JP2008075255A - Ground improving device and soil improving method - Google Patents

Ground improving device and soil improving method Download PDF

Info

Publication number
JP2008075255A
JP2008075255A JP2006252339A JP2006252339A JP2008075255A JP 2008075255 A JP2008075255 A JP 2008075255A JP 2006252339 A JP2006252339 A JP 2006252339A JP 2006252339 A JP2006252339 A JP 2006252339A JP 2008075255 A JP2008075255 A JP 2008075255A
Authority
JP
Japan
Prior art keywords
inner shaft
outer shaft
shaft
stirring means
excavating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006252339A
Other languages
Japanese (ja)
Other versions
JP4698539B2 (en
Inventor
Hiroshi Nogata
弘 野潟
Masahiro Nagaishi
雅大 永石
Toshihisa Taniguchi
利久 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2006252339A priority Critical patent/JP4698539B2/en
Publication of JP2008075255A publication Critical patent/JP2008075255A/en
Application granted granted Critical
Publication of JP4698539B2 publication Critical patent/JP4698539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Earth Drilling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily realize optimum excavating/agitating conditions according to the hardness and properties of ground particularly for an excavating action and an agitating and mixing action. <P>SOLUTION: This ground improving device comprises a drive shaft 4 formed of double shafts, i.e., inner and outer shafts, a lifting means 3 for the drive shaft, an outer shaft side excavating/agitating means 20 attached to an outer shaft 6, an inner shaft side excavating/agitating means 10 attached to an inner shaft 5, a supply passage 15 for a stabilizer, and a discharge part 17. The ground is excavated by reversely rotating the outer shaft side excavating/agitating means 20 and the inner shaft side excavating/agitating means 10, and the stabilizer is discharged from the discharge part 17 into the soil to be excavated and the soil is agitated and mixed. The inner shaft side excavating/agitating means 10 has a small-diameter blade part 11 and an excavating bit 12 fixed to the inner shaft lower end. The outer shaft side excavating/agitating means 20 has an arm large-diameter blade part 20 and an excavating bit 23 fixed to the outer shaft lower end. The outer shaft side excavating/agitating means 20 and the inner shaft side excavating/agitating means 10 are so formed that the vertical distance therebetween can be adjusted by a height adjusting means 38 to separate the large-diameter blade part 21 and the small-diameter blade part 11 from each other and approach them each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地盤を掘削し、その掘削土壌中に各種の安定材を注入し攪拌混合して地盤強度などを改良する場合に用いられる地盤改良装置及び方法に関する。   The present invention relates to a ground improvement device and method used when excavating the ground, injecting various kinds of stabilizers into the excavated soil, stirring and mixing, and improving the ground strength and the like.

地盤改良装置としては、図9や図10に例示されるように、内軸と外軸との二重軸構造の駆動軸と、駆動軸を昇降させる昇降手段と、外軸の下端側に設けられた外軸側掘削攪拌手段と、内軸の下端側に設けられた内軸側掘削攪拌手段と、安定材用供給通路及び吐出部とを備え、外軸側掘削攪拌手段と内軸側掘削攪拌手段とを反転させながら地盤を掘削し、その掘削土壌中に安定材を吐出部より吐出し攪拌混合するものが知られている。このうち、   As illustrated in FIGS. 9 and 10, the ground improvement device is provided on the lower end side of the outer shaft, a drive shaft having a double shaft structure of an inner shaft and an outer shaft, lifting means for moving the drive shaft up and down, and The outer shaft side excavating and stirring means, the inner shaft side excavating and stirring means provided on the lower end side of the inner shaft, the stabilizer feed passage and the discharge section, and the outer shaft side excavating and stirring means and the inner shaft side drilling. It is known to excavate the ground while reversing the stirring means, and to discharge and stir the stabilizer from the discharge section into the excavated soil. this house,

図9(特許文献1)の装置構造において、符号10は互いに反転する外軸11と内軸12からなる駆動軸、符号14と15は安定材用吐出部、符号16は掘削刃、符号17は内軸12の下端側に設けられた内軸側掘削攪拌手段(17aは掘削攪拌翼体、17bは攪拌翼体、17cは掘削刃)で、符号18は外軸11の下端側に設けられた外軸側掘削攪拌手段(18aは掘削攪拌翼体、18bは攪拌翼体、18cは掘削刃)である。   In the apparatus structure of FIG. 9 (Patent Document 1), reference numeral 10 is a drive shaft composed of an outer shaft 11 and an inner shaft 12 that are reversed to each other, reference numerals 14 and 15 are discharge parts for stabilizing material, reference numeral 16 is a drilling blade, reference numeral 17 is The inner shaft side excavating and stirring means (17a is a drilling and stirring blade body, 17b is a stirring blade body, and 17c is a drilling blade) provided on the lower end side of the inner shaft 12, and reference numeral 18 is provided on the lower end side of the outer shaft 11. The outer shaft side excavating and stirring means (18a is a drilling and stirring blade body, 18b is a stirring blade body, and 18c is a drilling blade).

図10(特許文献2)の装置構造において、符号1は互いに反転する内軸8と外軸9からなる駆動軸(掘削軸)、符号6は内軸8の下端側に設けられた内軸側掘削攪拌手段(15は掘削ビット、19は立翼、25は攪拌翼)、符号7は外軸9の下端側に設けられた外軸側掘削攪拌手段(11は立翼、12はリング、16は攪拌翼、15は掘削ビット)、符号17と23は安定材用吐出部、符号10は継手、符号29はスクリューである。   In the apparatus structure of FIG. 10 (Patent Document 2), reference numeral 1 is a drive shaft (excavation shaft) composed of an inner shaft 8 and an outer shaft 9 that are reversed with each other, and reference numeral 6 is an inner shaft side provided on the lower end side of the inner shaft 8. Excavation agitation means (15 is an excavation bit, 19 is a vertical blade, 25 is an agitation blade), 7 is an outer shaft side excavation agitation means provided on the lower end side of the outer shaft 9 (11 is a vertical blade, 12 is a ring, 16 Is a stirring blade, 15 is an excavation bit), 17 and 23 are discharge parts for stabilizing material, 10 is a joint, and 29 is a screw.

以上の各装置構造において、掘削作用としては下段の内軸側掘削攪拌手段が先行して掘削し、次に上段の外軸側掘削攪拌手段が最終的な掘削を行うため掘削効率などに優れ、また、攪拌混合作用としては下段の内軸側掘削攪拌手段と上段の外軸側掘削攪拌手段とが互いに反転されるため掘削土壌の共廻りをそれなりに防いで攪拌効率などが向上される。
特開平11−81297号公報 特開2004−316287号公報
In each of the above device structures, as the excavation action, the lower inner shaft side excavation agitation means excavates first, and then the upper outer shaft side excavation agitation means performs final excavation, so excavation efficiency is excellent, Further, as the stirring and mixing action, the lower inner shaft side excavating and stirring means and the upper outer shaft side excavating and stirring means are inverted with each other, so that the rotation of the excavated soil is prevented and the stirring efficiency is improved.
Japanese Patent Laid-Open No. 11-81297 JP 2004-316287 A

しかしながら、上記した各装置構造では、実施工において、下段の内軸側掘削攪拌手段及び上段の外軸側掘削攪拌手段が互いの上下間隔が固定されているため、地盤の状況などに応じて両掘削攪拌手段の間隔を変更してより最適な掘削や攪拌条件を満たすことができない。これは、例えば、攪拌混合において土壌の共廻りを防ぐ上で両掘削攪拌手段をより接近させる方が好ましいからである。また、各装置構造では、両掘削攪拌手段の間隔が固定であるため、貫入工程において上段の外軸側掘削攪拌手段が設計深さに達するまで貫入、つまり下段の内軸側掘削攪拌手段の高さ寸法に相当する分だけ設計深さより深く掘削しなければならない。しかも、攪拌混合作用としては、安定材の均一混合を図る上で安定材用吐出部を内軸側掘削攪拌手段とともに外軸側掘削攪拌手段の方にも付設することが好ましいが、図10のように安定材を内軸側から導出する構造だと、外軸側掘削攪拌手段を構成する攪拌翼形状が同図のような形状に制約されたり、内軸側掘削攪拌手段との間の間隔を任意に設定できない。   However, in each apparatus structure described above, since the vertical interval between the lower inner shaft side excavation stirring means and the upper outer shaft side excavation stirring means is fixed in the construction work, both of them are set according to the ground conditions. It is impossible to satisfy the optimum excavation and stirring conditions by changing the interval of the excavating and stirring means. This is because, for example, it is preferable to bring the two excavation stirring means closer together in order to prevent co-rotation of the soil in the stirring and mixing. Further, in each device structure, since the interval between the two excavation stirring means is fixed, the upper outer shaft side excavation stirring means penetrates until reaching the design depth in the penetration process, that is, the height of the lower inner shaft side excavation stirring means increases. Excavation must be made deeper than the design depth by an amount corresponding to the length. In addition, as the stirring and mixing action, it is preferable to attach the stabilizing material discharge portion to the outer shaft side excavation stirring means together with the inner shaft side excavation stirring means in order to achieve uniform mixing of the stabilizing material. In this way, if the stabilizer is derived from the inner shaft side, the shape of the stirring blades constituting the outer shaft side excavating and stirring means is restricted to the shape shown in the figure, or the distance between the inner shaft side excavating and stirring means Cannot be set arbitrarily.

本発明の目的は、以上のような課題を全て解消するとともに、特に掘削作用及び攪拌混合作用として、地盤の硬さや性状などに応じてより最適な掘削攪拌条件を容易に実現できる地盤改良装置及び方法を提供することにある。   The object of the present invention is to eliminate all the problems as described above, and in particular, a ground improvement device capable of easily realizing more optimal excavation and stirring conditions according to the hardness and properties of the ground, in particular as excavation and stirring and mixing. It is to provide a method.

上記目的を達成するため請求項1の本発明は、互いに反転する内軸と外軸との二重軸構造の駆動軸と、前記駆動軸を昇降させる昇降手段と、前記外軸の下端側に設けられた外軸側掘削攪拌手段と、前記内軸の下端側に設けられた内軸側掘削攪拌手段と、前記駆動軸に沿って設けられた安定材用の供給通路と、前記供給通路に接続されて安定材を吐出する吐出部とを備え、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段とを反転させながら地盤を掘削し、その掘削土壌中に前記安定材を前記吐出部より吐出し攪拌混合する地盤改良装置において、前記内軸側掘削攪拌手段は前記内軸の下端側に固定された径小翼部及び該径小翼部に突設された掘削ビットを有し、前記外軸側掘削攪拌手段は前記外軸の下端側に固定されたアーム形の径大翼部及び該径大翼部に突設された掘削ビットを有し、前記外軸側掘削攪拌手段及び内軸側掘削攪拌手段は高さ調整手段により互いの上下間隔が調整されて前記径大翼部と前記径小翼とを離接可能となっていることを特徴としている。ここで、アーム形の径大翼部とは、図10のようなリング又は円筒形の径大翼部を除く意味である。径大翼部や径小翼部は、径大翼部が径小翼部に比べて相対的に長くなっている程度の意味である。   In order to achieve the above object, the present invention of claim 1 is directed to a drive shaft having a double shaft structure of an inner shaft and an outer shaft that are reversed to each other, lifting means for moving the drive shaft up and down, and a lower end side of the outer shaft. An outer shaft side excavation and stirring means provided; an inner shaft side excavation and stirring means provided on the lower end side of the inner shaft; a supply path for a stabilizer provided along the drive shaft; and A discharge unit connected to discharge the stabilizing material, excavating the ground while inverting the outer shaft side excavation stirring means and the inner shaft side excavation stirring means, and discharging the stabilizing material into the excavated soil In the ground improvement device for discharging and stirring and mixing, the inner shaft side excavating and stirring means has a small wing portion fixed to the lower end side of the inner shaft and a drill bit protruding from the small wing portion. The outer shaft side excavating and stirring means is an arm-shaped large wing portion fixed to the lower end side of the outer shaft. And the outer shaft side excavation stirring means and the inner shaft side excavation stirring means are adjusted in height with respect to each other by a height adjusting means so that the larger diameter blade portion is provided. And the small wings can be separated from each other. Here, the arm-shaped large wing portion means a ring or a cylindrical large wing portion as shown in FIG. The large wing portion and the small wing portion mean that the large wing portion is relatively longer than the small wing portion.

以上の本発明においては次のように具体化されることが好ましい。
(ア)、前記内軸側掘削攪拌手段の径小翼部は略螺旋状であり、前記外軸側掘削攪拌手段の径大翼部は前記径小翼部の少なくとも上側部分を内側に収容可能な空間を持つ形状(例えば、水平板部及び縦板部の構成)であり、前記高さ調整手段は前記内軸上端側と前記外軸上端側との間に介在されたピストン式シリンダーを有している(請求項2)。
(イ)、前記供給通路は、前記内軸側掘削攪拌手段に対応して設けられた前記吐出部に安定材を送る第1供給通路、及び前記外軸側掘削攪拌手段に対応して設けられた前記吐出部に安定材を送る第2供給通路を少なくとも備えているとともに、前記第2供給通路は、前記内軸の外周に通じている内軸径方向通路部と、前記内軸と前記外軸との間に設けられて前記内軸径方向通路部を挟んだ上下のシール部材で区画されている周囲導出溜め部と、前記周囲導出溜め部から前記外軸の外周に通じている外軸径方向通路部と、前記外軸径方向通路部と対応する前記吐出部とを接続している接続部とを有している(請求項3)。
In the present invention described above, it is preferable to be embodied as follows.
(A) The small wing portion of the inner shaft side excavating and stirring means is substantially spiral, and the large wing portion of the outer shaft side excavating and stirring means can accommodate at least the upper part of the small wing portion inside. The height adjusting means has a piston-type cylinder interposed between the upper end side of the inner shaft and the upper end side of the outer shaft. (Claim 2).
(A) The supply passage is provided corresponding to a first supply passage for sending a stabilizer to the discharge portion provided corresponding to the inner shaft side excavation stirring means and the outer shaft side excavation stirring means. The second supply passage includes at least a second supply passage for sending a stabilizer to the discharge portion, and the inner supply portion includes an inner shaft radial passage portion communicating with an outer periphery of the inner shaft, the inner shaft, and the outer shaft. A peripheral lead-out reservoir portion provided between the shaft and partitioned by upper and lower seal members sandwiching the inner-shaft radial passage portion, and an outer shaft communicating from the peripheral lead-out reservoir portion to the outer periphery of the outer shaft A radial passage portion and a connection portion that connects the outer shaft radial passage portion and the corresponding discharge portion (claim 3).

請求項4の本発明は、以上の発明を方法から捉えたもので、互いに反転する内軸と外軸との二重軸構造の駆動軸と、前記駆動軸を昇降させる昇降手段と、前記外軸の下端側に設けられた外軸側掘削攪拌手段と、前記内軸の下端側に設けられた内軸側掘削攪拌手段と、前記駆動軸に沿って設けられた安定材用供給通路と、前記供給通路に接続されて安定材を吐出する吐出部とを備え、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段とを反転させながら地盤を掘削し、その掘削土壌中に前記安定材を前記吐出部より吐出し攪拌混合する地盤改良方法において、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段との上下間隔を調整する高さ調整手段を有しており、前記駆動軸を前記昇降手段を介して地盤中に下降する貫入工程と上昇する引き抜き工程とで、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段との上下間隔を前記高さ調整手段により変えることを特徴としている。なお、この構成は、例えば、貫入工程では外軸側掘削攪拌手段と内軸側掘削攪拌手段とが高さ調整手段を介して離間状態とされ、引き抜き工程では外軸側掘削攪拌手段と内軸側掘削攪拌手段とが高さ調整手段を介して接近状態とされることである。   The present invention of claim 4 captures the above invention from the method, and includes a drive shaft having a double shaft structure of an inner shaft and an outer shaft that are reversed to each other, lifting means for moving the driving shaft up and down, and the outer shaft. An outer shaft side excavation and stirring means provided on the lower end side of the shaft; an inner shaft side excavation and stirring means provided on the lower end side of the inner shaft; and a stabilizer supply passage provided along the drive shaft; A discharge portion that is connected to the supply passage and discharges a stabilizing material, excavating the ground while inverting the outer shaft side excavation stirring means and the inner shaft side excavation stirring means, and In the ground improvement method in which the material is discharged from the discharge unit and stirred and mixed, the ground improvement method includes a height adjusting unit that adjusts a vertical interval between the outer shaft side excavation stirring unit and the inner shaft side drilling stirring unit, and the drive An intrusion process for lowering the shaft into the ground via the elevating means and an ascending pull In the can process, the upper and lower gap between the inner shaft side drilling stirring means and the outer axial side drilling stirring means is characterized by varying by the height adjusting means. In this configuration, for example, the outer shaft-side excavation stirring means and the inner shaft-side excavation stirring means are separated from each other through the height adjusting means in the penetration step, and the outer shaft-side excavation stirring means and the inner shaft in the drawing step. The side excavating and stirring means is brought into an approaching state via the height adjusting means.

請求項1の発明では、図9や図10の従来構造に比べ、外軸側掘削攪拌手段及び内軸側掘削攪拌手段が高さ調整手段により互いの上下間隔を調整可能であるため、地盤の硬さや地盤性状に応じてより最適な掘削や攪拌を実現できるようにする。これは、例えば、外軸側掘削攪拌手段と内軸側掘削攪拌手段との上下間隔を地盤の硬さにより変更して掘削力を適正に分散したり、外軸側掘削攪拌手段と内軸側掘削攪拌手段との上下間隔を貫入工程に比べて引き抜き工程において小さくして土壌の共廻り防止作用をより確実に得られるようにして、より均一な攪拌混合を実現可能なことからも明らかである。   In the first aspect of the invention, since the outer shaft side excavating and stirring means and the inner shaft side excavating and stirring means can adjust the vertical distance by the height adjusting means as compared with the conventional structure of FIG. 9 and FIG. To achieve more optimal excavation and agitation according to the hardness and ground properties. This is because, for example, the vertical distance between the outer shaft side excavation stirring means and the inner shaft side excavation stirring means is changed according to the hardness of the ground to properly distribute the drilling force, or the outer shaft side excavation stirring means and the inner shaft side It is also clear from the fact that more uniform stirring and mixing can be realized by reducing the vertical spacing with the excavation stirring means in the drawing process compared to the penetration process so that the soil co-rotation preventing action can be obtained more reliably. .

請求項2の発明では、例えば、径小翼部が螺旋状であるため掘削性にも優れ内軸側掘削攪拌手段の掘削に必要な駆動力を小さくし易く、大径翼部が径小翼部の少なくとも上部分を内側に収容可能なため外軸側掘削攪拌手段及び内軸側掘削攪拌手段を高さ調整手段により上下間隔を小さくすべく接近したときに両掘削攪拌手段を一体的なものとして作用し易く、高さ調整手段が公知のピストン式シリンダーであるため経費を抑えて実施できる。   In the invention of claim 2, for example, since the small wing portion is spiral, the excavability is excellent, and it is easy to reduce the driving force required for excavation of the inner shaft side excavation stirring means. Since the outer shaft side excavating and stirring means and the inner shaft side excavating and stirring means are approached to reduce the vertical interval by the height adjusting means, the two excavating and stirring means are integrated. Since the height adjusting means is a known piston type cylinder, the cost can be reduced.

請求項3の発明では、安定材用の供給通路として、内軸側掘削攪拌手段に対応して設けられた吐出部に安定材を送る第1供給通路、及び外軸側掘削攪拌手段に対応して設けられた吐出部に安定材を送る第2供給通路を備えている点で図10の装置構造と同じであるが、第2供給通路が周囲導出溜め部及び外軸径方向通路部を有しているため外軸側掘削攪拌手段の径大翼部形状や吐出部の設置高さや位置に規制されず、設計自由度が得られる。   According to the third aspect of the present invention, the supply passage for the stabilizer corresponds to the first supply passage for sending the stabilizer to the discharge portion provided corresponding to the inner shaft side excavation stirring means, and the outer shaft side excavation stirring means. 10 is the same as the apparatus structure of FIG. 10 in that the second supply passage is provided with a second supply passage for feeding a stabilizing material to the discharge portion provided in the above-described manner, but the second supply passage has a peripheral lead-out reservoir portion and an outer shaft radial passage portion. Therefore, it is not restricted by the shape of the large wing part of the outer shaft side excavation stirring means and the installation height and position of the discharge part, and a degree of design freedom is obtained.

請求項4の発明では、貫入工程と引き抜き工程とで外軸側掘削攪拌手段と内軸側掘削攪拌手段との上下間隔を高さ調整手段を介して変更することにより、掘削に伴う問題(例えば、外軸及び内軸の各駆動モーターなどに加わる負荷を小さくしたり変動を抑えたり、垂直掘削を如何に維持するか)と、攪拌混合に伴う問題(例えば、土壌の共廻りを防いで土壌と安定材との均一な攪拌度合いを如何に実現するか)に的確に対処して、地盤の硬さや性状に応じてより最適な掘削及び攪拌混合を実現できようにする。   In the fourth aspect of the invention, by changing the vertical distance between the outer shaft side excavation stirring means and the inner shaft side excavation stirring means through the height adjusting means in the penetration step and the drawing step, problems associated with excavation (for example, , How to reduce the load applied to the drive motors of the outer shaft and inner shaft, how to reduce fluctuations, how to maintain vertical excavation), and problems associated with stirring and mixing (for example, preventing soil co-rotation (How to achieve a uniform degree of agitation between the slab and the stabilizer), so that more optimal excavation and agitation mixing can be realized according to the hardness and properties of the ground.

以下、本発明の実施の形態について図面を用いて詳細に説明する。図1は地盤改良装置の全体を示し、図2及び図3は駆動軸の下側を示し、図4は駆動軸の上側を示し、図5は径大翼部と径小翼部の他の例を示す変形例1、図6及び図7は外軸側掘削攪拌手段の吐出部に通じる安定材用の供給通路を示す変形例2、図8は地盤改良方法の手順を示している。以下の説明では、装置構造、図5の変形例1と2、図6及び図7の変形例3、図8の地盤改良方法の順に詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 shows the entire ground improvement device, FIGS. 2 and 3 show the lower side of the drive shaft, FIG. 4 shows the upper side of the drive shaft, and FIG. 5 shows other diameter and small wing parts. Modified example 1 showing an example, FIGS. 6 and 7 show a modified example 2 showing a supply passage for a stabilizer connected to the discharge portion of the outer shaft side excavating and stirring means, and FIG. 8 shows the procedure of the ground improvement method. In the following description, the structure of the apparatus, Modifications 1 and 2 in FIG. 5, Modification 3 in FIGS. 6 and 7, and the ground improvement method in FIG.

(装置構造)図1と図2において、この地盤改良装置は、走行式ベースマシン1と、ベースマシン1で移動可能に起立された支持リーダ2と、支持リーダ2の一側に沿って上下動される昇降装置3と、互いに反転される内軸5と外軸6との二重構造からなるとともに昇降装置3により昇降される駆動軸4と、外軸6の下端側に設けられた外軸側掘削攪拌手段20と、外軸6の下端より突出して内軸5の下端側に設けられた内軸側掘削攪拌手段10と、駆動軸4の内軸5に沿って設けられた安定材用の供給通路15と、供給通路15の下端に接続管16を介して接続されて安定材を吐出する吐出部17とを備え、駆動軸4を昇降装置3により下降して地盤に貫入したり上昇して引き抜く過程で、外軸側掘削攪拌手段20と内軸側掘削攪拌手段10とを反転させながら地盤を掘削し、その掘削土壌中に安定材を吐出部17より吐出し攪拌混合するものである。なお、符号8は昇降装置3の昇降を補足するロープ等の吊り部材、符号9は支持リーダ2の下部に設けられて駆動軸4を揺れないようにする振れ止め部である。 (Device Structure) In FIG. 1 and FIG. 2, the ground improvement device includes a traveling base machine 1, a support leader 2 erected so as to be movable by the base machine 1, and a vertical movement along one side of the support leader 2. The lifting / lowering device 3, the inner shaft 5 and the outer shaft 6 that are reversed to each other, the drive shaft 4 that is lifted / lowered by the lifting / lowering device 3, and the outer shaft provided on the lower end side of the outer shaft 6 Side excavation and stirring means 20, inner shaft side excavation and stirring means 10 protruding from the lower end of the outer shaft 6 and provided on the lower end side of the inner shaft 5, and for the stabilizer provided along the inner shaft 5 of the drive shaft 4 Supply passage 15 and a discharge portion 17 that is connected to the lower end of the supply passage 15 via a connecting pipe 16 and discharges a stabilizing material. The drive shaft 4 is lowered by the lifting device 3 to penetrate into the ground or ascend. In the process of drawing out, the outer shaft side excavation stirring means 20 and the inner shaft side excavation stirring means 1 Drilled ground while reversing the door is for stirring and mixing from the ejection portion 17 stable material during the excavating soil. Reference numeral 8 denotes a suspension member such as a rope that supplements the lifting and lowering of the lifting device 3, and reference numeral 9 denotes a steadying portion that is provided below the support reader 2 and prevents the drive shaft 4 from shaking.

ここで、支持リーダ2は、ベースマシン1側の複数のバックステー7により起立保持されている。昇降装置3は、図4に示されるごとく前記した支持リーダ2に沿って移動可能に配設されている移動基体30と、移動基体30の上側部に設けられて内軸5を正逆回転する上駆動装置31と、上駆動装置31の下側に配設されて外軸6の上端側を保持して正逆回転する下駆動装置35と、上駆動装置31と下駆動装置35との間に介在されているピストン式の油圧シリンダー38と、上駆動装置31の上部に設置されているスイベル装置39などから構成されている。   Here, the support leader 2 is held upright by a plurality of backstays 7 on the base machine 1 side. As shown in FIG. 4, the elevating device 3 is provided so as to be movable along the support reader 2 described above, and is provided on the upper side of the movable substrate 30 to rotate the inner shaft 5 forward and backward. Between the upper drive unit 31, the lower drive unit 35 disposed below the upper drive unit 31 and holding the upper end side of the outer shaft 6 and rotating forward and backward, and between the upper drive unit 31 and the lower drive unit 35 The piston type hydraulic cylinder 38 interposed between the upper drive device 31 and the swivel device 39 installed on the upper drive device 31.

このうち、移動基体30は、支持リーダ4の一側上下に配設されたラック状レールに沿って昇降される。上駆動装置31は、そのケーシング32が移動基体30に連結されており、ケーシング32上に保持されているモーター33と、ケーシング32内に設けられてモーター33の出力軸側と内軸5の上端側とを作動連結している不図示のギア機構などを有している。下駆動装置35は、そのケーシング36が移動基体30に対し摺動自在にガイドされる関係となっており、ケーシング36上に保持されているモーター37と、ケーシング36内に設けられてモーター37の出力軸側と外軸6の上端側とを作動連結している不図示のギア機構などを有している。油圧シリンダー38は、複数が用いられ、各本体を上駆動装置側のケーシング32の対応部に係止し、各ロッド38aの先端を下駆動装置側のケーシング36の対応部に係止している。スイベル装置39は、地上側に用意される材料溜め部からポンプにより圧送される安定材を上駆動装置31に保持・回転されている内軸5の内側上下方向に配置されている供給通路15(図2を参照)の上側入口に供給可能にするものである。   Among these, the movable base 30 is moved up and down along rack-like rails disposed on one side of the support leader 4. The upper drive device 31 has a casing 32 connected to the moving base 30, a motor 33 held on the casing 32, an output shaft side of the motor 33 provided in the casing 32, and an upper end of the inner shaft 5. And a gear mechanism (not shown) that is operatively connected to the side. The lower drive device 35 has a relationship in which the casing 36 is slidably guided with respect to the moving base 30, and a motor 37 held on the casing 36 and a motor 37 provided in the casing 36. A gear mechanism (not shown) that operatively connects the output shaft side and the upper end side of the outer shaft 6 is provided. A plurality of hydraulic cylinders 38 are used, and each main body is locked to the corresponding portion of the casing 32 on the upper drive device side, and the tip of each rod 38a is locked to the corresponding portion of the casing 36 on the lower drive device side. . The swivel device 39 is a supply passage 15 (in the vertical direction inside the inner shaft 5 that holds and rotates a stabilizer fed by a pump from a material reservoir prepared on the ground side with the upper drive device 31). It can be supplied to the upper inlet of FIG.

すなわち、この構造では、外軸6が下駆動装置35に吊り下げ支持された状態で、油圧シリンダー38のロッド38aを伸縮することによって、内軸5に対する高さ方向の位置が調整可能となっている。そして、この例では、図3に示したように、外軸6の掘削攪拌手段20と内軸5の掘削攪拌手段10との上下間隔Lが油圧シリンダー38のロッド伸縮量に対応して50cm〜100cmの範囲で調整されるよう設定されている。なお、本発明の高さ調整手段としては、この構造に限定されず、例えば外軸6又は下駆動装置側のケーシング36に対し内軸5を油圧シリンダー等で上下動する構成であってよい。   That is, in this structure, the position in the height direction with respect to the inner shaft 5 can be adjusted by extending and contracting the rod 38a of the hydraulic cylinder 38 in a state where the outer shaft 6 is suspended and supported by the lower drive device 35. Yes. In this example, as shown in FIG. 3, the vertical distance L between the excavation stirring means 20 of the outer shaft 6 and the excavation stirring means 10 of the inner shaft 5 corresponds to the amount of rod expansion and contraction of the hydraulic cylinder 38. It is set to be adjusted within a range of 100 cm. The height adjusting means of the present invention is not limited to this structure. For example, the inner shaft 5 may be moved up and down with a hydraulic cylinder or the like relative to the outer shaft 6 or the casing 36 on the lower drive device side.

一方、内軸側掘削攪拌手段10は、図2や図3に示されるように、内軸5の下端側に固定された径小翼部11と、該径小翼部11の下端側に突設された複数の掘削ビット12と、径小翼部11の下面側に設けられた吐出部17などを有している。なお、図2の下側円内には径小翼部を下から見上げた状態を模式的に示している。ここで、内軸5は、円筒形で、供給通路15が内側上下方向に必要数だけ配置されるとともに、下端が閉じられている。径小翼部11は、概略螺旋状の翼体からなり、内軸5の下部周囲に接合されている。各掘削ビット12は、その螺旋状翼体の下側縁部にあって、内軸中心側から外側に向けて並置した状態で接合され、先端が径小翼部11より下向きに突出されている。吐出部17は、径小翼部11の下面に取り付けられるとともに、接続管16を介して供給通路15に連結されており、安定材が供給通路15から接続管16を介して導入された後、所定角度で掘削土中に噴射可能にする。なお、この例では、吐出部17として、安定材を圧縮気体に同伴して強力に噴射可能にする混合エジェクター(特許第3416774号や特許第3622903号等を参照)を想定している。このため、供給通路15も安定材用及び圧縮気体用として複数設けられている。但し、安定材の種類や供給及び吐出構造については、地盤改良条件などにより適宜変更可能なものである。   On the other hand, as shown in FIG. 2 and FIG. 3, the inner shaft side excavating and stirring means 10 protrudes from the small diameter blade portion 11 fixed to the lower end side of the inner shaft 5 and the lower end side of the small diameter blade portion 11. It has a plurality of excavation bits 12 provided, a discharge portion 17 provided on the lower surface side of the small-diameter blade portion 11, and the like. In addition, the state which looked up at the small wing | blade part from the bottom is typically shown in the lower circle of FIG. Here, the inner shaft 5 has a cylindrical shape, and the supply passage 15 is arranged in a necessary number in the inner vertical direction, and the lower end is closed. The small-diameter wing part 11 is composed of a substantially spiral wing body, and is joined to the lower periphery of the inner shaft 5. Each excavation bit 12 is joined to the lower edge portion of the spiral wing body in a state of being juxtaposed outward from the inner shaft center side, and the tip projects downward from the small wing portion 11. . The discharge portion 17 is attached to the lower surface of the small wing portion 11 and is connected to the supply passage 15 via the connection pipe 16. After the stabilizer is introduced from the supply passage 15 via the connection pipe 16, It is possible to inject into excavated soil at a predetermined angle. In this example, a mixture ejector (see Japanese Patent No. 3416774, Japanese Patent No. 3622903, or the like) is assumed as the discharge unit 17 so that the stabilizer can be jetted with the compressed gas. For this reason, a plurality of supply passages 15 are also provided for the stabilizer and the compressed gas. However, the type and supply and discharge structure of the stabilizer can be changed as appropriate depending on the ground improvement conditions.

外軸側掘削攪拌手段20は、図2や図3に示されるように、外軸6の下端側に固定された下段の径大翼部21と、該径大翼部21の下端側に突設された複数の掘削ビット23と、長さが径大翼部21とほぼ同じくしている上段の径大翼部22などを有し、また径大翼部21と径大翼部22との間に設けられた共廻り防止板25を有している。なお、図3の下側円内には径大翼部21を側面側から見た状態(内軸5の下端側を省略した)を模式的に示している。また、本発明の外軸側掘削攪拌手段としては、図8の例のごとく上段の大径翼部22や共廻り防止板25を省略してもよい。   As shown in FIG. 2 and FIG. 3, the outer shaft side excavating and stirring means 20 protrudes from the lower large wing portion 21 fixed to the lower end side of the outer shaft 6 and the lower end side of the large wing portion 21. A plurality of excavation bits 23 provided, an upper large wing portion 22 having a length substantially the same as that of the large wing portion 21, and the like. A co-rotation prevention plate 25 is provided between them. 3 schematically shows a state in which the large-diameter wing portion 21 is viewed from the side surface (the lower end side of the inner shaft 5 is omitted). Further, as the outer shaft side excavation and stirring means of the present invention, the upper large-diameter blade portion 22 and the co-rotation prevention plate 25 may be omitted as in the example of FIG.

ここで、外軸6は、内軸5を回転自在に挿通し、かつ内軸5に挿通した状態で相対的に軸方向へ摺動可能な円筒形からなり、下端が内軸5との間から土などが不用意に入り込まないよう処理されている。下段の大径翼部21は、水平板部21a及び斜め下側へ延びている縦板部21bからなり、外軸6の周囲に対し略180度変位した箇所に対応する大径翼部21の水平板部21aがそれぞれ接合されており、全体として概略コ形状となっている。各掘削ビット23は、その縦板部21bの下側縁部に接合され、先端が縦板部21bより下向きに突出されている。また、上段の径大翼部22は、矩形板状であり、外軸6の周囲に対し略180度変位した箇所に対応端がそれぞれ接合されている。付言すると、以上の大径翼部21,21と大径翼部22,22は外軸6に対し異なる向き、水平板部同士を近づけたときXの関係に配置されている。また、下段の大径翼部21,21は、図3の下図から推察されるように、縦板部21bが水平板部21aの突出端から外軸6と所定距離を保ち、かつ斜め下方向に突出されている。この形状は、縦板部21bの下向き傾斜角に応じて地盤に対する掘削ビット23(及び縦板部の下端)の貫入と掘削性を良好にし、かつ、掘削土を縦板部21bの斜め上向面に沿ってかき揚げるようにし、それにより良好な掘削効果を得られるようにする。また、そのことで掘削(切り込み)部のみの抵抗で掘削性を向上し掘削抵抗も小さくできる。   Here, the outer shaft 6 has a cylindrical shape that is rotatably inserted through the inner shaft 5 and is relatively slidable in the axial direction while being inserted through the inner shaft 5, and a lower end between the inner shaft 5 and the inner shaft 5. It is processed so that dirt etc. do not enter carelessly. The lower large-diameter wing portion 21 includes a horizontal plate portion 21a and a vertical plate portion 21b extending obliquely downward. The large-diameter wing portion 21 of the large-diameter wing portion 21 corresponding to a location displaced approximately 180 degrees with respect to the periphery of the outer shaft 6 The horizontal plate portions 21a are joined to each other, and have a generally U shape as a whole. Each excavation bit 23 is joined to the lower edge of the vertical plate portion 21b, and the tip protrudes downward from the vertical plate portion 21b. Further, the upper large-diameter wing portion 22 has a rectangular plate shape, and corresponding ends are joined to locations displaced by about 180 degrees with respect to the periphery of the outer shaft 6. In addition, the large-diameter wing parts 21 and 21 and the large-diameter wing parts 22 and 22 are arranged in different orientations with respect to the outer shaft 6 and in the relationship of X when the horizontal plate parts are brought close to each other. Further, as can be inferred from the lower diagram of FIG. 3, the lower large-diameter wings 21 and 21 have a vertical plate portion 21 b that keeps a predetermined distance from the outer shaft 6 from the protruding end of the horizontal plate portion 21 a and is obliquely downward. Is protruding. This shape improves the penetration and excavation of the excavation bit 23 (and the lower end of the vertical plate portion) with respect to the ground according to the downward inclination angle of the vertical plate portion 21b, and makes the excavated soil obliquely upward of the vertical plate portion 21b. It should be raked along the surface so that a good excavation effect can be obtained. In addition, the excavation performance can be improved and the excavation resistance can be reduced by the resistance of only the excavation (cutting) portion.

これに対し、共廻り防止板25は、外軸6の外周に回転自在に嵌合され、かつ上下ストッパー26a,26bで上下動が規制されている筒体24に突設されている。そして、この共廻り防止板25は、径大翼部21,22の最大径より少し長くなっていて、土壌中に貫入された後は土等の抵抗を受けるため外軸6の回転によっても静止しており、それによって土壌が径大翼部21,22の回転に伴って共廻りする動きを制止する。   On the other hand, the co-rotation prevention plate 25 is rotatably fitted on the outer periphery of the outer shaft 6 and protrudes from the cylindrical body 24 whose vertical movement is restricted by the vertical stoppers 26a and 26b. The co-rotation prevention plate 25 is slightly longer than the maximum diameter of the large-diameter wings 21 and 22, and after being penetrated into the soil, it receives resistance from soil and the like, so that it can be stopped by the rotation of the outer shaft 6. Thus, the movement of the soil with the rotation of the large-diameter wings 21 and 22 is restrained.

( 変形例1)図5(a)は外軸側掘削攪拌手段20を構成している径大翼部21の変形例を示している。この径大翼部21は、水平板部21aに突設したリブ27a,27b,27cと、縦板部21bに突設したリブ27dとを有している。各リブ27a〜27bは水平板部21aや縦板部21bの表面側に設けられている。このうち、リブ27aとリブ27bは略コ形からなり、それぞれ複数個が水平板部21aの上縁と下縁を挟み込んだ状態に接合されている。リブ27cは水平板部21aの上下略中間部に縦配置で接合されている。リブ27dは縦板部21bに対し上下方向の向きで接合されている。以上のようなリブ27a〜27bは、例えば、径大翼部21の回転状態において、土壌などが縦板部21b及び水平板部21aの傾きに沿って斜め上へ送られてきたとき、各リブでその送られてきた土の塊を分断したり攪拌混合作用を促進することができる。 (Modification 1) FIG. 5A shows a modification of the large-diameter wing portion 21 constituting the outer shaft side excavation stirring means 20. The large-diameter wing portion 21 includes ribs 27a, 27b, and 27c that protrude from the horizontal plate portion 21a, and ribs 27d that protrude from the vertical plate portion 21b. Each rib 27a-27b is provided in the surface side of the horizontal board part 21a or the vertical board part 21b. Of these, the ribs 27a and the ribs 27b are substantially U-shaped, and a plurality of the ribs 27a and the ribs 27b are joined in a state of sandwiching the upper and lower edges of the horizontal plate portion 21a. The ribs 27c are joined in a vertical arrangement to the upper and lower intermediate portions of the horizontal plate portion 21a. The ribs 27d are joined to the vertical plate portion 21b in the vertical direction. The ribs 27a to 27b as described above are used when, for example, soil or the like is sent obliquely upward along the inclination of the vertical plate portion 21b and the horizontal plate portion 21a in the rotating state of the large-diameter wing portion 21. It is possible to break up the lump of soil that has been sent and to promote the stirring and mixing action.

( 変形例2)図5(b)は内軸側掘削攪拌手段10を構成している径小翼部11の変形例を示している。この径小翼部11は、各螺旋状の翼体に対し上記したリブと同じ目的で複数のリブ14a,14bを接合し、同時に傾斜途中に開口13を追加している。このうち、リブ14aは、各螺旋状の翼体の上縁部に複数接合されており、例えば、土壌が螺旋状に沿って上へ移送されてきたとき分断して落下し易くする。リブ14bは、開口13の上側に接合されており、例えば、土壌が螺旋状に沿って移送されてきて開口13を通り過ぎる直前で分断したり開口13など落下し易くする。開口13は、例えば、土壌が螺旋状に沿って移送されてきたときこの開口から落下し易くする。以上の変形例1と2は、比較的簡単な構成により攪拌混合作用を大きく促進できることが確認されている。 (Modification 2) FIG. 5 (b) shows a modification of the small-diameter wing part 11 constituting the inner shaft side excavation stirring means 10. FIG. In the small wing portion 11, a plurality of ribs 14a and 14b are joined to each spiral wing body for the same purpose as described above, and an opening 13 is added in the middle of the inclination at the same time. Among these, a plurality of ribs 14a are joined to the upper edge portion of each spiral wing body. For example, when the soil is transported upward along the spiral shape, the rib 14a is divided and easily dropped. The rib 14b is joined to the upper side of the opening 13, and for example, the soil is transferred along a spiral and is divided immediately before passing through the opening 13, or the opening 13 is easily dropped. The opening 13 makes it easy to fall from this opening, for example, when soil has been transferred along a spiral. It has been confirmed that Modifications 1 and 2 can greatly promote the stirring and mixing action with a relatively simple configuration.

(変形例3)図6及び図7は外軸側掘削攪拌手段20側に専用の吐出部17aを設ける場合で、外軸6から突出している内軸5側から安定材を供給できないようなときに有効な構造例である。すなわち、図6及び図7の構造は、図2や図3に対し外軸側掘削攪拌手段20を構成している上段の径大翼部22にも吐出部17aが設けられているとともに、内軸15の内側に配置されている供給通路15と吐出部17aとを接続している点で異なっている。すなわち、この供給通路15は、内軸5の内側に合計4つ(15a〜15c)が設けられており、そのうち、供給通路15a,15bが前述した内軸側掘削攪拌手段10に対応して設けられた吐出部(図2の吐出部17に類似する吐出部又は一般的な吐出部)に接続管16などを介して接続され、供給通路15cが吐出部17aに後述する構成にて接続される。供給通路15dは予備用に設定されている。つまり、この変形例では、供給通路15a,15bが請求項3の第1供給通路に相当し、供給通路15cが請求項3の第2供給通路に相当している。なお、図面上は、内軸5が柱状となっているが、実際は下側対応部だけを柱状にしそこに供給通路15a〜15cを形成したり、筒形内に供給通路15a〜15c用の管を保持材などを介して装着することになる。 (Modification 3) FIGS. 6 and 7 show a case where a dedicated discharge portion 17a is provided on the outer shaft side excavating and stirring means 20 side, and the stabilizer cannot be supplied from the inner shaft 5 side protruding from the outer shaft 6. This is an effective structure example. That is, in the structure of FIGS. 6 and 7, the discharge portion 17a is also provided in the upper large-diameter blade portion 22 constituting the outer shaft side excavation stirring means 20 with respect to FIGS. The difference is that the supply passage 15 disposed inside the shaft 15 is connected to the discharge portion 17a. That is, a total of four supply passages 15 (15a to 15c) are provided inside the inner shaft 5, and the supply passages 15a and 15b are provided corresponding to the inner shaft side excavating and stirring means 10 described above. 2 is connected to the discharge section (a discharge section similar to the discharge section 17 in FIG. 2 or a general discharge section) via a connecting pipe 16 or the like, and a supply passage 15c is connected to the discharge section 17a in a configuration to be described later. . The supply passage 15d is set as a spare. That is, in this modification, the supply passages 15a and 15b correspond to the first supply passage of claim 3, and the supply passage 15c corresponds to the second supply passage of claim 3. In the drawing, the inner shaft 5 has a columnar shape, but in reality, only the lower side corresponding portion is formed in a columnar shape to form supply passages 15a to 15c therewith, or tubes for the supply passages 15a to 15c in the cylindrical shape. Will be mounted via a holding material.

また、第2供給通路15cは、図7(a)に示されるように、内軸径方向通路部5aと、周囲導出溜め部18と、外軸径方向通路部6aと、吐出部17aとを接続している接続管16aとを有している。このうち、内軸径方向通路部5aは第2供給通路15cの下端側から内軸5の外周に貫通されている。周囲導出溜め部18は、内軸5と外軸6との間に設けられて、内軸径方向通路部5aを挟んだ上下のシール部材19,19で区画されている。周囲導出溜め部18の全寸Mは、上記した外軸6の掘削攪拌手段20と内軸5の掘削攪拌手段10との上下間隔Lを調整するため、例えば油圧シリンダー38を介して内軸5に対し外軸6を最大まで上又は下動したとき、内軸径方向通路部5aが周囲導出溜め部18から外れることがないよう設定される。外軸径方向通路部6aは周囲導出溜め部18から外軸の外周に貫通されている。接続管16aは外軸径方向通路部6aと対応する吐出部17aとを接続している。   Further, as shown in FIG. 7A, the second supply passage 15c includes an inner shaft radial passage portion 5a, a surrounding lead storage portion 18, an outer shaft radial passage portion 6a, and a discharge portion 17a. The connecting pipe 16a is connected. Among these, the inner-shaft radial passage portion 5 a is penetrated from the lower end side of the second supply passage 15 c to the outer periphery of the inner shaft 5. The peripheral lead-out reservoir portion 18 is provided between the inner shaft 5 and the outer shaft 6 and is partitioned by upper and lower seal members 19 and 19 sandwiching the inner shaft radial direction passage portion 5a. The total size M of the peripheral lead-out reservoir 18 is adjusted to adjust the vertical distance L between the excavation stirring means 20 of the outer shaft 6 and the excavation stirring means 10 of the inner shaft 5. On the other hand, when the outer shaft 6 is moved up or down to the maximum, the inner shaft radial passage portion 5a is set so as not to be disengaged from the peripheral lead-out reservoir portion 18. The outer shaft radial passage portion 6a is penetrated from the peripheral lead-out reservoir portion 18 to the outer periphery of the outer shaft. The connecting pipe 16a connects the outer axial radial direction passage portion 6a and the corresponding discharge portion 17a.

以上のような構造では、外軸側掘削攪拌手段20の任意の位置に専用の吐出部17aを設けることができ、特に、第2供給通路15cが周囲導出溜め部18及び外軸径方向通路部6aを有しているため吐出部17aの設置高さや位置に規制されないようにし、径大翼部22の高さや形状的にも規制されない点で優れている。そして、この構造は、例えば、図9の構造に適用すると、外軸側掘削攪拌手段18側にも吐出部を設けそこから安定材を同図の掘削攪拌手段18の攪拌混合軌跡内に噴射できることから、より均一な攪拌混合が実現されることになる。   In the structure as described above, the dedicated discharge portion 17a can be provided at an arbitrary position of the outer shaft side excavating and stirring means 20, and in particular, the second supply passage 15c is provided with the peripheral outlet reservoir 18 and the outer shaft radial passage portion. 6a is excellent in that it is not restricted by the installation height or position of the discharge portion 17a and is not restricted by the height or shape of the large-diameter wing portion 22. For example, when this structure is applied to the structure shown in FIG. 9, a discharge portion is also provided on the outer shaft side excavating and stirring means 18 side, and a stabilizer can be injected from there into the stirring and mixing trajectory of the excavating and stirring means 18 shown in FIG. Therefore, more uniform stirring and mixing can be realized.

(地盤改良方法)図8は以上のような地盤改良装置を用いて地盤改良するときの一例を模式的に示している。なお、図8に示した地盤改良装置は、図1〜図4の装置を基本としているが、外軸側掘削攪拌手段20が上段の大径翼部22及び共廻り防止板25を省いて簡略化されている。また、この種の地盤改良方法では、手順として駆動軸4を下降する貫入工程と上昇する引き抜き工程とに大別される。また、安定材の吐出時期は、地盤性状などに応じて、貫入工程又は引き抜き工程、貫入工程及び引き抜き工程と言うように色々なパターンが採用される。この例では安定材を引き抜き工程だけで吐出する。図8中、2本の線の箇所が安定材を吐出し原位置土と攪拌混合したことを示している。 (Ground Improvement Method) FIG. 8 schematically shows an example when the ground is improved using the above ground improvement device. The ground improvement device shown in FIG. 8 is based on the device shown in FIGS. 1 to 4, but the outer shaft side excavation and stirring means 20 is simplified by omitting the upper large-diameter blade portion 22 and the co-rotation prevention plate 25. It has become. In this kind of ground improvement method, the procedure is roughly divided into an intrusion process for lowering the drive shaft 4 and an extraction process for ascending. Moreover, various patterns are adopted for the discharge timing of the stabilizer, such as an intrusion process or a drawing process, an intrusion process, and a drawing process, depending on the ground properties and the like. In this example, the stabilizing material is discharged only by the drawing process. In FIG. 8, the location of the two lines indicates that the stabilizer was discharged and mixed with the in situ soil.

まず、貫入工程に際しては、外軸側掘削攪拌手段20と内軸側掘削攪拌手段10とが上記した油圧シリンダー38を介して設計値まで離間された状態に調整される。その状態から、外軸6と内軸5は、対応する上下駆動装置31,35により反転駆動されて、所定の深さまで貫入操作される。この貫入工程では、内軸側掘削攪拌手段10の径小翼部11及び掘削ビット12で先行掘削し、次に外軸側掘削攪拌手段20の径大翼部20及び掘削ビット23でその掘削された箇所の外側を掘削することになる。この掘削態様では、例えば、地盤が通常より硬い場合でも、外軸側掘削攪拌手段20と内軸側掘削攪拌手段10との上下間隔を油圧シリンダー38を介して離間することで、最適な掘削状態、例えば、全体の掘削力やモーター33,37に加わる負荷を適正に分散できる。  First, in the penetration step, the outer shaft side excavation and stirring means 20 and the inner shaft side excavation and stirring means 10 are adjusted to a state where they are separated to the design value via the hydraulic cylinder 38 described above. From this state, the outer shaft 6 and the inner shaft 5 are reversely driven by the corresponding vertical driving devices 31 and 35 and are penetrated to a predetermined depth. In this penetration step, the pre-excavation is performed with the small wing portion 11 and the excavation bit 12 of the inner shaft side excavation stirring means 10, and then the large wing portion 20 and the excavation bit 23 of the outer shaft side excavation stirring means 20 are excavated. Will be excavated outside the area. In this excavation mode, for example, even when the ground is harder than usual, an optimum excavation state is achieved by separating the vertical distance between the outer shaft side excavation stirring means 20 and the inner shaft side excavation stirring means 10 via the hydraulic cylinder 38. For example, the entire excavation force and the load applied to the motors 33 and 37 can be properly distributed.

引き抜き工程に際しては、外軸側掘削攪拌手段20と内軸側掘削攪拌手段10とが油圧シリンダー38を介して設計値まで接近された状態に調整される。この例では、外軸側掘削攪拌手段20の大径翼部21の内側に内軸側掘削攪拌手段10の径小翼部11がほぼ収容されるまで接近される。また、外軸6と内軸5は貫入とは逆向きに反転駆動される。同時に、上記したように安定材が吐出部17等から吐出される。すると、安定材は、径小翼部11と径大翼部20との反転作用と、それによる共廻り防止作用等により原位置の掘削土と効率よく攪拌混合される。このため、この地盤改良方法では、効率的な掘削と効率的な攪拌混合が実現されることになる。   In the drawing process, the outer shaft side excavating and stirring means 20 and the inner shaft side excavating and stirring means 10 are adjusted to be close to the design value via the hydraulic cylinder 38. In this example, the small-diameter wing part 11 of the inner-shaft side excavation stirring means 10 is approached inside the large-diameter wing part 21 of the outer-shaft side excavation stirring means 20. Further, the outer shaft 6 and the inner shaft 5 are driven to be reversed in the direction opposite to the penetration. At the same time, the stabilizing material is discharged from the discharge portion 17 and the like as described above. Then, the stabilizer is efficiently agitated and mixed with the in-situ excavated soil by the reversing action of the small-diameter wing part 11 and the large-diameter wing part 20, the co-rotation preventing action and the like. For this reason, in this ground improvement method, efficient excavation and efficient stirring and mixing are realized.

なお、本発明は、以上の形態に限られるものではなく、請求項1や4で特定する要件を除いて種々変形したり展開可能なものである。例えば、径小翼部については図10や図10のような形状にしたり、外軸及び内軸の外周には必要に応じて図10に示されるようなスクリューを付設することも可能である。   In addition, this invention is not restricted to the above form, A various deformation | transformation and expansion | deployment are possible except the requirements specified by Claims 1 and 4. For example, the small wing portion can be shaped as shown in FIG. 10 or FIG. 10, or a screw as shown in FIG. 10 can be attached to the outer periphery of the outer shaft and the inner shaft as required.

本発明形態の地盤改良装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the ground improvement apparatus of this invention form. 図1の装置として駆動軸下側の構成を示す要部模式図である。It is a principal part schematic diagram which shows the structure of a drive shaft lower side as an apparatus of FIG. 図2の外・内軸側掘削攪拌手段同士の上下間隔を小さくした模式図である。It is the schematic diagram which made small the vertical space | interval of the outer and inner-shaft side excavation stirring means of FIG. (a)と(b)は図1の駆動軸上側の高さ調整手段等を示す模式図である。(A) And (b) is a schematic diagram which shows the height adjustment means etc. of the drive shaft upper side of FIG. (a)と(b)は図2の径大翼部と径小翼部の変形例を示す模式図である。(A) And (b) is a schematic diagram which shows the modification of a large wing part and a small wing part of FIG. 安定材用の吐出部を径大翼部側に追加した構成例を示す模式図である。It is a schematic diagram which shows the structural example which added the discharge part for stabilizers to the large wing part side. (a)は図6のA−A線に沿った模式拡大断面図、(b)は(a)のB−B線に沿った模式拡大断面図である。(A) is a model expanded sectional view along the AA line of FIG. 6, (b) is a model expanded sectional view along the BB line of (a). 上記地盤改良装置を簡略化した状態で地盤改良を行う手順例を示す図である。It is a figure which shows the example of a procedure which performs ground improvement in the state which simplified the said ground improvement apparatus. 特許文献1に開示の地盤改良装置を示す説明図である。It is explanatory drawing which shows the ground improvement apparatus disclosed by patent document 1. FIG. 特許文献2に開示の地盤改良装置を示す説明図である。It is explanatory drawing which shows the ground improvement apparatus disclosed by patent document 2. FIG.

符号の説明Explanation of symbols

3…支持リーダー
3…昇降装置(30は移動基体、31は上駆動装置、35は下駆動装置)
4…駆動軸
5…内軸
6…外軸
10…内軸側掘削攪拌手段(11は径小翼部、12は掘削ビット)
15,15a〜15b…供給通路
16,16a…接続管(接続部)
17,17a…吐出部
20…外軸側掘削攪拌手段(21は大径翼部、23は掘削ビット)
22…上段の大径翼部
25…共廻り防止板
38…油圧シリンダー(高さ調整手段)
3 ... Support leader 3 ... Elevating device (30 is a moving base, 31 is an upper drive device, 35 is a lower drive device)
DESCRIPTION OF SYMBOLS 4 ... Drive shaft 5 ... Inner shaft 6 ... Outer shaft 10 ... Inner shaft side excavation stirring means (11 is a small wing part, 12 is a drill bit)
15, 15a-15b ... supply passage 16, 16a ... connection pipe (connection part)
17, 17a ... discharge part 20 ... outer shaft side excavation stirring means (21 is a large diameter blade part, 23 is a excavation bit)
22 ... Upper large blade section 25 ... Co-rotation prevention plate 38 ... Hydraulic cylinder (height adjustment means)

Claims (4)

互いに反転する内軸と外軸との二重軸構造の駆動軸と、前記駆動軸を昇降させる昇降手段と、前記外軸の下端側に設けられた外軸側掘削攪拌手段と、前記内軸の下端側に設けられた内軸側掘削攪拌手段と、前記駆動軸に沿って設けられた安定材用の供給通路と、前記供給通路に接続されて安定材を吐出する吐出部とを備え、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段とを反転させながら地盤を掘削し、その掘削土壌中に前記安定材を前記吐出部より吐出し攪拌混合する地盤改良装置において、
前記内軸側掘削攪拌手段は前記内軸の下端側に固定された径小翼部及び該径小翼部に突設された掘削ビットを有し、
前記外軸側掘削攪拌手段は前記外軸の下端側に固定されたアーム形の径大翼部及び該径大翼部に突設された掘削ビットを有し、
前記外軸側掘削攪拌手段及び内軸側掘削攪拌手段は高さ調整手段により互いの上下間隔が調整されて前記径大翼部と前記径小翼とを離接可能となっていることを特徴とする地盤改良装置。
A drive shaft having a double shaft structure of an inner shaft and an outer shaft that are reversed to each other, lifting and lowering means for raising and lowering the drive shaft, outer shaft-side excavation and stirring means provided on the lower end side of the outer shaft, and the inner shaft An inner shaft side excavation and agitation means provided on the lower end side, a supply passage for a stabilizer provided along the drive shaft, and a discharge unit connected to the supply passage to discharge the stabilizer. In the ground improvement device for excavating the ground while reversing the outer shaft side excavation stirring means and the inner shaft side excavation stirring means, the stabilizer is discharged from the discharge unit into the excavated soil, and stirred and mixed.
The inner shaft side excavating and agitating means has a small diameter wing portion fixed to the lower end side of the inner shaft and a drill bit protruding from the small diameter wing portion,
The outer shaft side excavating and stirring means has an arm-shaped large wing portion fixed to the lower end side of the outer shaft and a drilling bit protruding from the large wing portion,
The outer shaft side excavating and stirring means and the inner shaft side excavating and stirring means can adjust the vertical distance from each other by a height adjusting means so that the large blade portion and the small blade can be separated from each other. Ground improvement device.
前記内軸側掘削攪拌手段の径小翼部は略螺旋状であり、前記外軸側掘削攪拌手段の径大翼部は前記径小翼部の少なくとも上側部分を内側に収容可能な空間を持つ形状であり、前記高さ調整手段は前記内軸上端側と前記外軸上端側との間に介在されたピストン式シリンダーを有している請求項1に記載の地盤改良装置。   The small-diameter wing portion of the inner shaft side excavating and agitating means is substantially spiral, and the large-diameter wing portion of the outer shaft side excavating and agitating means has a space that can accommodate at least the upper part of the small-diameter wing portion inside. 2. The ground improvement device according to claim 1, wherein the height adjusting means has a piston-type cylinder interposed between the inner shaft upper end side and the outer shaft upper end side. 前記供給通路は、前記内軸側掘削攪拌手段に対応して設けられた前記吐出部に安定材を送る第1供給通路、及び前記外軸側掘削攪拌手段に対応して設けられた前記吐出部に安定材を送る第2供給通路を少なくとも備えているとともに、
前記第2供給通路は、前記内軸の外周に通じている内軸径方向通路部と、前記内軸と前記外軸との間に設けられて前記内軸径方向通路部を挟んだ上下のシール部材で区画されている周囲導出溜め部と、前記周囲導出溜め部から前記外軸の外周に通じている外軸径方向通路部と、前記外軸径方向通路部と対応する前記吐出部とを接続している接続部とを有している請求項1又は2に記載の地盤改良装置。
The supply passage includes a first supply passage for sending a stabilizer to the discharge portion provided corresponding to the inner shaft side excavation stirring means, and the discharge portion provided corresponding to the outer shaft side excavation stirring means. And at least a second supply passage for feeding the stabilizer to
The second supply passage is provided between an inner shaft radial passage portion communicating with an outer periphery of the inner shaft and an upper and lower portions sandwiched between the inner shaft radial passage portion and the inner shaft and the outer shaft. A peripheral lead-out reservoir section defined by a seal member; an outer shaft radial passage portion communicating from the peripheral lead-out reservoir portion to the outer periphery of the outer shaft; and the discharge portion corresponding to the outer shaft radial passage portion; The ground improvement apparatus of Claim 1 or 2 which has a connection part which has connected.
互いに反転する内軸と外軸との二重軸構造の駆動軸と、前記駆動軸を昇降させる昇降手段と、前記外軸の下端側に設けられた外軸側掘削攪拌手段と、前記内軸の下端側に設けられた内軸側掘削攪拌手段と、前記駆動軸に沿って設けられた安定材用供給通路と、前記供給通路に接続されて安定材を吐出する吐出部とを備え、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段とを反転させながら地盤を掘削し、その掘削土壌中に前記安定材を前記吐出部より吐出し攪拌混合する地盤改良方法において、
前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段との上下間隔を調整する高さ調整手段を有しており、前記駆動軸を前記昇降手段を介して地盤中に下降する貫入工程と上昇する引き抜き工程とで、前記外軸側掘削攪拌手段と前記内軸側掘削攪拌手段との上下間隔を前記高さ調整手段により変えることを特徴とする地盤改良方法。
A drive shaft having a double shaft structure of an inner shaft and an outer shaft that are reversed to each other, lifting and lowering means for raising and lowering the drive shaft, outer shaft-side excavation and stirring means provided on the lower end side of the outer shaft, and the inner shaft An inner shaft side excavating and agitating means provided on the lower end side, a stabilizing material supply passage provided along the drive shaft, and a discharge portion connected to the supply passage for discharging the stabilizing material, In the ground improvement method of excavating the ground while reversing the outer shaft side excavation stirring means and the inner shaft side excavation stirring means, the stabilizer is discharged from the discharge portion into the excavated soil, and stirred and mixed.
A penetration step of having a height adjusting means for adjusting a vertical distance between the outer shaft side excavation stirring means and the inner shaft side excavation stirring means, and lowering the drive shaft into the ground via the lifting means; A ground improvement method, wherein the vertical adjustment interval between the outer shaft side excavation stirring means and the inner shaft side excavation stirring means is changed by the height adjusting means in the ascending drawing step.
JP2006252339A 2006-09-19 2006-09-19 Ground improvement device and method Active JP4698539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006252339A JP4698539B2 (en) 2006-09-19 2006-09-19 Ground improvement device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006252339A JP4698539B2 (en) 2006-09-19 2006-09-19 Ground improvement device and method

Publications (2)

Publication Number Publication Date
JP2008075255A true JP2008075255A (en) 2008-04-03
JP4698539B2 JP4698539B2 (en) 2011-06-08

Family

ID=39347603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006252339A Active JP4698539B2 (en) 2006-09-19 2006-09-19 Ground improvement device and method

Country Status (1)

Country Link
JP (1) JP4698539B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079988A2 (en) * 2009-01-09 2010-07-15 동국정밀주식회사 Excavating screw for agricultural use
JP2013076273A (en) * 2011-09-30 2013-04-25 Kikutaka-Sangyo Co Ltd Ground improvement mixing/stirring device
KR200469226Y1 (en) 2011-06-22 2013-10-01 조홍근 Pipe laying excavator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113228A (en) * 1993-10-20 1995-05-02 Kinki Ishiko Kk Soil improving stirring device
JP2003166236A (en) * 2001-11-30 2003-06-13 Tone Geo Tech Co Ltd Drilling, mixing and agitating blade of soil improvement machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113228A (en) * 1993-10-20 1995-05-02 Kinki Ishiko Kk Soil improving stirring device
JP2003166236A (en) * 2001-11-30 2003-06-13 Tone Geo Tech Co Ltd Drilling, mixing and agitating blade of soil improvement machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079988A2 (en) * 2009-01-09 2010-07-15 동국정밀주식회사 Excavating screw for agricultural use
WO2010079988A3 (en) * 2009-01-09 2010-10-14 동국정밀주식회사 Excavating screw for agricultural use
KR200469226Y1 (en) 2011-06-22 2013-10-01 조홍근 Pipe laying excavator
JP2013076273A (en) * 2011-09-30 2013-04-25 Kikutaka-Sangyo Co Ltd Ground improvement mixing/stirring device

Also Published As

Publication number Publication date
JP4698539B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
CN106545011A (en) The multidirectional mixing pile pile making method of efficient energy-saving
CN109577865A (en) Double high-pressure stirring-spraying pile drill bits and its application method
CN106368213B (en) The energy-efficient multidirectional mixing pile pile-forming equipment of self-reaction force
JP4520913B2 (en) Ground improvement method and existing structure foundation reinforcement method
JP4698539B2 (en) Ground improvement device and method
JP2007332710A (en) Ground improvement method and ground improving machine
JP4944926B2 (en) Ground hardening layer construction method and its equipment
JP4988061B1 (en) Ground improvement device and ground improvement method
KR20110112887A (en) Auger device equiped with excavating rod and casing rod having same turning direction and different speed
CN1533464A (en) Drilling device for earth drill
JP2007255133A (en) Soil cement preparation device having agitating auxiliary blade
KR101874566B1 (en) Ground Improving Device having a Agitation Active and Ground Improving Method Using The Same
EP2102419A2 (en) Drill head for the excavation in the ground of a pit, and a foundation system for the forming of a foundation pile in the ground
JP3830460B2 (en) Boring device and underground drilling method
JP2018021379A (en) Method and device for ground improvement
JP2000179272A (en) Auger screw and excavating method using the same
JP2004137722A (en) Drill/stir bit of underground pile formation and ground improvement method making use thereof
JP5346977B2 (en) Ground hardening layer construction method and its equipment
JPH10159474A (en) Excavation method and device
JP2006348644A (en) Excavation head and excavator
JP6526538B2 (en) Ground improvement device
KR101998208B1 (en) Double rod type mixing equipment and mixing method for harding ground using the same
JP6724200B1 (en) Excavator
JP4879092B2 (en) Ground improvement device
JP5109526B2 (en) Construction method of columnar improvement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250