JP2008075617A - Cooling water system for hydraulic machinery - Google Patents

Cooling water system for hydraulic machinery Download PDF

Info

Publication number
JP2008075617A
JP2008075617A JP2006258445A JP2006258445A JP2008075617A JP 2008075617 A JP2008075617 A JP 2008075617A JP 2006258445 A JP2006258445 A JP 2006258445A JP 2006258445 A JP2006258445 A JP 2006258445A JP 2008075617 A JP2008075617 A JP 2008075617A
Authority
JP
Japan
Prior art keywords
cooling water
water
draft tube
turbine
pump turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006258445A
Other languages
Japanese (ja)
Other versions
JP5134227B2 (en
Inventor
Junya Suzuki
淳也 鈴木
Yuji Nakao
雄次 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006258445A priority Critical patent/JP5134227B2/en
Publication of JP2008075617A publication Critical patent/JP2008075617A/en
Application granted granted Critical
Publication of JP5134227B2 publication Critical patent/JP5134227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling water system for hydraulic machinery providing mid-air operation of the hydraulic machinery throughout a long period of time by suppressing temperature rising of cooling water. <P>SOLUTION: The cooling water system 8 for hydraulic machinery is provided with an elbow type draft tube 4 connected to an outlet side of a pump turbine 1, and a water intake 9 provided in a position below the draft tube 4 and taking in cooling water to be supplied to an apparatus 7. A drain outlet 10 is provided in a position above a discharge passage 5 in a downstream side of the draft tube 4 for draining cooling water used by the apparatus 7 to the discharge passage 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水車やポンプ水車などの水力機械に係り、詳しくは、水力機械に備えられた機器にドラフトチューブ内の水を冷却水として供給する水力機械の冷却水系統に関する。   The present invention relates to a hydraulic machine such as a water turbine or a pump turbine, and more particularly, to a cooling water system of a hydraulic machine that supplies water in a draft tube as cooling water to a device provided in the hydraulic machine.

水車又はポンプ水車等の水力機械を備えた水力発電システムは、例えば上池から水圧管を通って到達する圧力水によって水力機械のランナを回転させ、これによって発電機を駆動させ発電する。水力機械のランナ回転に用いられエネルギーを失った圧力水は、水力機械の出口側に接続されたドラフトチューブ(吸出し管)及びその下流側の放水流路を通って下池へ流れる。この水力発電システムには、冷却水を必要とする機器(詳細には、例えばランナシール部、主軸封水装置、水車軸受、スラスト軸受、主要変圧器、空気冷却器、発電機軸受、及び液体抵抗器等)が備えられており、その機器に例えばドラフトチューブ内の水を冷却水として供給する冷却水系統を設けている。従来、冷却水系統の一例として、ドラフトチューブにおける下方位置に、冷却水を取水する取水口を設け、ドラフトチューブにおける取水口の下流側かつ上方位置に、前述した機器で使用された冷却水を排水する排水口を設けた構造が開示されている(例えば、特許文献1参照)。   A hydraulic power generation system equipped with a hydraulic machine such as a water turbine or a pump turbine rotates a runner of the hydraulic machine with, for example, pressure water reaching from the upper pond through a hydraulic pipe, thereby driving the generator to generate electric power. The pressure water that is used to rotate the runner of the hydraulic machine and loses energy flows to the lower pond through a draft tube (suction pipe) connected to the outlet side of the hydraulic machine and a water discharge channel on the downstream side thereof. This hydroelectric power generation system includes equipment that requires cooling water (specifically, for example, a runner seal, a main shaft sealing device, a turbine bearing, a thrust bearing, a main transformer, an air cooler, a generator bearing, and a liquid resistance. A cooling water system for supplying water in the draft tube as cooling water, for example. Conventionally, as an example of a cooling water system, an intake port for taking cooling water is provided at a lower position in the draft tube, and the cooling water used in the above-described equipment is drained at a downstream side and an upper position of the intake port in the draft tube. The structure which provided the drain outlet which performs is disclosed (for example, refer patent document 1).

特開平1−25894号公報(第1頁、第1図)JP-A-1-25894 (first page, FIG. 1)

しかしながら、上記従来技術には以下のような課題が存在する。
例えば発電運転のように水力機械を水中運転させる場合は、水力機械から大量の水が放水されるので、ドラフトチューブ内の温度がほとんど上昇せず、ドラフトチューブの取水口から取水する冷却水の温度も機器の冷却に必要な適正温度となる。ところが、例えば調相運転などのように水力機械を空中運転させる(詳細には、水力機械のランナ室内に圧縮空気を入れた状態で回す)場合は、水力機械から放水される流れがないため、排水口からの使用済みの冷却水(すなわち比較的暖かい水)がドラフトチューブ内に滞留し、次第にドラフトチューブ内の水温が上昇する。そして、ついにはドラフトチューブ内の水温すなわち機器に供給する冷却水の温度が適正温度を上回り、機器保護のために水力機械が運転できない事態となるため、水力機械の空中運転を長時間に亘って行うことが困難であった。
However, there are the following problems in the above-described prior art.
For example, when a hydraulic machine is operated underwater as in power generation operation, a large amount of water is discharged from the hydraulic machine, so the temperature in the draft tube hardly rises, and the temperature of the cooling water taken from the intake of the draft tube Will be the appropriate temperature required for cooling the equipment. However, for example, when the hydraulic machine is operated in the air, such as in a phased operation (specifically, when the hydraulic machine is run with compressed air in the runner chamber), there is no flow discharged from the hydraulic machine. Used cooling water (that is, relatively warm water) from the drainage port stays in the draft tube, and the water temperature in the draft tube gradually increases. Finally, the temperature of the water in the draft tube, that is, the temperature of the cooling water supplied to the equipment exceeds the appropriate temperature, and the hydraulic machine cannot be operated to protect the equipment. It was difficult to do.

本発明の目的は、冷却水の温度上昇を抑え、水力機械の空中運転を長時間に亘り行うことができる水力機械の冷却水系統を提供することにある。   An object of the present invention is to provide a cooling water system for a hydraulic machine that can suppress an increase in the temperature of the cooling water and can perform aerial operation of the hydraulic machine for a long time.

(1)上記目的を達成するために、本発明は、水車又はポンプ水車の出口側に接続したエルボ式のドラフトチューブと、前記ドラフトチューブにおける下方位置に設けられ、機器に供給する冷却水を取水する取水口とを備えた水力機械の冷却水系統において、前記ドラフトチューブより下流側の放水流路における上方位置に設けられ、前記機器で使用された冷却水を前記放水流路に排水する排水口を備える。   (1) In order to achieve the above-mentioned object, the present invention takes in an elbow-type draft tube connected to the outlet side of a water turbine or a pump turbine, and cooling water supplied to a device provided at a lower position in the draft tube. In the cooling water system of a hydraulic machine having a water intake port, a drain port provided at an upper position in the water discharge channel downstream of the draft tube and used to drain the cooling water used in the device to the water discharge channel Is provided.

本発明においては、例えば調相運転などのように水車又はポンプ水車を空中運転させる場合、水車又はポンプ水車から放水される流れがないものの、ドラフトチューブの取水口から機器に供給する冷却水が取水され、機器で使用された冷却水が放水流路の排水口から排水される。このとき、排水口から排水される使用済みの冷却水は比較的暖かいので、放水流路内に対流が生じる。放水流路は、通常下流側に向かって上り勾配に設けるので、排水口からの暖かい水は放水流路の上側領域を下流側に向かって流れ、冷たい水は放水流路の下側領域を上流側(すなわち、ドラフトチューブ側)に向かって流れる。これにより、排水口からの暖かい水がドラフトチューブ内に流入するのを抑えることができる。したがって、ドラフトチューブ内の水温上昇を抑え、機器に供給する冷却水の温度上昇を抑えることができ、水力機械の空中運転を長時間に亘り行うことができる。   In the present invention, for example, when a water turbine or a pump turbine is operated in the air, such as in a phased operation, there is no flow discharged from the turbine or pump turbine, but the cooling water supplied to the device from the intake of the draft tube is taken in. Then, the cooling water used in the equipment is drained from the drain outlet of the discharge channel. At this time, since the used cooling water drained from the drain outlet is relatively warm, convection occurs in the water discharge flow path. Since the discharge channel is usually provided with an upward slope toward the downstream side, warm water from the drain outlet flows downstream in the upper region of the discharge channel, and cold water upstream in the lower region of the discharge channel. It flows toward the side (ie, the draft tube side). Thereby, it can suppress that the warm water from a drain outlet flows in into a draft tube. Therefore, it is possible to suppress an increase in the temperature of the water in the draft tube, to suppress an increase in the temperature of the cooling water supplied to the device, and to perform the aerial operation of the hydraulic machine for a long time.

(2)上記(1)において、好ましくは、前記水車又はポンプ水車の中心から前記排水口までの距離Lと前記水車又はポンプ水車のランナ出口径Dとの比L/Dは、10≦L/D≦40とする。   (2) In the above (1), preferably, the ratio L / D between the distance L from the center of the water wheel or pump water wheel to the drain outlet and the runner outlet diameter D of the water wheel or pump water wheel is 10 ≦ L / D ≦ 40.

本発明によれば、冷却水の温度上昇を抑え、水力機械の空中運転を長時間に亘り行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature rise of a cooling water can be suppressed and the aerial operation of a hydraulic machine can be performed over a long time.

以下、本発明の一実施形態を、図面を参照しつつ説明する。
図1及び図2は、本発明の水力機械の冷却水系統の一実施形態が適用された水力発電システムの概略構造を表す図である。なお、図1はポンプ水車が空中運転した状態を表し、図2はポンプ水車が水中運転した状態を表す。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 are diagrams showing a schematic structure of a hydroelectric power generation system to which an embodiment of a cooling water system of a hydraulic machine of the present invention is applied. 1 shows a state in which the pump turbine is operated in the air, and FIG. 2 shows a state in which the pump turbine is operated in the water.

図1及び図2において、この水力発電システムは、例えば立軸フランシス形のポンプ水車1と、上池(図示せず)からの圧力水をポンプ水車1に導入する水圧管2と、この水圧管2に設けられた入口弁3と、ポンプ水車1の出口側に接続されたエルボ式のドラフトチューブ(呼出し管)4と、このドラフトチューブ4の下流側に接続された放水流路5(例えばコンクリート等で形成された流路)及び下池6とを備えている。   1 and 2, this hydroelectric power generation system includes, for example, a vertical-axis Francis-type pump turbine 1, a hydraulic pipe 2 for introducing pressure water from an upper pond (not shown) to the pump turbine 1, and the hydraulic pipe 2 , An elbow draft tube (calling pipe) 4 connected to the outlet side of the pump turbine 1, and a water discharge channel 5 (for example, concrete or the like) connected to the downstream side of the draft tube 4 And a lower pond 6.

ポンプ水車1は、詳細は図示しないが、例えば渦巻き形のケーシングと、このケーシングに内包されたランナと、ケーシングのランナ外周側に設けられたガイドベーンと、ランナ室に圧縮空気を供給可能な空気系統とを備えている。そして、例えば発電運転する場合は、入口弁3及びポンプ水車1のガイドベーンを開放して圧力水によりランナを回転させ、これによって発電機(図示せず)を駆動させ発電する。そして、ポンプ水車1のランナ回転に用いられエネルギーを失った圧力水は、ドラフトチューブ4及び放水流路5を通って下池6へ流れるようになっている(図2参照)。一方、例えば調相運転する場合は、入口弁3及びポンプ水車1のガイドベーンを全閉するとともに、空気系統からの圧縮空気をランナ室に供給することにより、水面をランナより下方側(図1中下側)に押し下げ、ランナを空中回転させるようになっている。   Although the pump turbine 1 is not shown in detail, for example, a spiral casing, a runner included in the casing, a guide vane provided on the outer periphery of the runner of the casing, and air capable of supplying compressed air to the runner chamber System. For example, when performing a power generation operation, the inlet valve 3 and the guide vanes of the pump turbine 1 are opened and the runner is rotated by the pressure water, thereby driving a generator (not shown) to generate power. And the pressure water which lost the energy used for the runner rotation of the pump water turbine 1 flows into the lower basin 6 through the draft tube 4 and the water discharge channel 5 (see FIG. 2). On the other hand, for example, in the case of phased operation, the inlet valve 3 and the guide vanes of the pump turbine 1 are fully closed and the compressed air from the air system is supplied to the runner chamber so that the water surface is below the runner (FIG. 1). The runner is rotated in the air by pushing down to the middle and lower side.

また、水力発電システムには、冷却水を必要とする機器7(図では代表して1つのみ図示するが、例えばランナシール部、主軸封水装置、水車軸受、スラスト軸受、主要変圧器、空気冷却器、及び発電機軸受など)が備えられており、その機器7にドラフトチューブ4内の水を冷却水として供給する冷却水系統8が設けられている。以下、本実施形態の冷却水系統8について説明する。   In addition, in the hydropower generation system, only one device 7 that requires cooling water (only one representative is shown in the figure, for example, a runner seal, a main shaft sealing device, a turbine wheel bearing, a thrust bearing, a main transformer, an air And a cooling water system 8 for supplying the equipment 7 with water in the draft tube 4 as cooling water. Hereinafter, the cooling water system 8 of the present embodiment will be described.

ドラフトチューブ4における最下方位置には、機器7に供給する冷却水を取水する取水口9が設けられ、放水流路5における上方位置には、機器7で使用された冷却水を放水流路5に排水する排水口10が設けられている。そして、ドラフトチューブ4の取水口9から給水配管系統11(詳細には、例えば異物除去用のスクリーンやポンプ等(図示せず)が設けられた配管系統)を介し機器7に冷却水が供給され、機器7で使用された冷却水が排水配管系統12を介し排水口10から放水流路5に排水されるようになっている。   A water intake 9 for taking in the cooling water supplied to the device 7 is provided at the lowest position in the draft tube 4, and the cooling water used in the device 7 is discharged at the upper position in the water discharge flow channel 5. A drain port 10 for draining is provided. Then, cooling water is supplied from the water intake 9 of the draft tube 4 to the device 7 through a water supply piping system 11 (specifically, a piping system provided with a screen, pump, etc. (not shown) for removing foreign matter, for example). The cooling water used in the device 7 is drained from the drain port 10 to the discharge channel 5 through the drain piping system 12.

以上のように構成された本実施形態においては、例えば調相運転などのようにポンプ水車1を空中運転させる場合、ポンプ水車1から放水される流れがないものの、ドラフトチューブ4の取水口9から機器7に供給する冷却水が取水され、機器7で使用された冷却水が排水口10から放水流路5に排水される。このとき、排水口10から排水される使用済みの冷却水は比較的暖かいので、放水流路5内に対流が生じる。放水流路5は下流側に向かって上り勾配に設けるので、排水口10からの暖かい水は放水流路5の上側領域を下流側(すなわち、下池6側)に向かって流れ、冷たい水は放水流路5の下側領域を上流側(すなわち、ドラフトチューブ4側)に向かって流れる(図1参照)。これにより、排水口10からの暖かい水がドラフトチューブ4内に流入するのを抑えることができる。したがって、ドラフトチューブ4内の水温上昇すなわち冷却水の温度上昇を抑えることができ、ポンプ水車1の空中運転を長時間に亘り行うことができる。   In the present embodiment configured as described above, when the pump turbine 1 is operated in the air, for example, in the phase adjustment operation, there is no flow discharged from the pump turbine 1, but from the intake 9 of the draft tube 4. The cooling water supplied to the device 7 is taken in, and the cooling water used in the device 7 is drained from the drain port 10 to the water discharge channel 5. At this time, since the used cooling water drained from the drain port 10 is relatively warm, convection occurs in the water discharge channel 5. Since the water discharge channel 5 is provided with an upward slope toward the downstream side, warm water from the drain port 10 flows through the upper region of the water discharge channel 5 toward the downstream side (that is, the lower pond 6 side), and the cold water is discharged. It flows in the lower region of the water channel 5 toward the upstream side (that is, the draft tube 4 side) (see FIG. 1). Thereby, it is possible to suppress warm water from the drain outlet 10 from flowing into the draft tube 4. Therefore, the water temperature rise in the draft tube 4, that is, the temperature rise of the cooling water can be suppressed, and the pump turbine 1 can be operated in the air for a long time.

次に、本実施形態におけるポンプ水車1の空中運転時のドラフトチューブ4内の温度上昇について説明する。図3は、ポンプ水車1の中心から排水口10までの距離Lとポンプ水車1のライナ出口径Dとの比L/Dと、ポンプ水車1の空中運転の所定時間経過後のドラフトチューブ4内の温度上昇幅ΔTとの関係を表す特性図である。なお、図3は、ポンプ水車1のランナ出口径D=2mとした場合の解析結果から得たものである。   Next, the temperature rise in the draft tube 4 during the aerial operation of the pump turbine 1 in this embodiment will be described. FIG. 3 shows the ratio L / D between the distance L from the center of the pump turbine 1 to the drain outlet 10 and the liner outlet diameter D of the pump turbine 1, and the inside of the draft tube 4 after a predetermined time has elapsed in the air operation of the pump turbine 1. It is a characteristic view showing the relationship with the temperature rise width ΔT. FIG. 3 is obtained from the analysis result when the runner outlet diameter D of the pump turbine 1 is 2 m.

この図3において、ポンプ水車1の中心から排水口10までの距離Lとポンプ水車1のライナ出口径Dとの比L/Dの増加(言い換えれば、ポンプ水車1の中心から排水口10までの距離Lの増加)に従って、ドラフトチューブ4内の温度上昇幅ΔTが減少するようになっている。ここで、例えばポンプ水車1のランナ出口径D=2mとした場合、ドラフトチューブ4の大きさにより決まる放水流路5までの最短距離Lminは20m程度であり、ドラフトチューブ4より下流側の放水流路5に排水口10を設ければ、比L/D≧10となる。そして、比L/D≧10とすれば、所定時間経過後のドラフトチューブ4内の温度上昇幅ΔTを20℃以下に抑えることができる。特に、比L/D≧25とすれば、ドラフトチューブ4内の温度上昇幅ΔTの低減効果をより効果的に得ることができる。一方、比L/Dの増加、すなわちポンプ水車1の中心から排水口10までの距離Lの増加に従って、排水配管系統12の設備コストが増加するため、比L/D≦40とすることが好ましい。   In FIG. 3, an increase in the ratio L / D between the distance L from the center of the pump turbine 1 to the drain outlet 10 and the liner outlet diameter D of the pump turbine 1 (in other words, from the center of the pump turbine 1 to the outlet 10). The temperature rise width ΔT in the draft tube 4 decreases as the distance L increases). Here, for example, when the runner outlet diameter D of the pump turbine 1 is set to 2 m, the shortest distance Lmin to the water discharge channel 5 determined by the size of the draft tube 4 is about 20 m, and the water discharge flow downstream from the draft tube 4 If the drainage port 10 is provided in the path 5, the ratio L / D ≧ 10. And if it is set as ratio L / D> = 10, the temperature rise width (DELTA) T in the draft tube 4 after predetermined time progress can be suppressed to 20 degrees C or less. In particular, if the ratio L / D ≧ 25, the effect of reducing the temperature rise ΔT in the draft tube 4 can be obtained more effectively. On the other hand, since the facility cost of the drainage piping system 12 increases as the ratio L / D increases, that is, the distance L from the center of the pump turbine 1 to the drain port 10 increases, it is preferable that the ratio L / D ≦ 40. .

なお、以上においては、ポンプ水車1はフランシス形を例にとって説明したが、これに限られず、例えばプロペラ形のポンプ水車又は水車などでもよいことは言うまでもない。   In the above description, the pump turbine 1 has been described by taking the Francis type as an example. However, the pump turbine 1 is not limited to this, and needless to say, for example, a propeller type pump turbine or a turbine may be used.

本発明の水力機械の冷却水系統の一実施形態が適用された水力発電システムの要部構成を表す図であり、ポンプ水車が空中運転した状態を表す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure showing the principal part structure of the hydroelectric power generation system to which one Embodiment of the cooling water system | strain of the hydraulic machine of this invention was applied, and represents the state which the pump water turbine operated in the air. 本発明の水力機械の冷却水系統の一実施形態が適用された水力発電システムの要部構成を表す図であり、ポンプ水車が水中運転した状態を表す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure showing the principal part structure of the hydroelectric power generation system to which one Embodiment of the cooling water system | strain of the hydraulic machine of this invention was applied, and represents the state which the pump-turbine operated underwater. ポンプ水車の中心から排水口までの距離Lとポンプ水車のライナ出口径Dとの比L/Dと、ポンプ水車の空中運転の所定時間経過後のドラフトチューブ内の温度上昇幅ΔTとの関係を表す特性図である。The relationship between the ratio L / D of the distance L from the center of the pump turbine to the drain outlet and the liner outlet diameter D of the pump turbine and the temperature rise width ΔT in the draft tube after a predetermined time has elapsed in the pump turbine in the air. FIG.

符号の説明Explanation of symbols

1 ポンプ水車
4 ドラフトチューブ
5 放水流路
7 機器
8 冷却水系統
9 取水口
10 排水口
DESCRIPTION OF SYMBOLS 1 Pump turbine 4 Draft tube 5 Water discharge flow path 7 Equipment 8 Cooling water system 9 Intake port 10 Drain port

Claims (2)

水車又はポンプ水車の出口側に接続したエルボ式のドラフトチューブと、前記ドラフトチューブにおける下方位置に設けられ、機器に供給する冷却水を取水する取水口とを備えた水力機械の冷却水系統において、
前記ドラフトチューブより下流側の放水流路における上方位置に設けられ、前記機器で使用された冷却水を前記放水流路に排水する排水口を備えたことを特徴とする水力機械の冷却水系統。
In a cooling water system of a hydropower machine comprising an elbow-type draft tube connected to the outlet side of a water turbine or a pump turbine, and a water intake port provided at a lower position in the draft tube for taking cooling water to be supplied to equipment,
A cooling water system for a hydraulic machine, comprising a drain port provided at an upper position in the water discharge flow channel downstream of the draft tube and for discharging the cooling water used in the device to the water discharge flow channel.
請求項1記載の水力機械の冷却水系統において、前記水車又はポンプ水車の中心から前記排水口までの距離Lと前記水車又はポンプ水車のランナ出口径Dとの比L/Dは、10≦L/D≦40としたことを特徴とする水力機械の冷却水系統。   2. The cooling water system for a hydraulic machine according to claim 1, wherein a ratio L / D between a distance L from a center of the water turbine or pump turbine to the drain outlet and a runner outlet diameter D of the water turbine or pump turbine is 10 ≦ L A cooling water system for a hydraulic machine, characterized in that / D ≦ 40.
JP2006258445A 2006-09-25 2006-09-25 Hydraulic machine cooling water system Active JP5134227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006258445A JP5134227B2 (en) 2006-09-25 2006-09-25 Hydraulic machine cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006258445A JP5134227B2 (en) 2006-09-25 2006-09-25 Hydraulic machine cooling water system

Publications (2)

Publication Number Publication Date
JP2008075617A true JP2008075617A (en) 2008-04-03
JP5134227B2 JP5134227B2 (en) 2013-01-30

Family

ID=39347937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006258445A Active JP5134227B2 (en) 2006-09-25 2006-09-25 Hydraulic machine cooling water system

Country Status (1)

Country Link
JP (1) JP5134227B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130821A (en) * 1975-05-09 1976-11-13 Hitachi Ltd Water supply controlling method of water power plant and its device
JPS57129266A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Coolant supply switching controller for hydraulic machine
JPS5825678A (en) * 1981-08-10 1983-02-15 Konishiroku Photo Ind Co Ltd Recording paper guiding device of copying machine or the like
JPH08144923A (en) * 1994-11-21 1996-06-04 Toshiba Corp Hydraulic machinery
JPH08284793A (en) * 1995-04-14 1996-10-29 Chubu Electric Power Co Inc Operating method for hydraulic machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51130821A (en) * 1975-05-09 1976-11-13 Hitachi Ltd Water supply controlling method of water power plant and its device
JPS57129266A (en) * 1981-02-04 1982-08-11 Hitachi Ltd Coolant supply switching controller for hydraulic machine
JPS5825678A (en) * 1981-08-10 1983-02-15 Konishiroku Photo Ind Co Ltd Recording paper guiding device of copying machine or the like
JPH08144923A (en) * 1994-11-21 1996-06-04 Toshiba Corp Hydraulic machinery
JPH08284793A (en) * 1995-04-14 1996-10-29 Chubu Electric Power Co Inc Operating method for hydraulic machine

Also Published As

Publication number Publication date
JP5134227B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
KR102573823B1 (en) Improved reversible pump-turbine device
NO339866B1 (en) Method and system for regulating well fluid pressure from a hydrocarbon well
JP4621286B2 (en) Vacuum generator
WO2011051421A3 (en) Hydroelectric power plant
JP5134227B2 (en) Hydraulic machine cooling water system
CN107143530A (en) One kind spin ring cooling electric pump
KR101908867B1 (en) Small Hydro Power Device using waterworks
KR102187991B1 (en) Turbine generator device for electric energy production and related operation and installation method
BR112016029430B1 (en) METHOD FOR TURNING OFF A PUMP AND DISPOSITION OF PUMPING STATION
KR20230006296A (en) Generating system for using small hydropower
Yang Practical method to prevent liquid-column separation
WO2012105924A1 (en) Improvements to a fluid line electricity generation apparatus
WO2009083697A3 (en) Hydraulic machine, energy conversion plant comprising such a machine and method of adjusting such a machine
JP2002317607A (en) Power generation system using micro water turbine
WO2012105925A1 (en) Fluid recycler electricity generation apparatus
CN218913052U (en) Submerged hydroelectric generating set
CN108757590A (en) Pneumatic water pump and big flow precipitation system
JP2011236866A (en) Draining device of water turbine for electric power generation
JP2011089476A (en) Hydraulic pressure reducing device
JP2007077865A (en) Power generation system for heat exchanging water system
RU2511963C1 (en) Turbo-pump unit, and cold, hot and industrial water pumping method
JP2004360517A (en) Pump reversing water turbine type generating equipment
CN116838523A (en) Submerged hydroelectric generating set
CN204200586U (en) A kind of drainage device
JP2005076594A (en) Siphon type water wheel device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5134227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250