation water. The CO 2 dissolved water and the formation water have the same physical properties, and there is no difference in interfacial tension, viscosity, etc. between them, so the CO 2 dissolved water that has been reduced and injected is the mineral that constitutes the reservoir Smoothly extrude formation water that originally existed in the gaps (interparticle pores) formed between particles, and reduce the amount of formation water that contains water-soluble natural gas and iodine left in the reservoir as much as possible Can do. That is, according to the present invention, water-soluble natural gas and iodine can be recovered in high yield while preventing the occurrence of ground subsidence. As a result, the water-soluble natural gas recovery method using carbon dioxide-dissolved water according to the present invention contributes to dramatically increasing the recoverable reserves of water-soluble natural gas and iodine. In the method for recovering water soluble natural gas with carbon dioxide dissolved water of the present invention, as a raw material for CO 2 dissolved water, since it is possible to use the CO 2 discharged from a factory or the like, water soluble natural gas field ( Such CO 2 can be stored underground in a non-structural reservoir in which water-soluble natural gas is buried. Further, in the method for recovering water soluble natural gas with carbon dioxide dissolved water of the present invention, in order to become hydrostatic pressure as a whole pressure of the reservoir, there is no risk of subsidence and CO 2 leakage, to earthquakes However, safety can be ensured. Accordingly, even in a water-soluble natural gas field in the vicinity of a metropolitan area, CO 2 can be stably sequestered in the ground for a long period of time while safely mining water-soluble natural gas.

本発明によれば、COをかん水に溶解させたCO溶解水を、静水圧になるようにして貯留層内に圧入しているため、地盤沈下を発生させずに、埋蔵されている水溶性天然ガスを高収率で回収することができると共に、水溶性天然ガス採掘後の貯留層にCOを、水に溶解させた状態で、即ちCO溶解水として、長期的に安定して貯留することができる。 According to the present invention, since the CO 2 -dissolved water in which CO 2 is dissolved in the brine is pressed into the reservoir so as to have a hydrostatic pressure, the embedded water solution without causing ground subsidence. it is possible to recover the sexual natural gas in high yield, the CO 2 in the reservoir after the water-soluble natural gas extraction, in a state dissolved in water, i.e. as a CO 2 dissolved water, and long-term stable Can be stored.

以下、本発明の実施形態に係る水溶性天然ガスの回収方法について、添付の図面を参照して詳細に説明する。図1は本実施形態の水溶性天然ガスの回収方法を模式的に示す図である。図1に示すように、メタンを主成分とする水溶性天然ガスを含有する地層水2は、シール泥岩層1間の非構造性貯留層内に存在している。そこで、本実施形態の水溶性ガスの回収方法においては、地層水2が存在している非構造性貯留層に到達する圧入井4及び生産井5を掘削し、圧入井4から貯留層内にCOを溶解させたCO溶解水3を圧入し、生産井5から地層水2を汲み上げる。 Hereinafter, a method for recovering water-soluble natural gas according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram schematically showing a water-soluble natural gas recovery method of the present embodiment. As shown in FIG. 1, formation water 2 containing water-soluble natural gas mainly composed of methane exists in a non-structural reservoir between seal mudstone layers 1. Therefore, in the water-soluble gas recovery method of the present embodiment, the injection well 4 and the production well 5 that reach the unstructured reservoir in which the formation water 2 exists are excavated, and the injection well 4 enters the reservoir. CO 2 dissolved water 3 in which CO 2 is dissolved is injected and the formation water 2 is pumped up from the production well 5.

CO溶解水3は密度が約1.08であり、地層水2(密度約1.03)よりも高密度で重いため、これらの密度差(0.05)を利用し、圧入井4を生産井5よりも構造下位側に設け、CO溶解水3で生産井5に向けて地層水2を押し上げる。地層水2とCO溶解水3とは、その物性がほぼ等しく、またこれらの境界面20は長期に安定して存在するため、汲み上げた地層水2から水溶性天然ガス及びヨウ素を効率よく回収することができる。なお、地層水2とCO溶解水3の境界面20が長期に安定して存在することは、CO長期挙動シュミレーション及びCOの海洋固定の研究等により、一般に知られている(T. Sato,他1名、「Numerical Prediction of Dilution Process and Biological Impacts in CO2 Ocean Sequestration」、Journal of Marine Science and Technology、2002年6月、p.169−180、及びY. Song,他5名、「Measurement on Density of CO2Solution by Mach-zehnder Interferometry」、Annals of the New York Academy of Science、2002年10月、972巻、p.206−212等参照)。一方、物性が地層水2と大きく異なる流体を圧入した場合、圧入した流体は、貯留層の特定の大きさの粒子間孔隙中に存在する地層水2と接触はするものの、その物性の違い(界面張力及び粘性等の差)に起因し、地層水2を取り込むことができず、その部分を迂回して流動する。その結果、この特定の大きさの粒子間孔隙中に存在する地層水2は、孤立して取り残される。このような現象は、油層工学の分野においては、残留ガス、残留オイル又は不動水として知られており、石油・天然ガスの二次回収効率低下の最大の要因となっている。 Since the CO 2 dissolved water 3 has a density of about 1.08 and is denser and heavier than the formation water 2 (density of about 1.03), these density differences (0.05) are utilized to Provided on the lower side of the structure than the production well 5, the formation water 2 is pushed up toward the production well 5 with the CO 2 dissolved water 3. The formation water 2 and the CO 2 -dissolved water 3 have almost the same physical properties, and these boundary surfaces 20 exist stably over a long period of time, so water-soluble natural gas and iodine are efficiently recovered from the formation water 2 pumped up. can do. The fact that the boundary surface 20 between the formation water 2 and the CO 2 dissolved water 3 is stably present for a long period of time is generally known from the CO 2 long-term behavior simulation, CO 2 ocean fixation research, and the like (T. Sato, 1 other, “Numerical Prediction of Dilution Process and Biological Impacts in CO 2 Ocean Sequestration”, Journal of Marine Science and Technology, June 2002, p. 169-180, and Y. Song, 5 others, “ Measurement on Density of CO 2 Solution by Mach-zehnder Interferometry ”, Annals of the New York Academy of Science, October 2002, Vol. 972, p. On the other hand, when a fluid whose physical properties are significantly different from the formation water 2 is injected, the injected fluid comes into contact with the formation water 2 existing in the interparticle pores of a specific size in the reservoir, but the physical property difference ( Due to differences in interfacial tension, viscosity, etc., the formation water 2 cannot be taken in, and flows around that part. As a result, the formation water 2 existing in the interparticle pores of this specific size is left alone. Such a phenomenon is known as residual gas, residual oil, or immobile water in the field of oil reservoir engineering, and is the largest factor in the reduction of secondary recovery efficiency of oil and natural gas.

このとき、圧入ポンプ6及び汲み上げポンプ7により夫々CO溶解水3の圧入量と地層水2の汲み上げ量とを調節して、貯留層内の圧力を静水圧に保持する。これにより、CO溶解水3が地表に漏洩するリスクを低減できると共に、地盤沈下を抑制することができる。 At this time, the press-fitting pump 6 and the pumping pump 7 respectively adjust the press-fitting amount of the CO 2 dissolved water 3 and the pumping amount of the formation water 2 to keep the pressure in the reservoir at a hydrostatic pressure. Thereby, while being able to reduce the risk that the CO 2 dissolved water 3 leaks to the ground surface, ground subsidence can be suppressed.

また、CO溶解水2は、例えば、工場等のCO排出源8から排出されパイプライン17等を介してCOタンク9に貯留されたCOと、かん水タンク16に貯留された天然ガス及びヨウ素を回収した後のかん水とを、ミキサー10で混合することにより作製することができる。図2は横軸に圧力及び地下深度をとり、縦軸にCO溶解度をとって、40℃の純水におけるCOの溶解度と圧力及び地下深度との関係を示すグラフ図である。なお、40℃は深度1000〜2000mの地下温度に相当する。図2に示すように、水に対するCOの溶解度は、圧力が上昇するに従い又は地下深度が深くなるに従い大きくなる。圧入井4内の圧力は深度が増すに従い大きくなるため、かん水が管内を流下するに従いそのCO溶解度も大きくなり、かん水中に混合されたCOは坑底付近で完全に溶解する。なお、ミキサー10はその一部が圧入井4の管内に設置されていてもよく、また、ミキサー10として、マイクロバブル発生装置及び液体CO混合装置等を使用して、かん水中にCOを分散させてもよい。 Moreover, CO 2 dissolved water 2, for example, the CO 2 which is stored in the CO 2 tank 9 via the pipeline 17 or the like is discharged from the CO 2 emission sources 8 such as factories, natural gas stored in the brine tank 16 And it can produce by mixing the brine after collect | recovering iodine with the mixer 10. FIG. FIG. 2 is a graph showing the relationship between the solubility of CO 2 in pure water at 40 ° C., the pressure and the underground depth, with the horizontal axis representing pressure and underground depth and the vertical axis representing CO 2 solubility. Note that 40 ° C. corresponds to an underground temperature of 1000 to 2000 m in depth. As shown in FIG. 2, the solubility of CO 2 in water increases as the pressure increases or as the underground depth increases. Since the pressure in the injection well 4 increases as the depth increases, the CO 2 solubility increases as the brine flows down the pipe, and the CO 2 mixed in the brine is completely dissolved near the bottom of the well. A part of the mixer 10 may be installed in the pipe of the injection well 4, and as the mixer 10, CO 2 is introduced into the brine using a microbubble generator and a liquid CO 2 mixing device. It may be dispersed.

次に、汲み上げた地層水2を、セパレーター11によりメタンを主成分とする天然ガス12とかん水13とに分離する。そして、天然ガス12は、ガスタンク14に貯留し、ガスパイプライン18を介して工場等に供給する。一方、かん水13は、ヨウ素分離装置15に導入し、その中に含まれるヨウ素を回収する。更に、ヨウ素回収後のかん水は、還元水パイプライン19を介してかん水タンク16に貯留し、CO溶解水3の原料として再利用する。従来の水溶性天然ガスの回収方法では、ヨウ素回収後のかん水の約10%が貯留層に戻され、残りの約90%が海に排出されていたが、本実施形態の水溶性天然ガスの回収方法においては、ヨウ素回収後のかん水の全てをCO溶解水3として貯留層に還元しているため、地盤沈下を防止することができると共に、製造コスト及び環境負荷を大幅に低減することができる。 Next, the pumped-up formation water 2 is separated into natural gas 12 mainly composed of methane and brine 13 by a separator 11. The natural gas 12 is stored in a gas tank 14 and supplied to a factory or the like via a gas pipeline 18. On the other hand, the brine 13 is introduced into the iodine separator 15 and collects iodine contained therein. Furthermore, the brine after iodine recovery is stored in the brine tank 16 via the reduced water pipeline 19 and reused as a raw material for the CO 2 dissolved water 3. In the conventional method for recovering water-soluble natural gas, about 10% of the brine after iodine recovery was returned to the reservoir and the remaining about 90% was discharged into the sea. In the recovery method, all of the brine after iodine recovery is reduced to the reservoir as CO 2 dissolved water 3, so that land subsidence can be prevented and the manufacturing cost and environmental load can be greatly reduced. it can.

なお、本実施形態の水溶性天然ガスの回収方法においては、かん水中に溶解させるCOの濃度は、圧入深度、地表温度及び地層圧等に応じて適宜設定することができる。例えば、図2に示すように、圧入深度が1500〜2000mである場合は、6質量%前後にすることが望ましい。これにより、かん水中のCO濃度が飽和状態となり、より多くのCOを貯留することができる。 In the water-soluble natural gas recovery method of this embodiment, the concentration of CO 2 dissolved in the brine can be set as appropriate according to the depth of injection, surface temperature, formation pressure, and the like. For example, as shown in FIG. 2, when the press-fitting depth is 1500 to 2000 m, it is desirable that the depth be around 6% by mass. As a result, the CO 2 concentration in the brine is saturated, and more CO 2 can be stored.

上述の如く、本実施形態の水溶性天然ガスの回収方法においては、従来、そのほとんどが海に排出されていたヨウ素回収後のかん水にCOを混合して、CO溶解水として貯留層に還元圧入するため、地盤沈下の発生を防止することができる。これにより、地盤沈下を防止するために抑制されていた地層水の汲み上げ量を増加させることができるため、最大可能生産量に比べて少なく設定されていた水溶性天然ガス及びヨウ素の生産量を増産することが可能となる。また、CO溶解水は地層水と物性が同等であるため、貯留層中に取り残される水溶性天然ガス及びヨウ素の量を限りなく少なくすることができるため、これらの回収率は大幅に向上し、その結果、天然ガス及びヨウ素の可採埋蔵量も飛躍的に増大する。 As described above, in the method for recovering water-soluble natural gas according to the present embodiment, CO 2 is mixed with the brine after iodine recovery, which has been mostly discharged into the sea, and is dissolved in the reservoir as CO 2 dissolved water. Since reduction press-fitting is performed, the occurrence of land subsidence can be prevented. As a result, the amount of formation water pumped up to prevent subsidence can be increased, so the production volume of water-soluble natural gas and iodine, which were set lower than the maximum possible production volume, was increased. It becomes possible to do. In addition, since CO 2 dissolved water has the same physical properties as formation water, the amount of water-soluble natural gas and iodine left in the reservoir can be reduced as much as possible. As a result, the recoverable reserves of natural gas and iodine are dramatically increased.

また、CO溶解水の原料として工場等から排出されたCOを使用することにより、工場等から排出されたCOをCO溶解水として、地下貯留層に長期間漏洩することなく安定的に貯留することができる。そして、国内の水溶性天然ガス田における採掘量から見積もると、現在日本のエネルギー部門で排出されているCO(約3億t強/年)の約1%(約300万t/年)が地下貯留できることとなる。このように、本実施形態の水溶性天然ガスの回収方法を適用することにより、工場等から排出されたCOの大気中への排出量を削減することが可能となる。更に、貯留層の圧力を全体として静水圧になるようにしているため、地盤沈下及びCO漏洩の虞がなくなり、地震に対しても安全性を確保することができるため、大都市圏近傍においても、安全に水溶性天然ガスを採掘しつつ、長期に安定してCOを地中隔離することができる。 Further, by using the CO 2 discharged from factories or the like as a raw material of CO 2 dissolved water, the CO 2 discharged from factories as CO 2 dissolved water, stably without leaking long term underground reservoir Can be stored. And estimated from the amount of mining in domestic water-soluble natural gas fields, about 1% (about 3 million tons / year) of CO 2 (about 300 million tons / year) currently emitted in the energy sector in Japan. It will be possible to store underground. Thus, by applying the water-soluble natural gas recovery method of the present embodiment, it is possible to reduce the amount of CO 2 discharged from the factory or the like into the atmosphere. Furthermore, since the reservoir pressure is set to hydrostatic pressure as a whole, there is no risk of ground subsidence and CO 2 leakage, and safety against earthquakes can be secured. However, it is possible to stably sequester CO 2 in the ground for a long period of time while safely mining water-soluble natural gas.

このように、本発明は、水溶性天然ガスの二次回収技術と組み合わせて、経済的かつ長期安定した非構造性CO地中貯留技術が実現できる画期的な技術であり、天然ガスを大量に消費し、その一方で地球温暖化対策が急務とされる我が国に相応しい技術である。また、COの地表漏洩リスクがないため、地震国日本において、これまで提案されてきた技術よりも安全にCOの地中隔離が実現可能な技術でもある。 As described above, the present invention is an epoch-making technology that can realize an economical and long-term stable non-structural CO 2 underground storage technology in combination with the secondary recovery technology of water-soluble natural gas. This technology is suitable for Japan, which consumes a large amount, while urgently needing countermeasures against global warming. In addition, since there is no risk of CO 2 surface leakage, it is also a technology that enables sequestration of CO 2 in the earthquake country, Japan, more safely than previously proposed technologies.

以下、本発明の効果について、実施例及び比較例を挙げて具体的に説明する。図3は本実施例の実験装置を模式的に示す図である。図3に示すように、本実施例においては、約40°に傾斜させた内径20mm、長さ300mmのガラス管21にガラスビーズ22を充填し、非構造性の単傾斜構造の貯留層を再現した。そして、このガラス管21中に、地層水を模した真水(密度1.00)を下方から注入し、ガラスビーズ22の間隙を真水で完全に満たした。次に、ガラス管21中に、注射器27を使用し、下方から約2.25mm/秒の流速で、CO溶解水を模したインクで着色した塩水(密度1.05,塩分濃度5質量%)を注入し、塩水が真水を押し上げる(掃攻する)状態を観察した。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples. FIG. 3 is a diagram schematically showing the experimental apparatus of this example. As shown in FIG. 3, in this embodiment, a glass tube 21 having an inner diameter of 20 mm and a length of 300 mm inclined to about 40 ° is filled with glass beads 22 to reproduce a non-structural single inclined structure reservoir. did. Then, fresh water (density 1.00) imitating formation water was poured into the glass tube 21 from below, and the gap between the glass beads 22 was completely filled with fresh water. Next, a salt water (density 1.05, salt concentration 5 mass%) colored with an ink simulating CO 2 dissolved water in a glass tube 21 using a syringe 27 at a flow rate of about 2.25 mm / second from below. ) Was injected, and the state in which salt water pushes up (sweeps) fresh water was observed.

先ず、ガラス管21にビーズ22を充填せずに上述した掃攻実験を行った。図4(a)〜(f)はその結果を示す図であり、図4(a)は注入から20秒後、図4(b)は注入から40秒後、図4(c)は注入から60秒後、図4(d)は注入から80秒後、図4(e)は注入から100秒後、図4(f)は注入から120秒後を示す。図4(a)〜(f)に示すように、この実験では、きれいな界面を形成しながら、インク着色した塩水23が真水24を、その密度差により押し上げていく様子が観察された。   First, the above-described sweep experiment was performed without filling the glass tube 21 with the beads 22. 4 (a) to 4 (f) are diagrams showing the results. FIG. 4 (a) is 20 seconds after injection, FIG. 4 (b) is 40 seconds after injection, and FIG. 4 (c) is after injection. After 60 seconds, FIG. 4 (d) shows 80 seconds after injection, FIG. 4 (e) shows 100 seconds after injection, and FIG. 4 (f) shows 120 seconds after injection. As shown in FIGS. 4A to 4F, in this experiment, it was observed that the salt water 23 colored with ink pushed up the fresh water 24 due to the density difference while forming a clean interface.

次に、ガラス管21に中心に1mmの穴が開いている直径が3mmのビーズを充填し、上述した掃攻実験を行った。図5(a)〜(f)はその結果を示す図であり、図5(a)は注入から20秒後、図5(b)は注入から40秒後、図5(c)は注入から60秒後、図5(d)は注入から80秒後、図5(e)は注入から100秒後、図5(f)は注入から120秒後を示す。図5(a)〜(f)に示すように、この実験では、インク着色した塩水23が真水24を押し上げていく様子が観察された。ただし、ガラスビーズの粒子間で流体の流れが乱れるため、両者の界面はやや不明瞭となっていた。   Next, the glass tube 21 was filled with beads having a diameter of 3 mm with a 1 mm hole in the center, and the above-described sweep experiment was performed. 5 (a) to 5 (f) are diagrams showing the results. FIG. 5 (a) is 20 seconds after injection, FIG. 5 (b) is 40 seconds after injection, and FIG. 5 (c) is after injection. After 60 seconds, FIG. 5 (d) shows 80 seconds after injection, FIG. 5 (e) shows 100 seconds after injection, and FIG. 5 (f) shows 120 seconds after injection. As shown in FIGS. 5A to 5F, in this experiment, it was observed that the salt water 23 colored with ink pushed up the fresh water 24. However, since the fluid flow is disturbed between the glass bead particles, the interface between them is somewhat unclear.

次に、ガラス管21に直径が0.05mmのビーズを充填し、上述した掃攻実験を行った。図6(a)〜(f)はその結果を示す図であり、図6(a)は注入から20秒後、図6(b)は注入から40秒後、図6(c)は注入から60秒後、図6(d)は注入から80秒後、図6(e)は注入から100秒後、図6(f)は注入から120秒後を示す。図6(a)〜(f)に示すように、この実験でも、インク着色した塩水23が真水24を押し上げていく様子が観察された。なお、この実験では図5に示す実験よりも両者の界面が不明瞭となっているが、これは、ガラスビーズの直径が小さいため浸透率が減少し、ガラスビーズとガラス管21の壁面との間にできる大きな隙間を塩水23が流れやすくなったためと、考えられる。   Next, the glass tube 21 was filled with beads having a diameter of 0.05 mm, and the above-described sweep experiment was performed. 6 (a) to 6 (f) are diagrams showing the results. FIG. 6 (a) is 20 seconds after injection, FIG. 6 (b) is 40 seconds after injection, and FIG. 6 (c) is after injection. After 60 seconds, FIG. 6 (d) shows 80 seconds after injection, FIG. 6 (e) shows 100 seconds after injection, and FIG. 6 (f) shows 120 seconds after injection. As shown in FIGS. 6A to 6F, in this experiment, it was observed that the salt water 23 colored with ink pushed up the fresh water 24. In this experiment, the interface between the two is less clear than in the experiment shown in FIG. 5. This is because the permeability of the glass beads and the wall surface of the glass tube 21 decreases because the diameter of the glass beads is small. It is considered that the salt water 23 easily flows through a large gap formed between them.

次に、ガラス管21に直径が3mmのビーズを充填し、無着色の塩水25でインク着色の真水26を押し上げ、ガラス管21内に残った真水26の着色状態から、回収効率を調べた。図7(a)〜(f)はその結果を示す図であり、図7(a)は注入から20秒後、図7(b)は注入から40秒後、図7(c)は注入から60秒後、図7(d)は注入から80秒後、図7(e)は注入から100秒後、図7(f)は注入から120秒後を示す。図7(a)〜(f)に示すように、この実験でも、上述した各実験と同様に、塩水25が真水26を押し上げており、塩水25に置換された部分はほぼ透明であった。更に、簡単な比色では、ガラス管1体積分の置換において98%以上の回収率であった。   Next, beads having a diameter of 3 mm were filled in the glass tube 21, the ink-colored fresh water 26 was pushed up with uncolored salt water 25, and the recovery efficiency was examined from the colored state of the fresh water 26 remaining in the glass tube 21. FIGS. 7 (a) to (f) are diagrams showing the results. FIG. 7 (a) is 20 seconds after injection, FIG. 7 (b) is 40 seconds after injection, and FIG. 7 (c) is after injection. After 60 seconds, FIG. 7 (d) shows 80 seconds after injection, FIG. 7 (e) shows 100 seconds after injection, and FIG. 7 (f) shows 120 seconds after injection. As shown in FIGS. 7A to 7F, in this experiment as well, in each experiment, the salt water 25 pushed up the fresh water 26, and the portion replaced with the salt water 25 was almost transparent. Furthermore, with a simple colorimetric method, the recovery rate was 98% or more in the replacement of one volume of the glass tube.

本発明の実施形態に係る水溶性天然ガスの回収方法を模式的に示す図である。It is a figure which shows typically the collection | recovery method of the water-soluble natural gas which concerns on embodiment of this invention. 横軸に圧力及び地下深度をとり、縦軸にCO溶解度をとって、40℃の純水におけるCOの溶解度と圧力及び地下深度との関係を示すグラフ図である。Take pressure and subsurface depth on the horizontal axis and the vertical axis represents the CO 2 solubility is a graph showing the relationship between the solubility and the pressure and groundwater depth of CO 2 in pure water at 40 ° C.. 本発明の実施例の実験装置を模式的に示す図である。It is a figure which shows typically the experimental apparatus of the Example of this invention. (a)〜(f)はガラス管にビーズを充填せずに行った掃攻実験の結果を示す図である。(A)-(f) is a figure which shows the result of the sweep experiment conducted without filling a bead to a glass tube. (a)〜(f)はガラス管に中心に1mmの穴が開いている直径が3mmのビーズを充填して行った掃攻実験の結果を示す図である。(A)-(f) is a figure which shows the result of the sweep experiment performed by filling the glass tube with the bead with a diameter of 3 mm in which the hole of 1 mm is opened in the center. (a)〜(f)はガラス管に直径が0.05mmのビーズを充填して行った掃攻実験の結果を示す図である。(A)-(f) is a figure which shows the result of the sweep experiment conducted by filling the glass tube with the bead with a diameter of 0.05 mm. (a)〜(f)はガラス管に直径が3mmのビーズを充填し、無着色の塩水でインク着色の真水を押し上げた掃攻実験の結果を示す図である。(A)-(f) is a figure which shows the result of the sweep experiment which filled the glass tube with the bead with a diameter of 3 mm, and pushed up the ink-colored fresh water with the uncolored salt water.

符号の説明Explanation of symbols

1 シール泥岩層
2 地層水
3 CO溶解水
4 圧入井
5 生産井
6、7 ポンプ
8 CO排出源
9 COタンク
10 ミキサー
11 セパレーター
12 水溶性天然ガス
13 かん水
14 ガスタンク
15 ヨウ素分離装置
16 かん水タンク
17 COパイプライン
18 ガスパイプライン
19 還元水パイプライン
20 地層水2とCO溶解水3との境界面
21 ガラス管
22 ビーズ
23、25 塩水
24、26 真水
27 注射器
1 seal mudstone 2 formation water 3 CO 2 dissolved water 4 Injection well 5 production wells 6,7 pump 8 CO 2 emission sources 9 CO 2 tank 10 mixer 11 separator 12 water soluble natural gas 13 brine 14 gas tank 15 iodine separator 16 brine Tank 17 CO 2 Pipeline 18 Gas Pipeline 19 Reduced Water Pipeline 20 Boundary Surface between Formation Water 2 and CO 2 Dissolved Water 3 21 Glass Tube 22 Beads 23 and 25 Salt Water 24 and 26 Fresh Water 27 Syringe

Claims (1)

地表下に存在する地層水から水溶性天然ガス及びヨウ素を回収する方法であって、
生産井よりも構造下位に設けられた圧入井から前記地層水が存在する貯留層に二酸化炭素溶解水を圧入し、この二酸化炭素溶解水が前記地層水よりも高密度であることを利用して、前記二酸化炭素溶解水により前記地層水を前記生産井に向けて押し上げる工程と、
前記生産井から前記地層水を汲み上げ、水溶性天然ガスとかん水とに分離する工程と、
前記かん水からヨウ素を回収する工程と、
ヨウ素回収後のかん水に二酸化炭素を混合し、前記二酸化炭素溶解水とする工程とを有し、
前記二酸化炭素溶解水の圧入量と前記地層水の汲み上げ量とを調節して、前記貯留層内の圧力を静水圧に保持することを特徴とする二酸化炭素溶解水による水溶性天然ガスの回収方法。
A method for recovering water-soluble natural gas and iodine from underground water existing under the surface,
Utilizing the fact that carbon dioxide-dissolved water is injected into a reservoir in which the formation water is present from an injection well provided in a lower structure than the production well, and the carbon dioxide-dissolved water has a higher density than the formation water. , Pushing up the formation water toward the production well with the carbon dioxide-dissolved water;
Pumping the formation water from the production well and separating it into water-soluble natural gas and brine;
Recovering iodine from the brine;
Mixing carbon dioxide into the brine after iodine recovery to make the carbon dioxide-dissolved water,
A method for recovering water-soluble natural gas using carbon dioxide-dissolved water, wherein the pressure of the carbon dioxide-dissolved water and the pumping amount of the formation water are adjusted to maintain the pressure in the reservoir at a hydrostatic pressure. .
JP2006262960A 2006-09-27 2006-09-27 Water-soluble natural gas recovery method using carbon dioxide-dissolved water Active JP3908780B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262960A JP3908780B1 (en) 2006-09-27 2006-09-27 Water-soluble natural gas recovery method using carbon dioxide-dissolved water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262960A JP3908780B1 (en) 2006-09-27 2006-09-27 Water-soluble natural gas recovery method using carbon dioxide-dissolved water

Publications (2)

Publication Number Publication Date
JP3908780B1 JP3908780B1 (en) 2007-04-25
JP2008082023A true JP2008082023A (en) 2008-04-10

Family

ID=38036333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262960A Active JP3908780B1 (en) 2006-09-27 2006-09-27 Water-soluble natural gas recovery method using carbon dioxide-dissolved water

Country Status (1)

Country Link
JP (1) JP3908780B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293308A (en) * 2008-06-06 2009-12-17 Kansai Electric Power Co Inc:The Casing boring construction method and casing boring device
JP2009293292A (en) * 2008-06-05 2009-12-17 Godo Shigen Sangyo Kk Ground-gush suppressing system for natural gas
WO2010018844A1 (en) * 2008-08-14 2010-02-18 東京瓦斯株式会社 Storing device for stored substance and method for storing stored substance
WO2011019053A1 (en) * 2009-08-12 2011-02-17 東京瓦斯株式会社 Device and method for sequestering a substance
WO2012001105A1 (en) * 2010-07-01 2012-01-05 Statoil Petroleum As Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods
CN102348614A (en) * 2009-03-11 2012-02-08 莫里斯·B·杜西奥尔特 Process for sequestration of fluids in geological formations
JP2012172488A (en) * 2011-02-24 2012-09-10 Central Research Institute Of Electric Power Industry Method for recovering residual crude oil from oil-gas field
JP6043458B1 (en) * 2016-10-17 2016-12-14 弘志 小山 Natural gas sampling method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190743B (en) * 2007-11-30 2013-11-06 中国科学院武汉岩土力学研究所 Carbon dioxide geological sequestration method based on mixed fluid self-detaching
CN113062712B (en) * 2021-04-13 2022-04-12 太原理工大学 Deep stratum CO sequestration2Biological anti-dissipation method
CN115541821B (en) * 2022-09-23 2023-04-14 清华大学 Seabed carbon dioxide sequestration, monitoring and early warning integrated simulation device and method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293292A (en) * 2008-06-05 2009-12-17 Godo Shigen Sangyo Kk Ground-gush suppressing system for natural gas
JP2009293308A (en) * 2008-06-06 2009-12-17 Kansai Electric Power Co Inc:The Casing boring construction method and casing boring device
US8684085B2 (en) 2008-08-14 2014-04-01 Tokyo Gas Co., Ltd. Storing device for stored substance and method for storing stored substance
WO2010018844A1 (en) * 2008-08-14 2010-02-18 東京瓦斯株式会社 Storing device for stored substance and method for storing stored substance
JP5315346B2 (en) * 2008-08-14 2013-10-16 東京瓦斯株式会社 Storage material storage device and storage material storage method
AU2009280540B2 (en) * 2008-08-14 2013-06-13 Tokyo Gas Co., Ltd. Storing device for stored substance and method for storing stored substance
KR101240038B1 (en) 2008-08-14 2013-03-06 도쿄 가스 가부시키가이샤 Storing device for stored substance and method for storing stored substance
JP2012519587A (en) * 2009-03-11 2012-08-30 モーリス・ビー・デュソウルト Method for isolating fluid in the formation
CN102348614A (en) * 2009-03-11 2012-02-08 莫里斯·B·杜西奥尔特 Process for sequestration of fluids in geological formations
JP5380463B2 (en) * 2009-08-12 2014-01-08 東京瓦斯株式会社 Storage material storage device and storage material storage method
WO2011019053A1 (en) * 2009-08-12 2011-02-17 東京瓦斯株式会社 Device and method for sequestering a substance
US8939223B2 (en) 2009-08-12 2015-01-27 Tokyo Gas Co., Ltd. Device and method for sequestering a substance
US9279313B2 (en) 2009-08-12 2016-03-08 Tokyo Gas Co., Ltd. Device and method for sequestering a substance
WO2012001105A1 (en) * 2010-07-01 2012-01-05 Statoil Petroleum As Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods
US9187246B2 (en) 2010-07-01 2015-11-17 Statoil Petroleum As Methods for storing carbon dioxide compositions in subterranean geological formations and arrangements for use in such methods
JP2012172488A (en) * 2011-02-24 2012-09-10 Central Research Institute Of Electric Power Industry Method for recovering residual crude oil from oil-gas field
JP6043458B1 (en) * 2016-10-17 2016-12-14 弘志 小山 Natural gas sampling method

Also Published As

Publication number Publication date
JP3908780B1 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP3908780B1 (en) Water-soluble natural gas recovery method using carbon dioxide-dissolved water
Sun et al. A novel method to enhance methane hydrate exploitation efficiency via forming impermeable overlying CO2 hydrate cap
Holloway Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option
Holloway et al. The potential for aquifer disposal of carbon dioxide in the UK
Sohrabi et al. Coreflooding studies to investigate the potential of carbonated water injection as an injection strategy for improved oil recovery and CO 2 storage
US11156064B2 (en) Natural gas hydrate solid-state fluidization mining method and system under underbalanced positive circulation condition
JP4293906B2 (en) Method for recovering hydrocarbons from hydrates
Van Der Meer Carbon dioxide storage in natural gas reservoir
Blunt Carbon dioxide storage
JP2009274047A (en) Underground storage system of carbon dioxide gas
CN116816439A (en) Method for sealing CO2 by using goaf of abandoned coal mine
EA031016B1 (en) Method for production of hydrocarbons using caverns
US20120118586A1 (en) Device and method for sequestering a substance
RU2656282C2 (en) Method, system and composition for producing oil
JP7149712B2 (en) Carbon dioxide underground storage method and carbon dioxide underground storage device
Alam et al. Dual benefits of enhanced oil recovery and CO2 sequestration: the impact of CO2 injection approach on oil recovery
EP3006538A1 (en) Method for improving co2 injectivity by reducing irreducible water saturation around wellbore in underground gas storage layer
Kumar et al. Carbon capture and sequestration technology for environmental remediation: A CO2 utilization approach through EOR
RU2514339C1 (en) Creation and operation of underground gas storage
Sagir et al. CO2 capture, storage, and enhanced oil recovery applications
KR20110012588A (en) Leackage detection and monitoring of stored gas of liquified gas
JP6327730B2 (en) Mining method for water-soluble natural gas
US20140231080A1 (en) In-situ artificial pressurization of a well with carbon dioxide recycling to increase oil production
EP2565371B1 (en) Method for maintaining a gas volume in an underground geological reservoir by nitrogen injection
Joseph et al. Carbon sequestration: Capture, storage & utilization of CO2 emissions from anthropogenic sources

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070118

R150 Certificate of patent or registration of utility model

Ref document number: 3908780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250