JP2008076122A - Angle and displacement sensor - Google Patents

Angle and displacement sensor Download PDF

Info

Publication number
JP2008076122A
JP2008076122A JP2006253700A JP2006253700A JP2008076122A JP 2008076122 A JP2008076122 A JP 2008076122A JP 2006253700 A JP2006253700 A JP 2006253700A JP 2006253700 A JP2006253700 A JP 2006253700A JP 2008076122 A JP2008076122 A JP 2008076122A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
member
tension
detection
transmitting
part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253700A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
Mare Hoshino
Arif Setyanto Taufiq
タウフィック・アリフ・セテイアント
星野希
藤本由紀夫
Original Assignee
Hiroshima Univ
国立大学法人広島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem that it has been difficult for a rotary encoder etc. applicable to the measurement of angular changes of sections which rotate on a center of rotation to measure angular changes of sections such as a joint part of a body of which the center of rotation is unknown or moves with rotation.
SOLUTION: A distortion detection element 200 in which both surfaces of a flexible elastic body 10 are sandwiched between piezoelectric films 1A and 1B is arranged at a neutral shaft in the vicinity of one end part of a tension transmitting member 30 made of a soft material. Parts of the tension transmitting member 30 and the distortion detection element 200 are superposed on and restrained to each other to form a part for restraining bending deformation of the distortion detection element 200. A means for providing tension for the member is pasted to and constituted at the other end part of the tension transmitting member 30. A bending angle generated due to the addition of an external force to the tension transmitting member 30 is detected as electrical output of the distortion detection sensor 200.
COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、線分が移動したときの、移動前の線分と移動後の線分の角度変化と、相対的変位を測定する変位センサに関する。 The present invention, when a line segment is moved, a line segment before movement and angle change of a line segment after the movement, about displacement sensor for measuring a relative displacement. とくに、構造部材の変形、ロボットや身体部位の関節部の角度変化や変形、2つの対象物の移動に伴う相対的位置の変化を測定する技術分野に関する。 In particular, the deformation of the structural member, the angle changes and deformation of the joints of the robot or the body part, relates to the technical field of measuring the change in the relative position caused by the movement of the two objects.

従来、角度変化を測定するセンサにはロータリーエンコーダやポテンショメータがある。 Conventionally, the sensor for measuring the angular change is a rotary encoder or a potentiometer. また長さ変化を測定するセンサには、レーザ変位計、作動トランス型変位計、静電容量型変位計、歪みゲージ式変位計などがある。 Also the sensor for measuring the length change, a laser displacement meter, differential transformer type displacement meter, an electrostatic capacitance type displacement gauge, and the like strain gauge type displacement meter. また、本発明者らはゴムのような柔軟な弾性部材の伸び、あるいは伸びた状態からの収縮量を測定するセンサを特許文献1で提案している。 Further, the present inventors have proposed a sensor that measures the amount of shrinkage of the flexible elongation of the elastic member or extended state, such as rubber in Patent Document 1. しかしながら、ロータリーエンコーダやポテンショメータは回転中心周りに回転する部位の角度変化を測定するもので、対象物が変形したときの対象物の所定の2つの点を結ぶ線分の角度変化を測定することは困難であった。 However, those rotary encoder or potentiometer which measures the angular change of parts that rotate around a rotation center, measuring the angle change of a line connecting the predetermined two points of the object when the object is deformed It was difficult. また、身体の関節部のように、回転中心が不明な場合や、回転に伴って回転中心が移動する部位の角度変化を測定することとは困難であった。 Also, as in the joints of the body, when the rotation center is unknown and, the center of rotation is difficult and to measure the angular change in the site to move with the rotation.

特許文献2は、圧電性セラミックを混入した柔軟な樹脂圧電素子を使用した角度センサーを使用して、回転中心が不明な場合や、回転に伴って回転中心が移動する部位、例えば屈伸運動をする部位の角度計測を行なう方法を提案している。 Patent Document 2 uses an angle sensor using a flexible resin piezoelectric element obtained by mixing piezoelectric ceramic and when the rotation center is unknown and, site rotation center in accordance with the rotation moves, for example, the bends we propose a method for angle measurement sites. しかし、屈伸運動を行なう部材上の特定の点の位置を計測するには回転角度の計測に加えて屈伸運動の支点と前記点の間の距離を知る必要があり、屈伸運動前後で該距離が変化する場合は回転角度の計測のみでは前記点の位置決定は困難である。 However, to measure the position of a particular point on member for the bending and stretching movement needs to know the distance between the point and the fulcrum of the bends in addition to the measurement of the rotation angle, is the distance before and after the bending and stretching exercises vary by only measuring the rotation angle in the positioning of the points is difficult. 従って、対象物の所定の2つの点を結ぶ線分が回転すると同時に長さ変化を生じる場合には、角度変化を検出するセンサと長さ変化を検出するセンサを2つ併用する必要があった。 Thus, a predetermined line segment connecting two points of the object to be caused at the same time length changes when the rotating, a sensor for detecting the sensor and length change for detecting an angle change had to be used in combination of two .
特願2005−170378 Japanese Patent Application No. 2005-170378 特開平6−174407号広報 JP-A-6-174407 Patent Public Relations

本発明は、対象物が変形するときの対象物の所定の2つの点を結ぶ線分の角度変化を検出できる角度センサ及び、対象物の所定の2つの点を結ぶ線分が回転すると同時に長さ変化を生じる場合に、角度変化と長さ変化を一体化したセンサ部で検出して、2つの点を結ぶ線分の相対的変位を測定できる変位センサを提供することが課題である。 The present invention is, at the same time the length of a predetermined and an angle sensor capable of detecting an angle change of a line connecting the two points, the predetermined line segment connecting two points of the object to rotate the object when the object is deformed if the result in a change, is detected by the sensor unit that integrates the angular change and length change, a problem is to provide a displacement sensor capable of measuring the relative displacement of a line connecting the two points.

上記課題を解決するための本発明の角度及び変位センサは、図1に示すように柔軟な弾性薄板10とその両面に配設された一対の圧電フィルム1A、1Bからなる歪み検出素子200を、柔軟な張力伝達部材30の一方の端部の曲げの中立軸位置に配設し、該柔軟な張力伝達部材30の所定長さに亘って設けられた変形拘束部材40により、前記歪検出素子200の一部の長さの曲げ変形を拘束するよう配置し、前記柔軟な張力伝達部材30の他方の先端部には張力負荷部材60を取り付けて構成したことを特徴とする。 Angle and displacement sensor of the present invention to solve the above problems, a pair of piezoelectric film 1A that is disposed flexible elastic sheet 10 and on both sides thereof as shown in FIG. 1, a strain detection element 200 consisting 1B, arranged in the neutral axis position of the bending of one end of a flexible tension transmission member 30, the deformation restraining member 40 provided over a predetermined length of the flexible tension transmission member 30, the strain detection element 200 and arranged to restrain a portion of the length of the bending deformation of said the other of the front end portion of a flexible tension transmission member 30 is characterized by being configured by attaching a tensioning member 60. ここで歪検出素子200としては、柔軟な弾性薄板10を圧電フイルム1A,1Bでサンドイッチ状に挟んで構成されるもの又はそれに類似する構成が適用できる。 Examples of the strain detection element 200 may piezoelectric film 1A flexible elastic sheet 10, it is configured to be similar to or is constituted by sandwiching a sandwich at 1B applications. 歪検出素子200を柔軟な張力伝達部材30の曲げの中立軸位置に配設するとは、例えば柔軟な張力伝達部材30の一方の端から前記中立軸に沿って、同張力伝達部材30の幅方向に平行な溝を設け、該溝に歪検出素子を挟むことあるいは類似の方法を言う。 And arranging the strain detection element 200 on the neutral axis position of the bending of the flexible tension transmission member 30, for example along the neutral axis of a flexible one end of the tension transmission member 30, the width direction of the tension transmission member 30 provided parallel grooves in refers to or similar manner sandwiching the strain detecting element the groove. 変形拘束部材40は、典型的には断面形状がコ字形のクリップ状の部材、又は剛性のある2枚の板材であって相互の間隔を調整する手段を付したもの等により、コ字形の部分又は前記2枚の剛性のある板材の間に歪検出素子200を配設した柔軟な張力伝達部材を置き、外面から強く挟む機構又は類似の機構を有する部材である(請求項1)。 Deformation restraining member 40, the clip-shaped members are typically cross section U-shaped, or the like that given the means for adjusting the mutual spacing a two plates a rigid, part of the U-shaped or wherein a two rigid placed a flexible tension transmission member which is disposed a strain detection element 200 during the sheet, a member having a strong pinching mechanism or similar mechanism from the outer surface (claim 1).

上記課題を解決するための本発明の角度及び変位センサの他の構成は、図2に示すように柔軟な弾性薄板11とその両面に配設された一対の圧電フィルム2A、2Bからなる歪み検出素子201を、柔軟な張力伝達部材31の一方の端部の曲げの中立軸位置に配設し、該柔軟な張力伝達部30の材所定長さに亘って設けられた変形拘束部材41により、前記歪検出素子201の一部の長さの曲げ変形を拘束するよう配置し、柔軟な弾性薄板12とその両面に配設された一対の圧電フィルム3A、3Bからなる歪み検出素子202を、前記の柔軟な張力伝達部材31の他方の端部の曲げの中立軸位置に配設し、該柔軟な張力伝達部31の該他方の端部の材所定長さに亘って設けられた変形拘束部材42により、前記歪検出素子202の一部の長 Other configurations of the angle and displacement sensor of the present invention to solve the above problems, a pair of piezoelectric film 2A which is disposed a flexible elastic sheet 11 and on both sides thereof as shown in FIG. 2, the distortion detecting consisting 2B the elements 201, arranged in the neutral axis position of the bending of one end of a flexible tension transmission member 31, the deformation restraint member 41 provided over the timber a predetermined length of said flexible tension transmitting unit 30, the place to restrain part of the bending deformation of the length of the strain detection element 201, a pair of piezoelectric film 3A disposed flexible elastic sheet 12 and on both sides thereof, the strain detecting elements 202 made of 3B, the other disposed on the neutral axis position of the bent end portion, said other deformable restraining member provided over a timber a predetermined length of the end portion of said flexible tension transmitting portions 31 of the flexible tension transmitting member 31 of the by 42, a portion of the strain detection element 202 length の曲げ変形を拘束するよう配置して構成したことを特徴とする。 Characterized by being configured by arranging to restrain bending deformation. ここで歪検出素子201及び202は上記0005において記述した歪検出素子200と同様の構成であり、また、柔軟な張力伝達部材31は前記0005において記載した同張力伝達部材30と同様な構成であり、変形拘束部材41、42も同様に0005に記載した変形拘束部材40と同様の構成である(請求項2)。 Here the strain detection element 201 and 202 has the same structure as the strain detecting element 200 described in the above 0005, also flexible tension transmission member 31 is in the same configuration as the tension transmitting member 30 as described in the 0005 deformation restraining member 41 has a similar configuration as the deformation restriction member 40 described in [0005] the same manner (claim 2).

本発明の角度及び変位センサは、前記変形拘束部材40あるいは41及び42を対象物に回転不可に固定し、前記柔軟な張力伝達部材30又は31に張力を負荷した状態で使用したことを特徴とする(請求項3)。 Angle and displacement sensor of the present invention, a characterized in that said deformation restriction member 40 or 41 and 42 fixed to not rotate the object and used as loaded with tension to the flexible tension transmission member 30 or 31 to (claim 3).

本発明の角度及び変位センサは、前記歪検出素子200の曲げ変形により、同素子を構成する圧電フィルム1Aの裏表面間に生じた電荷に対応する出力信号をV1,同じく1Bに生ずる同様の出力信号をV2とし、式(V1−V2)の値を変形拘束部材40と張力伝達部材30のなす角度変化θに応じた信号として出力することを特徴とする。 Angle and displacement sensor of the present invention, the bending deformation of the strain detection element 200, an output signal corresponding to the charge generated between the back surface of the piezoelectric film 1A constituting the same elements V1, also similar output occurring 1B the signal and V2, and outputs as an expression (V1-V2) value the deformation restraining member 40 and the angle variation θ signal corresponding to the tension transmission member 30. 図2の場合には歪検出素子201又は同202を構成する圧電フィルムの表裏に生じた電荷に対応する出力信号をV1,V2として、式(V1−V2)の値を変形拘束部材41と張力伝達部材31のなす、又は変形拘束部材42と張力伝達部材31のなす角度θに応じた信号とする(請求項4)。 An output signal corresponding to the charge generated on the front and back of the piezoelectric film composing the strain detection element 201 or the 202 as V1, V2 in the case of FIG. 2, the formula (V1-V2) value the deformation restraint member 41 and the tension of the eggplant transmission member 31, or modified signal to corresponding to the angle θ of the restraining member 42 and the tension transmission member 31 (claim 4).

本発明の角度及び変位センサの角度検出原理について図3を用いて説明する。 The angle detection principle of angle and displacement sensor of the present invention will be described with reference to FIG. ゴム帯板のように、引っ張り剛性に対して曲げ剛性の小さい柔軟な弾性部材の一方の端を、図3(a)のように回転不可に固定して垂直に垂らした状態で、下端部を水平方向に押すと、柔軟な弾性部材は面外に柔軟に変形するので、緩やかなカーブを描いて湾曲する。 Like rubber strip, pulling one end of the small flexible resilient member having bending rigidity with respect to rigidity, in a state hung down vertically fixed to non-rotatable as in FIG. 3 (a), the lower end pressing the horizontal direction, the flexible resilient member so flexibly deformed out of plane, curved draws a gentle curve. 柔軟な弾性部材には張力が作用していないため、押す速度が速い場合には湾曲部に曲げ振動が生じたり、また、先端部を指で摘んで押す場合には摘み方によって湾曲形状が大きく変化する。 Because the flexible resilient member does not act tension, or vibrational bending the curved portion is generated in the case where the speed is fast pushing, also largely curved shape depending on how the knob when you press picking tip with a finger Change. また、先端部に大きな角度変化を生じさせるには、柔軟な弾性部材の長さを長くする必要がある。 Also, the causes a large angle change in the tip, it is necessary to increase the length of the flexible elastic member.

ところが、前記柔軟な弾性部材に垂直方向に張力を加えて引き延ばした状態で、水平方向に押すと、図3(b)のように固定部付近のみが小さな曲率半径で湾曲し、固定部から少し離れた位置から下方の柔軟な弾性部材は張力によって曲がりにくくなっているので直線的に伸びる形状に変形する。 However, in a state in which the flexible elastic members stretched under tension in the vertical direction, by pressing the horizontal direction, only the vicinity of the fixing portion as shown in FIG. 3 (b) is curved with a small radius of curvature, a bit from the fixed part flexible elastic member downward from a distance is deformed into a shape that extends linearly so is less likely bent by tension. 固定部分の曲率半径は張力が大きいほど小さくなる。 The radius of curvature of the fixed portion decreases as the tension increases. このときの柔軟な弾性部材には張力が作用しているので、押す速度が速くても曲げ振動が生じにくく、また、先端部の摘み方によっても固定部付近の角度変化はほとんど変化しない。 The tension in the flexible resilient member in this case is acting, hardly occurs even faster speed bending vibration press, also hardly change the angle change about the fixed portion by picking the way of the tip. また、柔軟な弾性部材の長さが短くても角度変化が同じであれば、固定部付近の曲げ変形状態はほとんど影響を受けない。 Further, if the angle change is the same even if short length of flexible elastic member, the bending deformation in the vicinity of the fixing portion hardly affected.

本発明の角度及び変位センサは、柔軟な弾性部材に張力を負荷した状態で角度変化を生じさせることにより、センサに局部的な曲げ変形を集中して生じさせ、局部的に曲げ変形した部分に圧電フィルムを配設して曲げ歪みを検出することにより、小さな寸法のセンサで角度変化を精度良く測定でき、角度変化による振動が生じにくく、かつ、張力の負荷方法に影響を受けにくい角度及び変位センサを構成するものである。 Angle and displacement sensor of the present invention, by causing the angle change in a state loaded with tension in a flexible elastic member, caused by intensive local bending deformation sensor, a locally bending deformed portion by detecting the strain bending by arranging the piezoelectric film, a small angular change in sensor size can accurately measure, hardly occurs vibration due to angular change, and less affected by angular and displacement of the load process of tension It constitutes a sensor.

本発明の角度及び変位センサの歪み検出素子200、201、および202について説明する。 Strain detecting elements 200 and 201 of the angle and displacement sensor of the present invention, and 202 will be described. 歪み検出素子を構成する柔軟な弾性薄板10、11および12は厚さ0.1mm〜0.5mmとする。 Flexible thin elastic plate 10, 11 and 12 constitute a distortion detecting element, the thickness is 0.1 mm to 0.5 mm. また、柔軟な弾性薄板10、11および12には、弾性率が0.2Mpa〜20Mpaの柔軟な弾性素材を使用する。 Further, the flexible thin elastic plate 10, 11 and 12, the elastic modulus using a flexible elastic material 0.2Mpa~20Mpa. たとえば、前記柔軟な弾性薄板として、硬度30〜80の天然ゴム、合成ゴム、あるいは各種ゴム素材を組み合わせてなる素材を使用する(請求項5、請求項6)。 For example, the as a flexible elastic sheet, natural rubber having a hardness of 30 to 80, a synthetic rubber, or using a material comprising a combination of various rubber materials (claim 5, claim 6).

歪み検出素子の圧電フィルム1A、1B、2A、2B、3Aおよび3Bには、両面全体に電極を設けた0.02mm〜0.1mmの厚さのものを使用する。 The piezoelectric film 1A of strain detecting elements, 1B, 2A, 2B, the 3A and 3B is given to using a thickness of 0.02mm~0.1mm provided with electrodes on the entire both surfaces. 圧電フィルムの両面の電極にはそれぞれ電気配線を接続する。 Each of the both surfaces of the electrodes of the piezoelectric film connecting electrical wiring. また、前記電気配線には積分回路(又はチャージアンプ)または圧電フィルム裏表に生じる電荷を計測する手段を接続し、積分回路を介して得られる出力信号を圧電フィルムの出力信号として測定する。 Moreover, said the electrical wiring connecting the means for measuring the integration circuit (or charge amplifier) ​​or charge generated in the piezoelectric film sides, measuring the output signal obtained through the integration circuit as an output signal of the piezoelectric film.

前記柔軟な弾性部材10、11および12の厚さを0.1mm〜0.5mmにする理由について説明する。 It explained reason why the thickness of the flexible elastic members 10, 11 and 12 to 0.1 mm to 0.5 mm. 前記柔軟な弾性部材の厚さが0.5mmよりも厚いと、一対の圧電フィルムの間隔が大きくなって、曲げ変形によって圧電フィルムには大きな曲げ歪みが生じる。 If the thickness of the flexible resilient member is thicker than 0.5 mm, it increases the interval between the pair of piezoelectric films, a large bending strain occurs in the piezoelectric film by bending deformation. このため、歪み検出素子は曲がりにくくなり、無理に曲げると圧縮側の圧電フィルムに座屈が生じる。 Therefore, the strain detection element is less likely bend, buckling occurs in the piezoelectric film on the compression side and forcibly bent. また、前記柔軟な弾性部材の厚さを0.1mmよりも薄くすると、容易に曲げ変形するようになるが、圧電フィルムの出力信号が小さくなって、角度変化を精度良く測定することができない。 Further, when thinner than 0.1mm the thickness of the flexible resilient member, but becomes easily bending deformation becomes smaller output signal of the piezoelectric film, it is impossible to accurately measure the angular change.

前記柔軟な弾性薄板10、11および12に弾性率が、0.2Mpa〜20Mpaの柔軟な弾性素材を使用する理由について説明する。 It said flexible elastic sheet 10, 11 and 12 to the elastic modulus will be described the reason for using a flexible elastic material 0.2Mpa~20Mpa. 柔軟な弾性薄板として金属薄板や硬い樹脂薄板を使用すると、歪み検出素子200、201または202の曲げの剛性が大きくなって、局部的な曲げ変形が生じにくくなる。 With sheet metal or hard resin sheet as a flexible elastic sheet, the bending stiffness of the strain detecting elements 200 and 201 or 202 is increased, local bending deformation is less likely to occur. また、張力伝達部材30あるいは31から歪み検出素子200、201又は202の先端部に移る境界部分でも別の角度変化を生じて、柔軟な張力伝達部材の複数箇所で角度変化を生じるようになるので、角度変化を精度良く測定することができない。 Further, it caused a different angle change at the boundary transition from tension transmitting member 30 or 31 to the distal end of the strain detecting elements 200 and 201 or 202, since the produce angular change at a plurality of positions of flexible tension transmission member , it is impossible to accurately measure the change in angle. 曲げ変形を変形拘束部材40、41又は42と張力伝達部材30又は31との境界部の一箇所に集中して生じさせ、かつ、曲率半径を小さく曲げるためには、上記弾性率の範囲の柔軟な弾性薄板を使用するのが好適である。 Causing concentrated in one location of a boundary portion between the deformation restraining member 40, 41 or 42 the bending deformation and the tension transmission member 30 or 31, and, in order to bend small radius of curvature, a flexible range of the elastic modulus it is preferred to use an elastic thin plate.

柔軟な張力伝達部材30および31には、弾性率が0.2Mpa〜20Mpaの柔軟な弾性部材を用いる。 A flexible tension transmission member 30 and 31, the elastic modulus using a flexible elastic member 0.2Mpa~20Mpa. たとえば、柔軟な張力伝達部材30又は31には硬度30〜80の天然ゴム、合成ゴム、あるいは各種ゴム素材を組み合わせてなる柔軟な弾性部材を使用する。 For example, the flexible tension transmission member 30 or 31 to use natural rubber, synthetic rubber or soft elastic member formed by combining various types of rubber materials, hardness 30 to 80. 柔軟な張力伝達部材30又は31と前記歪み検出素子の柔軟な弾性薄板10、11又は12には同じ素材を用いても良い。 The flexible elastic sheet 10, 11 or 12 of the flexible tension transmission member 30 or 31 wherein the strain detecting elements may use the same material. あるいは、柔軟な張力伝達部材30又は31に弾性特性のある伸縮布帛などを用いることもできる(請求項7)。 Alternatively, it is also possible to use such stretchable fabric with elastic properties in a flexible tension transmission member 30 or 31 (Claim 7).

前記柔軟な張力伝達部材30および31に硬い弾性部材を用いない理由は、歪み検出素子200、201及び202を配設した部分で張力伝達部材は2層構造となるので、張力伝達部材が硬いとこの部分が小さな曲率半径では曲がりにくくなり、無理に曲げると圧縮側の張力伝達部材に座屈が生じるためである。 Reason for not using the hard elastic member to said flexible tension transmitting member 30 and 31, the tension transmission member at the portion disposed strain detecting elements 200, 201 and 202 is a two-layer structure, the tension transmission member is hard this portion is less likely to bend with a small radius of curvature, because the buckling occurs in the tension transmission member on the compression side and forcibly bent. すなわち、歪み検出素子を配設した部分のセンサの曲げ剛性を小さくして、局部的な曲げ変形を集中して生じさせるには柔軟な弾性部材を用いるのが好適である。 That is, to reduce the flexural rigidity of the sensor portion is disposed a strain detecting elements, it is preferable to use a flexible elastic member to cause concentrated localized bending deformation.

次に、本発明の角度及び変位センサの歪み検出素子200、201及び202を配設した部分の横断面形状について説明する。 Next, a description will be given cross-sectional shape of an angle and a portion is disposed a strain detecting elements 200, 201 and 202 of the displacement sensor of the present invention. 上述したように、柔軟な張力伝達部材30又は31に柔軟な弾性部材を用いた場合であっても、柔軟な張力伝達部材30又は31の横断面積が大きいと、歪み検出素子200、201又は202の局部的な曲げを阻害することになる。 As described above, even in the case of using a flexible elastic member in a flexible tension transmission member 30 or 31, the cross-sectional area of ​​the flexible tension transmission member 30 or 31 is large, the strain detecting elements 200 and 201 or 202 It will inhibit the local bending. 柔軟な張力伝達部材30又は31は、歪み検出素子200、201又は202に張力を伝達する役目と、歪み検出素子の曲げ変形を阻害することなく形状を保持する役目を果たせれば、できるだけ曲げ剛性が小さいのが好適である。 Flexible tension transmission member 30 or 31 has a function of transmitting the tension to the strain detecting elements 200 and 201 or 202, if Hatasere serves to retain the shape without inhibiting bending deformation of the strain detecting elements, as much as possible flexural rigidity it is preferred that small.

このため、前記歪み検出素子200、201又は202を配設した部分の角度及び変位センサの横断面において、柔軟な張力伝達部材の曲げ剛性(E2×I2)が、歪み検出素子の曲げ剛性(E0×I0+E1×I1)、(但しE0、E1、E2はそれぞれ圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の弾性率、I0、I1、I2はそれぞれ、一対の圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の断面ニ次モーメント)よりも小さくなるように作製するのが良い(請求項8)。 Therefore, the angle and cross-section of the displacement sensor of the portion disposed with the strain detecting elements 200 and 201 or 202, flexural rigidity of the flexible tension transmission member (E2 × I2) is, the strain detection element bending stiffness (E0 × I0 + E1 × I1), (where E0, E1, E2 respectively piezoelectric film, flexible thin elastic plate, the elastic modulus of the flexible tension transmission member, I0, I1, I2, respectively, a pair of piezoelectric films, flexible thin elastic plate, so as to better to make smaller than the cross section d th moment) of flexible tension transmitting member (claim 8).

図4は本発明の角度及び変位センサに張力を負荷して使用するもう一つの理由を、請求項1に記載の角度及び変位センサを例に説明する図である。 Figure 4 is a diagram for explaining another reason to use by loading tension on the angle and displacement sensor of the present invention, an example the angle and displacement sensor according to claim 1. 図4(a)のように張力を負荷しない状態で角度及び変位センサが曲げ変形すると、変形拘束部材40付近の柔軟な張力伝達部材30と圧電フィルム1Aは、引っ張り側では滑らかに伸びて曲げ変形するが、圧縮側では圧縮歪みによって柔軟な張力伝達部材30と圧電フィルム1Bに座屈が生じて表面が凹凸状態になる。 4 when the angle and displacement sensor in a state that does not load the tension bending deformation as (a), a flexible tension transmission member 30 and the piezoelectric film 1A around deformation restraining member 40 is smoothly extending bending deformation in the tensile side Suruga, the surface occurs buckling becomes uneven state in a flexible tension transmission member 30 and the piezoelectric film 1B by the compressive strain in the compression side. 圧縮側表面の凹凸は曲げ角度がある程度以上に大きくなると生じ、また、柔軟な張力伝達部材30の厚さが厚くなるほど生じ易くなる。 Irregularity of the compression-side surface occurs and the bending angle is larger than a certain degree, also likely to occur as the thickness of the flexible tension transmission member 30 is increased. ところが、図4(b)のように張力を負荷した状態で曲げ変形すると、柔軟な張力伝達部材30と歪み検出素子200の横断面全体に一様な引っ張り歪みが加わるので、検出素子200が大きく折れ曲がった場合でも圧縮側表面に凹凸が生じることなく滑らかに変形するようになる。 However, when bending deformation in a state loaded with tension as shown in FIG. 4 (b), the so uniform tensile strain on the entire cross-section of a flexible tension transmission member 30 and the strain detection element 200 is added, a large detection element 200 uneven compression surface even when bent comes to smoothly deform without causing.

変形拘束部材40、41および42について説明する。 Deformation restraining member 40, 41 and 42 will be described. 変形拘束部材は歪み検出素子の一部分を曲げ変形しないように拘束した状態で対象物に角度及び変位センサを固定するものであるから、金属などの剛性のある素材で作製し、また、歪み検出素子200、201又は202の両面側を拘束できるものが良い。 Since deformation restriction member is for fixing the angle and displacement sensor to the object while restrained from bending deformation of the portion of the strain detecting elements, manufactured with material having rigidity such as metal, also, the strain detecting elements good that the both sides can constraints 200, 201 or 202.

歪み検出素子200、201および202の長さと、歪み検出素子端部の所定長さの部分において曲げ変形を拘束する変形拘束部材の寸法関係について請求項1に記載の角度及び変位センサを例に説明する。 The length of the strain detecting elements 200, 201 and 202, as an example the angle and displacement sensor according to claim 1 for the dimensional relationship of the deformation restraint member for restraining the bending deformation in the predetermined length portion of the strain detecting elements ends Description to. 図1において、変形拘束部材40で変形を拘束されていない部分の歪み検出素子200の長さは、歪み検出素子200と柔軟な張力伝達部材30の厚さを加えた全体厚さの5倍よりも長く作製する。 In Figure 1, the length of the strain detecting elements 200 of the portion not constrained deformation at a deformation restraining member 40, from 5 times the total thickness plus the thickness of the strain detecting elements 200 and flexible tension transmission member 30 also it is made longer. また、歪み検出素子が変形拘束部材で変形が拘束されている部分の長さは、同拘束されていない部分の長さと略同じ長さにする(請求項9)。 The length of the portion strain detection element is deformed with a deformation restraining member being constrained to the length and substantially the same length of the portion that is not co constrained (claim 9).

図5は本発明の角度及び変位センサの引っ張り側の圧電フィルム1Aに作用する曲げ歪みε (x)(但しxは図5における圧電フィルムの左端からの距離)と、張力による引っ張り歪みε (x)を模式的に示した図である。 Figure 5 is the angle and strain bending acting on the tensile side of the piezoelectric film 1A of the displacement sensor epsilon B of the present invention (x) (where x is the distance from the left edge of the piezoelectric film in FIG. 5), tensile strain due to tension epsilon T the (x) is a diagram schematically showing. 局部的に曲げ変形を生じた部分の歪み検出素子200の曲率半径は、図5(a)に示す圧電フィルム1Aの曲げ歪み分布からわかるように、曲がり部分で一様ではなく、変形拘束部材40との境界部で最大になり、柔軟な張力伝達部材30の先端部に移動するに従って減少する。 The radius of curvature of the strain detecting elements 200 of the part produced locally bending deformation, as can be seen from bending strain distribution of a piezoelectric film 1A shown in FIG. 5 (a), not uniform in bends, deformable restraining member 40 maximum becomes the boundary portion between the decreases as it moves to the distal end of the flexible tension transmission member 30. したがって、歪み検出素子200の拘束されていない部分の全体の長さは、同曲げ変形している部分の長さより長いことが必要である。 Accordingly, the entire length of the constrained portion not of strain detecting elements 200 is required to be longer than the length of the portion is deformed the bend.

ところが、歪み検出素子200における曲げ変形が完全に直線的変形に移り変わる位置を判定することは困難であるし、また、張力の大きさによって曲げ変形部分の長さは変化する。 However, It is difficult to flexural deformation in the strain detecting elements 200 to determine the position transitory completely linearly deformed, also, the length of the deformed portion bent by the magnitude of the tension change. 曲げ角度を精度良く測定するには、柔軟な張力伝達部材30が直線状になる部分まで歪み検出素子200が伸びている必要があるため、変形拘束部材40で変形を拘束されていない部分の歪み検出素子200の長さは、歪み検出素子200と柔軟な張力伝達部材30の厚さを加えた全体厚さの5倍よりも長く作製するのが良い。 The bending angle to be accurately measured is flexible since the tension transmitting member 30 needs to extend the strain detecting elements 200 to areas of linear distortion of the portion that is not deformed at a deformation restraining member 40 is restrained the length of the detection element 200, is good to prepare more than five times the total thickness plus the thickness of the strain detecting elements 200 and flexible tension transmission member 30.

また、変形拘束部材40で変形を拘束された部分の柔軟な張力伝達部材30は、表面では変形を拘束されているが、内部の歪み検出素子200の圧電フィルム1A、1Bには曲げ歪みが生じるので、変形拘束部材40で変形を拘束された部分の歪み検出素子200の長さも、変形拘束部材40で変形を拘束されていない部分の歪み検出素子200の長さと同程度の長さとするのがよい。 Also, flexible tension transmission member 30 of the constraining portions deformation at a deformation restraining member 40 has been constrained deformation on the surface, bending strain occurs in the piezoelectric film 1A, 1B inside the strain detecting elements 200 since the length of the strain detecting elements 200 of the restraining portion deformation at a deformation restraining member 40 is also that the length and similar length of strain detecting elements 200 of the portion not constrained deformation at a deformation restraining member 40 good.

請求項1の角度及び変位センサを例に、一対の圧電フィルム1A、1Bの出力信号と角度変化θ及び伸び変化δの関係について説明する。 Examples the angle and displacement sensor of claim 1, a pair of piezoelectric film 1A, the output signal of 1B and angular change θ and the relationship between the elongation change δ will be described. 歪み検出素子200には張力と曲げが作用するので、圧電フィルム1A、1Bには曲げ歪みε (x)と引っ張り歪みε (x)が生じ、上面が凸に湾曲した場合には、上面側の圧電フィルム1Aの歪みはε(x)=ε (x)+ε (x)、下面側の圧電フィルム1Bの歪みはε(x)=−ε (x)+ε (x)になる。 Since bending tension acts on the strain detecting elements 200, the piezoelectric film 1A, bending strain ε B (x) and tensile strain ε T (x) is generated in the 1B, when the upper surface is curved convex, upper surface distortion of the side of the piezoelectric film 1A is ε (x) = ε B ( x) + ε T (x), the distortion of the lower surface side of the piezoelectric film 1B is ε (x) = - ε B (x) + ε in T (x) Become.

圧電フィルムの出力信号は歪みの総和に比例するので、一定幅で長さLの圧電フィルムの場合、圧電フィルム1Aの裏表面の電位差V1(又は前記の積分回路の出力電圧をV1とすることもできる。V2も同様)と、圧電フィルム1Bの裏表面の電位差V2はそれぞれ数1のようになる。 Since the output signal of the piezoelectric film is proportional to the sum of the distortion, when the piezoelectric film length L with a constant width, the output voltage of the integrating circuit potential difference V1 (or the the back surface of the piezoelectric film 1A may be V1 .V2 the same) which can be, the potential difference V2 of the back surface of the piezoelectric film 1B is as each number 1.

但しkは比例定数である。 Where k is a proportionality constant.

材料力学より、曲げ歪みε (x)と角度変化θの関係は数2で、また、引っ張り歪みε (x)と伸びδの関係は数3で与えられる。 Than the material mechanics, in bending strain ε B (x) and the angle change relationship θ number of 2, also, the relationship of the tensile strain ε T (x) and elongation δ is given by the number 3.

但しhは張力伝達部材40の曲げの中立軸から圧電フィルムの中心までの距離である。 However h is the distance from the neutral axis of bending of the tension transmission member 40 to the center of the piezoelectric film.
これらの関係を用いて、数1のV1とV2の差分(V1−V2)及び和(V1+V2)を計算すると数4になる。 Using these relationships, the number 4 is calculated the number 1 of the V1 and V2 difference (V1-V2) and the sum (V1 + V2).

すなわち、一対の圧電フィルムの出力信号の差分(V1−V2)が変形拘束部材40と張力伝達部材30とのなす角度変化θに比例し、また、出力信号の和(V1+V2)が張力伝達部材30の伸び変化δに比例することになる。 That is, in proportion to the angle variation θ between the difference (V1-V2) is deformable restraining member 40 and the tension transmission member 30 of the output signals of the pair of piezoelectric films, also, the sum of the output signal (V1 + V2) the tension transmitting member 30 It will be proportional to the elongation change of [delta].

また、数4において(V1−V2)は張力伝達部材30の伸びδに無関係であり、(V1+V2)は角度変化θに無関係である。 Further, in the equation 4 (V1-V2) is independent of the elongation of the tension transmission member 30 [delta], is independent of the (V1 + V2) is angular change theta. このことは、角度センサとしての使用中にセンサが伸び変形をしても、(V1−V2)は伸びδの影響を受けないことを意味する。 This is, even if the sensor elongation deformation during use as an angle sensor, (V1-V2) means that is not affected by the elongation [delta]. 一方、後述する本発明の角度及び変位センサーと同様の構成のセンサーで変位計測を行なう場合には、張力伝達部材(30又は31)に角度変化が生じても、(V1+V2)は角度変化θの影響を考慮する必要がないことを意味する。 On the other hand, the present invention described later angle and in the case of the displacement measured by the displacement sensor the same configuration of the sensor, even if the angle changes in the tension transmission member (30 or 31) occurs, the (V1 + V2) is angular change θ it means that there is no need to consider the impact.

本発明の請求項1に記載の角度及び変位センサに張力を負荷する張力負荷部材60について説明する。 For tensioning member 60 to the load tension described angle and displacement sensor according to claim 1 of the present invention. 張力負荷部材60は、柔軟な張力伝達部材30に張力を負荷した状態で対象物などに固定できるものであれば良い。 Tensioning member 60 is not limited as long as can be fixed like object in a state loaded with tension flexible tension transmission member 30. たとえば金属製の張力負荷部材を張力伝達部材に接着して取り付けるか、張力伝達部材にネジ穴をあけて締付けて取り付けることができる。 For example attachment of a metal tensioning member is adhered to the tension transmission member or may be attached by tightening at a threaded hole in the tension transmission member. 張力負荷部材60の対象物への固定方法は回転自在に固定するのが望ましいが、フックを用いた掛止手段であっても、ボルトによる固定手段であっても良い。 It is desirable fixing method to the object of the tensioning member 60 is fixed rotatably, even latching means using a hook, it may be a fixing means by a bolt.

また、図6に示すように、バネ付の張力負荷部材61のバネを引き延ばして対象物に固定するようにしても良い。 Further, as shown in FIG. 6, it may be fixed to the object stretching the spring tensioning member 61 of the spring. このようにすると、柔軟な張力伝達部材30の長さが短くて張力伝達部材の伸び(又は縮み)が少ない場合でも、必要な張力をバネの張力で補うことができる。 In this way, the short length of flexible tension transmission member 30 extends in the tension transmission member (or contraction) even when less, it is possible to compensate for tension required at a tension spring.

次に、本発明の角度及び変位センサーを変位センサとして使用する場合について図12を用いて説明する。 It will now be described with reference to FIG. 12 for the case of using the angle and displacement sensor of the present invention as a displacement sensor. 説明にあたり、まず、図5(b)の歪み検出素子の圧電フィルム1A、1Bの引っ張り歪みの分布について説明する。 Description Upon, first, a piezoelectric film 1A of strain detecting elements in FIG. 5 (b), the distribution of tensile strain 1B will be described. 角度センサに曲げ変形が生じた場合に、圧電フィルム1A、1Bには負荷した張力に応じて図5(b)に示すような引っ張り歪みε (x)が分布するが、その分布は引っ張り側の圧電フィルム1Aと圧縮側の圧電フィルム1Bで同じである。 When the bending deformation angle sensor occurs, the piezoelectric film 1A, but in 1B 5 tensile strain as shown in (b) ε T (x) are distributed in accordance with the tension-loaded, its distribution pulling side it is the same as the piezoelectric film 1A piezoelectric film 1B on the compression side. 従って、数4に示したように、一対の圧電フィルム1A、1Bの出力信号の和(V1+V2)からセンサの伸びδに応じた信号を測定することができる。 Therefore, can be determined as shown in Equation 4, a pair of piezoelectric film 1A, a signal corresponding the sum of the 1B output signal (V1 + V2) to the elongation δ sensor.

すなわち,上述の角度及び変位センサは、一対の圧電フィルムの出力信号の和(V1+V2)からセンサの長さ変化δに応じた信号を検出し、また、(V1―V2)から角度変化θを検出することで変位センサとして用いることができる。 That is, the angle and displacement sensor described above, detects a signal corresponding to the length of the sensor from the sum (V1 + V2) of the output signal change of the pair of piezoelectric films [delta], also detects the angle change θ from (V1-V2) it can be used as a displacement sensor by. この変位は,角度センサを張設したときの張設軸方向をX軸に,張設軸に直角方向をY軸に取ると,図12に示すように、δy=(L1+δ)×sinθ、δx=(L1+δ)×cosθ−L1(但しL1は張設時の角度センサの長さ)で求めることができる(請求項12)。 This displacement, Zhang 設軸 direction when stretched an angle sensor in the X-axis, taking the direction perpendicular to the Y axis to Zhang 設軸, as shown in FIG. 12, δy = (L1 + δ) × sinθ, δx = (L1 + δ) × cosθ-L1 (where L1 is the angle length of the sensor Zhang 設時) can be obtained by (claim 12).

以上説明したように,上記に記載した角度及び変位センサは、いずれも変位センサとしても使用することができる。 As described above, the angle and displacement sensor described above can be either be used as a displacement sensor.

本発明の角度及び変位センサによれば、簡単な構造で、角度変化を精度良く測定できる小型の角度センサを提供することができる。 According to the angle and displacement sensor of the present invention, a simple structure, it is possible to provide an angle sensor of a small which can accurately measure the angular change. また、角度変化と長さ変化を一体化したセンサ部で検出することにより、対象物の所定の2点、又は2つの対象物の所定の点の間の相対的変位を精度良く測定できる小型の変位センサを提供することができる。 Further, by detecting by the sensor unit that integrates the angular change and length change, predetermined two points of the object, or small that the relative displacement between the predetermined point of the two objects can be accurately measured it is possible to provide a displacement sensor. これにより、構造部材の変形、ロボットや身体部位の関節部の角度変化や変形、2つの対象物の角度変化や変位の測定を容易に実現することができる。 Thus, the deformation of the structural member, the angle changes and deformation of the joints of the robot or the body part, a measurement of the angular change and displacement of the two objects can be easily realized. また、複数の角度センサや変位センサを連結したセンサは、複数の点、又は複数の対象物の所定の点を結ぶ複数の線分の角度変化や変位の測定を容易に実現することができる。 The sensor formed by coupling a plurality of angle sensors or displacement sensors, a plurality of points, or a plurality of measurements of a plurality of segments of angular change and displacement connecting predetermined points of the object can be easily realized.


(実施例1) (Example 1)
図7は請求項1に記載のセンサを例に、角度変化を測定する方法の一実施例を説明する図である。 Figure 7 is an example sensor of claim 1, is a diagram illustrating an embodiment of a method of measuring angular change. いま、破線で示す有効長さL0の角度センサの変形拘束部材40を第1の対象物に回転不可に固定し、柔軟な張力負荷部材30に張力を負荷して引き延ばした状態で柔軟な張力負荷部材30を第2の対象物に固定する。 Now, the deformation restraint member 40 of the angle sensor of the effective length L0 shown by a broken line is fixed in non-rotatable to the first object, a flexible state where stretching was loaded tension in a flexible tensioning member 30 the tensioning securing the member 30 to the second object. このときのセンサの有効長さをL1とする。 The effective length of the sensor at this time is L1. 第2の対象物は変形拘束部材40の延長方向であっても良く、また、初期角度を持って固定しても良い。 The second object may be an extension direction of the deformation restraining member 40, or may be fixed with an initial angle.

次に、たとえば、第2の対象物が移動して、図のように角度センサに角度変化θが生じたとする。 Then, for example, by moving the second object, an angle change θ occurs in the angle sensor as in FIG. すると角度変化θは、数4よりθ=(V1−V2)/2khで求めることができる。 Then the angle changes theta can be determined by than the number 4 θ = (V1-V2) / 2kh. このとき、角度センサには図のような伸びδ(あるいは、伸びた状態から縮み)を生じるが、上述したように(V1−V2)は伸びδによって影響を受けない。 In this case, elongation [delta] (or contraction from extended state) as shown in FIG. The angle sensor is causing, as described above (V1-V2) is not affected by the elongation [delta].

(実施例2) (Example 2)
図8は請求項2に記載の角度及び変位センサで角度変化を測定する方法の一実施例を説明する図である。 Figure 8 is a view for explaining an embodiment of a method for measuring the angular change in the angle and displacement sensor according to claim 2. まず、柔軟な張力伝達部材31に張力を負荷した状態で、両端部の変形拘束部材41、42を第1と第2の対象物の面にそれぞれ回転不可に固定する。 First, in a state loaded with tension flexible tension transmission member 31, fixed to the respective non-rotatable deformation restraining member 41, 42 at both ends on the surface of the first and second objects. 次に第1と第2の対象物の少なくとも一方が移動して図(b)のように変位したとする。 Then at least one of the first and second object is to displaced as shown in FIG. (B) moving. このときの両端部の歪み検出素子201、202の出力信号から、角度変化θ1、θ2をそれぞれ測定すると、2つの対象物の所定の面の相対的な角度変化を測定することができる。 From the output signal of the both end portions of the strain detecting elements 201 and 202 at this time, angle change .theta.1, if θ2 is the measured, it is possible to measure the relative angle variation of a predetermined surface of two objects.

(実施例3) (Example 3)
図9は請求項10に記載の角度及び変位センサの一実施例を説明する図である。 Figure 9 is a diagram illustrating the angle and an embodiment of a displacement sensor according to claim 10. 金属などで作製され、回転関節50で回転自在に連結された2つの剛性部材90、91の回転関節部分に、前記回転関節50の中心に歪み検出素子203の曲げの中立軸が一致し、かつ、前記回転関節50の中心に歪み検出素子が曲げ変形する部分の変形拘束部材44の端部が一致するようにして、変形拘束部材44を剛性部材90に取り付ける。 Made like a metal, the rotatably connected two rotary joints of the rigid member 90, 91 has a rotary joint 50, the bending neutral axis coincides the center strain detecting elements 203 of the rotary joint 50, and , as the end portion of the deformation restriction member 44 strain detecting elements are bending deformation at the center of the rotary joint 50 matches, attaching the deformation restraining member 44 to the rigid member 90. 次に、柔軟な張力伝達部材33に張力を負荷した状態で張力負荷部材62をもう一方の剛性部材91に止めピンなどで取り付ける。 Then, attach locking pin or the like to the other rigid member 91 to the tensioning member 62 in a state loaded with tension in a flexible tension transmission member 33. 2つの剛性部材90、91が回転関節部分で回転するときの(V1−V2)を上述した方法で測定すると、2つの剛性部材の角度変化θを測定することができる。 When the two rigid members 90 and 91 is measured in the manner described above for the (V1-V2) when rotated by rotating joints can be measured angular change θ of the two rigid members.

(実施例4) (Example 4)
図10は請求項10に記載の角度及び変位センサの別の実施例を説明する図である。 Figure 10 is a view for explaining another embodiment of the angle and displacement sensor according to claim 10. 金属などで作製した3つの剛性部材92、93、94を、2つの回転関節51、52で直列に連結する。 Three rigid members 92, 93 and 94 manufactured in a metal, is connected in series with two revolute joints 51 and 52. 次に、両端部に歪み検出素子を配設した角度センサの柔軟な張力伝達部材34に張力を負荷した状態で、変形拘束部材45、46を剛性部材92、94に回転不可にそれぞれ固定する。 Next, in a state loaded with tension in a flexible tension transmission member 34 of the angle sensor which is disposed a strain detecting elements at both ends, respectively non-rotatable fixing the deformation restriction members 45 and 46 to the rigid member 92, 94. 回転関節部で2つの剛性部材92、94が回転すると、歪み検出素子204、205はそれぞれ、回転関節51、52の角度変化に応じて曲げ変形する。 When the rotary joint has two rigid members 92 and 94 rotate, the strain detecting elements 204 and 205 respectively, the bending deformation in accordance with the angular change of the rotational joints 51 and 52. そのときの角度変化を両端部の歪み検出素子204,205でそれぞれ測定することで、剛性部材92、93、94の角度変化の状態を測定することができる。 By measuring each angular change at that time by the strain detecting elements 204 and 205 at both ends, it is possible to measure the state of the angle change of the rigid members 92, 93 and 94.

(実施例5) (Example 5)
図11は請求項11に記載の角度及び変位センサを連結して長い構造物の変形や複数の対象物の相対変位を計測する用途に適用する実施例である。 Figure 11 is an embodiment applied to applications for measuring a relative displacement deformation and a plurality of objects angle and long structure connects the displacement sensor according to claim 11. 角度及び変位センサ500、501、502を、図11に示すように連結部材70、71を介して少なくとも2つ連結して、各センサの柔軟な張力伝達部材にそれぞれ張力を負荷した状態で、変形拘束部材を固定具で所定の位置にそれぞれ回転負荷に固定すると、寸法の長い構造部材などの変形や、複数の対象物の相対位置の変化を測定することができる。 The angle and displacement sensors 500, 501 and 502, in a state in which at least two coupled through a coupling member 70 and 71 as shown in FIG. 11 were loaded, respectively tension the flexible tension transmission member of each sensor, deformation When fixed to the respective rotational load in position in the fixture restraining member, it is possible to measure the change in the relative position of deformation and a plurality of objects, such as a long structural member dimensions.

(実施例6) (Example 6)
図18は変形拘束材40の部分であって柔軟な張力伝達部材30の一部を挟み込む開口の端部48を滑らかな形状に成形した実施例である。 Figure 18 is an embodiment in which forming the ends 48 of the opening for sandwiching a portion of a partially flexible tension transmitting member 30 of the deformation restriction member 40 in a smooth shape. 前記終端部48において伝達部材30に生じる曲げ変形を滑らかにする目的で該48を半円等、丸みを有する形状とする(請求項13)。 Semicircle like the 48 in order to smooth the bending deformation occurring to the power transmitting member 30 in the terminal end portion 48, a shape having a rounded (claim 13). なお、変形拘束部材41又は42の同様な開口端部に前記の丸みを帯びた形状を適用することは本発明の実施の範囲である。 Incidentally, it is the range of the present invention to apply a shape tinged said rounded like open end of the deformation restriction member 41 or 42.

変形拘束部材40の端部48の角部の形状が直線的であると、該端部において柔軟な張力伝達部材30に滑らかな曲げ変形を形成させることが出来ない場合がある。 The shape of the corner portion of the end portion 48 of the deformation restriction member 40 is linear, it may not be able to form a smooth bending deformation flexible tension transmission member 30 in the end portion. 例えば柔軟な張力伝達部材が直線上に伸びた状態から90度を超えて大きく角度変化した場合に前記状態が発生し得る。 For example, the state when the flexible tension transmitting member is larger angular change than 90 degrees from the state extending in a straight line may occur. ところが、図18のように変形拘束部材40の端部48を滑らかな形状にすると柔軟な張力伝達部材30が90度を超える角度に変形しても、その変形形状は滑らかであり、角度計測に影響がない。 However, be modified to deform more than when the end portion 48 in a smooth shape flexible tension transmission member 30 is 90 degrees of the restraining member 40 angle as shown in FIG. 18, the deformed shape is smooth, the angle measurement influence is not.

アクリルで製作した変形拘束部材40の開口端部にさらに半径1mmの半円形状の棒を接着して丸みを帯びた端部形状48に成形した後、柔軟な張力伝達部材30を片側90度以上に変形させて角度を計測した実験データを図19に示す。 After forming the edge shape 48 rounded by bonding a rod semicircular further radius 1mm at the open end of the deformation restriction member 40 fabricated with an acrylic, a flexible tension transmission member 30 on one side 90 degrees the experimental data of the angle measured by deforming in FIG 19. 図19より90度以上曲げた状態においても、精度の良い角度計測が可能であることが確認できた。 Even when it is bent more than 90 degrees from FIG. 19, it was confirmed that it is possible to accurate angle measurement.

(実施例7) (Example 7)
本発明の角度及び変位センサを用いて行った実験について説明する。 Experiments will be described was carried out using the angle and displacement sensor of the present invention. 図13は0.2mm厚さのシリコンゴムの弾性薄板の両面に長さ50mm、幅13mmの圧電フィルムを配設した歪み検出素子の両面に、0.5mm厚さのシリコンゴムの張力伝達部材を接着し、アクリル樹脂の変形拘束部材を歪み検出素子の端部から25mmの間隔に渡って設けた角度センサ510を、上端部の変形拘束部材をジグに固定して垂直に垂らし(角度センサの初期の有効長さL0=237mm)、センサ先端部に重さ5.7N、10.4N、および12.8Nの錘をそれぞれ吊して振り子のように振らせた。 Figure 13 is a length of 50mm on both sides of a thin elastic plate of the silicone rubber of 0.2mm thickness, on both sides of the strain detection element is disposed a piezoelectric film having a width of 13 mm, a tension transmission member of the silicon rubber 0.5mm thick bonded, the angle sensor 510 provided over the interval of 25mm from the end of the strain detecting elements the deformation restraining member of the acrylic resin, hung vertically fixing the deformation restraining member at the upper end to the jig (angle sensor initial effective length L0 = 237 mm) of the sensor tip weight 5.7 N, hung 10.4N, and 12.8N of the weight respectively swung like a pendulum. 角度変化は分度器を描いたボードをセンサ背面に置いて測定した。 Angle change was measured by placing a board depicting a protractor to the sensor back. 振れ角度を種々変化させてセンサの出力信号V1とV2を測定し、抵抗とコンデンサで構成した積分回路を介して電圧記録計で測定した。 The deflection angle while varying measures the output signal V1 and V2 of the sensor was measured at a voltage recorder through an integration circuit constituted by a resistor and a capacitor.

そのときの出力信号の差分(V1−V2)と振れ角度変化θとの関係を図14に示す。 The relationship between the difference (V1-V2) of the output signal at that time shake the angle change θ shown in FIG. 14. 図において、錘の重さ、すなわちセンサに作用する張力によらず(V1−V2)と角度変化θの間には良い比例関係があることがわかる。 In the figure, the weight of the weight, i.e. regardless of the tensile force acting on the sensor (V1-V2) and between the angle change θ it can be seen that there is a good proportional relationship. すなわち、本発明の角度センサは張力の大きさに影響されることなく角度変化を精度良く測定できることがわかる。 That is, the angle sensor of the present invention it can be seen that accurately measures the angle change without being affected by the magnitude of the tension.

次に、角度及び変位センサを用いた変位計測実験について説明する。 Then, the displacement measurement experiment will be described using the angle and displacement sensors. 図15に示すように、角度及び変位センサ600を吊した状態から、センサ先端部の張力負荷部材62を指で掴んで、所定の点Pまで引っ張った状態で一端停止し、次に、指で張力負荷部材62を持って、点Pからさらに別の位置(たとえば点Q)に移動させる実験を行った。 As shown in FIG. 15, the angle and state of hanging the displacement sensor 600, the tensioning member 62 of the sensor tip by gripping with fingers, and one end stop in a state of pulling to P a predetermined point, then, with the fingers with the tensioning member 62, an experiment was conducted to move to a further position from the point P (e.g., point Q). 実験は碁盤目を描いた板をセンサ背面に置き、角度変化、長さ変化、あるいは角度変化と長さ変化の両方が変化する所定の位置に虫ピンを立てて行った。 Experiments places the plate depicting the cross-cut to the sensor back angle change was performed make a small pin into position both changes in length change, or change in angle and length changes. P点とQ点の座標は種々変えて実験した。 The coordinates of the points P and Q were experiments various varied.

図16に一例として、角度及び変位センサを垂直に垂らして真下に引き延ばし、初期伸びL1−L0=53mmを与えた点Pから、碁盤目板の左側半分の種々の点Qに張力負荷部材62を移動させた場合、および点Qから点Pに戻したときの、圧電フィルムの出力信号の差分(V1−V2)と角度変化θの関係を示す。 As an example in Figure 16, stretching beneath hanging the angle and displacement sensors vertically, from a point P that gave the initial elongation L1-L0 = 53 mm, the tensioning member 62 at various points Q of the left half of the cross-cut plate If the moved, and from the point Q when returned to the point P, indicating the relationship between the difference (V1-V2) and the angle variation θ of the output signal of the piezoelectric film. 図より、(V1−V2)と角度変化θの間には、角度変化が90度に達するまで良い比例関係があることがわかる。 From the figure, between the (V1-V2) and angular change theta, the angle change is seen that there is a good proportional relationship to reach 90 degrees.

図17は、上記実験で得られた、圧電フィルムの出力信号の和(V1+V2)と伸びδ(又は伸びた状態からの縮み)の関係を示す。 17 is obtained in the above experiment, showing the relationship between (shrinkage from or extended state) output signal of the sum (V1 + V2) and elongation δ piezoelectric film. 図より、角度変化を生じたときの出力信号の大きさに対して、伸びδが変化したときの出力信号の大きさが小さくて多少ばらつきは見られるが、伸びδに応じた出力信号を得ることができることがわかる。 From the figure, with respect to the magnitude of the output signal when the resulting angular change, somewhat fluctuation is seen a small magnitude of the output signal when the elongation δ changed to obtain an output signal corresponding to the elongation δ it can be seen that it is possible.

図中の実線は、前記角度及び変位センサ600を真っ直ぐに引っ張ったときの(V1+V2)と伸びδの関係を実験で別途求め、初期伸びL1−L0=53mm分だけ原点を移動させて、同図に書き加えたものであるが、角度及び変位センサを点Pから点Qに移動させたとき、あるいは点Qから点Pに戻したときの(V1+V2)とδの関係のプロット点と良く一致している。 The solid line in the figure, the separately determined angle and when pulled straight displacement sensor 600 and extend the relationship δ (V1 + V2) in the experiment, by moving the origin by an initial elongation L1-L0 = 53 mm min, drawing but is obtained by adding write to, when moving the angle and displacement sensors from the point P to the point Q, or (V1 + V2) and in good agreement with the plot points of the relationship between δ upon reconstitution from point Q to the point P ing.

角度及び変位センサの構成の一実施例を説明する図である。 It is a diagram for explaining an example of the configuration of the angle and displacement sensors. 角度及び変位センサの構成の別の実施例を説明する図である。 It is a diagram illustrating another example of the configuration of an angle and displacement sensor. 角度及び変位センサの角度検出原理を説明する図である。 It is a diagram illustrating an angle detection principle of angle and displacement sensors. 本発明の角度及び変位センサに張力を負荷した状態で使用する理由を説明する図である。 It is a diagram for explaining a reason to use at an angle and a state loaded with tension to the displacement sensor of the present invention. 角度及び変位センサの局部的な曲げ変形部分の曲げ歪みの分布状態を説明する図である。 It is a diagram illustrating the angle and distribution of bending strain of the local bending deformation portion of the displacement sensor. 本発明の角度及び変位センサの張力負荷部材の別の実施例を説明する図である。 It is a diagram illustrating another example of the angle and tension load member of the displacement sensor of the present invention. 請求項1に記載の角度及び変位センサの角度測定方法を説明する図である。 Is a diagram illustrating the angle measurement method of the angle and displacement sensor according to claim 1. 請求項2に記載の角度及び変位センサの角度測定方法を説明する図である。 Is a diagram illustrating the angle measurement method of the angle and displacement sensor according to claim 2. 請求項10に記載の角度及び変位センサの一実施例を説明する図である。 It is a diagram illustrating the angle and an embodiment of a displacement sensor according to claim 10. 請求項10に記載の角度及び変位センサの別の実施例を説明する図である。 It is a view for explaining another embodiment of the angle and displacement sensor according to claim 10. 少なくとも2つの角度及び変位センサを連結してなる角度センサの一実施例を説明する図である。 Is a diagram illustrating an example of an angle sensor formed by connecting at least two angles and displacement sensor. 角度及び変位センサを用いた変位測定方法を説明する図である。 Angle and displacement measuring method using a displacement sensor is a diagram illustrating a. 角度及び変位センサの張力負荷部材に錘を吊して振らせる実験を説明する図である。 Hanging a weight on the tensioning member angular and displacement sensor is a diagram explaining an experiment to shake. 実験で求めた圧電フィルムの出力信号の差分(V1−V2)と振り角度変化θの関係を示す図である。 It is a diagram showing the relationship of the difference (V1-V2) and swing angle variation θ of the output signal of the piezoelectric film obtained in experiments. 角度及び変位センサの角度変化と伸び変化を測定する実験を説明する図である。 Is a diagram illustrating an experiment to measure the angular change and elongation change of angle and the displacement sensor. 角度及び変位センサを用いた実験で求めた圧電フィルムの出力信号の差分(V1−V2)と角度変化θの関係を示す図である。 Angle and is a diagram showing the relationship of the difference (V1-V2) and the angle variation θ of the output signal of the piezoelectric film obtained in experiments using a displacement sensor. 角度及び変位センサを用いた実験で求めた圧電フィルムの出力信号の和(V1+V2)と伸びδの関係を示す図である。 It is a diagram showing the relationship of the sum (V1 + V2) and elongation δ of the output signal of the angle and the piezoelectric film obtained in experiments using a displacement sensor. 変形拘束部材の開口端部の形状を改善した角度及び変位センサを示す図である。 Deformation is a diagram showing improved angular and displacement sensors the shape of the opening end portion of the restraining member. 改善した開口端部を有する変形拘束部材の効果を示す実験データである。 Experimental data showing the effect of deformation restraining member with improved open end.

符号の説明 DESCRIPTION OF SYMBOLS

1A、1B 圧電フィルム2A、2B 圧電フィルム3A、3B 圧電フィルム4A、4B 圧電フィルム10、11、12、13 柔軟な弾性薄板30、31、32 柔軟な張力伝達部材33、34 柔軟な張力伝達部材40、41、42 変形拘束部材43、44 変形拘束部材45、46 変形拘束部材48 変形拘束部材開口端部50 回転関節51、52 回転関節60 張力負荷部材61、62 張力負荷部材70 連結部材90、91 剛性部材92、93、94 剛性部材200、201、202 歪み検出素子203 歪み検出素子204、205 歪み検出素子500、501、502 角度センサ510 角度センサ600 変位センサ 1A, 1B piezoelectric film 2A, 2B piezoelectric film 3A, 3B piezoelectric film 4A, 4B piezoelectric film 10, 11, 12, 13 flexible elastic sheet 30, 31, 32 flexible tension transmission member 33, 34 flexible tension transmission member 40 , 41, 42 deformation restriction members 43 and 44 deformation restriction members 45 and 46 deformation restriction member 48 deformable restraining member opening end 50 rotary joints 51,52 rotary joint 60 the tensioning members 61 and 62 the tensioning members 70 connecting member 90, 91 rigid member 92, 93, 94 rigid member 200, 201, 202 strain detecting elements 203 strain detecting elements 204 and 205 the strain detecting elements 500, 501 and 502 angle sensor 510 an angle sensor 600 a displacement sensor

Claims (13)

  1. 柔軟な弾性薄板10とその両面に配設された一対の圧電フィルム1A、1Bからなる歪み検出素子200と、柔軟な張力伝達部材であって、一方の端部付近の曲げの中立軸位置に前記歪み検出素子200を配設した柔軟な張力伝達部材30と、前記柔軟な張力伝達部材30の端部の所定長さに渡って設けられ、前記歪み検出素子200の一部分の長さの曲げ変形を拘束する変形拘束部材40と、前記柔軟な張力伝達部材30の先端部に取り付けた張力負荷部材60とから構成したことを特徴とする角度及び変位センサ(図1参照)。 Flexible thin elastic plate 10 and the pair of piezoelectric film 1A arranged on both sides thereof, the strain detecting elements 200 made 1B, a flexible tension transmission member, wherein the neutral axis position of the bending around one end a strain detecting elements 200 flexible tension transmitting member 30 which is disposed, said provided over a predetermined length of the end portion of a flexible tension transmission member 30, the length bending deformation of a portion of the strain detecting elements 200 a deformable restraining member 40 for restraining the angular and displacement sensor, characterized in that consisted tensioning member 60. attached to the distal end of the flexible tension transmission member 30 (see FIG. 1).
  2. 柔軟な弾性薄板11とその両面に配設された一対の圧電フィルム2A及び2Bからなる歪み検出素子201と、柔軟な弾性薄板12とその両面に配設された一対の圧電フィルム3A及び3Bからなるもう一つの歪み検出素子202と、柔軟な張力伝達部材であって両方の端部付近の曲げの中立軸位置に前記歪み検出素子201及び202をそれぞれ配設した柔軟な張力伝達部材31と、前記柔軟な張力伝達部材31の両端の所定長さに渡って設けられ前記歪み検出素子201及び202の一部分の長さの曲げ変形をそれぞれ拘束する変形拘束部材41及び42とから構成したことを特徴とする角度及び変位センサ(図2参照)。 Flexible elastic sheet 11 and the strain detecting elements 201 consisting of the pair disposed on both sides piezoelectric film 2A and 2B, a pair of piezoelectric films 3A and 3B which is disposed a flexible elastic sheet 12 on both sides the other one of the strain detecting elements 202, the flexible tension transmitting member 31 which is disposed respectively in the neutral axis position the strain detecting elements 201 and 202 bend in the vicinity of both ends of a flexible tension transmission member, wherein and characterized by being configured flexible ends of provided over a predetermined length of the tension transmitting member 31 of a portion of the strain detecting elements 201 and 202 the length of the bending deformation from the deformation restraint member 41 and 42 for restraining respective angular and displacement sensor (see FIG. 2).
  3. 請求項1又は2に記載した変形拘束部材(40あるいは41及び42)を角度又は変位を計測する対象物に回転不可に固定し、前記柔軟な張力伝達部材(30又は31)に張力を負荷した状態で使用したことを特徴とする請求項1又は2に記載の角度及び変位センサ(図7及び図8参照)。 Claim 1 or 2 deformation restriction member described in the (40 or 41 and 42) fixed to non-rotatable on the object to measure the angle or displacement, it was loaded with tension to the flexible tension transmission member (30 or 31) angle and displacement sensor according to claim 1 or 2, characterized by using in the state (see FIGS. 7 and 8).
  4. 請求項1ないし3に記載した歪検出素子(200あるいは201及び202)を構成する一対の圧電フィルムの変形により一方の圧電フイルムから出力される信号V1と他方の圧電フイルムから出力される信号V2の差分(V1−V2)により、それぞれ、変形拘束部材(40あるいは41及び42)と張設された柔軟な張力伝達部材(30又は31)のなす角度変化θに応じた信号の検出をおこなうことを特徴とする請求項1ないし3のいずれかに記載の角度及び変位センサ。 Signal output from the claims 1 to one signal V1 and the other piezoelectric film that is output from the piezoelectric film by deformation of the pair of piezoelectric films constituting the strain detection element (200 or 201 and 202) described 3 V2 the difference (V1-V2), respectively, to make the detection of the deformation restraining member (40 or 41 and 42) and stretched and flexible tension transmission member (30 or 31) signal corresponding to the angle change θ of angle and displacement sensor according to any one of claims 1 to 3, wherein.
  5. 請求項1ないし4に記載の歪検出素子を構成する柔軟な弾性薄板(10あるいは11及び12)が厚さ0.1mm〜0.5mmであることを特徴とする請求項1ないし4のいずれかに記載の角度及び変位センサ。 Any one of claims 1 to claims 1, wherein the flexible elastomeric sheet that constitutes the strain detecting element (10 or 11 and 12) are thick 0.1mm~0.5mm described 4 4 angle and displacement sensor according to.
  6. 請求項1ないし5に記載した柔軟な弾性薄板(10あるいは11及び12)の弾性率E1が、0.2Mpa<E1<20Mpaであることを特徴とする請求項1ないし5のいずれかに記載の角度及び変位センサ。 Elastic modulus E1 of a flexible elastic sheet according to claim 1 to 5 (10 or 11 and 12), 0.2 Mpa <E1 <claims 1, characterized in that it is 20Mpa according to any one of 5 angle and displacement sensors.
  7. 請求項1ないし6に記載した柔軟な張力伝達部材(30又は31)の弾性率E2が0.2Mpa<E2<20Mpaであることを特徴とする請求項1ないし6のいずれかに記載の角度及び変位センサ。 Angle and according to any one of claims 1 to 6 elastic modulus E2 of the flexible tension transmission member according to claim 1 to 6 (30 or 31) is characterized in that it is a 0.2 Mpa <E2 <20 Mpa displacement sensor.
  8. 請求項1ないし7に記載した歪み検出素子(200あるいは201及び202)を配設した部分の角度センサの横断面において、柔軟な張力伝達部材(30又は31)の曲げ剛性(E2×I2)が、前記歪み検出素子の曲げ剛性(E0×I0+E1×I1)、(但しE0、E1、E2はそれぞれ、圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の弾性率、I0、I1、I2はそれぞれ、一対の圧電フィルム、柔軟な弾性薄板、柔軟な張力伝達部材の断面二次モーメント)よりも小さいことを特徴とする請求項1ないし7のいずれかに記載の角度及び変位センサ。 In cross-section of an angle sensor of the portion disposed with the strain detection element (200 or 201 and 202) as set forth in claims 1 to 7, the flexural rigidity of the flexible tension transmission member (30 or 31) (E2 × I2) is , bending stiffness (E0 × I0 + E1 × I1) of said strain detecting elements, (although E0, E1, E2 respectively, the piezoelectric film, a flexible thin elastic plate, the elastic modulus of the flexible tension transmission member, I0, I1, I2, respectively , the angle and displacement sensor according to any of claims 1 to 7, characterized a pair of piezoelectric films, flexible thin elastic plate, the smaller than the second moment) of the flexible tension transmission member.
  9. 請求項1ないし8に記載の歪み検出素子(200あるいは201及び202)を配設した部分において、変形拘束部材(40あるいは41及び42)で変形を拘束されていない部分の歪み検出素子(200あるいは201及び202)の長さが、前記歪み検出素子の厚さと柔軟な張力伝達部材(30又は31)の厚さを加えた全体厚さの5倍よりも長いことを特徴とする請求項1ないし8のいずれかに記載の角度及び変位センサ。 In portions were provided with strain sensing element according (200 or 201 and 202) to any one of claims 1 to 8, deformation strain detecting elements of the restraining member (40 or 41 and 42) at a portion which is not constrained deformation (200 or length of 201 and 202), claims 1, wherein longer than 5 times the thickness and flexible tension transmission member (30 or 31) thickness the total thickness plus the said strain detecting elements angle and displacement sensor according to any one of 8.
  10. 請求項1ないし9のいずれかに記載の角度及び変位センサを、回転関節を介して連結された2つまたは3つの剛性部材に、請求項1ないし9のいずれかに記載の張力伝達部材に張力を負荷した状態で取り付けてなる角度及び変位センサであって、前記回転関節の中心に請求項1ないし9のいずれかに記載の歪み検出素子の曲げの中立軸が一致し、かつ、前記回転関節の中心に歪み検出素子が曲げ変形する部分の請求項1ないし9のいずれかに記載の変形拘束部材の端部が一致するように構成したことを特徴とする角度及び変位センサ。 Tension angle and displacement sensor according to any of claims 1 to 9, the two or three rigid member connected via the rotary joint, the tension transmission member according to any one of claims 1 to 9 an angle and displacement sensor becomes attached in a state loaded with, the neutral axis of bending of the strain detection element according to any one of claims 1 to center of the rotary joint 9 match and the rotary joint central angle and displacement sensor, characterized by being configured so that the end portion of the deformation restriction member according to any one of claims 1 part distortion detecting element is bending deformation 9 matches the of.
  11. 請求項1ないし9のいずれかに記載の角度及び変位センサを、連結部材を介して少なくとも2つ連結してなる角度及び変位センサ。 Angle and angular and displacement sensor displacement sensor, formed by at least two coupled through a coupling member according to any one of claims 1 to 9.
  12. 請求項1ないし9のいずれかに記載の角度及び変位センサにおいて、請求項4に記載の一対の圧電フィルムの出力信号V1及びV2の和(V1+V2)から、角度及び変位センサの長さ変化δに応じた信号を検出し、角度センサを張設したときの張設軸方向(X軸方向)および張設軸に直角方向(Y軸方向)からの変位を、δy=(L1+δ)×sinθ、δx=(L1+δ)×cosθ−L1(但しL1は張設時の角度及び変位センサの有効長さ)で求めたことを特徴とする角度及び変位センサ。 In the angle and displacement sensor according to any one of claims 1 to 9, the sum of the output signals V1 and V2 of the paired piezoelectric film according to claim 4 (V1 + V2), the angle and length variation of the displacement sensor δ detecting a response signal, the displacement from Zhang 設軸 direction when the angle sensor has been stretched (X axis direction) and perpendicular to Zhang 設軸 (Y axis direction), δy = (L1 + δ) × sinθ, δx = (L1 + [delta]) angle and the displacement sensor, characterized in that obtained in × cos [theta]-L1 (where L1 is the angle and the effective length of the displacement sensor Zhang 設時).
  13. 請求項1ないし9に記載の変形拘束材(40あるいは41及び42)の部分であって柔軟な張力伝達部材(30又は31)の端部から所定長さの部分を挟み込む開口部分の端部(48)を滑らかな形状に成形したことを特徴とする請求項1ないし9に記載の角度及び変位センサ(図18参照) End of the deformed opening portion from the end portion to sandwich the portion of the predetermined length portion at a by flexible tension transmission member of the restraining member (40 or 41 and 42) (30 or 31) according to any one of claims 1 to 9 ( angle and displacement sensor according to any one of claims 1 to 9, characterized in that molded 48) to smooth shape (see Fig. 18)
JP2006253700A 2006-09-20 2006-09-20 Angle and displacement sensor Pending JP2008076122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253700A JP2008076122A (en) 2006-09-20 2006-09-20 Angle and displacement sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253700A JP2008076122A (en) 2006-09-20 2006-09-20 Angle and displacement sensor

Publications (1)

Publication Number Publication Date
JP2008076122A true true JP2008076122A (en) 2008-04-03

Family

ID=39348365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253700A Pending JP2008076122A (en) 2006-09-20 2006-09-20 Angle and displacement sensor

Country Status (1)

Country Link
JP (1) JP2008076122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223930A (en) * 2009-03-19 2010-10-07 Toshiko Deguchi Rail displacement gauge
JP2011089923A (en) * 2009-10-23 2011-05-06 Asahi Kasei Fibers Corp Sensing member and sensor provided with the sensing member

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105910A (en) * 1980-12-20 1982-07-01 Sumitomo Electric Industries Stress corrosion remedy wire
JPS61170969A (en) * 1985-01-24 1986-08-01 Olympus Optical Co Ltd Head device
JPS6276613A (en) * 1985-09-30 1987-04-08 Toshiba Corp Turntable type continuous vapor growth device
JPS63215A (en) * 1986-06-19 1988-01-05 Yanmar Agricult Equip Planting device of rice planter
JPS631901A (en) * 1986-06-23 1988-01-06 Toshiba Corp Detection method and apparatus therefor
JPS63150185A (en) * 1986-12-12 1988-06-22 Daikin Ind Ltd Angle controller in robot
JPS63241409A (en) * 1987-03-30 1988-10-06 Toshin Denki Kk Bend detecting sensor
JPH01110202A (en) * 1987-10-24 1989-04-26 Fine Rubber Kenkyusho:Kk Displacement detector
JPH04273031A (en) * 1990-08-31 1992-09-29 Atochem North America Inc Material sensor
JPH05133707A (en) * 1991-11-12 1993-05-28 Copal Co Ltd Displacement meter
JPH06112547A (en) * 1992-09-29 1994-04-22 Toshiba Corp Flexural displacement actuator
JPH06156977A (en) * 1992-11-25 1994-06-03 Mitsubishi Heavy Ind Ltd Swing angle measuring device
JPH06174407A (en) * 1992-12-03 1994-06-24 Toyo Kako Kk Angle sensor
JPH06347473A (en) * 1993-06-10 1994-12-22 Canon Inc Posture sensor
US5559387A (en) * 1994-05-13 1996-09-24 Beurrier; Henry R. Piezoelectric actuators
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP2006038710A (en) * 2004-07-28 2006-02-09 Hiroshima Univ Bending deformation sensor and deformation measuring device
JP2006153842A (en) * 2004-11-02 2006-06-15 Hiroshima Univ Sheet for detecting fluctuating load, and fluctuating load detecting circuit
JP2006340944A (en) * 2005-06-10 2006-12-21 Hiroshima Univ Large deformation sensor, and seated person behavior detection sensor/monitor and game/exercising apparatus using the large deformation sensor

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105910A (en) * 1980-12-20 1982-07-01 Sumitomo Electric Industries Stress corrosion remedy wire
JPS61170969A (en) * 1985-01-24 1986-08-01 Olympus Optical Co Ltd Head device
JPS6276613A (en) * 1985-09-30 1987-04-08 Toshiba Corp Turntable type continuous vapor growth device
JPS63215A (en) * 1986-06-19 1988-01-05 Yanmar Agricult Equip Planting device of rice planter
JPS631901A (en) * 1986-06-23 1988-01-06 Toshiba Corp Detection method and apparatus therefor
JPS63150185A (en) * 1986-12-12 1988-06-22 Daikin Ind Ltd Angle controller in robot
JPS63241409A (en) * 1987-03-30 1988-10-06 Toshin Denki Kk Bend detecting sensor
JPH01110202A (en) * 1987-10-24 1989-04-26 Fine Rubber Kenkyusho:Kk Displacement detector
JPH04273031A (en) * 1990-08-31 1992-09-29 Atochem North America Inc Material sensor
JPH05133707A (en) * 1991-11-12 1993-05-28 Copal Co Ltd Displacement meter
JPH06112547A (en) * 1992-09-29 1994-04-22 Toshiba Corp Flexural displacement actuator
JPH06156977A (en) * 1992-11-25 1994-06-03 Mitsubishi Heavy Ind Ltd Swing angle measuring device
JPH06174407A (en) * 1992-12-03 1994-06-24 Toyo Kako Kk Angle sensor
JPH06347473A (en) * 1993-06-10 1994-12-22 Canon Inc Posture sensor
US5559387A (en) * 1994-05-13 1996-09-24 Beurrier; Henry R. Piezoelectric actuators
JPH11211748A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Machine-electricity conversion element and its manufacture and acceleration sensor
JP2006038710A (en) * 2004-07-28 2006-02-09 Hiroshima Univ Bending deformation sensor and deformation measuring device
JP2006153842A (en) * 2004-11-02 2006-06-15 Hiroshima Univ Sheet for detecting fluctuating load, and fluctuating load detecting circuit
JP2006340944A (en) * 2005-06-10 2006-12-21 Hiroshima Univ Large deformation sensor, and seated person behavior detection sensor/monitor and game/exercising apparatus using the large deformation sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223930A (en) * 2009-03-19 2010-10-07 Toshiko Deguchi Rail displacement gauge
JP2011089923A (en) * 2009-10-23 2011-05-06 Asahi Kasei Fibers Corp Sensing member and sensor provided with the sensing member

Similar Documents

Publication Publication Date Title
Kim et al. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation
US4588348A (en) Robotic system utilizing a tactile sensor array
US20100005907A1 (en) Torque measuring apparatus and actuator drive control system
US6236143B1 (en) Transfer having a coupling coefficient higher than its active material
US5827980A (en) Force or extension sensor
US4478089A (en) Tri-axial force transducer for a manipulator gripper
US7441470B2 (en) Strain gauge type sensor and strain gauge type sensor unit using the same
US6497672B2 (en) Device and method for measuring the position of animate links
US4982611A (en) Multiple-degree-of-freedom sensor tip for a robotic gripper
US20090293631A1 (en) Flexural deformation sensing device and a user interface using the same
Tarchanidis et al. Data glove with a force sensor
Lin et al. Modeling and testing of PZT and PVDF piezoelectric wafer active sensors
CN105066870A (en) Axial deviation full-bridge double-interdigital metal strain sheet capable of measuring surface strain axial partial derivative
US4142175A (en) Pressure sensing device and transducer arrangement
US7367242B2 (en) Active sensor for micro force measurement
US5962792A (en) Beam strain gauge
Laflamme et al. Soft elastomeric capacitor network for strain sensing over large surfaces
WO2014018111A1 (en) Elastomeric shear material providing haptic response control
Wang et al. On the repair of a cracked beam with a piezoelectric patch
JP2006038710A (en) Bending deformation sensor and deformation measuring device
Cranny et al. Thick-film force, slip and temperature sensors for a prosthetic hand
JP2004358634A (en) Soft finger with built-in tactile sensor
US7288762B2 (en) Fine-adjustment mechanism for scanning probe microscopy
JP2005091151A (en) Fbg strain gauge
US5819428A (en) Extensometer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090610

A977 Report on retrieval

Effective date: 20110303

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02