JP2008078493A - EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF - Google Patents

EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF Download PDF

Info

Publication number
JP2008078493A
JP2008078493A JP2006257691A JP2006257691A JP2008078493A JP 2008078493 A JP2008078493 A JP 2008078493A JP 2006257691 A JP2006257691 A JP 2006257691A JP 2006257691 A JP2006257691 A JP 2006257691A JP 2008078493 A JP2008078493 A JP 2008078493A
Authority
JP
Japan
Prior art keywords
layer
gap
type
algainp
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006257691A
Other languages
Japanese (ja)
Inventor
Takashi Furuya
貴士 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006257691A priority Critical patent/JP2008078493A/en
Publication of JP2008078493A publication Critical patent/JP2008078493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce surface defects of the epitaxial wafer for an AlGaInP-based light emitting diode without deteriorating light emitting diode characteristics. <P>SOLUTION: The producing method of the epitaxial wafer for the AlGaInP-based light emitting diode laminate-forms at least an n-type (Al<SB>x1</SB>Ga<SB>1-x1</SB>)<SB>y1</SB>In<SB>1-y1</SB>P clad layer (3), (Al<SB>x2</SB>Ga<SB>1-x2</SB>)<SB>y2</SB>In<SB>1-y2</SB>P active layer (4), p-type (Al<SB>x3</SB>Ga<SB>1-x3</SB>)<SB>y3</SB>In<SB>1-y3</SB>P clad layer (5) and current diffusion layer (6) composed of GaP on a conductive substrate (1) using a metal organic vapor phase epitaxy. When the current diffusion layer (6) composed of GaP is grown, the current diffusion layer (6) is grown where the growing temperature of a GaP layer (6a) at the primary stage of the growth is higher than that of the p-type (Al<SB>x3</SB>Ga<SB>1-x3</SB>)<SB>y3</SB>In<SB>1-y3</SB>P clad layer (5) and thereafter, the remaining GaP layer (6b) is grown at a low temperature equal to or lower than the growing temperature of the p-type (Al<SB>x3</SB>Ga<SB>1-x3</SB>)<SB>y3</SB>In<SB>1-y3</SB>P clad layer (5). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、GaPを電流分散層に用いたAlGaInP系の発光ダイオード用エピタキシャルウェハ及びその作製方法に関するものである。   The present invention relates to an AlGaInP-based epitaxial wafer for light-emitting diodes using GaP as a current spreading layer and a method for producing the same.

従来、AlGaInP系の発光ダイオード(LED)用エピタキシャルウェハは、有機金属気相成長法(MOVPE法)を用いて作製されることが多い。MOVPE法とは、結晶基板をヒータで加熱し、そこにキャリアガスとして水素や窒素を用いてIII族原料となるTMG(トリメチルガリウム)、TMA(トリメチルアルミニウム)、TMI(トリメチルインジウム)など、V族原料となるAsH(アルシン)、PH(ホスフィン)などを供給し、熱分解反応により結晶基板上へ配列よく結晶を成長させる方法である。 Conventionally, an epitaxial wafer for an AlGaInP-based light emitting diode (LED) is often manufactured using a metal organic vapor phase epitaxy (MOVPE method). In the MOVPE method, a crystal substrate is heated with a heater, and hydrogen or nitrogen is used as a carrier gas, and group III materials such as TMG (trimethylgallium), TMA (trimethylaluminum), TMI (trimethylindium), etc. In this method, AsH 3 (arsine), PH 3 (phosphine), or the like, which is a raw material, is supplied, and crystals are grown on the crystal substrate with good alignment by a thermal decomposition reaction.

MOVPE法を用いて、AlGaInP系のダブルヘテロ構造の発光ダイオードを作製する従来方法では、650℃に加熱したn型GaAs基板上にn型AlGaInPクラッド層、発光部となるアンドープAlGaInP活性層、p型AlGaInPクラッド層を積層成長させ、その後、成長温度を700℃に昇温して電流分散層であるGaPを成長させている。こうして成長したエピタキシャルウェハをチップ形成プロセスにかけ、基板側にn型電極、電流分散層上にp型電極を形成した後、ウェハを切断して、LEDチップを作製している。   In the conventional method of manufacturing an AlGaInP-based double heterostructure light-emitting diode using the MOVPE method, an n-type AlGaInP cladding layer, an undoped AlGaInP active layer serving as a light-emitting portion, and a p-type on an n-type GaAs substrate heated to 650 ° C. An AlGaInP clad layer is grown by lamination, and then the growth temperature is raised to 700 ° C. to grow GaP as a current dispersion layer. The epitaxial wafer thus grown is subjected to a chip formation process. After forming an n-type electrode on the substrate side and a p-type electrode on the current distribution layer, the wafer is cut to produce an LED chip.

なお、関連する技術として、AlGaInPを電流拡散層(電流分散層)に用いたAlGaInP系のLED素子において、AlGaInP電流拡散層を2層(以上)とし、活性層に近い第1電流拡散層のキャリア濃度を1〜3×1018cm−3、活性層から遠い第2電流拡散層のキャリア濃度を1〜2×1019cm−3と高くし、少なくとも電流拡散層の成長初期において成長速度を0.5〜2μm/hと低くすると共に、活性層及びクラッド層の成長温度740℃以下に対し、第1及び第2電流拡散層の成長温度を750℃以上として、発光強度が高く、表面欠陥の少ないLED素子を製造するという提案がある(特許文献1参照)。
特開2002−280606号公報
As a related technique, in an AlGaInP-based LED element using AlGaInP as a current diffusion layer (current dispersion layer), the AlGaInP current diffusion layer has two layers (or more), and the carrier of the first current diffusion layer close to the active layer The concentration is set to 1 to 3 × 10 18 cm −3 , the carrier concentration of the second current diffusion layer far from the active layer is set to 1 to 2 × 10 19 cm −3, and the growth rate is set to 0 at least at the initial growth stage of the current diffusion layer. .5-2 μm / h, and the growth temperature of the first and second current diffusion layers is 750 ° C. or higher with respect to the growth temperature of the active layer and the cladding layer of 740 ° C. or lower. There is a proposal to manufacture a small number of LED elements (see Patent Document 1).
Japanese Patent Laid-Open No. 2002-280606

しかしながら、上述したように、従来方法により作製したエピタキシャルウェハ表面、即ちGaP電流分散層表面は、目視では鏡面であるが、顕微鏡観察やサーフスキャンで測定すると表面欠陥(構造物)が多数存在している。このため、それらがチップ化プロセスで割れや電極剥がれの原因となり、歩留りを大きく低下させていた。
また、従来方法では、GaP電流分散層の成長温度は、通常AlGaInP4元層の成長温度よりも高いことが多い。これは成長温度を高くすると、GaP層表面の欠陥(構造物)が低減する理由からである。しかし、GaP層の成長膜厚は厚いため成長時間が非常に長く、この間p型クラッド層以下の4元層は高温にさらされることになる。4元層が高温にさらされる時間が長くなると、p型クラッド層に用いたドーパントである、Zn(亜鉛)やMg(マグネシウム)が熱拡散により活性層へ移動してしまう。活性層にドーパントが拡散すると、発光出力の低下や長期信頼性の悪化といったLED特性に問題が発生する。
つまり、表面欠陥(構造物)を抑えるためにはGaP成長温度を上げれば良いが、GaPの成長温度を上げるとドーパントの拡散によりLED特性が悪化するといったトレードオフの関係がある。
However, as described above, the surface of the epitaxial wafer produced by the conventional method, that is, the surface of the GaP current dispersion layer is a mirror surface by visual observation, but there are many surface defects (structures) when measured by microscopic observation or surf scanning. Yes. For this reason, they cause cracks and electrode peeling in the chip forming process, and the yield is greatly reduced.
In the conventional method, the growth temperature of the GaP current dispersion layer is often higher than the growth temperature of the AlGaInP quaternary layer. This is because when the growth temperature is increased, defects (structures) on the surface of the GaP layer are reduced. However, since the growth thickness of the GaP layer is thick, the growth time is very long. During this time, the quaternary layer below the p-type cladding layer is exposed to a high temperature. When the time during which the quaternary layer is exposed to a high temperature becomes longer, Zn (zinc) and Mg (magnesium), which are dopants used in the p-type cladding layer, move to the active layer by thermal diffusion. When the dopant diffuses into the active layer, problems occur in LED characteristics such as a decrease in light emission output and deterioration in long-term reliability.
In other words, in order to suppress surface defects (structures), the GaP growth temperature may be increased, but there is a trade-off relationship that when the GaP growth temperature is increased, LED characteristics deteriorate due to dopant diffusion.

また、特許文献1の方法を、GaPを電流分散層に用いたAlGaInP系のLEDに適用した場合、GaP層表面の欠陥は少なくできても、Gap層を成長している間、ずっと高温にさらされるので、p型クラッド層から活性層へのドーパント拡散が発生し、発光出力の低下、信頼性の悪化が問題となる。   In addition, when the method of Patent Document 1 is applied to an AlGaInP-based LED using GaP as a current spreading layer, the surface of the GaP layer is exposed to much higher temperatures while the Gap layer is grown even if the surface defects of the GaP layer can be reduced. Therefore, dopant diffusion from the p-type cladding layer to the active layer occurs, causing a problem in that the light emission output is lowered and the reliability is deteriorated.

本発明は、上記課題を解決し、発光ダイオード特性を悪化させること無く、発光ダイオード用エピタキシャルウェハの表面欠陥(構造物)を低減できるAlGaInP系の発光ダイオード用エピタキシャルウェハ及びその作製方法を提供することにある。   The present invention provides an AlGaInP-based epitaxial wafer for light-emitting diodes and a method for manufacturing the same that can reduce the surface defects (structures) of the epitaxial wafer for light-emitting diodes without deteriorating the characteristics of the light-emitting diodes. It is in.

上記課題を解決するために、本発明は次のように構成されている。
本発明の第1の態様は、有機金属気相成長法を用いて、導電性基板上に、少なくとも、n型(Alx1Ga1−x1y1In1−y1Pクラッド層と、(Alx2Ga1−x2y2In1−y2P活性層と、p型(Alx3Ga1−x3y3In1−y3Pクラッド層からなる発光層と、GaPからなる電流分散層とを積層形成するAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法において、前記GaPからなる電流分散層の成長に際して、成長初期のGaP層の成長温度を前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度よりも高温で成長し、その後、残りのGaP層を前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度と同等か若しくはそれより低温で成長することを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法である。
In order to solve the above problems, the present invention is configured as follows.
According to a first aspect of the present invention, at least an n-type (Al x1 Ga 1-x1 ) y1 In 1-y1 P clad layer and (Al x2 ) are formed on a conductive substrate using metal organic vapor phase epitaxy. A Ga1 -x2 ) y2In1 -y2P active layer, a p-type ( Alx3Ga1 -x3 ) y3In1 -y3P cladding layer, and a current-spreading layer made of GaP are stacked. In the method for producing an AlGaInP-based epitaxial wafer for light emitting diodes, the growth temperature of the GaP layer at the initial stage of growth is set to the p-type (Al x3 Ga 1-x3 ) y3 In 1-y3 P when the current spreading layer made of GaP is grown. The growth is performed at a temperature higher than the growth temperature of the cladding layer, and then the remaining GaP layer is the same as the growth temperature of the p-type (Al x3 Ga 1-x3 ) y3 In 1-y3 P cladding layer. It is a method for producing an epitaxial wafer for an AlGaInP-based light-emitting diode, characterized by growing at an equal temperature or lower temperature.

本発明の第2の態様は、第1の態様において、前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度が、600〜650℃の範囲であることを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法である。 A second aspect of the present invention, in a first aspect, wherein the growth temperature of the p-type (Al x3 Ga 1-x3) y3 In 1-y3 P cladding layer is in the range of 600 to 650 ° C. This is a method for manufacturing an AlGaInP-based light-emitting diode epitaxial wafer.

本発明の第3の態様は、第1の態様又は第2の態様において、前記成長初期のGaP層の成長温度が、750〜900℃であることを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法である。   According to a third aspect of the present invention, in the first aspect or the second aspect, the growth temperature of the GaP layer in the initial stage of growth is 750 to 900 ° C. An AlGaInP-based epitaxial wafer for light-emitting diodes This is a manufacturing method.

本発明の第4の態様は、第1〜第3の態様のいずれかの態様において、前記成長初期のGaP層の厚さは、100〜500nmであることを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法である。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the thickness of the GaP layer in the initial stage of growth is 100 to 500 nm. It is a manufacturing method of an epitaxial wafer.

本発明の第5の態様は、第1〜第4の態様のいずれかの態様において、前記残りのGaP層の成長温度は、550〜650℃であることを特徴とする請求項1〜4のいずれかに記載のAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法である。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the growth temperature of the remaining GaP layer is 550 to 650 ° C. This is a method for producing an AlGaInP-based light-emitting diode epitaxial wafer according to any one of the above.

本発明の第6の態様は、導電性基板上に、少なくとも、n型(Alx1Ga1−x1y1In1−y1Pクラッド層と、(Alx2Ga1−x2y2In1−y2P活性層と、p型(Alx3Ga1−x3y3In1−y3Pクラッド層からなる発光層と、GaPからなる電流分散層とを備えたAlGaInP系の発光ダイオード用エピタキシャルウェハにおいて、前記GaPからなる電流分散層が、厚さ100〜500nmであって前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度よりも高温で成長したGaP下地層と、前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度と同等かより低温で成長したGaP層とからなることを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハである。 In a sixth aspect of the present invention, at least an n-type (Al x1 Ga 1-x1 ) y1 In 1-y1 P cladding layer and (Al x2 Ga 1-x2 ) y2 In 1-y2 are formed on a conductive substrate. In an epitaxial wafer for an AlGaInP light emitting diode comprising a P active layer, a light emitting layer made of a p-type (Al x3 Ga 1-x3 ) y3 In 1-y3 P cladding layer, and a current spreading layer made of GaP, A current spreading layer made of GaP having a thickness of 100 to 500 nm and grown at a temperature higher than the growth temperature of the p-type (Al x3 Ga 1-x3 ) y3 In 1-y3 P cladding layer; AlGa, characterized in that it consists of a p-type (Al x3 Ga 1-x3) y3 in 1-y3 P cladding layer GaP layer grown at a temperature lower than the growth temperature and or equivalent It is an epitaxial wafer for an InP-based light emitting diode.

本発明によれば、GaP電流分散層を初期高温成長と低温成長の二段階で成長させているため、GaP電流分散層表面の欠陥を大幅に低減することができ、表面平坦性のよい発光ダイオード用エピタキシャルウェハが得られる。GaP表面欠陥が大幅に減るので、チップ化プロセスの際に、表面欠陥による割れや電極剥がれを防止でき、歩留りを向上できる。また、初期高温成長以降は低温でのGaP成長であるため、活性層へのドーパント拡散が抑えられ、長期信頼性が向上する。   According to the present invention, since the GaP current distribution layer is grown in two stages of initial high-temperature growth and low-temperature growth, defects on the surface of the GaP current distribution layer can be greatly reduced, and the light emitting diode with good surface flatness An epitaxial wafer is obtained. Since the GaP surface defects are greatly reduced, cracks and electrode peeling due to surface defects can be prevented during the chip forming process, and the yield can be improved. Further, since the initial high-temperature growth is GaP growth at a low temperature, dopant diffusion into the active layer is suppressed, and long-term reliability is improved.

以下、本発明に係るAlGaInP系の発光ダイオード用エピタキシャルウェハ及びその作製方法の実施形態を図面を用いて説明する。
図1は、本実施形態のAlGaInP系の発光ダイオード用エピタキシャルウェハの概略的な層構造を示す断面図である。図1に示すように、この発光ダイオード用エピタキシャルウェハは、導電性基板1上に、バッファ層2と、n型(Alx1Ga1−x1y1In1−y1Pクラッド層3と、(Alx2Ga1−x2y2In1−y2P活性層4と、p型(Alx3Ga1−x3y3In1−y3Pクラッド層5からなる発光層と、p型GaP層からなる電流分散層6とを有する。電流分散層6は、厚さ100〜500nmの高温成長GaP下地層6aと、低温成長GaP層6bとからなる。
Embodiments of an AlGaInP-based light-emitting diode epitaxial wafer and a method for manufacturing the same according to the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic layer structure of an AlGaInP-based light emitting diode epitaxial wafer of this embodiment. As shown in FIG. 1, this epitaxial wafer for light-emitting diodes includes a buffer layer 2, an n-type ( Alx1Ga1 -x1 ) y1In1 -y1P cladding layer 3, and an (Al x2Ga1 -x2 ) y2In1 -y2P active layer 4, p-type ( Alx3Ga1 -x3 ) y3In1 -y3P cladding layer 5, light-emitting layer, and p-type GaP layer current distribution Layer 6. The current spreading layer 6 includes a high-temperature grown GaP underlayer 6a having a thickness of 100 to 500 nm and a low-temperature grown GaP layer 6b.

この発光ダイオード用エピタキシャルウェハは、MOVPE法を用いて作製される。MOVPE装置内に導電性基板1を設置し、ヒータにより加熱された導電性基板1上に、必要とするIII原料ガス、V族原料ガス、キャリアガス及びドーパント原料ガスを供給して、バッファ層2と、n型(Alx1Ga1−x1y1In1−y1Pクラッド層3と、(Alx2Ga1−x2y2In1−y2P活性層4と、p型(Alx3Ga1−x3y3In1−y3Pクラッド層5と、高温成長GaP下地層6aと、低温成長GaP層6bとを順次、エピタキシャル成長させる。p型ドーパントには、Zn、Mg、Cなど、n型ドーパントには、Se、Si、Teなどが用いられる。 This light-emitting diode epitaxial wafer is manufactured using the MOVPE method. The conductive substrate 1 is installed in the MOVPE apparatus, and the necessary III source gas, group V source gas, carrier gas and dopant source gas are supplied onto the conductive substrate 1 heated by the heater, and the buffer layer 2 N-type (Al x1 Ga 1-x1 ) y1 In 1 -y1 P cladding layer 3, (Al x2 Ga 1-x2 ) y2 In 1 -y2 P active layer 4, and p-type (Al x3 Ga 1 -1 ) x3 ) y3 In 1-y3 P cladding layer 5, high-temperature grown GaP underlayer 6 a, and low-temperature grown GaP layer 6 b are sequentially epitaxially grown. Zn, Mg, C, etc. are used for the p-type dopant, and Se, Si, Te, etc. are used for the n-type dopant.

GaPからなる電流分散層6の成長では、成長初期の高温成長GaP下地層6aの成長温度を、p型(Alx3Ga1−x3y3In1−y3Pクラッド層5の成長温度よりも高温で成長し、その後、残りの低温成長GaP層6bをp型(Alx3Ga1−x3y3In1−y3Pクラッド層5の成長温度と同等か若しくはそれより低温で成長する。より具体的には、MOVPE成長での成長温度は、n型(Alx1Ga1−x1y1In1−y1Pクラッド層3、(Alx2Ga1−x2y2In1−y2P活性層4およびp型(Alx3Ga1−x3y3In1−y3Pクラッド層5を600〜650℃とし、高温成長GaP下地層6aを750〜900℃、低温成長GaP層6bを550〜650℃で成長するのが好ましい。 In the growth of the current spreading layer 6 made of GaP, the growth temperature of the high temperature growth GaP underlayer 6a at the initial stage of growth is higher than the growth temperature of the p-type ( Alx3Ga1 -x3 ) y3In1 -y3P cladding layer 5. Then, the remaining low-temperature grown GaP layer 6b is grown at a temperature equal to or lower than the growth temperature of the p-type ( Alx3Ga1 -x3 ) y3In1 -y3P cladding layer 5. More specifically, the growth temperature in the MOVPE growth includes n-type (Al x1 Ga 1-x1 ) y1 In 1 -y1 P cladding layer 3, (Al x2 Ga 1 -x2 ) y2 In 1 -y2 P active layer. 4 and p-type (Al x3 Ga 1-x3 ) y3 In 1-y3 P cladding layer 5 is set to 600 to 650 ° C., high temperature growth GaP underlayer 6 a is 750 to 900 ° C., and low temperature growth GaP layer 6 b is 550 to 650 ° C. It is preferable to grow at.

本実施形態では、AlGaInP4元層であるn型クラッド層3、活性層4及びp型クラッド層5の成長後、GaP成長を行う際の初期GaP層(厚さ:100〜500nm)を750℃から900℃の高温で成長し、その後はAlGaInP4元層の成長温度と同等もしくはそれ以下の低温の成長温度に変更してGaP層を成長している。GaP層成長温度を高温、低温の2段階で成長する意図は、GaP層を高温で成長することで表面欠陥を低減できることから、成長初期の100〜500nmを表面欠陥の少ないGaP層(高温成長GaP下地層6a)を成長し、その後は活性層4へのドーパント拡散を抑えるために、AlGaInP4元層の成長温度と同等若しくはそれ以下でGaP層(低温成長GaP層6b)を成長する。GaP層の表面欠陥は、AlGaInP4元層とGaP層の格子不整合が原因で発生しているので、GaP層の成長初期から発生していると考えられる。よって、GaP層の成長初期を欠陥の少ない綺麗なGaP層(高温成長GaP下地層6a)が成長できれば、その後は成長温度を低くしても綺麗なGaP層は引き継がれる。低温で成長可能となれば、活性層4へのドーパントの拡散を抑えることができLED特性の劣化も抑止できる。
このように、成長初期を高温、その後は低温という2段階の温度プロファイルで成長することで、GaPからなる電流分散層6の表面欠陥は少なくなり、しかもドーパントの拡散を抑えられるのでLED特性の劣化も抑えられる。
In this embodiment, after the growth of the n-type cladding layer 3, the active layer 4, and the p-type cladding layer 5 which are AlGaInP quaternary layers, the initial GaP layer (thickness: 100 to 500 nm) when performing GaP growth is started from 750 ° C. The GaP layer is grown at a high temperature of 900 ° C. and then changed to a low growth temperature equal to or lower than the growth temperature of the AlGaInP quaternary layer. The intention of growing the GaP layer growth temperature in two stages of high temperature and low temperature is that the surface defects can be reduced by growing the GaP layer at a high temperature. A base layer 6a) is grown, and then a GaP layer (low temperature growth GaP layer 6b) is grown at a temperature equal to or lower than the growth temperature of the AlGaInP quaternary layer in order to suppress dopant diffusion into the active layer 4. Since the surface defects of the GaP layer are generated due to lattice mismatch between the AlGaInP quaternary layer and the GaP layer, it is considered that the surface defects are generated from the initial growth stage of the GaP layer. Therefore, if a clean GaP layer (high temperature growth GaP underlayer 6a) with few defects can be grown at the initial growth stage of the GaP layer, the clean GaP layer is succeeded even if the growth temperature is lowered thereafter. If growth is possible at a low temperature, the diffusion of the dopant into the active layer 4 can be suppressed, and the deterioration of the LED characteristics can also be suppressed.
In this way, by growing in the two-stage temperature profile of high temperature at the initial stage of growth and then low temperature, surface defects of the current spreading layer 6 made of GaP are reduced, and diffusion of the dopant can be suppressed, so that the LED characteristics are deteriorated. Is also suppressed.

成長初期の高温成長GaP下地層6aの成長温度を750℃〜900℃にした理由は、下地層との格子不整合のため750℃以下では表面欠陥(構造物)の発生量が多く、900℃以上では表面欠陥は少なくなるが、逆にGaPの再蒸発が発生し表面の平坦性が損なわれる(表面が曇る)からである。
また、高温で成長する高温成長GaP下地層6aの厚みを100〜500nmにした理由は、100nm以下であると表面欠陥の少ない綺麗な結晶を上へ引継ぐには不十分で、成長後に表面欠陥が発生してしまうからであり、500nm以上にするとAlGaInP4元層が高温にさらされる時間が長くなるため、ドーパントの活性層への拡散が発生してしまうからである。
更に、低温成長GaP層6bの成長温度を550〜650℃にした理由は、成長温度が550℃未満ではGaP層の表面状態が悪化し、550〜650℃では、下地がGaP層(高温成長GaP下地層6a)なので格子不整合による表面欠陥が発生せず、またAlGaInP4元層の成長温度以下なのでドーパント拡散が進まないからである。従って、低温成長GaP層6bの成長温度を550〜650℃にすると、GaP表面の平坦性を維持しつつ、ドーパントの活性層4への拡散を防止できる。
The reason why the growth temperature of the high-temperature growth GaP underlayer 6a at the initial stage of growth is 750 ° C. to 900 ° C. is that the amount of surface defects (structures) generated is large at 750 ° C. This is because the surface defects are reduced as described above, but conversely, GaP re-evaporation occurs and the flatness of the surface is impaired (the surface becomes cloudy).
The reason why the thickness of the high-temperature grown GaP underlayer 6a grown at a high temperature is 100 to 500 nm is that the thickness of 100 nm or less is not sufficient to take over a beautiful crystal with few surface defects. This is because if the thickness is 500 nm or more, the time during which the AlGaInP quaternary layer is exposed to a high temperature becomes long, so that diffusion of the dopant into the active layer occurs.
Furthermore, the reason why the growth temperature of the low-temperature grown GaP layer 6b is set to 550 to 650 ° C. is that the surface state of the GaP layer is deteriorated when the growth temperature is lower than 550 ° C., and the substrate is a GaP layer (high temperature grown GaP layer) at 550 to 650 ° C. This is because the underlying layer 6a) does not cause surface defects due to lattice mismatch, and the dopant diffusion does not proceed because it is lower than the growth temperature of the AlGaInP quaternary layer. Therefore, when the growth temperature of the low-temperature grown GaP layer 6b is 550 to 650 ° C., the diffusion of the dopant into the active layer 4 can be prevented while maintaining the flatness of the GaP surface.

なお、上記実施形態において、例えば、バッファ層2とn型クラッド層3との間、或いはバッファ層2に替えて、分布ブラッグ反射膜などの光反射層を設けたり、また、p型クラッド層5と高温成長GaP下地層6aとの間に、p型クラッド層5よりもバンドギャップが小さくヘテロ界面の電位障壁を低減するための、例えばAlGaInPからなるp型介在層を設けたりするなど、種々に変更可能である。   In the above embodiment, for example, a light reflection layer such as a distributed Bragg reflection film is provided between the buffer layer 2 and the n-type cladding layer 3 or in place of the buffer layer 2, or the p-type cladding layer 5 is provided. For example, a p-type intervening layer made of AlGaInP is provided to reduce the potential barrier at the heterointerface having a smaller band gap than the p-type cladding layer 5 and between the high-temperature grown GaP underlayer 6a. It can be changed.

次に、本発明の実施例を説明する。本実施例のAlGaInP系のLED用エピタキシャルウェハは、図1に示す上記実施形態のLED用エピタキシャルウェハと同一の層構造のものであり、図1を用いて本実施例を説明する。   Next, examples of the present invention will be described. The AlGaInP-based LED epitaxial wafer of this example has the same layer structure as the LED epitaxial wafer of the above-described embodiment shown in FIG. 1, and this example will be described with reference to FIG.

図1に示すように、本実施例のAlGaInP系のLED用エピタキシャルウェハは、Siドープのn型GaAs基板1上に、n型GaAsバッファ層2と、n型AlGaInPクラッド層3と、アンドープのAlGaInP活性層4と、p型AlGaInPクラッド層5と、高温成長GaP下地層6a及び低温成長GaP層6bからなる電流分散層6とを有する。   As shown in FIG. 1, the AlGaInP-based LED epitaxial wafer of this example is composed of an n-type GaAs buffer layer 2, an n-type AlGaInP cladding layer 3 and an undoped AlGaInP on a Si-doped n-type GaAs substrate 1. It has an active layer 4, a p-type AlGaInP cladding layer 5, and a current spreading layer 6 comprising a high-temperature grown GaP underlayer 6a and a low-temperature grown GaP layer 6b.

このLED用エピタキシャルウェハを、MOVPE法を用いて作製した。n型GaAs基板1をヒータで加熱し、そこにキャリアガスとして水素を用いて、III族原料となるTMG、TMA、TMI、V族原料となるAsH、PH、ドーパントとなるHSe(セレン化水素)、DEZ(ジエチル亜鉛)を必要に応じ供給し成長を行った。 This epitaxial wafer for LED was produced using the MOVPE method. The n-type GaAs substrate 1 is heated with a heater, and hydrogen is used as a carrier gas therefor, so that the group III source materials TMG, TMA, TMI, the group V source material AsH 3 , PH 3 , and the dopant H 2 Se ( Hydrogen selenide) and DEZ (diethyl zinc) were supplied as needed for growth.

650℃に加熱したn型GaAs基板1上に、Seドープのn型GaAsバッファ層(厚さ200nm、キャリア濃度1×1018cm−3)2、Seドープのn型AlGaInPクラッド層(厚さ400nm、キャリア濃度1×1018cm−3)3、アンドープのAlGaInP活性層(厚さ500nm)4、Znドープのp型AlGaInPクラッド層(厚さ500nm、キャリア濃度5×1017cm−3)5を順に積層成長した。次に、成長温度を750℃に昇温してZnドープの高温成長GaP下地層(厚さ200nm、キャリア濃度5×1018cm−3)6aを成長し、その後、成長温度を650℃に下げて残りのZnドープの低温成長GaP層(厚さ9.8μm、キャリア濃度5×1018cm−3)6bを成長した。 On an n-type GaAs substrate 1 heated to 650 ° C., an Se-doped n-type GaAs buffer layer (thickness 200 nm, carrier concentration 1 × 10 18 cm −3 ) 2, an Se-doped n-type AlGaInP cladding layer (thickness 400 nm). , Carrier concentration 1 × 10 18 cm −3 ) 3, undoped AlGaInP active layer (thickness 500 nm) 4, Zn-doped p-type AlGaInP cladding layer (thickness 500 nm, carrier concentration 5 × 10 17 cm −3 ) 5 The layers were grown in order. Next, the growth temperature is raised to 750 ° C. to grow a Zn-doped high-temperature growth GaP underlayer (thickness 200 nm, carrier concentration 5 × 10 18 cm −3 ) 6a, and then the growth temperature is lowered to 650 ° C. Then, the remaining Zn-doped low-temperature grown GaP layer (thickness 9.8 μm, carrier concentration 5 × 10 18 cm −3 ) 6b was grown.

また、実施例と比較するための比較例として、図2に示す構造のLED用エピタキシャルウェハを作製した。比較例のLED用エピタキシャルウェハの作製では、n型GaAs基板1上に、n型GaAsバッファ層2からp型AlGaInPクラッド層5までは上記実施例の成長方法と同じく成長したが、電流分散層であるGaP層の成長は、成長温度を700℃にしてZnドープのGaP電流分散層(厚さ10μm、キャリア濃度5×1018cm−3)7を成長した。 Further, as a comparative example for comparison with the example, an LED epitaxial wafer having a structure shown in FIG. 2 was produced. In the fabrication of the epitaxial wafer for LED of the comparative example, the growth from the n-type GaAs buffer layer 2 to the p-type AlGaInP clad layer 5 was grown on the n-type GaAs substrate 1 in the same manner as the growth method of the above embodiment. For the growth of a certain GaP layer, a Zn-doped GaP current dispersion layer (thickness 10 μm, carrier concentration 5 × 10 18 cm −3 ) 7 was grown at a growth temperature of 700 ° C.

成長したLED用エピタキシャルウェハの表面は、実施例、比較例ともに目視では鏡面であった。しかし、顕微鏡で観察すると、比較例のLED用エピタキシャルウェハでは、表面欠陥(構造物)が多く存在し、実施例のLED用エピタキシャルウェハでは、比較例に比べて大幅に表面欠陥(構造物)が少なかった。また、サーフスキャンの測定を行なったところ、5〜50μm径の表面欠陥(構造物)が、比較例では251個/cmであったが、実施例では7個/cmであった。 The surface of the grown epitaxial wafer for LED was a mirror surface visually in both Examples and Comparative Examples. However, when observed under a microscope, there are many surface defects (structures) in the LED epitaxial wafer of the comparative example, and the surface defects (structures) are significantly larger in the LED epitaxial wafer of the example than in the comparative example. There were few. Further, when the surf scan was measured, the number of surface defects (structures) having a diameter of 5 to 50 μm was 251 / cm 2 in the comparative example, but 7 / cm 2 in the example.

上記実施例及び比較例のLED用エピタキシャルウェハに対してチップ化プロセスを行い、チップサイズ300μm角のLEDチップを作製し、発光出力の信頼性の評価を行なった。信頼性評価試験は、室温で50mA連続通電をし、評価は24時間おきに発光出力を測定し、初期の特性との出力変化率(相対出力)を測定した。図3に信頼性評価試験の結果を示す。図3に示すように、比較例から作製したLEDチップは、時間と共に出力が低下していくが、実施例から作製したLEDチップでは、殆ど低下は見られなかった。   A chip-forming process was performed on the LED epitaxial wafers of the above examples and comparative examples to produce LED chips having a chip size of 300 μm square, and the reliability of the light emission output was evaluated. In the reliability evaluation test, 50 mA continuous energization was performed at room temperature. In the evaluation, the light emission output was measured every 24 hours, and the output change rate (relative output) with the initial characteristics was measured. FIG. 3 shows the result of the reliability evaluation test. As shown in FIG. 3, the output of the LED chip manufactured from the comparative example decreases with time, but the LED chip manufactured from the example shows almost no decrease.

本発明の実施形態及び実施例に係る発光ダイオード用エピタキシャルウェハの断面模式図である。It is a cross-sectional schematic diagram of the epitaxial wafer for light emitting diodes which concerns on embodiment and Example of this invention. 比較例の発光ダイオード用エピタキシャルウェハの断面模式図である。It is a cross-sectional schematic diagram of the epitaxial wafer for light emitting diodes of a comparative example. 実施例及び比較例の発光ダイオード用エピタキシャルウェハを用いて作製したLEDチップの長期信頼性試験における相対出力を示したグラフである。It is the graph which showed the relative output in the long-term reliability test of the LED chip produced using the epitaxial wafer for light emitting diodes of an Example and a comparative example.

符号の説明Explanation of symbols

1 導電性基板(n型GaAs基板)
2 バッファ層(n型GaAsバッファ層)
3 n型(Alx1Ga1−x1y1In1−y1Pクラッド層
4 (Alx2Ga1−x2y2In1−y2P活性層
5 p型(Alx3Ga1−x3y3In1−y3Pクラッド層
6 電流分散層(GaP電流分散層)
6a 高温成長GaP下地層
6b 低温成長GaP層
7 GaP電流分散層
1 Conductive substrate (n-type GaAs substrate)
2 Buffer layer (n-type GaAs buffer layer)
3 n-type (Al x1 Ga 1-x1 ) y1 In 1-y1 P cladding layer 4 (Al x2 Ga 1-x2 ) y2 In 1-y2 P active layer 5 p-type (Al x3 Ga 1-x3 ) y3 In 1 -Y3 P clad layer 6 current spreading layer (GaP current spreading layer)
6a High temperature growth GaP underlayer 6b Low temperature growth GaP layer 7 GaP current distribution layer

Claims (6)

有機金属気相成長法を用いて、導電性基板上に、少なくとも、n型(Alx1Ga1−x1y1In1−y1Pクラッド層と、(Alx2Ga1−x2y2In1−y2P活性層と、p型(Alx3Ga1−x3y3In1−y3Pクラッド層からなる発光層と、GaPからなる電流分散層とを積層形成するAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法において、
前記GaPからなる電流分散層の成長に際して、成長初期のGaP層の成長温度を前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度よりも高温で成長し、その後、残りのGaP層を前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度と同等か若しくはそれより低温で成長することを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法。
By metal-organic vapor phase epitaxy on a conductive substrate, at least an n-type (Al x1 Ga 1-x1) y1 In 1-y1 P cladding layer, (Al x2 Ga 1-x2 ) y2 In 1- y2 and P active layer, p-type (Al x3 Ga 1-x3) y3 in 1-y3 P and light emitting layer made of the cladding layer, an AlGaInP light emitting diode epitaxial wafer for laminating forming the current spreading layer made of GaP In the production method,
When growing the current spreading layer made of GaP, the growth temperature of the GaP layer in the initial stage of growth is higher than the growth temperature of the p-type ( Alx3Ga1 -x3 ) y3In1 -y3P cladding layer, and then The remaining GaP layer is grown at a temperature equal to or lower than the growth temperature of the p-type ( Alx3Ga1 -x3 ) y3In1 -y3P cladding layer, and is epitaxially grown for an AlGaInP-based light emitting diode. Wafer fabrication method.
前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度が、600〜650℃の範囲であることを特徴とする請求項1に記載のAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法。 The growth temperature of the p-type (Al x3 Ga 1-x3) y3 In 1-y3 P cladding layer, the light emitting diode epitaxial of AlGaInP system according to claim 1, characterized in that in the range of 600 to 650 ° C. Wafer fabrication method. 前記成長初期のGaP層の成長温度が、750〜900℃であることを特徴とする請求項1又は2に記載のAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法。   3. The method for producing an epitaxial wafer for an AlGaInP-based light emitting diode according to claim 1, wherein a growth temperature of the GaP layer in the initial stage of growth is 750 to 900 ° C. 3. 前記成長初期のGaP層の厚さは、100〜500nmであることを特徴とする請求項1〜3のいずれかに記載のAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法。   The method for producing an epitaxial wafer for an AlGaInP-based light-emitting diode according to any one of claims 1 to 3, wherein a thickness of the GaP layer in the initial stage of growth is 100 to 500 nm. 前記残りのGaP層の成長温度は、550〜650℃であることを特徴とする請求項1〜4のいずれかに記載のAlGaInP系の発光ダイオード用エピタキシャルウェハの作製方法。   The growth temperature of the remaining GaP layer is 550 to 650 ° C, The method for producing an AlGaInP-based epitaxial wafer for light-emitting diodes according to any one of claims 1 to 4. 導電性基板上に、少なくとも、n型(Alx1Ga1−x1y1In1−y1Pクラッド層と、(Alx2Ga1−x2y2In1−y2P活性層と、p型(Alx3Ga1−x3y3In1−y3Pクラッド層からなる発光層と、GaPからなる電流分散層とを備えたAlGaInP系の発光ダイオード用エピタキシャルウェハにおいて、
前記GaPからなる電流分散層が、厚さ100〜500nmであって前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度よりも高温で成長したGaP下地層と、前記p型(Alx3Ga1−x3y3In1−y3Pクラッド層の成長温度と同等かより低温で成長したGaP層とからなることを特徴とするAlGaInP系の発光ダイオード用エピタキシャルウェハ。
On the conductive substrate, at least an n-type ( Alx1Ga1 -x1 ) y1In1 -y1P cladding layer, an ( Alx2Ga1 -x2 ) y2In1 -y2P active layer, and a p-type (Al x3 Ga 1-x3 ) y3 In 1- y3 In an epitaxial wafer for an AlGaInP-based light emitting diode comprising a light emitting layer made of a P cladding layer and a current spreading layer made of GaP,
Current spreading layer made of the GaP is a GaP base layer grown at a temperature higher than the growth temperature of a thickness 100~500nm the p-type (Al x3 Ga 1-x3) y3 In 1-y3 P cladding layer, An epitaxial wafer for an AlGaInP-based light emitting diode, comprising a GaP layer grown at a temperature equal to or lower than a growth temperature of the p-type (Al x3 Ga 1-x3 ) y3 In 1 -y3 P cladding layer.
JP2006257691A 2006-09-22 2006-09-22 EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF Pending JP2008078493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257691A JP2008078493A (en) 2006-09-22 2006-09-22 EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006257691A JP2008078493A (en) 2006-09-22 2006-09-22 EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF

Publications (1)

Publication Number Publication Date
JP2008078493A true JP2008078493A (en) 2008-04-03

Family

ID=39350229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257691A Pending JP2008078493A (en) 2006-09-22 2006-09-22 EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP2008078493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199381A (en) * 2009-02-26 2010-09-09 Stanley Electric Co Ltd Method of manufacturing semiconductor light-emitting device, and semiconductor light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010199381A (en) * 2009-02-26 2010-09-09 Stanley Electric Co Ltd Method of manufacturing semiconductor light-emitting device, and semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
JP3728332B2 (en) Compound semiconductor light emitting device
JP4940317B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP5018433B2 (en) Epitaxial wafer for semiconductor light emitting device and semiconductor light emitting device
JP2006108585A (en) Group iii nitride compound semiconductor light emitting element
US20060223288A1 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
JP2008028121A (en) Manufacturing method of semiconductor luminescence element
JP2012204540A (en) Semiconductor device and method of manufacturing the same
JP2001094151A (en) Nitride compound semiconductor light-emitting element and manufacturing method therefor
JP2006344930A (en) Manufacturing method of group iii nitride semiconductor device
JP2008078493A (en) EPITAXIAL WAFER FOR AlGaInP-BASED LIGHT EMITTING DIODE AND PRODUCING METHOD THEREOF
JP4624064B2 (en) Group III nitride semiconductor laminate
JP2006253403A (en) Growing method of light emitting diode epitaxial wafer
JP3874779B2 (en) Ge-doped n-type group III nitride semiconductor layered product, method for producing the same, and group III nitride semiconductor light-emitting device using the same
JP3859990B2 (en) Method for producing compound semiconductor
JP2012515445A (en) Optoelectronic semiconductor parts
JP4369970B2 (en) Method for manufacturing compound semiconductor light emitting device and compound semiconductor light emitting device
JP2010258283A (en) Epitaxial wafer for light-emitting device and manufacturing method thereof
JP4108109B2 (en) Method for manufacturing compound semiconductor light emitting device and compound semiconductor light emitting device
JP2008021785A (en) Light emitting diode, epitaxial wafer therefor, and its manufacturing method
JP2009158818A (en) Epitaxial wafer for the semiconductor light emitting device, and semiconductor light emitting device
JP3556593B2 (en) Compound semiconductor light emitting device and method of manufacturing the same
JP2010287818A (en) Method of manufacturing epitaxial wafer for semiconductor light-emitting device
JP2002064250A (en) Method of growing compound semiconductor, and compound semiconductor light-emitting device
JP5173673B2 (en) Semiconductor light emitting device
JP2005228789A (en) Method of manufacturing semiconductor device and semiconductor light emitting device obtained thereby