JP2008080214A - Metal catalyst carrier - Google Patents

Metal catalyst carrier Download PDF

Info

Publication number
JP2008080214A
JP2008080214A JP2006261454A JP2006261454A JP2008080214A JP 2008080214 A JP2008080214 A JP 2008080214A JP 2006261454 A JP2006261454 A JP 2006261454A JP 2006261454 A JP2006261454 A JP 2006261454A JP 2008080214 A JP2008080214 A JP 2008080214A
Authority
JP
Japan
Prior art keywords
exhaust gas
flat plate
metal catalyst
catalyst carrier
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006261454A
Other languages
Japanese (ja)
Inventor
Katsufumi Inoue
勝文 井上
Yasunari Hanaki
保成 花木
Shinko Takatani
真弘 高谷
Toru Sekiba
徹 関場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Marelli Corp
Original Assignee
Nissan Motor Co Ltd
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Calsonic Kansei Corp filed Critical Nissan Motor Co Ltd
Priority to JP2006261454A priority Critical patent/JP2008080214A/en
Priority to PCT/JP2007/062776 priority patent/WO2008038444A1/en
Publication of JP2008080214A publication Critical patent/JP2008080214A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2821Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal catalyst carrier enabling a maximum increase of a purification capability of exhaust gas to aim a further improvement in exhaust gas purification efficiency. <P>SOLUTION: The metal catalyst carrier 1 has a constitution that a flat plate 3 and a long pitch corrugated sheet 2 of a thin sheet are alternatively overlapped in multiple to form many cell passages 4 through which the exhaust gas passes between the long pitch corrugated sheet 2 and the flat plate 3, many slit openings 5, 6 are formed on the long pitch corrugated sheet 2 and the flat plate 3, and a slurry in which a catalytic component is mixed is applied on the surfaces of the long pitch corrugated sheet 2 and the flat plate 3. The sum of the length L of an opening rim portions 5a, 6a facing an exhaust gas inflow side, which are leading edges to the flow of the exhaust gas in each slit opening 5, 6 is set to be 4-8 times the sum of the length of the exhaust gas inflow side end rim portions of the long pitch corrugated sheet 2 and the flat plate 3, which are the leading edges to the exhaust gas flow. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車エンジンから排出される排気ガス(反応ガス)の浄化に使用される金属製触媒担体に関する。   The present invention relates to a metal catalyst carrier used for purifying exhaust gas (reactive gas) discharged from an automobile engine.

この種の金属製触媒担体は、ステンレスなどからなる金属製薄板の波板(大波板)と平板(または小波板)を重ねて多重に巻回し波板と平板との間に排気ガスが通過する多数のセル通路を形成すると共に、前記波板と平板のうち少なくともいずれか一方に所定間隔のもとに多数のスリット孔を形成することにより、セル通路内を通過する排気ガスに対し乱流を積極的に起こさせ、当該排気ガスを波板と平板の表面にコーティングされた触媒に接触する機会をできるだけ増やし、これにより、排気ガス浄化性能を向上させるようにした構造のものがある(例えば、特許文献1、2など参照。)。   In this type of metal catalyst carrier, a metal thin plate corrugated plate (large corrugated plate) and a flat plate (or small corrugated plate) made of stainless steel or the like are overlapped and wound in multiple layers so that exhaust gas passes between the corrugated plate and the flat plate. A large number of cell passages are formed, and at least one of the corrugated plate and the flat plate is formed with a large number of slit holes at a predetermined interval, so that turbulent flow is generated with respect to the exhaust gas passing through the cell passage. There is a structure that actively raises the exhaust gas and increases the chance of contacting the exhaust gas with the catalyst coated on the surface of the corrugated plate and the flat plate as much as possible, thereby improving the exhaust gas purification performance (for example, (See Patent Documents 1 and 2).

通常、一つのセル通路内を流れる排気ガスは、例えば図8の触媒反応プロセス説明図に示すように、入口からその担体壁101に沿って流れの境界層103を形成するため、該担体壁101の表面にコーティングされている触媒層102への反応物質の拡散が阻害されてしまう。この物質移動を改善したのが、図9(排気ガス流れイメージ図)に示すスリット構造である。   Normally, the exhaust gas flowing in one cell passage forms a boundary layer 103 of the flow from the inlet along the carrier wall 101 as shown in the explanatory diagram of the catalytic reaction process in FIG. Diffusion of the reactants to the catalyst layer 102 coated on the surface of the catalyst is inhibited. The slit structure shown in FIG. 9 (exhaust gas flow image diagram) improves the mass transfer.

スリット孔104により形成されるリーディングエッジは、図10(A)に示すように、セル通路内にできた境界層103を途中で寸断し、エッジ先端では境界層103が薄くなって触媒層102への物質移動を活発化させ、その結果、図10(B)に示すように、反応物質移動率が各スリット孔104のリーディングエッジ部において最も高くなる。そのため、上述のように、多数のスリット孔104を形成してリーディングエッジを増やすことにより、平均移動率が高くなり、これにより、全体として排気ガス浄化性能を向上させることができる。
特開平8−103664号公報 特開2006−150194号公報
As shown in FIG. 10A, the leading edge formed by the slit hole 104 cuts the boundary layer 103 formed in the cell passage in the middle, and the boundary layer 103 becomes thin at the edge tip, leading to the catalyst layer 102. As a result, as shown in FIG. 10B, the reactant transfer rate becomes the highest at the leading edge portion of each slit hole 104. Therefore, as described above, by forming a large number of slit holes 104 and increasing the leading edge, the average mobility is increased, and as a result, the exhaust gas purification performance can be improved as a whole.
JP-A-8-103664 JP 2006-150194 A

前記したように、多数のスリット孔を形成してリーディングエッジの数を増やすことにより、平均移動率が高くなり、これにより、全体として排気ガス浄化性能を向上させ得ることは理論上明らかである。   As described above, by forming a large number of slit holes and increasing the number of leading edges, it is theoretically clear that the average migration rate can be increased, thereby improving the exhaust gas purification performance as a whole.

しかしながら、特許文献1に記載の技術では、触媒の活性化温度まで短時間で昇温させることを目的として排ガス流入側寄りに多くのスリット孔を設けているため、そのスリット孔開口率が担体全体の30〜50%にもなっていることから、反応面積が減少し、最高浄化率の点からみると不利に働く。   However, in the technique described in Patent Document 1, since many slit holes are provided near the exhaust gas inflow side for the purpose of raising the temperature to the activation temperature of the catalyst in a short time, the slit hole opening ratio is the entire carrier. Therefore, the reaction area is reduced, which is disadvantageous in terms of the maximum purification rate.

また、特許文献2に示す技術では、排気ガス浄化性能を最大限に高めるためにはスリット孔の形成個数(リーディングエッジの合計長さ)をある個数に定めたが、これでは未だ十分な排ガス浄化効率を引き出しているといは言えない。   In the technique shown in Patent Document 2, the number of slit holes (the total length of leading edges) is set to a certain number in order to maximize the exhaust gas purification performance, but this is still sufficient exhaust gas purification. It cannot be said that it is drawing efficiency.

そこで、本発明は、上述の実状に鑑みてなされたものであり、より一層の排ガス浄化効率の向上を図るべく、排気ガス浄化性能を最大限に高め得ることのできる金属製触媒担体を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described circumstances, and provides a metal catalyst carrier capable of maximizing the exhaust gas purification performance in order to further improve the exhaust gas purification efficiency. For the purpose.

本発明は、薄板の大波板と小波板または平板を交互に多重に重ねて該大波板と小波板または平板との間に排気ガスが通過する多数のセル通路が形成され、前記大波板と小波板または平板に多数のスリット孔が形成され、前記大波板と小波板または平板の表面に触媒成分を混入したスラリーがコーティングされた金属製触媒担体であって、前記各スリット孔における排気ガスの流れに対しリーディングエッジとなる排気ガス流入側と対面する開口縁部の長さの合計が、排気ガスの流れに対しリーディングエッジとなる前記大波板と小波板または平板の排気ガス流入側端縁部の長さの合計の4〜8倍になるように設定することを特徴とする。   In the present invention, a large number of cell passages through which exhaust gas passes are formed between a large wave plate and a small wave plate or flat plate by alternately superposing thin large wave plates and small wave plates or flat plates. A metal catalyst carrier in which a large number of slit holes are formed in a plate or a flat plate, and a slurry in which a catalyst component is mixed is coated on the surface of the large wave plate and the small wave plate or the flat plate, and the flow of exhaust gas in each slit hole The sum of the lengths of the opening edges facing the exhaust gas inflow side, which is the leading edge, is the sum of the length of the large wave plate and the small wave plate or the flat gas exhaust side edge, which is the leading edge with respect to the exhaust gas flow. It is set to be 4 to 8 times the total length.

また、前記スリット孔の前記排気ガスの流れ方向における幅を1.2mm〜4mmとしたことを特徴とする。   Further, the width of the slit hole in the flow direction of the exhaust gas is 1.2 mm to 4 mm.

本発明の金属製触媒担体では、リーディングエッジの長さを最適化したので排ガス浄化効率が向上する。更に、幅も考慮してスリット孔を最適化したので、より一層の排ガス浄化効率の向上を図ることができ、且つ排気ガス浄化性能を最大限に高め得ることができる。また、本発明の金属製触媒担体によれば、無駄に多くのスリット孔を増やすことなく排ガス浄化性能を高めることができることから、触媒(貴金属)を減らせることができコストダウンを実現できる。   In the metal catalyst carrier of the present invention, the exhaust gas purification efficiency is improved because the length of the leading edge is optimized. Furthermore, since the slit hole is optimized in consideration of the width, the exhaust gas purification efficiency can be further improved and the exhaust gas purification performance can be maximized. In addition, according to the metal catalyst carrier of the present invention, the exhaust gas purification performance can be improved without increasing a lot of slit holes unnecessarily, so that the catalyst (noble metal) can be reduced and the cost can be reduced.

以下、本発明を適用した具体的な実施の形態について図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

図1は本実施の形態の金属製触媒担体を示す斜視図、図2は大波板と平板を重ねて巻回して金属製触媒担体を製造する途中の状態を示す斜視図である。   FIG. 1 is a perspective view showing a metal catalyst carrier of the present embodiment, and FIG. 2 is a perspective view showing a state in the middle of manufacturing a metal catalyst carrier by winding a large wave plate and a flat plate.

金属製触媒担体1は、ステンレスなどの金属製薄板からなる大波板2と平板33とを重ね、平板3を外側にしてこれらを多重に巻回することによってハニカム構造としたもので、このハニカム通路4(セル通路)の表面には、アルミナ等からなる触媒担持体層が形成され、この触媒担体層に触媒成分が担持されることにより、排ガス浄化触媒とされ、内燃機関の排気経路に配置されることにより、排気ガス中のHC、CO、NOx等(反応物質)を触媒反応で浄化させ、生成物質(H2O、CO2、N2)として排出させる働きをする。   The metal catalyst carrier 1 has a honeycomb structure in which a large corrugated plate 2 made of a thin metal plate such as stainless steel and a flat plate 33 are overlapped, and the flat plate 3 is wound outwardly to form a honeycomb structure. A catalyst carrier layer made of alumina or the like is formed on the surface of 4 (cell passage), and a catalyst component is supported on the catalyst carrier layer to be an exhaust gas purification catalyst, which is disposed in the exhaust path of the internal combustion engine. As a result, HC, CO, NOx, etc. (reactive substances) in the exhaust gas are purified by a catalytic reaction and discharged as product substances (H2O, CO2, N2).

前記大波板2には、波状に成形する前に予め所定間隔のもとに所定長さにて多数のスリット孔5が形成される一方、前記平板3にも所定間隔のもとに多数のスリット孔6が形成されている。   The large wave plate 2 is formed with a number of slit holes 5 with a predetermined length and a predetermined length before being formed into a wave shape, while the flat plate 3 has a number of slits with a predetermined interval. A hole 6 is formed.

すなわち、金属製触媒担体1において、排気ガス浄化性能を向上させるためには、セル通路4内を通過する排気ガスに対し乱流を積極的に起こさせ、排気ガスが触媒に接触する機会をできるだけ増やすことが有効であり、このため、大波板2および平板3にセル通路4に対し直交する方向(排ガスの流れ方向と直交する方向)に長い多数のスリット孔5、6を開けて大波板2と平板3で仕切られたセル通路4相互間の流通を可能とし、セル通路4内における排気ガスの流れを幅方向により多く乱流化させることにより、排気ガス浄化性能を向上させるようになっている。   That is, in the metal catalyst carrier 1, in order to improve the exhaust gas purification performance, turbulent flow is actively caused to the exhaust gas passing through the cell passage 4, and the opportunity for the exhaust gas to contact the catalyst is as much as possible. Therefore, it is effective to increase the number of slits 5 and 6 that are long in the direction perpendicular to the cell passage 4 (direction perpendicular to the flow direction of the exhaust gas) in the large wave plate 2 and the flat plate 3. And the flow between the cell passages 4 partitioned by the flat plate 3 and the flow of the exhaust gas in the cell passage 4 is made more turbulent in the width direction, thereby improving the exhaust gas purification performance. Yes.

また、スリット孔5、6の開口縁部で形成されるリーディングエッジは、前記した図10(A)に示すように、セル通路4内にできた境界層103を途中で寸断し、エッジ先端では境界層103が薄くなって触媒層102への物質移動を活発化させ、その結果、図10(B)に示すように、反応物質移動率が各スリット孔104のリーディングエッジ部において最も高くなる。従って、上述のように、多数のスリット孔5、6を形成してリーディングエッジの数を増やすことにより、全体として排気ガス浄化性能を向上させることができる。   Further, the leading edge formed at the opening edge of the slit holes 5 and 6 cuts the boundary layer 103 formed in the cell passage 4 in the middle as shown in FIG. The boundary layer 103 is thinned to activate the mass transfer to the catalyst layer 102. As a result, the reactant transfer rate becomes the highest at the leading edge portion of each slit hole 104 as shown in FIG. Therefore, as described above, the exhaust gas purification performance can be improved as a whole by forming a large number of slit holes 5 and 6 and increasing the number of leading edges.

リーディングエッジの数と排気ガス浄化性能(浄化率)との関係、即ち、排気ガス浄化性能を最大限に高めるためにはスリット孔5、6の形成個数(リーディングエッジの合計長さ)を如何ほどに設定し、そのスリット孔5、6の幅をどの程度にすればよいかという点については、いまだ解明されてはいなかった。   The relationship between the number of leading edges and the exhaust gas purification performance (purification rate), that is, how many slit holes 5 and 6 are formed (total length of leading edges) in order to maximize the exhaust gas purification performance. However, it has not yet been clarified how much the width of the slit holes 5 and 6 should be set.

そこで、本実施の形態では、スリット孔5、6の形成個数(リーディングエッジの合計長さ)と、スリット孔5、6の幅の最適範囲を検証するために以下のような実験を行った。   Therefore, in the present embodiment, the following experiment was performed in order to verify the optimum number of slit holes 5 and 6 (the total length of leading edges) and the width of the slit holes 5 and 6.

図3(A)はスリット孔パターンを最適化するために実験に供した金属製触媒担体の製造途中工程を示す斜視図、図3(B)はスリット孔パターンを最適化するために実験に供した金属製触媒担体を輪切りにして各担体を所定距離離して配置させた状態を示す斜視図、図4はスリット孔を拡大して示す平面図、図5はリーディングエッジ数と熱の移動量の関係を示す特性図である。   FIG. 3A is a perspective view showing a process in the middle of manufacturing a metal catalyst carrier used for an experiment for optimizing the slit hole pattern, and FIG. 3B is used for an experiment for optimizing the slit hole pattern. FIG. 4 is a plan view showing an enlarged slit hole, and FIG. 5 shows the number of leading edges and the amount of heat transfer. It is a characteristic view which shows a relationship.

実験に使用したサンプルは、図3に示すように、大波板2と平板3を重ねて巻回した後、触媒を塗布した金属製触媒担体を、その長手方向に輪切りにして10個の担体N1〜N10に分割し、これら担体N1〜N10を所定の間隔βを置いて同一線上に配置した。各担体N1〜N10の配置間隔βは、図4に示すスリット孔5、6の前記排気ガスの流れ方向における幅に見立てている。また、10個の担体N1〜N10に分割したことで、リーディングエッジの数を1〜10と見立てている。なお、ここでは、リーディングエッジは、スリット孔5、6における排気ガス流入側と対面する開口縁部(図4の斜線部)5a、6aを指し、その開口縁部5a、6aの長さLをリーディングエッジ長さと定義する。また、N1〜N10をリーディングエッジ数Nと定義する。   As shown in FIG. 3, the sample used in the experiment was prepared by winding the large wave plate 2 and the flat plate 3 and then winding the metal catalyst carrier coated with the catalyst in the longitudinal direction of 10 carriers N1. The carriers N1 to N10 are arranged on the same line with a predetermined interval β. The arrangement interval β between the carriers N1 to N10 is assumed to be the width of the slit holes 5 and 6 shown in FIG. 4 in the exhaust gas flow direction. Moreover, the number of leading edges is assumed to be 1 to 10 by dividing the carrier into 10 carriers N1 to N10. Here, the leading edge refers to the opening edges (hatched portions in FIG. 4) 5a, 6a facing the exhaust gas inflow side in the slit holes 5, 6, and the length L of the opening edges 5a, 6a is defined as the leading edge. Defined as leading edge length. N1 to N10 are defined as the leading edge number N.

実験は、触媒表面への物質移動は、空気との熱交換と同じ挙動を示すことが解っている為、空気を通過させ前記間隔βを1mm、1.2mm、2mm、4mm、6mmの5パターンで配置した金属製触媒担体にそれぞれ排気ガスを流し、各担体から排気ガス側に移動する熱量(空気が担体壁面から受け取った総熱量)をシュミュレーションによる計算値で求めて担体性能を評価した。この実験結果を図5及び表1に示す。

Figure 2008080214
Experiments show that mass transfer to the catalyst surface shows the same behavior as heat exchange with air, so let the air pass and the spacing β is 5 patterns of 1 mm, 1.2 mm, 2 mm, 4 mm, 6 mm. Exhaust gas was allowed to flow through each of the metal catalyst carriers arranged in Step 1, and the amount of heat transferred from each carrier to the exhaust gas side (total amount of heat received by the air from the wall surface of the carrier) was calculated from the calculated values by simulation to evaluate the carrier performance. The experimental results are shown in FIG.
Figure 2008080214

この実験結果から判るように、リーディングエッジの数Nが4〜8で、且つ前記間隔βが1.2〜4mmで最も優れた担体性能が得られていることが判る。つまり、リーディングエッジ長さLに相当するN数は、前記スリット孔5、6の幅βにもよるが、N=4、5、8で何れもスリット孔5、6を形成していない金属製触媒担体に比べて担体性能が向上するため、金属製触媒担体1における排気ガス流入側端縁部7のリーディングエッジ長さを1とした時のエッジの長さは、それぞれ4倍、5倍、8倍とすることが最も担体性能が上がる。前記間隔βが6mmとなると、1.2mm、2mm及び4mmの場合と比べて極端に担体性能が低下する。   As can be seen from the experimental results, the most excellent carrier performance is obtained when the number N of leading edges is 4 to 8 and the interval β is 1.2 to 4 mm. That is, the number N corresponding to the leading edge length L depends on the width β of the slit holes 5 and 6, but N = 4, 5, and 8 and no metal is formed on the slit holes 5 and 6. Since the carrier performance is improved as compared with the catalyst carrier, the edge length when the leading edge length of the exhaust gas inflow side edge 7 of the metal catalyst carrier 1 is 1 is 4 times, 5 times, The carrier performance is most improved when the ratio is 8 times. When the interval β is 6 mm, the carrier performance is extremely reduced as compared with the cases of 1.2 mm, 2 mm, and 4 mm.

また、金属製触媒担体1が使われる自動車用エンジンの走行状態での排気ガス流のレイノルズ数が100付近において金属担体の下流側端部(リーディングエッジと対抗する開口縁部から約1.0mm)は剥離部分が残る。この剥離部分の中にリーディングエッジがある場合、リーディングエッジによる層流部を薄くする効果が得られないため浄化性能は低下する。   Further, when the Reynolds number of the exhaust gas flow in the running state of the automobile engine using the metal catalyst carrier 1 is near 100, the downstream end of the metal carrier (about 1.0 mm from the opening edge facing the leading edge). The peeled part remains. If there is a leading edge in the peeled portion, the effect of thinning the laminar flow portion due to the leading edge cannot be obtained, and the purification performance is lowered.

したがって、本実施の形態では、各スリット孔5、6における排気ガスの流れに対しリーディングエッジとなる排気ガス流入側と対面する開口縁部5a,6aの長さLの合計が、排気ガスの流れに対しリーディングエッジとなる前記大波板2と小波板または平板3の排気ガス流入側端縁部7(金属製触媒担体の排気ガス流入端面におけるリーディングエッジの合計長さ)の長さの合計の4〜8倍になるように設定し、且つ、スリット孔5、6の前記排気ガスの流れ方向における幅βを1.2mm〜4mmとする。   Therefore, in this embodiment, the sum of the lengths L of the opening edges 5a and 6a facing the exhaust gas inflow side that becomes the leading edge with respect to the exhaust gas flow in the slit holes 5 and 6 is the flow of the exhaust gas. 4 of the total length of the exhaust wave inflow side edge portion 7 (the total length of the leading edge at the exhaust gas inflow end surface of the metal catalyst carrier) of the large wave plate 2 and the small wave plate or the flat plate 3 serving as leading edges. The width β of the slit holes 5 and 6 in the flow direction of the exhaust gas is set to 1.2 mm to 4 mm.

前記した実験結果により、担体性能が良かったリーディングエッジの長さを8倍、スリット孔5、6の幅βを2mmとしたときのスリット孔5、6のパターンを決め、担体試作を行い性能評価を行った。図6の(A)はそのときのスリット孔のパターン例を示し、(B)はその金属製触媒担体を示す。図7は、担体の体積と車両評価HC転化率を示す。   Based on the above experimental results, the pattern of the slit holes 5 and 6 is determined when the length of the leading edge, which has good carrier performance, is 8 times, and the width β of the slit holes 5 and 6 is 2 mm. Went. 6A shows an example of the slit hole pattern at that time, and FIG. 6B shows the metal catalyst carrier. FIG. 7 shows the volume of the carrier and the vehicle-evaluated HC conversion rate.

試作した金属触媒担体10は、大波板と平板を巻回し、その直径Dを102mmとし、長さXを61mm、91mm、121mmとした。スリット孔11の長さは5mm、幅は2mmとした。なお、図7の縦軸の車両評価HC転化率は、触媒に入る排ガスと出口での排ガスの浄化量を示し、◆は実施例、●及び○は比較例を示す。実施例◆は触媒の量PMを第1比較例に比べて5/10つまり半分とし、第1比較例●は触媒の量を10/10、第2比較例○は触媒の量を5/10としている。実施例、第1比較例、第2比較例、の特徴は、以下のようになっている。   The prototype metal catalyst carrier 10 was formed by winding a large wave plate and a flat plate, having a diameter D of 102 mm, and a length X of 61 mm, 91 mm, and 121 mm. The slit hole 11 had a length of 5 mm and a width of 2 mm. In addition, the vehicle evaluation HC conversion rate on the vertical axis in FIG. 7 indicates the purification amount of the exhaust gas entering the catalyst and the exhaust gas at the outlet, ◆ indicates an example, and ● and ○ indicate comparative examples. In Example ◆, the amount PM of the catalyst is 5/10, that is, halved compared to the first comparative example, the first comparative example ● is the amount of catalyst 10/10, and the second comparative example ○ is the amount of catalyst 5/10. It is said. The features of the example, the first comparative example, and the second comparative example are as follows.

実施例は、上記の直径D102mm、スリット孔11の長さ5mm、幅2mmで、長さXをそれぞれ61mm、91mm、121mmとしたものである。   In the embodiment, the diameter D is 102 mm, the slit hole 11 is 5 mm long and 2 mm wide, and the length X is 61 mm, 91 mm and 121 mm, respectively.

第1比較例は、実施例と同一寸法であるが、大波板と平板にはスリット孔を設けていないものを巻回したものである。   The first comparative example has the same dimensions as the example, but the large wave plate and the flat plate are wound with no slit holes.

第2比較例は、第1比較例と同一寸法、同一構造において、金属触媒担体に担持させた触媒の量を1/2にしたものである。   The second comparative example has the same dimensions and the same structure as the first comparative example, but halves the amount of the catalyst supported on the metal catalyst carrier.

この結果から判るように、担体の体積が同じである場合には、本発明品の方が車両評価HC転化率が高く、しかも触媒の量も少なくても済む。また、従来品と同じ車両評価HC転化率を得る場合には、担体の体積が小さく且つ触媒の量も少なくて済むことから、触媒の量を減らすことができ、コストダウンを図ることができる。また、本発明によれば、金属製触媒担体の小型化も実現できる。   As can be seen from this result, when the volume of the carrier is the same, the product of the present invention has a higher vehicle-evaluated HC conversion rate and a smaller amount of catalyst. Further, when the same vehicle evaluation HC conversion rate as that of the conventional product is obtained, since the volume of the carrier is small and the amount of the catalyst is small, the amount of the catalyst can be reduced and the cost can be reduced. Further, according to the present invention, the metal catalyst carrier can be downsized.

以上、本発明を適用した具体的な実施の形態について説明したが、本発明は上述の実施の形態に制限されることなく種々の変更が可能である。   Although specific embodiments to which the present invention is applied have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made.

例えば、上述の実施の形態では、金属製触媒担体1として、大波板2と平板3を巻回した構造としたが、大波板2とこれよりも小さな波形状とした小波板を巻回した構造の金属製触媒担体に本発明を適用してもよい。   For example, in the above-described embodiment, the metal catalyst carrier 1 has a structure in which the large wave plate 2 and the flat plate 3 are wound. However, the structure in which the large wave plate 2 and a small wave plate having a smaller wave shape are wound. The present invention may be applied to the metal catalyst carrier.

本実施の形態の金属製触媒担体を示す斜視図である。It is a perspective view which shows the metal catalyst carrier of this Embodiment. 大波板と平板を重ねて巻回して金属製触媒担体を製造する途中の状態を示す斜視図である。It is a perspective view which shows the state in the middle of manufacturing a metal catalyst support | carrier by overlapping and winding a large wave plate and a flat plate. 図3(A)はスリット孔パターンを最適化するために実験に供した金属製触媒担体の製造途中工程を示す斜視図、図3(B)はスリット孔パターンを最適化するために実験に供した金属製触媒担体を輪切りにして各担体を所定距離離して配置させた状態を示す斜視図である。FIG. 3A is a perspective view showing a process in the middle of manufacturing a metal catalyst carrier used for an experiment for optimizing the slit hole pattern, and FIG. 3B is used for an experiment for optimizing the slit hole pattern. FIG. 4 is a perspective view showing a state in which the metal catalyst carriers made are cut into circles and the carriers are arranged at a predetermined distance. スリット孔を拡大して示す平面図である。It is a top view which expands and shows a slit hole. リーディングエッジ数と熱の移動量の関係を示す特性図である。It is a characteristic view which shows the relationship between the number of leading edges and the amount of heat transfer. 図6(A)はスリット孔を最も最適化したときのスリット孔パターンの一例を示す図、図6(B)はそのときの金属製触媒担体の図である。FIG. 6A is a diagram showing an example of a slit hole pattern when the slit hole is most optimized, and FIG. 6B is a diagram of the metal catalyst carrier at that time. 実施例と比較例の担体体積と車両評価HC転化率との関係を示す特性図である。It is a characteristic view which shows the relationship between the support | carrier volume and vehicle evaluation HC conversion rate of an Example and a comparative example. 触媒反応プロセスを示す説明図である。It is explanatory drawing which shows a catalytic reaction process. 金属製触媒担体における排気ガス流れのイメージ図である。It is an image figure of the exhaust gas flow in a metal catalyst carrier. 境界層の破断状況及び反応物質移動率を示す図である。It is a figure which shows the fracture condition of a boundary layer, and a reactant transfer rate.

符号の説明Explanation of symbols

1…金属製触媒担体
2…大波板
3…平板
4…ハニカム通路(セル通路)
5、6…スリット孔
5a、6a…スリット孔の排気ガス流入側と対面する開口縁部
7…排気ガス流入側端縁部
DESCRIPTION OF SYMBOLS 1 ... Metal catalyst carrier 2 ... Large wave plate 3 ... Flat plate 4 ... Honeycomb channel (cell channel)
5, 6 ... Slit hole 5a, 6a ... Opening edge part facing exhaust gas inflow side of slit hole 7 ... Exhaust gas inflow side edge part

Claims (2)

薄板の大波板と小波板または平板を交互に多重に重ねて該大波板と小波板または平板との間に排気ガスが通過する多数のセル通路が形成され、前記大波板と小波板または平板に多数のスリット孔が形成され、前記大波板と小波板または平板の表面に触媒成分を混入したスラリーがコーティングされた金属製触媒担体であって、
前記各スリット孔における排気ガスの流れに対しリーディングエッジとなる排気ガス流入側と対面する開口縁部の長さの合計が、排気ガスの流れに対しリーディングエッジとなる前記大波板と小波板または平板の排気ガス流入側端縁部の長さの合計の4〜8倍になるように設定する
ことを特徴とする金属製触媒担体。
A large number of cell passages through which exhaust gas passes are formed between the large corrugated plate and the small corrugated plate or the flat plate by alternately stacking the large corrugated plate and the small corrugated plate or the flat plate. A metal catalyst carrier in which a large number of slit holes are formed and a slurry in which a catalyst component is mixed is coated on the surface of the large wave plate and the small wave plate or flat plate,
The large wave plate and the small wave plate or the flat plate in which the total length of the opening edge facing the exhaust gas inflow side which becomes the leading edge with respect to the exhaust gas flow in each slit hole becomes the leading edge with respect to the exhaust gas flow A metal catalyst carrier characterized by being set to be 4 to 8 times the total length of the end portion of the exhaust gas inflow side.
請求項1記載の金属製触媒担体であって、
前記スリット孔の前記排気ガスの流れ方向における幅βを1.2mm〜4mmとした
ことを特徴とする金属製触媒担体。
The metal catalyst carrier according to claim 1,
A metal catalyst carrier, wherein a width β of the slit hole in a flow direction of the exhaust gas is set to 1.2 mm to 4 mm.
JP2006261454A 2006-09-26 2006-09-26 Metal catalyst carrier Pending JP2008080214A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006261454A JP2008080214A (en) 2006-09-26 2006-09-26 Metal catalyst carrier
PCT/JP2007/062776 WO2008038444A1 (en) 2006-09-26 2007-06-26 Metallic catalyst support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006261454A JP2008080214A (en) 2006-09-26 2006-09-26 Metal catalyst carrier

Publications (1)

Publication Number Publication Date
JP2008080214A true JP2008080214A (en) 2008-04-10

Family

ID=39229885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261454A Pending JP2008080214A (en) 2006-09-26 2006-09-26 Metal catalyst carrier

Country Status (2)

Country Link
JP (1) JP2008080214A (en)
WO (1) WO2008038444A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090051A1 (en) * 2009-02-03 2010-08-12 カルソニックカンセイ株式会社 Metallic catalyst support and process for producing same
JP2016055273A (en) * 2014-09-12 2016-04-21 日本碍子株式会社 Honeycomb catalyst structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2017117917A (en) * 2014-10-28 2018-11-29 Конинклейке Филипс Н.В. CORRECTED FILTER DESIGN FOR AIR CLEANING AND METHOD OF AIR FILTRATION

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233123A (en) * 1989-03-08 1990-09-14 Usui Internatl Ind Co Ltd Apparatus for purifying exhaust gas
JPH0889814A (en) * 1994-09-20 1996-04-09 Nippondenso Co Ltd Metal carrier
JPH1147613A (en) * 1997-08-04 1999-02-23 Calsonic Corp Metal catalyst carrier
JP2002143693A (en) * 2000-11-15 2002-05-21 Nissan Motor Co Ltd Metal carrier
JP2004188328A (en) * 2002-12-11 2004-07-08 Calsonic Kansei Corp Metal catalyst carrier
JP2005152772A (en) * 2003-11-25 2005-06-16 Calsonic Kansei Corp Catalyst carrier made of metal
JP2005313083A (en) * 2004-04-28 2005-11-10 Calsonic Kansei Corp Catalyst carrier made of metal
JP2006150194A (en) * 2004-11-26 2006-06-15 Calsonic Kansei Corp Metal catalyst carrier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233123A (en) * 1989-03-08 1990-09-14 Usui Internatl Ind Co Ltd Apparatus for purifying exhaust gas
JPH0889814A (en) * 1994-09-20 1996-04-09 Nippondenso Co Ltd Metal carrier
JPH1147613A (en) * 1997-08-04 1999-02-23 Calsonic Corp Metal catalyst carrier
JP2002143693A (en) * 2000-11-15 2002-05-21 Nissan Motor Co Ltd Metal carrier
JP2004188328A (en) * 2002-12-11 2004-07-08 Calsonic Kansei Corp Metal catalyst carrier
JP2005152772A (en) * 2003-11-25 2005-06-16 Calsonic Kansei Corp Catalyst carrier made of metal
JP2005313083A (en) * 2004-04-28 2005-11-10 Calsonic Kansei Corp Catalyst carrier made of metal
JP2006150194A (en) * 2004-11-26 2006-06-15 Calsonic Kansei Corp Metal catalyst carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010090051A1 (en) * 2009-02-03 2010-08-12 カルソニックカンセイ株式会社 Metallic catalyst support and process for producing same
JP2010201413A (en) * 2009-02-03 2010-09-16 Calsonic Kansei Corp Metal catalyst carrier and production method thereof
CN102307663A (en) * 2009-02-03 2012-01-04 康奈可关精株式会社 Metallic catalyst support and process for producing same
US20120028797A1 (en) * 2009-02-03 2012-02-02 Calsonic Kansei Corporation Metal catalyst substrate and its manufacturing method
US8722572B2 (en) 2009-02-03 2014-05-13 Calsonic Kansei Corporation Metal catalyst substrate and its manufacturing method
JP2016055273A (en) * 2014-09-12 2016-04-21 日本碍子株式会社 Honeycomb catalyst structure

Also Published As

Publication number Publication date
WO2008038444A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
US7083860B2 (en) Metallic honeycomb body having at least partially perforated sheet-metal layers
JP4226884B2 (en) Metal catalyst carrier
JP2008080214A (en) Metal catalyst carrier
CA2776329C (en) Process and apparatus for purification of an exhaust gas from an internal combustion engine
JP2005313083A (en) Catalyst carrier made of metal
JP4126836B2 (en) Catalytic converter
JP2006231167A (en) Catalyst coating structure in metal catalyst carrier, and catalyst coating method in metal catalyst carrier
CN101316995A (en) Catalytic converter
JP2006026606A (en) Catalyst reactor
JP2006257889A (en) Catalytic converter
JP2010284599A (en) Honeycomb support for exhaust gas purification catalyst
JP2006150194A (en) Metal catalyst carrier
JP2008104918A (en) Metal catalyst carrier and its manufacturing method
JP6367729B2 (en) Honeycomb body and catalyst carrier
JPH04342819A (en) Catalyst carrier for internal combustion engine
JP2003251199A (en) Metal carrier, catalytic reactor and exhaust gas cleaning apparatus
JP4098648B2 (en) Catalyst carrier
JP2008259996A (en) Metal honeycomb carrier
JP2005262098A (en) Metal carrier for catalyst
JPH08312339A (en) Exhaust emission control device
JP2001038224A (en) Metal carrier
JPH09323132A (en) Structure of metallic catalyst carrier
JP2007218142A (en) Method for controlling exhaust emission
WO2019171401A1 (en) A catalyst substrate
JP2008104935A (en) Metallic catalyst carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305