JP2008080809A - Production process and molding device of molded article - Google Patents

Production process and molding device of molded article Download PDF

Info

Publication number
JP2008080809A
JP2008080809A JP2007277835A JP2007277835A JP2008080809A JP 2008080809 A JP2008080809 A JP 2008080809A JP 2007277835 A JP2007277835 A JP 2007277835A JP 2007277835 A JP2007277835 A JP 2007277835A JP 2008080809 A JP2008080809 A JP 2008080809A
Authority
JP
Japan
Prior art keywords
supercritical fluid
nanocarbon
thermoplastic resin
mold
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007277835A
Other languages
Japanese (ja)
Other versions
JP4570651B2 (en
Inventor
Atsushi Yusa
敦 遊佐
Terumasa Kondou
輝優 近藤
Hiroshi Moriyama
広思 森山
Teruo Hori
照夫 掘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007277835A priority Critical patent/JP4570651B2/en
Publication of JP2008080809A publication Critical patent/JP2008080809A/en
Application granted granted Critical
Publication of JP4570651B2 publication Critical patent/JP4570651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production process and a molding device of a molded article, which make the molded article high functional easily by means of nanocarbon. <P>SOLUTION: The process to produce the molded article by molding a thermoplastic resin is characterized in having following steps. A step to dissolve a material into a supercritical fluid wherein the material is incompatible with the thermoplastic resin but soluble to the supercritical fluid, a step to plasticize the thermoplastic resin in a plasticizing cylinder equipped with a plasticizing screw, a step to introduce the supercritical fluid and the material dissolved therein into the plasticizing cylinder to knead them with the thermoplastic resin by means of the plasticizing screw, and a step to introduce and mold the kneaded resin in the molding section. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱可塑性樹脂(又は溶融樹脂)に超臨界流体を利用してナノカーボンを含有させた成形品の製造方法及び成形装置に関する。   The present invention relates to a method for manufacturing a molded article and a molding apparatus in which nanocarbon is contained in a thermoplastic resin (or molten resin) using a supercritical fluid.

カーボンナノチューブ(CNT)、カーボンナノホーン、フラーレンといった炭素原子を共有結合したナノ構造体はナノカーボンと総称され、夢の素材として実用化に向けて広く研究されている。例えば、CNTの強度は同じ重量の鋼の数百倍であり、熱伝導率はダイヤモンドの数倍とされる(例えば非特許文献1を参照。)。   Nanostructures such as carbon nanotubes (CNT), carbon nanohorns, and fullerenes covalently bonded with carbon atoms are collectively referred to as nanocarbons, and are widely studied for practical use as dream materials. For example, the strength of CNT is several hundred times that of steel of the same weight, and the thermal conductivity is several times that of diamond (see, for example, Non-Patent Document 1).

こうした素材の特徴を生かし、CNTを樹脂に混練して樹脂の導電性や強度を向上する試みがなされている(例えば非特許文献2を参照。)。しかし、無機材料であるCNTは有機材料である樹脂には相溶しないため、多量に含有させることが困難である。特に、熱可塑性樹脂とのブレンド材料を射出成形にて成形する場合、粘度が高すぎ成形できなくなるため10wt%程度しか混練させることができない。このようにCNTの含有量が低いと、樹脂の高機能化を図ることが困難である。   Taking advantage of the characteristics of these materials, attempts have been made to improve the conductivity and strength of the resin by kneading CNTs with the resin (see, for example, Non-Patent Document 2). However, since CNT which is an inorganic material is not compatible with a resin which is an organic material, it is difficult to contain a large amount. In particular, when a blend material with a thermoplastic resin is molded by injection molding, the viscosity is too high to be molded, so that only about 10 wt% can be kneaded. Thus, when the content of CNT is low, it is difficult to achieve high functionality of the resin.

CNTの添加量を抑え、それを補うため炭素繊維を熱可塑性樹脂に混合させ導電性や強度を向上させることで、燃料電池のセパレーターに応用する方法が開示されている(例えば特許文献1を参照。)。   In order to compensate for the added amount of CNT, carbon black is mixed with a thermoplastic resin to improve conductivity and strength, and a method applied to a fuel cell separator is disclosed (see, for example, Patent Document 1). .)

ナノカーボンの修飾技術としては、C60などのフラーレンに別の分子を化学修飾し、医薬品や機能材料の開発を目指す研究が活発化している(例えば非特許文献3を参照。)が、ナノカーボンを化学修飾もしくは物理修飾し、超臨界二酸化炭素に溶解させた報告はされていない。 The modification techniques of the nanocarbon, the another molecule chemically modified fullerene such as C 60, research aimed at development of drugs and functional materials is activating (e.g. Non-Patent Document 3.) Is nanocarbon There has been no report of chemical modification or physical modification of bismuth dissolved in supercritical carbon dioxide.

一方、超臨界流体は気体としての浸透性と液体としての溶媒特性をあわせもつ流体として注目されており、超臨界二酸化炭素(CO)を溶媒に用いた分散染料による繊維の染色が提案されている(例えば特許文献2を参照。)。そして、この原理を応用し樹脂を表面改質し、高機能化するプロセスが検討されている(例えば非特許文献4を参照。)。 On the other hand, supercritical fluids are attracting attention as fluids that combine gas permeability and solvent properties as liquids, and fiber dyeing with disperse dyes using supercritical carbon dioxide (CO 2 ) as a solvent has been proposed. (For example, refer to Patent Document 2). And the process of surface-modifying the resin by applying this principle to make it highly functional has been studied (for example, see Non-Patent Document 4).

その他の従来技術としては特許文献3及び特許文献4が知られている。
特開2002−97375号公報 特開平5−132880号公報 特開平2003−26249号公報 特開平2003−147644号公報 「始まった炭素の世紀」、遠藤守信ら、日経サイエンス2002年8月号 成形加工学会第14回年次大会要旨集、▲4▼−217(2003) 「フラーレンの生理活性」、中村栄一、日経サイエンス1994年1月号 成形加工第15巻第9号、2003
As other conventional techniques, Patent Document 3 and Patent Document 4 are known.
JP 2002-97375 A JP-A-5-132880 JP-A-2003-26249 Japanese Patent Laid-Open No. 2003-147644 “The Century of Carbon Beginning”, Morinobu Endo et al., Nikkei Science August 2002 issue Abstracts of the 14th Annual Meeting of the Japan Society for Molding Technology, (4) -217 (2003) “Physiological activity of fullerene”, Eiichi Nakamura, Nikkei Science January 1994 issue Molding Volume 15 No. 9, 2003

しかしながら、従来技術によれば、ポリマーを簡単に高機能化する方法は提案されていなかった。例えば、特許文献1によれば、炭素繊維の配合量が10〜70wt%、カーボンナノチューブの配合量が0.1〜15重量%の熱可塑性樹脂で高強度および高導電性のセパレーターが得られるとあるが、混合材料を押し出し成形等でペレット化してから射出成形しなければならず、材料作製に手間がかかる。また、従来の有機材料とナノカーボンを機械的に混練する方法は、無機材料の微粉体の凝集を抑制し、均一混合することが困難である。また、非特許文献4の方法によれば、超臨界COを用い、PMMA等の熱可塑性樹脂表面で銀微粒子を析出させている。かかる方法は高圧容器内で対象ポリマー表面を改質するバッチプロセスになるので、大量生産は困難である。また、超臨界COをポリマー内部に浸透させ、分子間距離を拡大することでガラス転移温度を低下させ処理するので1mm程度以上肉厚のある樹脂の場合、変形及び内部発泡の問題が発生する。こうした従来の超臨界流体を用いた表面処理方法は全面処理する方法であり、選択的に処理することはできなかった。 However, according to the prior art, a method for easily increasing the functionality of a polymer has not been proposed. For example, according to Patent Document 1, a high-strength and high-conductivity separator is obtained with a thermoplastic resin having a carbon fiber content of 10 to 70 wt% and a carbon nanotube content of 0.1 to 15 wt%. However, the mixed material must be pelletized by extrusion molding or the like and then injection molded, which takes time and labor. In addition, the conventional method of mechanically kneading an organic material and nanocarbon suppresses agglomeration of fine powder of inorganic material and is difficult to uniformly mix. Further, according to the method of Non-Patent Document 4, supercritical CO 2 is used to deposit silver fine particles on the surface of a thermoplastic resin such as PMMA. Such a method is a batch process in which the surface of the target polymer is modified in a high-pressure vessel, so that mass production is difficult. In addition, since the glass transition temperature is lowered and processed by infiltrating supercritical CO 2 into the polymer and increasing the intermolecular distance, problems of deformation and internal foaming occur in the case of a resin having a thickness of about 1 mm or more. . Such a conventional surface treatment method using a supercritical fluid is a whole surface treatment method and could not be selectively treated.

本発明は、ナノカーボンにより成形品を簡単に高機能化する成形品の製造方法及び成形装置を提供することに関する。   The present invention relates to providing a method for manufacturing a molded product and a molding apparatus that easily enhance the functionality of the molded product with nanocarbon.

本発明の一側面としての成形品の製造方法は、熱可塑性樹脂を成形することによって成形品を製造する方法であって、前記熱可塑性樹脂に相溶せず、かつ超臨界流体に溶解可能な物質を当該超臨界流体に溶解させる工程と、可塑化スクリューを備える可塑化シリンダーにおいて、前記熱可塑性樹脂を可塑化する工程と、上記超臨界流体及び当該超臨界流体に溶解させた物質を前記可塑化シリンダー内へ導入し、前記可塑化スクリューを用いて前記熱可塑性樹脂と混練する工程と、上記混練した樹脂を成形部へ導入し成形する工程とを有することを特徴とする。かかる製造方法によれば、ナノカーボンが析出して凝集することなく超臨界流体とともに溶融樹脂と混練することができる。また、混練後に射出成形や押し出し成形、プレス成形等を行うことで、所望の形状を有し、かつ、ナノカーボンが均一分散した樹脂成形品を得ることができる。そして、スクリュー攪拌後、ペレット化せずとも連続して成形することが可能となる。前記超臨界流体が二酸化炭素であることを特徴とする。   A method for producing a molded product as one aspect of the present invention is a method for producing a molded product by molding a thermoplastic resin, which is incompatible with the thermoplastic resin and can be dissolved in a supercritical fluid. A step of dissolving the substance in the supercritical fluid; a step of plasticizing the thermoplastic resin in a plasticizing cylinder including a plasticizing screw; and the plastic dissolved in the supercritical fluid and the supercritical fluid. It has the process of introduce | transducing into a plasticizing cylinder, kneading | mixing with the said thermoplastic resin using the said plasticizing screw, and introducing the said kneaded resin into a shaping | molding part, It is characterized by the above-mentioned. According to this production method, the nanocarbon can be kneaded with the molten resin together with the supercritical fluid without being precipitated and aggregated. Further, by performing injection molding, extrusion molding, press molding or the like after kneading, a resin molded product having a desired shape and having nanocarbon uniformly dispersed can be obtained. And after screw stirring, it becomes possible to shape | mold continuously, without pelletizing. The supercritical fluid is carbon dioxide.

本発明の他の側面としての成形装置は、熱可塑性樹脂を成形する成形装置であって、前記熱可塑性樹脂に相溶せず、かつ超臨界流体に溶解可能な物質を当該超臨界流体に溶解する溶解機構と、前記熱可塑性樹脂を可塑化する可塑化スクリューを備える可塑化シリンダーと、上記超臨界流体及び当該超臨界流体に溶解された物質を前記可塑化シリンダー内へ導入する機構と、前記可塑化シリンダー内において、前記可塑化スクリューを用いて前記熱可塑性樹脂に、上記超臨界流体及び当該超臨界流体に溶解させた物質を混練する機構と、上記混練した樹脂が導入される成形部とを有することを特徴とする。かかる成形装置も上述と同様の効果を得ることが可能である。   A molding apparatus according to another aspect of the present invention is a molding apparatus for molding a thermoplastic resin, and dissolves a substance that is incompatible with the thermoplastic resin and is soluble in the supercritical fluid into the supercritical fluid. A dissolving mechanism, a plasticizing cylinder including a plasticizing screw that plasticizes the thermoplastic resin, a mechanism for introducing the supercritical fluid and a substance dissolved in the supercritical fluid into the plasticizing cylinder, and In a plasticizing cylinder, a mechanism for kneading the supercritical fluid and the substance dissolved in the supercritical fluid into the thermoplastic resin using the plasticizing screw, and a molding part into which the kneaded resin is introduced It is characterized by having. Such a molding apparatus can also obtain the same effects as described above.

本発明の他の目的及び更なる特徴は、以下、添付図面を参照して説明される実施形態により明らかにされるであろう。   Other objects and further features of the present invention will be made clear by embodiments described below with reference to the accompanying drawings.

本発明によれば、本発明は、ナノカーボンにより成形品を簡単に高機能化する方法及び成形装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, this invention can provide the method and shaping | molding apparatus which make a molded article highly functional simply by nanocarbon.

以下に、本発明の実施例について説明する。ただし、本発明はこれらの例示によって限定されるものではない。   Examples of the present invention will be described below. However, the present invention is not limited to these examples.

[実施例1]
本発明において用いるナノカーボンの官能基は超臨界流体に溶解する性質があれば任意であるが、本実施例においては、下記[化1]で示される構造式を有するもの(以下、(1)と表す。)及び下記[化2]で示される構造式を有するもの(以下、(2)と表す。)を用いた。また本発明において、修飾するナノカーボンの種類は任意であるが本実施例においてはカーボンナノチューブを用いた。
[Example 1]
The functional group of the nanocarbon used in the present invention is arbitrary as long as it has the property of being dissolved in the supercritical fluid. In this example, the functional group having the structural formula shown below [Chemical Formula 1] (hereinafter referred to as (1) And those having the structural formula represented by the following [Chemical Formula 2] (hereinafter referred to as (2)) were used. In the present invention, the type of nanocarbon to be modified is arbitrary, but in this example, carbon nanotubes were used.

(表1)
表1は、(1)に示す構造を有するナノカーボン誘導体(カーボンナノチューブの化合物)a〜eについて示したものである。(2)の置換基R〜Rがすべて水素である化合物を化合物a、Rのみメチル基で他の置換基が水素の化合物を化合物b、Rのみ塩素で他の置換機が水素の化合物を化合物c、Rのみヒドロキシ基で他の置換基が水素の化合物を化合物d、Rのみアミノ基で他の置換機が水素の化合物を化合物eとする。
(Table 1)
Table 1 shows nanocarbon derivatives (carbon nanotube compounds) a to e having the structure shown in (1). The compound in which all the substituents R 1 to R 5 in (2) are hydrogen is a compound a, R 3 is a methyl group and the other substituent is hydrogen, and the compound b is a compound in which only R 3 is chlorine and the other substituent is hydrogen. Compound c is a compound c, R 3 is a hydroxy group and the other substituent is a hydrogen compound d, and R 3 is an amino group and another substituent is a hydrogen compound.

本発明における上記官能基を修飾する方法は任意であるが、本実施例においては、下記方法を用いた。窒素雰囲気下、トルエンにCNTを懸濁させて、銅及び濃硝酸から生じるニトロラジカルと反応させるとニトロ化されたカーボンナノチューブ(1)が得られた。IR分析ではNOに特徴的な1384cm−1付近のスペクトルを確認した。また、UV−Vis分析ではTHF中、λmaxが290nmのスペクトルを確認した。更に、トリエチルアミン存在下、アニリンと反応させることにより(2)が得られた。HNMR分析により(2)の生成を確認した。 The method for modifying the functional group in the present invention is arbitrary, but the following method was used in this example. Under a nitrogen atmosphere, CNTs were suspended in toluene and reacted with nitro radicals generated from copper and concentrated nitric acid to obtain nitrated carbon nanotubes (1). In IR analysis, a spectrum around 1384 cm −1 characteristic of NO 2 was confirmed. Further, UV-Vis analysis confirmed a spectrum of λmax of 290 nm in THF. Furthermore, (2) was obtained by reacting with aniline in the presence of triethylamine. The production of (2) was confirmed by 1 HNMR analysis.

上記修飾ナノカーボンを熱可塑性樹脂に超臨界流体と共に浸透させた。本実施例に用いた金型及び成形装置の要部断面構造図を図1及び図3に示す。成形装置に使用された金型キャビティ内におけるプロセス模式図を図2及び図4に示す。図1、図2は射出成形により樹脂内部及び表面全体にナノカーボンを浸透させる方法に関するものであり、図3、図4は樹脂表面の特定の部位に選択的に浸透させる方法に関するものである。   The modified nanocarbon was infiltrated into the thermoplastic resin together with the supercritical fluid. FIGS. 1 and 3 show cross-sectional structural views of the main part of the mold and molding apparatus used in this example. 2 and 4 show process schematic diagrams in the mold cavity used in the molding apparatus. 1 and 2 relate to a method of infiltrating nanocarbon into the inside of the resin and the entire surface by injection molding, and FIGS. 3 and 4 relate to a method of selectively infiltrating a specific portion of the resin surface.

[実施例2]
本実施例に用いた金型及び成形装置の要部断面構造図を図1、プロセス模式図を図2に示す。図1中、7a〜7gは成形機の任意の信号をトリガーとして駆動する自動駆動弁であり、8a,8bは減圧弁、9a〜9dは手動開閉弁、10a〜10eは逆止弁、15a,15bはフィルターである。
[Example 2]
FIG. 1 shows a cross-sectional structural view of a main part of a mold and a molding apparatus used in this example, and FIG. In FIG. 1, 7a to 7g are automatic drive valves that are driven by an arbitrary signal of the molding machine as a trigger, 8a and 8b are pressure reducing valves, 9a to 9d are manual on-off valves, 10a to 10e are check valves, 15a, Reference numeral 15b denotes a filter.

本発明における超臨界流体は任意であるが、本実施例では超臨界流体となる圧力温度条件が比較的緩く、ポリマーに対する親和性の高いCOを用いた。本実施例においては、前記化学式(1)のカーボンナノチューブを用いた。 The supercritical fluid in the present invention is arbitrary, but in this example, CO 2 having a relatively high pressure-temperature condition to be a supercritical fluid and having a high affinity for the polymer was used. In this example, the carbon nanotube of the chemical formula (1) was used.

本発明におけるナノカーボン溶解槽1及び超臨界流体の滞留する配管経路の圧力および温度条件は任意であるが、超臨界COを用いた場合、圧力は10MPa以上35MPa以下、より望ましくは15MPa以上25MPa以下が望ましい。そして温度は40℃以上55℃以下が望ましい。 The pressure and temperature conditions of the nanocarbon dissolution tank 1 and the piping path in which the supercritical fluid stays in the present invention are arbitrary, but when supercritical CO 2 is used, the pressure is 10 MPa or more and 35 MPa or less, more preferably 15 MPa or more and 25 MPa. The following is desirable. The temperature is preferably 40 ° C. or higher and 55 ° C. or lower.

本実施例の装置においては、図示しないヒーターにてリザーブタンク17より各配管及びナノカーボン溶解槽1、攪拌槽4、自動弁7a,7b,7fまでのすべての経路は45〜55℃になるように温度制御されている。ナノカーボン溶解槽1内には、超臨界流体に溶解可能なナノカーボン誘導体2が貯留されている。ナノカーボン誘導体2としては、例えば、超臨界流体に溶解する修飾基(官能基)を有するフラーレン、カーボンナノチューブ、カーボンナノホーンやそれらの変性物等が考えられる。   In the apparatus of the present embodiment, all paths from the reserve tank 17 to each pipe and the nanocarbon dissolution tank 1, the stirring tank 4, and the automatic valves 7a, 7b, and 7f with a heater (not shown) are 45 to 55 ° C. The temperature is controlled. A nanocarbon derivative 2 that can be dissolved in a supercritical fluid is stored in the nanocarbon dissolution tank 1. Examples of the nanocarbon derivative 2 include fullerene having a modifying group (functional group) that dissolves in a supercritical fluid, carbon nanotube, carbon nanohorn, and modified products thereof.

本実施例においては、圧力を次のように調整した。まず、COボンベ18から供給される液化二酸化炭素を超臨界流体発生装置3にて40〜45MPaの超臨界状態にした後、減圧弁8aにて圧力計P1が18MPaとなるようにリザーブタンク17内部の圧力を調整した。 In this example, the pressure was adjusted as follows. First, after the liquefied carbon dioxide supplied from the CO 2 cylinder 18 is brought into a supercritical state of 40 to 45 MPa by the supercritical fluid generator 3, the reserve tank 17 is set so that the pressure gauge P1 becomes 18 MPa by the pressure reducing valve 8a. The internal pressure was adjusted.

本実施例において、リザーブタンク17内の超臨界COはエントレーナ溶解槽6内でエントレーナと混合される。本発明においては、超臨界流体に対する修飾ナノカーボンの溶解度を向上させるために、エントレーナ、つまり共溶媒として公知のアルコール、アセトン等を用いてもよい。 In this embodiment, supercritical CO 2 in the reserve tank 17 is mixed with the entrainer in the entrainer dissolution tank 6. In the present invention, a known alcohol, acetone, or the like may be used as an entrainer, that is, a cosolvent, in order to improve the solubility of the modified nanocarbon in the supercritical fluid.

本実施例においては、エントレーナとしてアセトンを用いた。アセトンが貯蔵されているエントレーナタンク5からエントレーナポンプ11の駆動によりエントレーナ溶解槽6内に供給され、超臨界COにエントレーナが溶解する。エントレーナ溶解槽6内におけるエントレーナの量はフィードバック装置12で常時一定量以上滞留するように自動弁7dの開閉及びエントレーナポンプ11の駆動により制御されている。 In this example, acetone was used as the entrainer. Acetone is fed to the entrainer dissolving tank 6 by driving the ene trainer pump 11 ene trainer tank 5 which is stored, entrainer is dissolved in the supercritical CO 2. The amount of the entrainer in the entrainer dissolution tank 6 is controlled by opening / closing the automatic valve 7d and driving the entrainer pump 11 so that the feedback device 12 always stays a predetermined amount or more.

一方、前記リザーブタンク17内の超臨界COは減圧弁8bにて圧力計P2が15MPaになるように減圧しナノカーボン溶解槽1内に導入した。ナノカーボン溶解槽1内には修飾ナノカーボンが貯蔵されている。圧力15MPaの超臨界流体にナノカーボンが徐々に溶解し、後述する方法で溶けた量だけ攪拌槽4に導入される。 On the other hand, the supercritical CO 2 in the reserve tank 17 was depressurized by the pressure reducing valve 8b so that the pressure gauge P2 was 15 MPa and introduced into the nanocarbon dissolution tank 1. Modified nanocarbon is stored in the nanocarbon dissolution tank 1. Nanocarbon is gradually dissolved in a supercritical fluid having a pressure of 15 MPa, and is introduced into the agitation tank 4 by an amount dissolved by a method described later.

超臨界流体の圧力及び温度が一定であれば溶質の溶解度は変化しない。よって、溶解槽1にて溶解するナノカーボンの濃度は飽和状態であり常に一定であるが、流れが生じ減圧した場合には過飽和となり溶質は析出する。   If the pressure and temperature of the supercritical fluid are constant, the solubility of the solute will not change. Therefore, the concentration of nanocarbon dissolved in the dissolution tank 1 is in a saturated state and is always constant, but when the flow is generated and the pressure is reduced, the carbon is supersaturated and the solute is precipitated.

本実施例の成形装置においては、下記に説明するように、金型キャビティ21や成形機可塑化シリンダー16内に導入した際の減圧により、溶質であるナノカーボンが過飽和になり金型内等で析出するのを抑制する工夫がなされている。   In the molding apparatus of the present embodiment, as described below, due to the reduced pressure when introduced into the mold cavity 21 or the plasticizer cylinder 16 of the molding machine, the nanocarbon as the solute becomes supersaturated, and the like in the mold. The device which suppresses precipitation is made | formed.

本実施例の成形装置においては、金型キャビティ21や成形機可塑化シリンダー16内に超臨界COおよびそれに溶解したナノカーボンを自動弁7a,7bや7fの開放により導入できるが、該自動弁の開放に伴い、攪拌槽4内の容量が減り減圧される。 In the molding apparatus of this embodiment, supercritical CO 2 and nanocarbon dissolved therein can be introduced into the mold cavity 21 and the molding machine plasticizing cylinder 16 by opening the automatic valves 7a, 7b and 7f. With the opening, the volume in the stirring tank 4 is reduced and the pressure is reduced.

本実施例においては自動弁7aもしくは7fの閉鎖後、直ちに自動弁7gを一定時間開放しナノカーボン2を圧力15MPaの超臨界COとともに攪拌槽4に補充した。その後自動弁7hを開き、圧力18MPaでエントレーナを含有する超臨界流体をエントレーナ溶解槽6より攪拌槽4内に導入する。この動作で攪拌槽4内部の圧力は18MPaに瞬時に昇圧され、エントレーナが補充される。 In this example, immediately after the automatic valve 7a or 7f was closed, the automatic valve 7g was opened for a certain time, and nanocarbon 2 was replenished to the stirring tank 4 together with supercritical CO 2 having a pressure of 15 MPa. Thereafter, the automatic valve 7h is opened, and the supercritical fluid containing the entrainer is introduced into the stirring tank 4 from the entrainer dissolution tank 6 at a pressure of 18 MPa. By this operation, the pressure inside the stirring tank 4 is instantaneously increased to 18 MPa, and the entrainer is replenished.

そのため、常時攪拌されている攪拌槽4内では、修飾ナノカーボンが未飽和の状態にて18MPaの超臨界流体とエントレーナの混合溶媒に溶解した状態になる。よって、ある程度超臨界流体が減圧しても溶解していた修飾ナノカーボンが過飽和にならず析出することはない。   Therefore, in the stirring tank 4 that is constantly stirred, the modified nanocarbon is in an unsaturated state and dissolved in a mixed solvent of 18 MPa supercritical fluid and entrainer. Therefore, even if the supercritical fluid is decompressed to some extent, the modified nanocarbon that has been dissolved does not become supersaturated and does not precipitate.

本実施例においては、まず熱可塑性プラスチックの可塑化時に超臨界CO及びナノカーボンを混練した。本発明に用いることのできる熱可塑性プラスチックは任意であるが、本実施例においてはポリカーボネート(GEプラスチックス社製レキサンOQ1020)を用いた。図示しない乾燥機により120℃4hr以上の条件にて乾燥された樹脂ペレットはホッパー26に供給され、300℃に温度制御された成形機可塑化シリンダー16内でスクリュー14によって可塑化されるがこれは従来と同じ手法である。 In this example, supercritical CO 2 and nanocarbon were first kneaded when plasticizing the thermoplastic. The thermoplastic plastic that can be used in the present invention is arbitrary, but polycarbonate (Lexan OQ1020 manufactured by GE Plastics) was used in this example. Resin pellets dried at 120 ° C. for 4 hours or more by a dryer (not shown) are supplied to a hopper 26 and plasticized by a screw 14 in a molding machine plasticizing cylinder 16 controlled at 300 ° C. This is the same method as before.

本発明においては、可塑化と同時にスクリュー内にて超臨界流体と修飾ナノカーボンを熱可塑性樹脂に混練することを特徴とするが、本実施例においては、スクリュー14に減圧されるベント構造21Aを設け、可塑化途中、予め開放された手動弁9a,9bの直下に該ベント構造21A部が到達した際にバルブ7fを開放し超臨界流体およびナノカーボンを成形機可塑化シリンダー16内部に注入した。その後、可塑化及び計量を完了し、スクリュー14を計量位置まで後退させた。   The present invention is characterized in that a supercritical fluid and modified nanocarbon are kneaded into a thermoplastic resin in a screw simultaneously with plasticization. In this embodiment, a vent structure 21A that is decompressed by the screw 14 is provided. During the plasticization, the valve 7f is opened when the vent structure 21A reaches just below the manually opened manual valves 9a and 9b, and the supercritical fluid and nanocarbon are injected into the molding machine plasticizing cylinder 16. . Thereafter, plasticization and metering were completed and the screw 14 was retracted to the metering position.

射出成形は次のように行った。まず、固定金型24及び可動金型25によって形成されるキャビティ21内に溶融プラスチックを充填した。キャビティ21の大きさは縦50mm×横100mm×厚み3mmのテストピース形状とした。前記金型は図示しない温調機および金型内に設けられた温調回路を流動する冷却水で120℃に温度制御されており、両金型の突き当て面は図示しないOリングでシールされている。   Injection molding was performed as follows. First, molten plastic was filled into the cavity 21 formed by the fixed mold 24 and the movable mold 25. The size of the cavity 21 was a test piece shape of 50 mm long × 100 mm wide × 3 mm thick. The mold is temperature-controlled at 120 ° C. with a temperature controller (not shown) and cooling water flowing in a temperature control circuit provided in the mold, and the abutting surfaces of both molds are sealed with an O-ring (not shown). ing.

シャットオフバルブ19を開放した直後に、スクリュー14を300mm/sの射出速度にて前進させることで、ノズル先端29より金型内のスプール20部を経てキャビティ21に充填した。前記したように、金型内へ射出する際には、減圧に伴いナノカーボンが不均一に析出することや、超臨界流体がプラスチック表面でガス化し、表面性が悪化する問題が生じる。   Immediately after opening the shut-off valve 19, the screw 14 was advanced at an injection speed of 300 mm / s to fill the cavity 21 from the nozzle tip 29 through the spool 20 in the mold. As described above, when injected into the mold, there arises a problem that nanocarbon is deposited non-uniformly as the pressure is reduced, and the supercritical fluid is gasified on the plastic surface and the surface property is deteriorated.

本発明においては、前記問題を回避するため、予め、超臨界流体等の高圧ガスを金型内に導入しておくことが望ましいが、本実施例においては導入配管22を経て超臨界流体および修飾ナノカーボンを金型内に充満させた。   In the present invention, in order to avoid the above problem, it is desirable to introduce a high-pressure gas such as a supercritical fluid into the mold in advance. In this embodiment, the supercritical fluid and the modification are introduced via the introduction pipe 22. The mold was filled with nanocarbon.

図示しない成形機の電動式型締め機構により型締め力25トンを発生させて可動金型25および固定金型24を閉鎖しながら、まず自動弁7aを1秒間開き自動弁7bまでの配管内に攪拌槽4より圧力18MPaの超臨界流体および修飾ナノカーボンを充満させた。その後、自動弁7aを閉じた。   While the movable mold 25 and the fixed mold 24 are closed by generating a clamping force of 25 tons by an electric mold clamping mechanism of a molding machine (not shown), first, the automatic valve 7a is opened for 1 second and the pipe to the automatic valve 7b is opened. The supercritical fluid having a pressure of 18 MPa and the modified nanocarbon were filled from the stirring tank 4. Thereafter, the automatic valve 7a was closed.

本実施例の成形装置においては該自動弁7aから自動弁7bまでの配管長およびその内容積によって、金型へ導入する溶質である修飾ナノカーボンの溶解した超臨界流体の量を制御できる。次に自動弁7bを開き導入配管22から金型内へ超臨界流体およびナノカーボンを導入した。それと同時に、自動弁7cを開き、さらに連続して自動弁7aを再度開き、エントレーナ溶解槽6よりエトレーナを混合した圧力18MPaの超臨界流体を導入した。   In the molding apparatus of the present embodiment, the amount of supercritical fluid in which modified nanocarbon, which is a solute to be introduced into the mold, is dissolved can be controlled by the pipe length from the automatic valve 7a to the automatic valve 7b and its internal volume. Next, the automatic valve 7b was opened, and the supercritical fluid and nanocarbon were introduced from the introduction pipe 22 into the mold. At the same time, the automatic valve 7c was opened, and the automatic valve 7a was continuously opened again, and a supercritical fluid having a pressure of 18 MPa mixed with the etrainer was introduced from the entrainer dissolution tank 6.

次に図2(a)に示す通り金型内に超臨界流体およびナノカーボンを導入した状態において、溶融樹脂30を射出充填した。キャビティ内に充満した前記導入超臨界流体は溶融樹脂30にファウンテンフロー(噴水)効果により表面配向していく。配向しない分は、図2(b)に示すようにキャビティ21の外に設けられた滞留空間27に追い出されていく。   Next, as shown in FIG. 2A, the molten resin 30 was injected and filled in a state where the supercritical fluid and nanocarbon were introduced into the mold. The introduced supercritical fluid filled in the cavity is oriented on the surface of the molten resin 30 by a fountain flow (fountain) effect. As shown in FIG. 2B, the portion that is not oriented is expelled to the staying space 27 provided outside the cavity 21.

本実施例においては、充填途中に自動弁7eを開放することで滞留空間27の余剰な超臨界流体およびナノカーボンを排出配管28より回収槽13に排出した。その際、導入配管22からはナノカーボンの溶解していない経路(自動弁7cから自動弁7aへ、自動弁7aから自動弁7bへ)からの超臨界流体が導入されている。   In the present embodiment, the supervalve fluid and the nanocarbon in the stay space 27 were discharged from the discharge pipe 28 to the recovery tank 13 by opening the automatic valve 7e during filling. At that time, a supercritical fluid is introduced from the introduction pipe 22 from a route (not from the automatic valve 7c to the automatic valve 7a, from the automatic valve 7a to the automatic valve 7b) where nanocarbon is not dissolved.

よって、充填後に、キャビティ21外より排出されたナノカーボンは図2(c)に示す通り、溶融プラスチックが金型で冷却している間にエントレーナを含有する超臨界流体によって、回収槽にすべて回収される。   Therefore, after filling, the nanocarbon discharged from outside the cavity 21 is all recovered in the recovery tank by the supercritical fluid containing the entrainer while the molten plastic is cooled by the mold as shown in FIG. 2 (c). Is done.

本実施例においては、充填後回収の工程を行った後、自動弁7a、7bを順に閉鎖して超臨界流体の供給を停止し導入配管22、滞留空間27、排出配管28の系を大気圧に減圧した。その後、ノズル29から溶融プラスチックをスクリュー14の保圧制御により追加充填し発泡およびヒケを抑制した。   In this embodiment, after performing the recovery process after filling, the automatic valves 7a and 7b are closed in order to stop the supply of the supercritical fluid, and the system of the introduction pipe 22, the retention space 27, and the discharge pipe 28 is set to atmospheric pressure. The pressure was reduced. Thereafter, molten plastic was additionally filled from the nozzle 29 by controlling the pressure of the screw 14 to suppress foaming and sink marks.

なお、自動弁7aを閉じた後、前記のように自動弁7gを一時開放し、ついで自動弁7hを順に開いて、減圧された攪拌槽4内部の圧を復帰させる。その後、前記したスクリュー14の可塑化混練工程に移行する。   After the automatic valve 7a is closed, the automatic valve 7g is temporarily opened as described above, and then the automatic valve 7h is opened in order to restore the pressure in the stirred tank 4 that has been reduced. Thereafter, the process proceeds to the plasticizing and kneading step of the screw 14 described above.

なお、回収槽は図示しないリリーフ弁にて減圧され、エントレーナと修飾ナノカーボンおよびCOに分離されそれぞれ再利用できる。 The recovery tank is decompressed by a relief valve (not shown), separated into an entrainer, modified nanocarbon, and CO 2 and can be reused.

本実施例において作製したプラスチック成形品のサンプルにおいて、引っ張り強度を測定したところ、ナノカーボンを浸透させなかったものに対し2倍になっていた。また、表面の電気抵抗を測定したところ、1/10に低減していた。   When the tensile strength of the sample of the plastic molded product produced in this example was measured, it was twice that of the sample that was not infiltrated with nanocarbon. Moreover, when the electrical resistance of the surface was measured, it was reduced to 1/10.

本実施例において作製したプラスチック試験片を超臨界抽出装置(ISCO社製 SFXシステム1220)にて分析したところ、圧力30MPaの超臨界COにて溶質が抽出された。該溶質をTEMにて観察したところCNT構造物が確認された。IR分析にてNOに特徴的な1384cm−1付近のスペクトルを確認した。 When the plastic test piece produced in the present example was analyzed with a supercritical extraction device (SFX system 1220 manufactured by ISCO), the solute was extracted with supercritical CO 2 at a pressure of 30 MPa. When the solute was observed with a TEM, a CNT structure was confirmed. A spectrum around 1384 cm −1 characteristic of NO 2 was confirmed by IR analysis.

[実施例3]
前記化学式(2)の修飾カーボンナノチューブを用いた以外は実施例2と同様な装置を用い、同様な方法にてナノカーボンをポリマー内に浸透した。本実施例において作製したプラスチック試験片を超臨界抽出装置(ISCO社製 SFXシステム1220)にて分析したところ、圧力30MPaの超臨界COにて溶質が抽出された。該溶質をTEMにて観察したところCNT構造物が確認された。HNMR分析により(2)の生成を確認した。
[Example 3]
Except for using the modified carbon nanotube of the chemical formula (2), nanocarbon was permeated into the polymer by the same method using the same apparatus as in Example 2. When the plastic test piece produced in the present example was analyzed with a supercritical extraction device (SFX system 1220 manufactured by ISCO), the solute was extracted with supercritical CO 2 at a pressure of 30 MPa. When the solute was observed with a TEM, a CNT structure was confirmed. The production of (2) was confirmed by 1 HNMR analysis.

[実施例4]
図3に示す成形装置を用い、実施例2と同様な修飾ナノカーボンを樹脂成形品表面に選択的に配向させた。熱可塑性樹脂は実施例1と同様な材料を用いた。本実施例に用いた装置は、COボンベ18から超臨界流体発生装置3、更にナノカーボンやエントレーナと超臨界流体の攪拌槽4および金型へ導入するための自動弁7bまでの経路は実施例2に用いた装置と同様な構成である。本実施例においては、成形機可塑化シリンダー16内への超臨界流体および修飾ナノカーボンの導入は行わなかった。本実施例に用いた金型においては、固定金型24の表面に幅0.3mm深さ0.4mm長さ30mmの凹部溝23を2本、機械加工によって切削してある。該凹部溝23の両端における底部にはそれぞれ導入配管22に通じる孔が2本ずつ形成されている。
[Example 4]
Using the molding apparatus shown in FIG. 3, modified nanocarbon similar to that in Example 2 was selectively oriented on the surface of the resin molded product. The same material as in Example 1 was used as the thermoplastic resin. The apparatus used in the present embodiment has a route from the CO 2 cylinder 18 to the supercritical fluid generator 3 and further to the nanocarbon or entrainer and the supercritical fluid stirring tank 4 and the automatic valve 7b for introduction into the mold. The configuration is the same as that of the apparatus used in Example 2. In this example, supercritical fluid and modified nanocarbon were not introduced into the molding machine plasticizing cylinder 16. In the mold used in the present embodiment, two concave grooves 23 having a width of 0.3 mm, a depth of 0.4 mm, and a length of 30 mm are cut on the surface of the fixed mold 24 by machining. Two holes each leading to the introduction pipe 22 are formed at the bottom at both ends of the concave groove 23.

本実施例におけるプロセスを図3及び図4を用いて説明する。まず、下記に説明するように、従来と同様な方法にて可塑化および射出充填を行った。成形機可塑化シリンダー16内でホッパー26内におけるペレットをスクリュー14にて可塑化溶融させた。ついで、シャットオフバルブ19を開放し、スクリュー14を前進させることでノズル29および金型スプール20を経て、図4(a)に示す通り溶融樹脂31をキャビティ21内に充填した。   The process in the present embodiment will be described with reference to FIGS. First, as described below, plasticization and injection filling were performed in the same manner as in the prior art. The pellets in the hopper 26 were plasticized and melted by the screw 14 in the plasticizer cylinder 16 of the molding machine. Next, the shutoff valve 19 was opened, and the screw 14 was advanced to fill the cavity 21 with the molten resin 31 through the nozzle 29 and the mold spool 20 as shown in FIG.

このとき、固定金型24、可動金型25における図示しない温調回路の冷却水温度は100℃とした。金型温度を低くすることで、金型内における樹脂の粘度が高くなるので、1次充填時には図4(a)に示す通り金型表面凹部23Aには完全に充填されない。   At this time, the cooling water temperature of the temperature control circuit (not shown) in the fixed mold 24 and the movable mold 25 was 100 ° C. By lowering the mold temperature, the viscosity of the resin in the mold increases, so that the mold surface recess 23A is not completely filled as shown in FIG.

次に、実施例2と同様な方法で、自動弁7a〜7bの間における配管内に、所望のナノカーボンを溶解させた超臨界流体を滞留させた後、自動弁7bを開いた。それによって導入配管22を通じ該ナノカーボン等を図4(b)に示すように金型表面凹部23A内の樹脂に接触させた。さらに、実施例1と同様に、ナノカーボンが含有される超臨界流体の後方より、連続してエントレーナ含有の超臨界流体を導入した。さらに、スクリュー14を前進させることで保圧をかけ、樹脂31の内圧を上昇させ凹部溝23への転写を完了させた。   Next, after the supercritical fluid in which the desired nanocarbon was dissolved was retained in the piping between the automatic valves 7a to 7b by the same method as in Example 2, the automatic valve 7b was opened. As a result, the nanocarbon or the like was brought into contact with the resin in the mold surface recess 23A as shown in FIG. Further, as in Example 1, an entrainer-containing supercritical fluid was continuously introduced from the rear of the supercritical fluid containing nanocarbon. Furthermore, holding pressure was applied by moving the screw 14 forward, and the internal pressure of the resin 31 was increased to complete the transfer to the concave groove 23.

それによって、図4(c)に示す通り、最初に金型内に導入したナノカーボン含有超臨界流体がすべて樹脂内に浸透し余剰なナノカーボンが金型内に滞留しない。さらに、自動弁7aを閉鎖した後、7eを開き、導入配管22内に残留するエントレーナ含有超臨界流体を回収層に減圧開放した。その後、自動弁7bを閉じた。   As a result, as shown in FIG. 4C, all of the nanocarbon-containing supercritical fluid introduced into the mold first penetrates into the resin, and excess nanocarbon does not stay in the mold. Furthermore, after closing the automatic valve 7a, 7e was opened, and the entrainer-containing supercritical fluid remaining in the introduction pipe 22 was decompressed and opened to the recovery layer. Thereafter, the automatic valve 7b was closed.

成形品を冷却した後、可動金型25を開き製品を取り出した。本実施例における成形品においては金型の凹部溝23に対応した長さ30mmの凸部が2本形成され、該凸の両端は通電することを確認した。   After the molded product was cooled, the movable mold 25 was opened and the product was taken out. In the molded product in this example, it was confirmed that two convex portions having a length of 30 mm corresponding to the concave groove 23 of the mold were formed, and both ends of the convex portion were energized.

また本成形品の該凸部形成部を切り出し実施例2と同様に、超臨界抽出装置(ISCO社製 SFXシステム1220)にて分析したところ、圧力30MPaの超臨界COにて溶質が抽出された。該溶質をTEMにて観察したところCNT構造物が確認された。 Moreover, when the convex part formation part of this molded product was cut out and analyzed with a supercritical extraction apparatus (SFX system 1220 manufactured by ISCO) in the same manner as in Example 2, the solute was extracted with supercritical CO 2 at a pressure of 30 MPa. It was. When the solute was observed with a TEM, a CNT structure was confirmed.

以上、本発明の実施形態について説明したが、本発明はその要旨の範囲内で様々な変形及び変更が可能である。   As mentioned above, although embodiment of this invention was described, various deformation | transformation and a change are possible for this invention within the range of the summary.

本発明の一実施例に使用可能な金型及び成形装置の要部断面図である。It is principal part sectional drawing of the metal mold | die and molding apparatus which can be used for one Example of this invention. 図1におけるA部を部分的に拡大した図であって、本発明の一実施例に使用可能な成形装置を用いた金型キャビティ内におけるプロセス模式図である。FIG. 2 is a partially enlarged view of part A in FIG. 1, and is a process schematic diagram in a mold cavity using a molding apparatus that can be used in an embodiment of the present invention. 本発明の一実施例に使用可能な金型及び成形装置の要部断面図である。It is principal part sectional drawing of the metal mold | die and molding apparatus which can be used for one Example of this invention. 図3におけるB部を部分的に拡大した図であって、本発明の一実施例に使用可能な成形装置を用いた金型キャビティ内におけるプロセス模式図である。FIG. 4 is a partially enlarged view of a portion B in FIG. 3, and is a process schematic diagram in a mold cavity using a molding apparatus that can be used in an embodiment of the present invention.

符号の説明Explanation of symbols

1…ナノカーボン溶解槽
2…ナノカーボン誘導体
3…超臨界流体発生装置
14…スクリュー
18…COボンベ
21…金型キャビティ
24…固定金型
23A…金型表面凹部
25…可動金型
30,31…溶融樹脂
1 ... nanocarbon dissolving tank 2 ... nanocarbon derivative 3 ... supercritical fluid generator 14 ... Screw 18 ... CO 2 cylinder 21 ... die cavity 24 ... stationary mold 23A ... mold surface recess 25 ... movable die 30, 31 ... Molded resin

Claims (3)

熱可塑性樹脂を成形することによって成形品を製造する方法であって、
前記熱可塑性樹脂に相溶せず、かつ超臨界流体に溶解可能な物質を当該超臨界流体に溶解させる工程と、
可塑化スクリューを備える可塑化シリンダーにおいて、前記熱可塑性樹脂を可塑化する工程と、
上記超臨界流体及び当該超臨界流体に溶解させた物質を前記可塑化シリンダー内へ導入し、前記可塑化スクリューを用いて前記熱可塑性樹脂と混練する工程と、
上記混練した樹脂を成形部へ導入し成形する工程とを有することを特徴とする製造方法。
A method for producing a molded article by molding a thermoplastic resin,
Dissolving in the supercritical fluid a substance that is incompatible with the thermoplastic resin and is soluble in the supercritical fluid;
In a plasticizing cylinder comprising a plasticizing screw, the step of plasticizing the thermoplastic resin;
Introducing the supercritical fluid and a substance dissolved in the supercritical fluid into the plasticizing cylinder, and kneading with the thermoplastic resin using the plasticizing screw;
And a step of introducing the kneaded resin into a molding part and molding the resin.
前記超臨界流体が二酸化炭素であることを特徴とする請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the supercritical fluid is carbon dioxide. 熱可塑性樹脂を成形する成形装置であって、
前記熱可塑性樹脂に相溶せず、かつ超臨界流体に溶解可能な物質を当該超臨界流体に溶解する溶解機構と、
前記熱可塑性樹脂を可塑化する可塑化スクリューを備える可塑化シリンダーと、
上記超臨界流体及び当該超臨界流体に溶解された物質を前記可塑化シリンダー内へ導入する機構と、
前記可塑化シリンダー内において、前記可塑化スクリューを用いて前記熱可塑性樹脂に、上記超臨界流体及び当該超臨界流体に溶解させた物質を混練する機構と、
上記混練した樹脂が導入される成形部とを有することを特徴とする成形装置。

A molding apparatus for molding a thermoplastic resin,
A dissolution mechanism that dissolves in the supercritical fluid a substance that is incompatible with the thermoplastic resin and is soluble in the supercritical fluid;
A plasticizing cylinder comprising a plasticizing screw for plasticizing the thermoplastic resin;
A mechanism for introducing the supercritical fluid and a substance dissolved in the supercritical fluid into the plasticizing cylinder;
In the plasticizing cylinder, a mechanism for kneading the supercritical fluid and a substance dissolved in the supercritical fluid into the thermoplastic resin using the plasticizing screw;
And a molding unit into which the kneaded resin is introduced.

JP2007277835A 2007-10-25 2007-10-25 Method for manufacturing molded product and molding apparatus Expired - Lifetime JP4570651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277835A JP4570651B2 (en) 2007-10-25 2007-10-25 Method for manufacturing molded product and molding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277835A JP4570651B2 (en) 2007-10-25 2007-10-25 Method for manufacturing molded product and molding apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003390757A Division JP4062619B2 (en) 2003-11-20 2003-11-20 Molded product and method for producing molded product

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010108858A Division JP4717147B2 (en) 2010-05-11 2010-05-11 Manufacturing method of molded products

Publications (2)

Publication Number Publication Date
JP2008080809A true JP2008080809A (en) 2008-04-10
JP4570651B2 JP4570651B2 (en) 2010-10-27

Family

ID=39352115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277835A Expired - Lifetime JP4570651B2 (en) 2007-10-25 2007-10-25 Method for manufacturing molded product and molding apparatus

Country Status (1)

Country Link
JP (1) JP4570651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380798B (en) * 2008-10-16 2011-07-20 吉林大学珠海学院 Micropore injection molding apparatus
JP2013241019A (en) * 2013-07-22 2013-12-05 Hitachi Maxell Ltd Method of manufacturing molding article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032951A2 (en) * 1999-11-02 2001-05-10 University Of Massachusetts Chemical fluid deposition for the formation of metal and metal alloy films on patterned and unpatterned substrates
JP2001316832A (en) * 2000-02-22 2001-11-16 Cosmo Research Inst Pre-treating of plating, plating method of plastic, production of its plating material and plating apparatus
JP2002307530A (en) * 2001-04-09 2002-10-23 Japan Steel Works Ltd:The Degassing method using extruder and degassing device
JP2002355880A (en) * 2001-05-31 2002-12-10 Japan Steel Works Ltd:The Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid
JP2003154526A (en) * 2001-11-22 2003-05-27 Japan Steel Works Ltd:The Method and equipment for injecting supercritical fluid and injection holding machine having the equipment
JP2003320556A (en) * 2002-05-01 2003-11-11 Asahi Kasei Corp Surface modifying injection molding method
JP3806102B2 (en) * 2002-05-22 2006-08-09 日立マクセル株式会社 Molded product, injection molding method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001032951A2 (en) * 1999-11-02 2001-05-10 University Of Massachusetts Chemical fluid deposition for the formation of metal and metal alloy films on patterned and unpatterned substrates
JP2001316832A (en) * 2000-02-22 2001-11-16 Cosmo Research Inst Pre-treating of plating, plating method of plastic, production of its plating material and plating apparatus
JP2002307530A (en) * 2001-04-09 2002-10-23 Japan Steel Works Ltd:The Degassing method using extruder and degassing device
JP2002355880A (en) * 2001-05-31 2002-12-10 Japan Steel Works Ltd:The Kneading/devolatilizing extrusion molding apparatus utilizing supercritical fluid
JP2003154526A (en) * 2001-11-22 2003-05-27 Japan Steel Works Ltd:The Method and equipment for injecting supercritical fluid and injection holding machine having the equipment
JP2003320556A (en) * 2002-05-01 2003-11-11 Asahi Kasei Corp Surface modifying injection molding method
JP3806102B2 (en) * 2002-05-22 2006-08-09 日立マクセル株式会社 Molded product, injection molding method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380798B (en) * 2008-10-16 2011-07-20 吉林大学珠海学院 Micropore injection molding apparatus
JP2013241019A (en) * 2013-07-22 2013-12-05 Hitachi Maxell Ltd Method of manufacturing molding article

Also Published As

Publication number Publication date
JP4570651B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
US9718217B2 (en) Kneading apparatus, method for producing thermoplastic resin molded product, and foam injection molding method
JP3998374B2 (en) Method for adding supercritical carbon dioxide and method for producing thermoplastic resin foam using the addition method
EP2957411B1 (en) Method for producing molded foam body
JP4758732B2 (en) Thermoplastic injection molding method using supercritical fluid
WO2015174255A1 (en) Method for manufacturing molded article, and device for manufacturing molded article
JP2013545628A (en) Polymer pellets containing supercritical fluids and methods for their production and use
JPH10230528A (en) Thermoplastic resin foamed injection-molded body and manufacture thereof
CN111253677A (en) Low-density polypropylene bead foam, and preparation method and application thereof
JP4570651B2 (en) Method for manufacturing molded product and molding apparatus
EP1287964A1 (en) Method and device for injection-molding thermoplastic resin formed product
JP4062619B2 (en) Molded product and method for producing molded product
JP3878962B1 (en) Pre-plating method and plating method for polymer substrate and method for producing molded article made of thermoplastic resin
JP4717147B2 (en) Manufacturing method of molded products
JP2005272541A (en) Polymer and thermoplastic resin containing nanocarbon, molded product molded from the thermoplastic resin, and its manufacturing method
JP2010253738A (en) Method for manufacturing nano-carbon dispersion molded body, and nano-carbon dispersion molded body
JP2007051220A (en) Surface modification process
JP2007131725A (en) Method of surface modification for thermoplastic resin
JP2004017285A (en) Method for molding thin wall foamed molding, thin wall foamed molding and apparatus for molding foamed molding
JP2004098335A (en) Screw for injection-molding foam
JP2003261707A (en) Method for producing resin foam
JP2014155972A (en) Method for producing nanoparticle, method for producing molded article, method for producing molded article having plating film, method for producing resin pellet, nanoparticle, molded article and resin pellet
JP4105214B1 (en) Plating film forming method, polymer member and manufacturing method thereof
CN109906138B (en) Method and apparatus for producing foam molded body
JP2005205898A (en) Injection molding method, molded article and injection molding apparatus
JP6830596B2 (en) Manufacturing method of plated molded product and plated molded product

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4570651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term