JP2008081337A - Single crystal growth apparatus - Google Patents

Single crystal growth apparatus Download PDF

Info

Publication number
JP2008081337A
JP2008081337A JP2006261090A JP2006261090A JP2008081337A JP 2008081337 A JP2008081337 A JP 2008081337A JP 2006261090 A JP2006261090 A JP 2006261090A JP 2006261090 A JP2006261090 A JP 2006261090A JP 2008081337 A JP2008081337 A JP 2008081337A
Authority
JP
Japan
Prior art keywords
melt
heating
induction heating
crystal growth
growth apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261090A
Other languages
Japanese (ja)
Inventor
Atsushi Shirasawa
淳 白澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006261090A priority Critical patent/JP2008081337A/en
Publication of JP2008081337A publication Critical patent/JP2008081337A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single crystal growth apparatus controlling the temperature distribution of a melt. <P>SOLUTION: The single crystal growth apparatus comprises an electrically conductive crucible 16 to be filled with a raw material, an induction heating coil 20 that surrounds the side surface of the crucible 16 and heats the raw material in the crucible 16 to form a melt, a holder 28 that pulls up a single crystal from the melt, a support mount 24 that supports the crucible 16, an induction heating coil 30 that heats the holder 28, and an induction heating coil 32 that heats the support mount 24. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子デバイス等に用いられる単結晶を成長させるための単結晶育成装置に関する。   The present invention relates to a single crystal growing apparatus for growing a single crystal used in an electronic device or the like.

電子デバイス等に用いられる単結晶は、単結晶の原料を入れた状態のるつぼを加熱して原料を溶融し、その融液に種結晶を接触させて該種結晶を引き上げながら目的とする単結晶を得る、いわゆるCZ法(チョクラルスキー法)により製造することができる。CZ法により欠陥のない高品質な単結晶を得るためには融液の温度分布を管理して静止液面を得ることが重要である。ここで、るつぼの加熱には誘導加熱、抵抗加熱、輻射による加熱が一般的に用いられる。   A single crystal used in an electronic device or the like is obtained by heating a crucible containing a single crystal raw material to melt the raw material, bringing the seed crystal into contact with the melt and pulling up the seed crystal. Can be produced by the so-called CZ method (Czochralski method). In order to obtain a high-quality single crystal having no defects by the CZ method, it is important to obtain a static liquid surface by managing the temperature distribution of the melt. Here, induction heating, resistance heating, and radiation heating are generally used for heating the crucible.

誘導加熱は被加熱物であるるつぼ自体が発熱するのでエネルギー効率に優れる。一方、他の加熱方法は装置構成上融液中に温度分布による対流が発生する。融液の対流により静止液面を得ることが困難となる。この他に、輻射による加熱はエネルギー効率が悪く、抵抗加熱は加熱部の融点以上には加熱できないという本質的な欠点がある。   Induction heating is excellent in energy efficiency since the crucible itself to be heated generates heat. On the other hand, in other heating methods, convection due to temperature distribution occurs in the melt due to the apparatus configuration. It becomes difficult to obtain a static liquid level by convection of the melt. In addition to this, heating by radiation has low energy efficiency, and resistance heating has an essential drawback that it cannot be heated above the melting point of the heating part.

しかし、誘導加熱でも磁力線密度とその変化率を一様にすることができず、融液の温度分布の管理は難しい。また、(1)融液の蒸発熱により融液の液面近傍の熱が奪われる、(2)融液表面又はるつぼ表面から周囲への熱輻射率、雰囲気への熱伝達係数が異なる、(3)開放系の場合、気体が周囲に拡散することにより熱が放散される、(4)るつぼ等を支持・固定する支持台等から熱が逃げる、(5)種結晶を支持するホルダーから雰囲気・支持装置へ輻射、熱伝達により熱が逃げる、等の理由で融液の温度分布の管理は難しい。   However, even with induction heating, the magnetic line density and its rate of change cannot be made uniform, and it is difficult to manage the temperature distribution of the melt. Further, (1) heat near the liquid surface of the melt is taken away by the heat of evaporation of the melt, (2) the heat emissivity from the melt surface or the crucible surface to the surroundings, and the heat transfer coefficient to the atmosphere are different. 3) In the case of an open system, heat is dissipated by gas diffusing to the surroundings, (4) Heat escapes from a support base for supporting and fixing a crucible, etc. (5) Atmosphere from a holder supporting a seed crystal -It is difficult to manage the temperature distribution of the melt because the heat escapes to the support device by radiation or heat transfer.

引用文献1には、高周波誘導コイル、高周波誘導により加熱されるルツボ、そのルツボの上部に高周波誘導加熱には独立に加熱できるヒータ、ルツボを収容する耐火物及び単結晶引き上げ手段を含んで成る、単結晶の製造装置が開示されている。
特開平6−92781号公報
Cited Document 1 includes a high-frequency induction coil, a crucible heated by high-frequency induction, a heater that can be heated independently for high-frequency induction heating above the crucible, a refractory containing the crucible, and a single crystal pulling means. An apparatus for producing a single crystal is disclosed.
JP-A-6-92781

特許文献1に開示されている単結晶の製造装置は、冷却の過程で、高周波誘導加熱には独立に加熱できるヒータにより保温しながら単結晶を冷却することを目的とするものであり、融液から単結晶を引き上げるホルダー(単結晶引き上げ手段)やルツボを支持する支持台を加熱することを目的とするものではないため、ホルダーやルツボから熱が逃げることを防ぐことができず融液の温度分布を管理することは困難である。   The single crystal manufacturing apparatus disclosed in Patent Document 1 is intended to cool a single crystal while keeping it warm by a heater that can be independently heated for high-frequency induction heating in the course of cooling. It is not intended to heat the holder (single crystal pulling means) that pulls up the single crystal from, or the support base that supports the crucible, so it cannot prevent the heat from escaping from the holder or crucible, and the temperature of the melt. It is difficult to manage the distribution.

本発明は、欠陥のない高品質な単結晶を得ることができる結晶育成装置を提供することを目的とする。   An object of this invention is to provide the crystal growth apparatus which can obtain the high quality single crystal without a defect.

上記目的を達成するための本発明の結晶育成装置は、原料が充填される導電性るつぼと、前記導電性るつぼの少なくとも側面を囲み、前記導電性るつぼ内の原料を加熱溶融して融液を生成可能な誘導加熱コイルと、前記融液から単結晶を引き上げるホルダーと、前記導電性るつぼを支持する支持台と、前記支持台を加熱する第一の加熱手段及び前記ホルダーを加熱する第二の加熱手段の少なくとも一方と、を備えたものである。   In order to achieve the above object, the crystal growth apparatus of the present invention comprises a conductive crucible filled with a raw material and at least a side surface of the conductive crucible, and the raw material in the conductive crucible is heated and melted to melt. An induction heating coil that can be generated, a holder that pulls up the single crystal from the melt, a support that supports the conductive crucible, a first heating means that heats the support, and a second that heats the holder At least one of the heating means.

本発明の結晶育成装置は、記導電性るつぼの少なくとも側面を囲む誘電加熱コイルに交流電流を流して導電性るつぼを加熱することにより、該導電性るつぼ内の単結晶形成用の原料を加熱溶融して融液を生成し、この融液から単結晶を得るものである。原料の融液を得るのに誘電加熱コイルを用いる本発明の結晶育成装置は、加熱手段として抵抗加熱・輻射による加熱を用いる場合に比較して加熱エネルギー効率に優れる。   The crystal growth apparatus of the present invention heats and melts the raw material for forming a single crystal in the conductive crucible by heating the conductive crucible by passing an alternating current through a dielectric heating coil surrounding at least the side surface of the conductive crucible. Thus, a melt is produced, and a single crystal is obtained from this melt. The crystal growth apparatus of the present invention using a dielectric heating coil to obtain a raw material melt is superior in heating energy efficiency as compared with the case of using heating by resistance heating / radiation as a heating means.

結晶育成装置を構成するホルダー又は支持台からは輻射や熱伝達により熱が逃げることがあるが、本発明の結晶育成装置は支持台を加熱する第一の加熱手段及びホルダーを加熱する第二の加熱手段の少なくとも一方を備えるため、導電性るつぼのみを加熱する場合に比べて加熱エネルギー効率を向上することができる。さらに、第一及び第二の加熱手段の少なくとも一方を備えることにより、融液の温度分布の管理が容易になる。   Although heat may escape from the holder or support base constituting the crystal growth apparatus by radiation or heat transfer, the crystal growth apparatus of the present invention has a first heating means for heating the support base and a second heating means for heating the holder. Since at least one of the heating means is provided, the heating energy efficiency can be improved as compared with the case where only the conductive crucible is heated. Furthermore, by providing at least one of the first and second heating means, the temperature distribution of the melt can be easily managed.

導電性るつぼと誘導加熱コイルとホルダーと支持台とを備えた現行の結晶育成装置に対しても、ホルダー又は支持台に耐熱性の問題が生じなければ、該装置の構造を大きく変更することなく加熱手段を追加するのみで本発明を適応可能である。   Even if there is no problem with the heat resistance of the holder or the support base for the current crystal growth apparatus provided with the conductive crucible, the induction heating coil, the holder and the support base, the structure of the apparatus is not greatly changed. The present invention can be applied only by adding a heating means.

本発明の結晶育成装置においては、支持台を加熱する第一の加熱手段及びホルダーを加熱する第二の加熱手段を共に備えていてもよい。これにより、加熱エネルギー効率をさらに向上することができる。   In the crystal growth apparatus of this invention, you may provide both the 1st heating means which heats a support stand, and the 2nd heating means which heats a holder. Thereby, heating energy efficiency can further be improved.

本発明の結晶育成装置においては、第一の加熱手段及び第二の加熱手段が誘導加熱コイルであってもよい。   In the crystal growing apparatus of the present invention, the first heating means and the second heating means may be induction heating coils.

第一の加熱手段及び第二の加熱手段として誘導加熱コイルを用いる場合、導電性るつぼの少なくとも側面を囲む誘導加熱コイルと、第一の加熱手段及び第二の加熱手段を構成する誘導加熱コイルと、に印加される交流電流を、同周波数・同位相としてもよい。これにより、電場の干渉・相殺を防ぐことができるため加熱エネルギー効率を向上することができる。   When induction heating coils are used as the first heating means and the second heating means, an induction heating coil surrounding at least a side surface of the conductive crucible, and an induction heating coil constituting the first heating means and the second heating means, The alternating currents applied to and may have the same frequency and the same phase. Thereby, since interference and cancellation of an electric field can be prevented, heating energy efficiency can be improved.

第一の加熱手段及び第二の加熱手段として誘導加熱コイルを用いる場合、発生する磁場の向きが同一となるように導電性るつぼの少なくとも側面を囲む誘導加熱コイルと、第一の加熱手段及び第二の加熱手段を構成する誘導加熱コイルと、を配置してもよい。発生する磁場の向きを同一にすることにより電場の干渉・相殺を防ぐことができるため加熱エネルギー効率を向上することができる。   When the induction heating coil is used as the first heating means and the second heating means, the induction heating coil that surrounds at least the side surface of the conductive crucible so that the directions of the generated magnetic fields are the same, the first heating means and the first heating means You may arrange | position the induction heating coil which comprises a 2nd heating means. By making the direction of the generated magnetic field the same, interference and cancellation of the electric field can be prevented, so that the heating energy efficiency can be improved.

第一の加熱手段及び第二の加熱手段として誘導加熱コイルを用いる場合、融液に磁場の影響を与えない位置に第一の加熱手段及び第二の加熱手段を構成する誘導加熱コイルを配置してもよい。   When induction heating coils are used as the first heating means and the second heating means, the induction heating coils constituting the first heating means and the second heating means are arranged at positions where the melt does not affect the magnetic field. May be.

酸化物を原料に用いて酸化物融液を生成した場合、第一の加熱手段及び第二の加熱手段としての誘導加熱コイルによるローレンツ力は導電性るつぼの少なくとも側面を囲む誘導加熱コイルによるローレンツ力と異なり酸化物融液中央付近に直接影響を与える可能性がある。この場合単結晶の品質に重大な影響を及ぼすことがある。これは、酸化物融体へのローレンツ力の影響は受け難いがゼロではないためである。そこで、第一の加熱手段及び第二の加熱手段としての誘導加熱コイルから生ずる磁場が融液に影響を及ぼさないように各誘導加熱コイルを配置してもよい。   When an oxide melt is generated using oxide as a raw material, the Lorentz force by the induction heating coil as the first heating means and the second heating means is the Lorentz force by the induction heating coil surrounding at least the side surface of the conductive crucible. Unlike the oxide melt, it may directly affect the center of the oxide melt. In this case, the quality of the single crystal may be seriously affected. This is because it is not affected by the Lorentz force on the oxide melt but is not zero. Therefore, each induction heating coil may be arranged so that the magnetic field generated from the induction heating coil as the first heating means and the second heating means does not affect the melt.

本発明の結晶育成装置においては、支持台を冷却する第一の冷却手段及びホルダーを冷却する第二の冷却手段の少なくとも一方をさらに備えていてもよい。外冷却手段を備えることにより融液の温度分布の管理が容易になる。   The crystal growth apparatus of the present invention may further include at least one of a first cooling means for cooling the support base and a second cooling means for cooling the holder. By providing the external cooling means, the temperature distribution of the melt can be easily managed.

本発明によれば、欠陥のない高品質な単結晶を得ることができる結晶育成装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the crystal growth apparatus which can obtain the high quality single crystal without a defect is provided.

以下、図面を参照しながら本発明の結晶育成装置を説明する。   The crystal growth apparatus of the present invention will be described below with reference to the drawings.

図1は、本発明の結晶育成装置の一実施形態を示す断面図である。本実施形態に係る結晶育成装置10は、入れ子式に配置された石英製の内筒12と外筒14とを備える。   FIG. 1 is a cross-sectional view showing an embodiment of the crystal growth apparatus of the present invention. A crystal growth apparatus 10 according to the present embodiment includes an inner cylinder 12 and an outer cylinder 14 made of quartz arranged in a nested manner.

内筒12の内側には、グラファイト製の導電性るつぼ16と、導電性るつぼ16の開口部を覆い、融液からの輻射熱を吸収する効果を有するグラファイト製の蓋18と、導電性るつぼ16の周囲を覆い後述する誘導加熱コイル20に熱が伝導するのを防ぐための非磁性体製の輻射熱吸収板22と、が配置されている。導電性るつぼ16は、磁性体製の支持台24により回転可能に支持されている。   Inside the inner cylinder 12, a graphite-made conductive crucible 16, a graphite lid 18 which covers the opening of the conductive crucible 16 and absorbs radiant heat from the melt, and a conductive crucible 16 are provided. A non-magnetic radiant heat absorbing plate 22 is disposed so as to cover the periphery and prevent heat from being conducted to the induction heating coil 20 described later. The conductive crucible 16 is rotatably supported by a support base 24 made of a magnetic material.

導電性るつぼ16の上側には、先端に種結晶26を備えた磁性体製のホルダー28が配置されている。ホルダー28は、不図示のホルダー昇降手段により上下動可能とされている。外筒14の外側には導電性るつぼ16の側面を囲むように誘導加熱コイル20が配置されている。   On the upper side of the conductive crucible 16, a magnetic holder 28 having a seed crystal 26 at the tip is disposed. The holder 28 can be moved up and down by a holder lifting means (not shown). An induction heating coil 20 is disposed outside the outer cylinder 14 so as to surround the side surface of the conductive crucible 16.

支持台24を加熱する第一の加熱手段である誘導加熱コイル32、ホルダー28を加熱する第二の加熱手段である誘導加熱コイル30及び誘導加熱コイル20は、発生する磁場の向きが同一となるように、同心円上かつ重複部分が無いように配置されている。なお、誘導加熱コイル20、誘導加熱コイル30及び誘導加熱コイル32に印加される交流電流を同周波数・同位相とするために、これらのコイルは同一の交流電源に接続されている。   The induction heating coil 32 that is the first heating means for heating the support 24 and the induction heating coil 30 and the induction heating coil 20 that are the second heating means for heating the holder 28 have the same direction of the generated magnetic field. Thus, it arrange | positions so that there may be no concentric circle and an overlapping part. In addition, in order to make the alternating current applied to the induction heating coil 20, the induction heating coil 30, and the induction heating coil 32 have the same frequency and the same phase, these coils are connected to the same AC power source.

また、誘導加熱コイル30及び誘導加熱コイル32は、導電性るつぼ16内に生成された融液に磁場の影響を与えないように、導電性るつぼ16から充分離れた位置に配置されている。   In addition, the induction heating coil 30 and the induction heating coil 32 are disposed at positions sufficiently away from the conductive crucible 16 so as not to affect the melt generated in the conductive crucible 16 by the magnetic field.

内筒12の外壁と外筒14の内壁とで囲まれた空間は冷却水流路とされており、誘導加熱コイル20の作用により加熱された導電性るつぼ16の熱が誘導加熱コイル20に伝わるのを防ぐようになっている。   A space surrounded by the outer wall of the inner cylinder 12 and the inner wall of the outer cylinder 14 is a cooling water flow path, and the heat of the conductive crucible 16 heated by the action of the induction heating coil 20 is transmitted to the induction heating coil 20. Is to prevent.

内筒12の内側は不活性ガス流路とされており、導電性るつぼ16や融液の酸化を防止できるようになっている。   An inner side of the inner cylinder 12 is an inert gas flow path so that oxidation of the conductive crucible 16 and the melt can be prevented.

結晶育成装置10を用い、次のようにして単結晶を得ることができる。まず、誘導加熱コイル20に不図示の交流電源から交流電流を印加することで、導電性るつぼ16が加熱されて導電性るつぼ16内に充填された単結晶の原料が加熱溶融し、融液34が生成される。   A single crystal can be obtained using the crystal growth apparatus 10 as follows. First, by applying an AC current from an AC power source (not shown) to the induction heating coil 20, the conductive crucible 16 is heated and the single crystal raw material filled in the conductive crucible 16 is heated and melted, and the melt 34. Is generated.

導電性るつぼ16の回転により所定の回転数で回転状態とされた融液34に種結晶26を接触させ、これを所定の上昇速度で徐々に引き上げることにより単結晶を得る。   The seed crystal 26 is brought into contact with the melt 34 rotated at a predetermined rotational speed by the rotation of the conductive crucible 16, and the single crystal is obtained by gradually pulling it up at a predetermined ascent rate.

このとき、導電性るつぼ16からの熱の逃げ道となりうるホルダー28及び支持台24が各々誘導加熱コイル30及び誘導加熱コイル32により加熱されるため、融液の温度分布を均一に保つことができる。その結果として、高品位の単結晶を得ることが可能となる。   At this time, since the holder 28 and the support 24 that can be a heat escape path from the conductive crucible 16 are heated by the induction heating coil 30 and the induction heating coil 32, respectively, the temperature distribution of the melt can be kept uniform. As a result, a high-quality single crystal can be obtained.

本発明に用いることのできる導電性るつぼ16の材質は特に限定されるものではなく、Pt、Ta、W等の高融点、高電気伝導の磁性体又はグラファイトを用いることができるが、コスト、加工性、電気伝導度の温度特性の理由からグラファイトを用いることが好ましい。   The material of the conductive crucible 16 that can be used in the present invention is not particularly limited, and a high melting point, high electrical conductivity magnetic material such as Pt, Ta, W, or graphite can be used. It is preferable to use graphite for the reason of temperature characteristics of conductivity and electrical conductivity.

本発明の結晶育成装置に適用可能な単結晶の種類としては、特に限定されるものではないが、例えば、LiNbO,LiTaO等の酸化物単結晶が挙げられる。 The kind of single crystal applicable to the crystal growth apparatus of the present invention is not particularly limited, and examples thereof include oxide single crystals such as LiNbO 3 and LiTaO 3 .

本実施形態の結晶育成装置においては導電性るつぼ16が支持台24により回転可能に支持されているが、ホルダー28が回転可能とされていてもよい。   In the crystal growth apparatus of this embodiment, the conductive crucible 16 is rotatably supported by the support base 24, but the holder 28 may be rotatable.

本発明の結晶育成装置においては、必要に応じて誘導加熱コイル20、誘導加熱コイル30及び誘導加熱コイル32に印加される電力量を制御する電力量制御手段をさらに備えてもよい。これにより導電性るつぼ16、支持台24及びホルダー28の発熱量を制御して融液34に所望の温度分布を持たせることもできる。   In the crystal growth apparatus of this invention, you may further provide the electric energy control means which controls the electric energy applied to the induction heating coil 20, the induction heating coil 30, and the induction heating coil 32 as needed. Accordingly, the heat generation amount of the conductive crucible 16, the support base 24, and the holder 28 can be controlled so that the melt 34 has a desired temperature distribution.

融液34に所望の温度分布を持たせる目的で、支持台24を冷却する第一の冷却手段及びホルダー28を冷却する第二の冷却手段の少なくとも一方をさらに備えてもよい。この場合の冷却手段としては、例えば、水冷装置を用いることができる。   For the purpose of giving the melt 34 a desired temperature distribution, at least one of a first cooling means for cooling the support base 24 and a second cooling means for cooling the holder 28 may be further provided. As a cooling means in this case, for example, a water cooling device can be used.

本発明の結晶育成装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the crystal growth apparatus of this invention.

符号の説明Explanation of symbols

10 結晶育成装置
12 内筒
14 外筒
16 導電性るつぼ
18 蓋
20、30、32 誘導加熱コイル
22 輻射熱吸収板
24 支持台
26 種結晶
28 ホルダー
34 融液
DESCRIPTION OF SYMBOLS 10 Crystal growth apparatus 12 Inner cylinder 14 Outer cylinder 16 Conductive crucible 18 Lid 20, 30, 32 Induction heating coil 22 Radiation heat absorption plate 24 Support stand 26 Seed crystal 28 Holder 34 Melt

Claims (7)

原料が充填される導電性るつぼと、
前記導電性るつぼの少なくとも側面を囲み、前記導電性るつぼ内の原料を加熱溶融して融液を生成可能な誘導加熱コイルと、
前記融液から単結晶を引き上げるホルダーと、
前記導電性るつぼを支持する支持台と、
前記支持台を加熱する第一の加熱手段及び前記ホルダーを加熱する第二の加熱手段の少なくとも一方と、
を備えた結晶育成装置。
A conductive crucible filled with raw materials;
An induction heating coil that surrounds at least a side surface of the conductive crucible, and that can heat and melt a raw material in the conductive crucible to generate a melt;
A holder for pulling up the single crystal from the melt;
A support for supporting the conductive crucible;
At least one of a first heating means for heating the support base and a second heating means for heating the holder;
Crystal growth apparatus equipped with
前記第一の加熱手段及び前記第二の加熱手段を共に備えた請求項1に記載の結晶育成装置。   The crystal growth apparatus according to claim 1, comprising both the first heating unit and the second heating unit. 前記第一の加熱手段及び前記第二の加熱手段が誘導加熱コイルである請求項1又は2に記載の結晶育成装置。   The crystal growth apparatus according to claim 1 or 2, wherein the first heating means and the second heating means are induction heating coils. 前記導電性るつぼの少なくとも側面を囲む誘導加熱コイルと、前記第一の加熱手段及び前記第二の加熱手段を構成する誘導加熱コイルと、に印加される交流電流が、同周波数・同位相である請求項3に記載の結晶育成装置。   The alternating currents applied to the induction heating coil surrounding at least the side surface of the conductive crucible and the induction heating coil constituting the first heating means and the second heating means have the same frequency and the same phase. The crystal growth apparatus according to claim 3. 発生する磁場の向きが同一となるように前記導電性るつぼの少なくとも側面を囲む誘導加熱コイルと、前記第一の加熱手段及び前記第二の加熱手段を構成する誘導加熱コイルと、が配置された請求項3又は4に記載の結晶育成装置。   An induction heating coil that surrounds at least a side surface of the conductive crucible and an induction heating coil that constitutes the first heating means and the second heating means are arranged so that the directions of the generated magnetic fields are the same. The crystal growth apparatus according to claim 3 or 4. 前記融液に磁場の影響を与えない位置に前記第一の加熱手段及び前記第二の加熱手段を構成する誘導加熱コイルが配置された請求項3乃至5のいずれか1項に記載の結晶育成装置。   The crystal growth according to any one of claims 3 to 5, wherein an induction heating coil constituting the first heating means and the second heating means is disposed at a position where the melt does not affect the magnetic field. apparatus. 前記支持台を冷却する第一の冷却手段及び前記ホルダーを冷却する第二の冷却手段の少なくとも一方をさらに備えた請求項1乃至6のいずれか1項に記載の結晶育成装置。   The crystal growth apparatus according to any one of claims 1 to 6, further comprising at least one of a first cooling means for cooling the support base and a second cooling means for cooling the holder.
JP2006261090A 2006-09-26 2006-09-26 Single crystal growth apparatus Pending JP2008081337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261090A JP2008081337A (en) 2006-09-26 2006-09-26 Single crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261090A JP2008081337A (en) 2006-09-26 2006-09-26 Single crystal growth apparatus

Publications (1)

Publication Number Publication Date
JP2008081337A true JP2008081337A (en) 2008-04-10

Family

ID=39352559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261090A Pending JP2008081337A (en) 2006-09-26 2006-09-26 Single crystal growth apparatus

Country Status (1)

Country Link
JP (1) JP2008081337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088812A (en) * 2014-11-06 2016-05-23 新日鐵住金株式会社 Method and apparatus for manufacturing silicon carbide single crystal ingot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088812A (en) * 2014-11-06 2016-05-23 新日鐵住金株式会社 Method and apparatus for manufacturing silicon carbide single crystal ingot

Similar Documents

Publication Publication Date Title
JP5925319B2 (en) SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
JPH0416702B2 (en)
JP6844560B2 (en) Silicon melt convection pattern control method, silicon single crystal manufacturing method, and silicon single crystal pulling device
JP2013173645A (en) Crystal growth apparatus and crystal growth method
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
JP3094156B2 (en) Method for producing silicon single crystal
GB2279585A (en) Crystallising molten materials
KR101381326B1 (en) Method for producing semiconductor wafers composed of silicon
JP2018145071A (en) Crystal growth apparatus
JP2014125404A (en) Sapphire single crystal growth apparatus
JP2008081337A (en) Single crystal growth apparatus
JP5004881B2 (en) Single crystal growth apparatus crucible, single crystal growth method, and single crystal growth apparatus
JP6500977B2 (en) Method of manufacturing SiC single crystal
JP2018058736A (en) Crystal growth apparatus and crystal growth method
KR101333791B1 (en) Apparatus for growing single crystal
JP6977319B2 (en) Crystal growth device and crystal growth method using this
JP2004123510A (en) Apparatus for manufacturing single crystal and method for manufacturing the same
JP6805886B2 (en) Crystal growth device
JP2008156203A (en) Crystal growing device
KR20140032568A (en) The appratus of silicon for solar cell and the method thereof
JPH11189487A (en) Production apparatus for oxide single crystal
US5587015A (en) Apparatus for production of single crystal oxide films by liquid-phase epitaxy
JP2010052993A (en) Crucible for apparatus for growing single crystal, method for growing single crystal, and apparatus for growing single crystal
JP6750550B2 (en) Crystal growth equipment
JP6759926B2 (en) Crystal growth device