JP2018021379A - Method and device for ground improvement - Google Patents

Method and device for ground improvement Download PDF

Info

Publication number
JP2018021379A
JP2018021379A JP2016153143A JP2016153143A JP2018021379A JP 2018021379 A JP2018021379 A JP 2018021379A JP 2016153143 A JP2016153143 A JP 2016153143A JP 2016153143 A JP2016153143 A JP 2016153143A JP 2018021379 A JP2018021379 A JP 2018021379A
Authority
JP
Japan
Prior art keywords
ground
outer cylinder
inner shaft
improvement
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153143A
Other languages
Japanese (ja)
Other versions
JP6752076B2 (en
Inventor
保明 根岸
Yasuaki Negishi
保明 根岸
磯谷 修二
Shuji Isotani
修二 磯谷
雅則 岡戸
Masanori Okado
雅則 岡戸
田中 肇一
Hatsuichi Tanaka
肇一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2016153143A priority Critical patent/JP6752076B2/en
Publication of JP2018021379A publication Critical patent/JP2018021379A/en
Application granted granted Critical
Publication of JP6752076B2 publication Critical patent/JP6752076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to perform good ground improvement in a multilayer system ground, especially a laminated ground of a sandy soil layer and a cohesive soil layer while reducing costs.SOLUTION: In a ground improvement method applied to a multilayer system ground 9 that has an upper layer part A and a lower layer part B that are different with each other, the ground improvement machine comprises: an external cylinder 3 that is free to rotate in normal/reverse directions and is penetrated/pulled out into/from the ground; and an inner shaft 4 that can be free to rotate in normal/reverse directions, and has a spiral screw 40 on the periphery and is penetratingly arranged inside the external cylinder 3. In the step of penetrating the inner shaft 4 and the external cylinder 3 into the multilayer system ground 9, an original ground part of the upper layer part A or the lower layer part B is taken into the external cylinder 3 from the bottom edge thereof by the normal rotation of the inner shaft 4. After this, in the further penetrating or pulling out step, by the reverse rotation of the inner shaft 4, the original ground part taken into the external cylinder is discharged to the lower layer part B or the upper layer part A to be mixed for use as an improvement material.SELECTED DRAWING: Figure 6

Description

本発明は、上層部および下層部が異層の多層系地盤、特に砂質土層と粘性土層との互層地盤に好適な地盤改良工法及びその装置に関する。   TECHNICAL FIELD The present invention relates to a ground improvement method and apparatus suitable for a multi-layered ground having different upper and lower layers, in particular, a sandy soil layer and a viscous soil layer.

地盤中にセメントミルクなどの改良材を注入し、撹拌混合して固化させることにより地盤を強化する地盤改良工法が知られている(例えば、特許第3416774号公報、以下これを参考公報という)。この工法では、従来より目標改良強度に合わせて事前に施工現場の土をボーリング採取し、室内配合試験を行い、安全率を考慮して、改良材の現場施工配合量を設定している。施工後の強度は、地盤の土質、注入する改良材の量、撹拌の度合を示す羽根切り回数などに影響されるが、中でも粘性土質(特に腐植土や腐葉土)の地盤では、良好な撹拌状態を保つことが難しく、改良材の注入量を多くして強度の低下を防ぐようにしている。また、粘性土質の地盤では注入した改良材と混合されずに残ってしまう土塊ができやすく、撹拌度合の信頼度が低く、強度のばらつきも多くなる。特に腐植土や腐葉土混じりの酸性度の高い粘性土では強度が思うように出ない傾向にある。これに対し、砂質土層の地盤では、貫入抵抗は大きいが、施工後の強度が出やすく、撹拌度合の信頼性も高いため、注入する改良材量は少なくて済む。   There is known a ground improvement method for strengthening the ground by injecting an improvement material such as cement milk into the ground, stirring and mixing to solidify (for example, Japanese Patent No. 3416774, hereinafter referred to as a reference). In this method, the soil at the construction site has been bored in advance according to the target improvement strength, an indoor blending test is conducted, and the site construction blending amount of the improved material is set in consideration of the safety factor. The strength after construction is affected by the soil quality, the amount of improved material to be injected, the number of blade cuttings that indicate the degree of stirring, etc., but especially in the soil of viscous soil (especially humus and humus) Is difficult to maintain, and the amount of improvement material injected is increased to prevent a decrease in strength. In addition, in the soil of clay soil, a lump that remains without being mixed with the injected improvement material is easily formed, the reliability of the degree of stirring is low, and the variation in strength increases. In particular, the strength does not tend to be as expected in viscous soil with high acidity mixed with humus and humus. On the other hand, in the ground of the sandy soil layer, although the penetration resistance is large, the strength after construction is easily obtained and the reliability of the degree of stirring is high, so that the amount of the improved material to be injected is small.

何れにしても、この種の対象地盤にあっては粘性地盤のみ、或いは砂質地盤のみであることは稀であり、砂質土層と粘性土層とが交互に重なりあった互層地盤であるのが一般的である。このような互層地盤で地盤改良を行う場合、粘性土層と砂質土層とで注入する改良材量を変えるのは作業が煩雑になるため、注入する改良材量は粘性土層に合わせて多くしていた。このため、互層地盤中の砂質土層では、改良材量が必要量より過剰となり、また、過剰な改良材を注入するため、産業廃棄物である排土量も増加し、施工費が上昇するばかりでなく、廃棄処理コストもばかにならない。   In any case, in this type of target ground, it is rare that it is only a viscous ground or only a sandy ground, and it is an alternate-layered ground in which sandy soil layers and viscous soil layers are alternately overlapped. It is common. When performing ground improvement on such an alternate layer ground, changing the amount of the improved material to be injected between the viscous soil layer and the sandy soil layer becomes cumbersome, so the amount of the improved material to be injected should match the viscous soil layer. A lot. For this reason, in the sandy soil layer in the alternating layer ground, the amount of the improved material is excessive than the required amount, and since the excessive improved material is injected, the amount of soil that is industrial waste also increases and the construction cost increases. Not only does it cost waste disposal.

以上の互層地盤に関連して、特許文献1と2には、対象地盤が砂質土層と粘性土層との互層地盤に適用される地盤改良工法が開示されている。特許文献1の工法特徴として、砂質土層では、アジテータ内のセメントミルクを第1ポンプによりロッド内の第1供給流路を通って第1吐出口から原地盤に吐出し混合する。粘性土層では、アジテータ内のセメントミルクを切替弁を介して骨材混合器に入れて砂などの骨材と混合したモルタルを第2ポンプによりロッド内の第2供給流路を通って第2吐出口から原地盤に吐出し混合する。また、特許文献2の工法特徴として、砂質土層では、ケーシングパイプに上ホッパから砂を投入すると同時に下部の振動子でケーシングパイプを振動させながらサンドパイルを造成する。粘性土層では、ケーシングパイプを回転させて回転翼に設けられたノズルから安定材と原位置土からなるセメント系パイルを造成する。   In relation to the above alternate ground, Patent Documents 1 and 2 disclose a ground improvement method in which the target ground is applied to an alternate ground of a sandy soil layer and a viscous soil layer. As a construction method feature of Patent Document 1, in the sandy soil layer, cement milk in the agitator is discharged from the first discharge port to the original ground through the first supply flow path in the rod by the first pump and mixed. In the viscous soil layer, the mortar in which cement milk in the agitator is mixed with the aggregate such as sand through the switching valve is mixed with the second pump through the second supply flow path in the rod by the second pump. Discharge from the outlet to the ground and mix. Further, as a feature of the construction method of Patent Document 2, in the sandy soil layer, sand is poured into the casing pipe from the upper hopper and at the same time the casing pipe is vibrated by the lower vibrator. In the cohesive soil layer, the casing pipe is rotated to create a cement pile made of a stabilizer and in-situ soil from a nozzle provided on the rotor blade.

特開2002−339342号公報JP 2002-339342 A 特開平9−328745号公報JP-A-9-328745

ところで、近年の地盤改良工法では、対象の地盤が互層地盤の場合も、要求される地盤改良効果を満たすだけではなく、施工費を少しでも抑えなければならない。この点、特許文献1や2のように、互層地盤を構成している砂質土層と粘性土層で使用する改良材を変えただけでは材料費が高くなることがあっても全体の施工費を低減できない。   By the way, in the recent ground improvement method, even when the target ground is an alternating layer ground, not only the required ground improvement effect but also the construction cost must be suppressed as much as possible. In this regard, as in Patent Documents 1 and 2, the entire construction work is possible even if the material cost may be increased simply by changing the improvement material used in the sandy soil layer and the viscous soil layer constituting the alternate layered ground. Cost cannot be reduced.

本発明者らは、そのような施工費の低減を可能にする工法を検討してきた結果、互層地盤として砂質土層と粘性土層の例だと、砂質土層を構成している砂材を粘性土層の改良材として活用したり、粘性土層を構成している粘土材を砂質土層の改良材として活用し、結果としてセメントミルクなどの改良材の使用量を低減できるとの確証に至った。   As a result of studying a construction method capable of reducing such construction costs, the present inventors have found that sand that constitutes a sandy soil layer is an example of a sandy soil layer and a viscous soil layer as an alternating layer ground. If the material can be used as an improvement material for the viscous soil layer, or the clay material constituting the viscous soil layer can be used as an improvement material for the sandy soil layer, and as a result, the amount of improvement material such as cement milk can be reduced. It came to confirmation.

本発明の目的は、上層部および下層部が異層の多層系地盤、特に砂質土層と粘性土層との互層地盤において経費低減を図りながら良好な地盤改良が行える地盤改良工法及びその装置を提供することにある。他の目的は以下の内容説明のなかで明らかにする。   An object of the present invention is to provide a ground improvement method and apparatus capable of improving the ground while reducing costs in a multi-layered ground having different upper and lower layers, in particular, a sandy soil layer and a viscous soil layer. Is to provide. Other purposes will be clarified in the description below.

上記目的を達成するため本発明は、図6を参考にして特定すると、上層部Aおよび下層部Bが異層の多層系地盤9に適用される地盤改良工法において、地盤下に貫入・引き抜かれる正逆回転可能な外筒3、および螺旋状のスクリュ41を周囲に有して前記外筒の内側に貫通配置された正逆回転可能な内軸4を備え、前記内軸および外筒を前記多層系地盤に貫入する過程で、前記上層部Aまたは下層部Bの原地盤部分を前記内軸4の正転により前記外筒3下端より外筒内に取り込んだ後、更なる貫入過程または引き抜き過程で前記内軸の逆転により前記外筒内に取り込まれた原地盤部分を前記下層部Bまたは上層部Aに改良材料用として吐出し混合することを特徴としている。   In order to achieve the above object, when the present invention is specified with reference to FIG. 6, the upper layer portion A and the lower layer portion B are penetrated and extracted under the ground in the ground improvement method applied to the multi-layered ground 9. An outer cylinder 3 capable of rotating in the forward and reverse directions, and an inner shaft 4 having a spiral screw 41 around the inner cylinder 4 that can be rotated in the forward and reverse directions are disposed inside the outer cylinder, and the inner shaft and the outer cylinder are In the process of penetrating into the multi-layered ground, after the original ground portion of the upper layer part A or the lower layer part B is taken into the outer cylinder from the lower end of the outer cylinder 3 by forward rotation of the inner shaft 4, further penetration process or extraction The raw ground portion taken into the outer cylinder by the reversal of the inner shaft in the process is discharged and mixed into the lower layer B or the upper layer A for improvement material.

以上の本発明は、請求項2から7のように具体化されることがより好ましい。
(ア)、請求項1において、前記多層系地盤は、下層部が粘土系、上層部が砂系であり、前記上層部の砂部分を前記下層部の粘土に吐出し混合する構成か(請求項2)、下層部が砂系、上層部が粘土系であり、前記上層部の粘土部分を前記下層部の砂に吐出し混合する構成である(請求項3)。これらには、上層部と下層部の間に砂系や粘土系以外の中間層が介在されている地盤構成も含まれる。
The present invention as described above is more preferably embodied as in claims 2 to 7.
(A) In claim 1, the multi-layered ground is configured such that the lower layer portion is clay-based and the upper layer portion is sand-based, and the sand portion of the upper layer portion is discharged and mixed with the clay of the lower layer portion. Item 2), the lower layer portion is sand-based and the upper layer portion is clay-based, and the clay portion of the upper layer portion is discharged into and mixed with the sand of the lower layer portion (claim 3). These include a ground configuration in which an intermediate layer other than sand or clay is interposed between the upper layer and the lower layer.

(イ)、請求項1〜3の何れかにおいて、前記内軸を前記外筒に対して相対的に上下動可能にする上下移動手段を有し、前記上下移動手段により前記外筒の下端開口と前記内軸の下端側との間の隙間を地盤性状に応じて調整する構成である(請求項4)。 (A) In any one of claims 1 to 3, the apparatus has vertical movement means that allows the inner shaft to move up and down relatively with respect to the outer cylinder, and the vertical movement means opens the lower end of the outer cylinder. It is the structure which adjusts the clearance gap between the lower end side of the said inner shaft according to ground property (Claim 4).

(ウ)、請求項1〜4の何れかにおいて、前記内軸の下端に装着された攪拌翼兼用の内側掘削手段、および前記外筒の下端周囲に装着された攪拌翼兼用の外側掘削手段を有し、前記内側掘削手段および前記外側掘削手段が前記原地盤に対する外筒および内軸の貫入過程において原地盤を掘削するとともに攪拌する構成である(請求項5)。 (C) In any one of claims 1 to 4, an inner excavation means combined with a stirring blade attached to a lower end of the inner shaft, and an outer excavation means combined with an agitation blade attached around the lower end of the outer cylinder And the inner excavating means and the outer excavating means excavate the original ground and agitate in the process of penetration of the outer cylinder and the inner shaft with respect to the original ground (Claim 5).

(エ)、請求項1〜5の何れかにおいて、前記内軸の下端側に設けられて内軸に沿って移送されてくる改良材を原地盤に吐出する内側の改良材吐出手段、および前記外筒の下端周囲に配置された外側掘削手段に設けられて外筒に沿って移送されてくる改良材を原地盤に吐出する外側の改良材吐出手段を有し、前記内軸および外筒の多層系地盤への貫入過程、または/および、引き抜き過程にて前記改良材吐出手段により改良材を原地盤に吐出する構成である(請求項6)。ここで、改良材としては、例えば、セメントに水を添加したセメントミルク、そのセメントミルクに砂やソイルなど加えたモルタル材、それらに類似の材料である。吐出方式は、例えば、改良材をポンプで供給管に移送し供給管先端に接続されたノズルから吐出する方式、改良材および圧縮空気を専用ポンプおよび専用供給管に移送し、改良材を圧縮空気に同伴させてノズルから吐出する方式(参考公報)である。 (D) In any one of Claims 1-5, the improvement material discharge means inside which discharges the improvement material which is provided in the lower end side of the inner shaft and is transferred along the inner shaft to the original ground, and the An outer improvement material discharging means provided on an outer excavation means disposed around the lower end of the outer cylinder and discharging the improved material transferred along the outer cylinder to the original ground; the inner shaft and the outer cylinder; According to the sixth aspect of the present invention, the improvement material is discharged to the original ground by the improvement material discharge means in the process of penetration into the multilayer ground or / and the drawing process. Here, examples of the improving material include cement milk obtained by adding water to cement, mortar material obtained by adding sand or soil to the cement milk, and similar materials. The discharge method is, for example, a method in which the improved material is transferred to a supply pipe by a pump and discharged from a nozzle connected to the tip of the supply pipe, the improved material and compressed air are transferred to a dedicated pump and a dedicated supply pipe, and the improved material is compressed air. This is a method (reference gazette) that discharges from a nozzle accompanied with the nozzle.

(オ)、上層部および下層部が異層の多層系地盤に適用される地盤改良工法に用いられる地盤改良装置において、地盤に貫入・引き抜かれる正逆回転可能な外筒、および螺旋状のスクリュを周囲に有して前記外筒の内側に貫通配置された正逆回転可能な内軸を有し、前記内軸および外筒を前記多層系地盤へ貫入する過程で、前記上部層または下部層の原地盤部分を前記内軸の正逆の回転により前記外筒下端より外筒内に取込んだり再び原地盤に吐出混合する原地盤移動手段と、前記内軸を前記外筒に対して相対的に上下動可能にする上下移動手段と、前記内軸の下端に装着された攪拌翼兼用の内側掘削手段、および前記外筒の下端周囲に装着された攪拌翼兼用の外側掘削手段と、前記内軸の下端側に設けらて内軸に沿って移送されてくる改良材を原地盤内に吐出する内側改良材吐出手段、および前記外側掘削手段に設けらて外筒に沿って移送されてくる改良材を原地盤に吐出する外側改良材吐出手段とを備えている構成である(請求項7)。 (E) In a ground improvement device used in a ground improvement method applied to a multi-layered ground in which the upper layer and the lower layer are different layers, an outer cylinder that can be rotated in the forward and reverse directions and penetrated into the ground, and a spiral screw In the process of penetrating the inner shaft and the outer cylinder into the multi-layered ground, and the upper layer or the lower layer. The original ground portion is taken into the outer cylinder from the lower end of the outer cylinder by forward and reverse rotation of the inner shaft, and is discharged and mixed into the original ground again, and the inner shaft is relative to the outer cylinder. A vertical movement means that enables vertical movement, an inner excavation means that also serves as an agitating blade attached to the lower end of the inner shaft, and an outer excavation means that also serves as an agitating blade attached around the lower end of the outer cylinder, Improvement provided on the lower end side of the inner shaft and transferred along the inner shaft And an outer improvement material discharge means for discharging the improvement material which is provided in the outer excavation means and is transported along the outer cylinder to the original ground. (Claim 7).

請求項1の発明では、上層部および下層部が異層の多層系地盤を対象とし、上下層部の一方の原地盤部分を他方の改良用材料として他方の原地盤に吐出し混合することにより、改良効果を得ながら各互層間で土質性状をほぼ平均にならすことができ、また、必要に応じ行われるセメントミルクやモルタル材などの改良材の使用量や総量を改良効果を維持しながら少なくでき、その結果、施工費用および廃棄物処理費用ともに低減できる。   In the first aspect of the invention, the upper layer portion and the lower layer portion are targeted for the multi-layered ground, and one raw ground portion of the upper and lower layer portions is discharged to the other raw ground as the other improving material and mixed. In addition, while obtaining an improvement effect, the soil properties can be almost averaged between each other layer, and the amount of use and total amount of the improvement material such as cement milk and mortar used as needed is reduced while maintaining the improvement effect. As a result, both construction costs and waste disposal costs can be reduced.

請求項2の発明では、下層部が粘土系、上層部が砂系である場合、上層部の砂部分を下層部の粘土に吐出し混合することにより、例えば、含水比を下げたり排水性を付与して粘土性状を改良可能となる。   In the invention of claim 2, when the lower layer part is clay-based and the upper layer part is sand-based, by discharging and mixing the sand part of the upper layer part into the clay of the lower layer part, for example, the water content ratio is lowered or the drainage is improved. It is possible to improve clay properties by imparting.

請求項3の発明では、下層部が砂系、上層部が粘土系である場合、上層部の粘土部分を下層部の砂に吐出し混合することにより、例えば、砂系の下層部の強度(液状化強度)を上げて液状化対策として有効にする。   In the invention of claim 3, when the lower layer portion is sand-based and the upper layer portion is clay-based, the clay portion of the upper layer portion is discharged and mixed with the sand of the lower layer portion, for example, the strength of the sand-based lower layer portion ( Increase liquefaction strength) and make it effective as a countermeasure against liquefaction.

請求項4の発明では、上下移動手段により外筒の下端開口と内軸の下端側との間の隙間、つまり原地盤部分を外筒内に取り込む取込口、および/または、外筒内に取り込まれた原地盤部分を排出する吐出口の大きさを調整することにより、取込速度や取込総量、排出速度や排出総量などを最適化できる。   In the invention of claim 4, the clearance between the lower end opening of the outer cylinder and the lower end side of the inner shaft, that is, the intake port for taking the original ground portion into the outer cylinder and / or the outer cylinder by the vertical movement means By adjusting the size of the discharge port that discharges the captured raw ground portion, it is possible to optimize the intake speed, the total amount of intake, the discharge speed, the total amount of discharge, and the like.

請求項5の発明では、攪拌翼兼用の内側掘削手段および外側掘削手段により、原地盤に対する外筒および内軸の貫入過程において原地盤を掘削するとともに攪拌するため、硬質地盤での貫入能力不足を生じ難くしたり、例えば径が直径2メートル以上となるような大径の改良体も造成容易となる。   In the invention of claim 5, since the original ground is excavated and agitated in the intrusion process of the outer cylinder and the inner shaft with respect to the original ground by the inner excavating means and the outer excavating means which are also used as the stirring blades, the lack of penetration capability in the hard ground is caused. It is also easy to create an improved body having a large diameter, which is less likely to occur or has a diameter of 2 meters or more, for example.

請求項6の発明では、内軸が下端側に設けられて内軸内に移送されてくる改良材を原地盤に吐出する内側の改良材吐出手段を有し、外筒が下端周囲に配置された外側掘削手段に設けられて外筒に沿って移送されてくる改良材を原地盤に吐出する外側の改良材吐出手段を有しているため、地盤性状に応じて改良材を図6から図8に例示されるごとく色々な態様で吐出可能となり、工法に多様性を付与できる。   In the invention of claim 6, the inner shaft is provided on the lower end side and has the inner improved material discharge means for discharging the improved material transferred into the inner shaft to the original ground, and the outer cylinder is arranged around the lower end. Since the outer improvement material discharging means that discharges the improvement material that is provided in the outer excavation means and is transferred along the outer cylinder to the original ground is provided, the improvement material is shown in FIG. As illustrated in FIG. 8, it becomes possible to discharge in various modes, and diversity can be imparted to the construction method.

請求項7の発明では、上層部および下層部が異層の多層系地盤に適用される地盤改良工法に用いられる地盤改良装置として、請求項1〜6の地盤改良工法用として最適な装置として利用できる。   In the invention of claim 7, as the ground improvement device used for the ground improvement construction method applied to the multi-layered ground in which the upper layer portion and the lower layer portion are different layers, it is used as an optimum device for the ground improvement construction method of claims 1-6. it can.

本発明工法に最適な地盤改良装置の全体を示す模式図である。It is a schematic diagram which shows the whole ground improvement apparatus optimal for this invention construction method. (a)は図1の外筒および内軸を駆動する駆動機構部を示す模式図、(b)は内軸を外筒に対し上下移動手段により下降した状態を示す模式図である。(A) is a schematic diagram which shows the drive mechanism part which drives the outer cylinder and inner shaft of FIG. 1, (b) is a schematic diagram which shows the state which the inner shaft lowered | hung with the up-and-down moving means with respect to the outer cylinder. (a)は図2の外筒および内軸の下部側を示す断面図、(b)は内軸を外筒に対し上下移動手段により下降した状態で、地盤貫入過程において原地盤部分を外筒内に取り込んでいる状態を示す模式図である。2A is a cross-sectional view showing the lower side of the outer cylinder and the inner shaft of FIG. 2, and FIG. 2B is a diagram showing the original ground portion in the outer cylinder while the inner shaft is lowered by the vertical movement means with respect to the outer cylinder. It is a schematic diagram which shows the state taken in. (a)は図3(b)で外筒内に取り込んだ原地盤部分を排出している状態を示す模式図、(b)はその攪拌領域を説明するための模式図である。(A) is a schematic diagram which shows the state which has discharged | emitted the raw ground part taken in in the outer cylinder in FIG.3 (b), (b) is a schematic diagram for demonstrating the stirring area | region. 上記内軸の下端に連結される内側掘削手段の変形例を示し、(a)は正面図、(b)は下面図である。The modification of the inner excavation means connected with the lower end of the said inner shaft is shown, (a) is a front view, (b) is a bottom view. (a)〜(f)は本発明工法の施工手順例を示す説明図である。(A)-(f) is explanatory drawing which shows the construction procedure example of this invention construction method. (a)〜(f)は本発明工法の他の施工手順例を示す説明図である。(A)-(f) is explanatory drawing which shows the other construction procedure example of this invention construction method. (a)〜(f)は本発明工法の更に他の施工手順例を示す説明図である。(A)-(f) is explanatory drawing which shows the further another construction procedure example of this invention construction method.

以下、本発明を適用した形態を図面を参照して説明する。この説明では、本発明工法に用いられる地盤改良装置の装置構造および内側掘削手段の変形例を説明した後、それを用いた地盤改良工法1〜3について詳述する。なお、図面は作図上の制約から細部を省略したり簡略化している。   Hereinafter, embodiments to which the present invention is applied will be described with reference to the drawings. In this description, after explaining the device structure of the ground improvement device used in the method of the present invention and a modified example of the inner excavation means, the ground improvement methods 1 to 3 using it will be described in detail. In the drawings, details are omitted or simplified due to restrictions in drawing.

(装置構造)図1〜図4において、この地盤改良装置1は、全体構造として、べースマシン10と、ベースマシン10の先端支持部11に起立状態に載置されたリーダ14と、リーダ14を起立状態に支持するステー12およびキャッチホーク13と、リーダ14の一側面に装着されたガイドレール15と、ガイドレール15に沿って上下に移動されるアタッチメント2とを備えている。 1 to 4, the ground improvement device 1 includes, as an overall structure, a base machine 10, a reader 14 placed upright on a tip support portion 11 of the base machine 10, and a reader 14. A stay 12 and a catch hawk 13 that are supported in an upright state, a guide rail 15 that is mounted on one side of the leader 14, and an attachment 2 that is moved up and down along the guide rail 15 are provided.

また、要部構造として、正逆回転可能な外筒3および螺旋状のスクリュ41を周囲に有して外筒3内に貫通配置された正逆回転可能な内軸4を有し、外筒3および内軸4を多層系地盤9へ貫入する過程で上部層または下部層の原地盤部分を内軸4の正逆の回転により外筒3下端より外筒内に取り込んだり再び原地盤に吐出し混合する原地盤移動手段5と、内軸4を外筒3に対して相対的に上下動する上下移動手段である油圧シリンダ6と、内軸4に沿って移送されてくる改良材を内軸下端側より原地盤内に吐出する内側改良材吐出手段(7,40,42)と、外筒3に沿って移送されてくる改良材を外筒下端側または後述する外側掘削手段35側より原地盤内に吐出する外側改良材吐出手段(8,30,32)とを備えている。以下、これらの細部を明らかにする。   Further, as the main part structure, the outer cylinder 3 having a forward and reverse rotation and the inner shaft 4 having a spiral screw 41 around the outer cylinder 3 and being disposed through the outer cylinder 3 are provided. In the process of penetrating 3 and the inner shaft 4 into the multi-layered ground 9, the upper or lower layer of the original ground portion is taken into the outer tube from the lower end of the outer tube 3 by the forward and reverse rotation of the inner shaft 4, and discharged again to the original ground The raw ground moving means 5 for mixing, the hydraulic cylinder 6 which is a vertical moving means for moving the inner shaft 4 up and down relatively with respect to the outer cylinder 3, and the improved material transferred along the inner shaft 4 The inner improvement material discharge means (7, 40, 42) for discharging into the raw ground from the lower end side of the shaft, and the improved material transferred along the outer cylinder 3 from the lower end side of the outer cylinder or the outer excavation means 35 side described later. Outer improvement material discharge means (8, 30, 32) for discharging into the original ground. These details will be clarified below.

まず、ベースマシン10は、上本体16がキャタピラを有した下走行体17に対し旋回部を介して旋回可能に支持されている。上本体16には、細部を省略したが、操縦室及び不図示のワイヤ用ウインチなどが設けられるとともに、後部にステージ18が連結されている。操縦室には各種の施工用操作部や制御部が配設されている。ステージ18には発動機などが搭載されている。   First, the base machine 10 is supported so that the upper main body 16 can turn with respect to the lower traveling body 17 having a caterpillar via a turning portion. Although details are omitted from the upper body 16, a cockpit, a winch for wires (not shown), and the like are provided, and a stage 18 is connected to the rear part. Various construction operation units and control units are arranged in the cockpit. A motor or the like is mounted on the stage 18.

また、アタッチメント2は、上マウントベース20と、下マウントベース21と、各マウントベース20,21を一体物としてガイドレール15に嵌合した状態で上下動する昇降手段を構成している移動基体23と、各マウントベース20,21に対し串差し状態に固定支持されたガイドスリーブ25とを有している。符号19は移動基体23の昇降を補足するロープ等の吊り部材である。この吊り部材19は、細部を省略したが、ベースマシン10に搭載された不図示のウインチドラムから引き出され、リーダ14頂部の笠木に組み込まれた滑車群を通って後述する支持枠26に連結される。   The attachment 2 includes an upper mount base 20, a lower mount base 21, and a moving base body 23 that constitutes an elevating means that moves up and down in a state where the mount bases 20 and 21 are fitted to the guide rail 15. And a guide sleeve 25 that is fixedly supported in a skewed state with respect to the mount bases 20 and 21. Reference numeral 19 denotes a suspension member such as a rope that supplements the movement of the moving base 23. Although the details of the suspension member 19 are omitted, the suspension member 19 is pulled out from a winch drum (not shown) mounted on the base machine 10 and is connected to a support frame 26 described later through a pulley group incorporated in a headboard on the top of the reader 14. The

原地盤移動手段5において、内軸4は、外周にあって下端からガイドスリーブ25の手前まで螺旋状のスクリュ41が一体化されている。内軸4の上部側は、前記したガイドスリーブ25に挿通されている。外筒3は、スクリュ41付き内軸4を遊嵌する内径であり、供給管30が外周にあってスイベル8に対応する箇所から外側掘削手段35付近まで延びている。   In the original ground moving means 5, the inner shaft 4 is on the outer periphery, and a spiral screw 41 is integrated from the lower end to the front of the guide sleeve 25. The upper side of the inner shaft 4 is inserted through the guide sleeve 25 described above. The outer cylinder 3 has an inner diameter for loosely fitting the inner shaft 4 with the screw 41, and extends from a portion corresponding to the swivel 8 on the outer periphery to the vicinity of the outer excavating means 35.

また、外筒3の下端周囲には、図3および図4にも示されるごとく外側掘削手段35が設けられ、それよりも少し上側に攪拌翼39が設けられている。外側掘削手段35は、外筒3に装着される筒状の固定筒36と、固定筒36に突設された掘削作用および攪拌作用を兼用する対の翼37と、各翼37に装着された複数の掘削ビット38およびノズル32を有している。ノズル32は、対応する供給管30の下端に接続されて、セメントミルクなどの改良材を原地盤に吐出可能にする。攪拌翼39は、翼37と略同じ長さかつ枚数からなり、外筒3に装着される筒状の固定筒38に突設されている。   Further, an outer excavating means 35 is provided around the lower end of the outer cylinder 3 as shown in FIGS. 3 and 4, and a stirring blade 39 is provided slightly above the outer excavating means 35. The outer excavating means 35 is attached to each of the wings 37, a cylindrical fixed cylinder 36 attached to the outer cylinder 3, a pair of wings 37 projecting from the fixed cylinder 36 and used for both excavation and stirring. A plurality of drill bits 38 and nozzles 32 are provided. The nozzles 32 are connected to the lower ends of the corresponding supply pipes 30 so that an improved material such as cement milk can be discharged to the raw ground. The stirring blade 39 has substantially the same length and the same number as the blades 37, and protrudes from a cylindrical fixed cylinder 38 attached to the outer cylinder 3.

一方、内軸4の下端には内側掘削手段45が連結されている。この内側掘削手段45は、内軸4に装着される筒状の固定筒46と、固定筒46に突設された掘削作用および攪拌作用を兼用する対の翼47と、各翼47に装着された複数の掘削ビット48と、内軸4の下開口を閉じるとともに、ノズル42を保持している閉部材43を有している。ノズル42は、対応する供給管40の下端に接続されて、セメントミルクなどの改良材を原地盤に吐出可能にする。   On the other hand, an inner excavating means 45 is connected to the lower end of the inner shaft 4. The inner excavating means 45 is attached to each of the blades 47, a cylindrical fixed tube 46 attached to the inner shaft 4, a pair of blades 47 that project from the fixed tube 46 and have both excavation action and stirring action. A plurality of excavation bits 48 and a closing member 43 for closing the lower opening of the inner shaft 4 and holding the nozzle 42 are provided. The nozzles 42 are connected to the lower ends of the corresponding supply pipes 40 so that an improved material such as cement milk can be discharged to the raw ground.

上マウントベース20には、ガイドスリーブ25を貫通した内軸4を正逆回転可能にする対の駆動モータ50と、外部から移送されてくる改良材を内軸4内に配管された供給管40に移送可能にするスイベル7とが設けられている。このうち、各駆動モータ50は、ガイドスリーブ25内に挿通された内軸4の上部に不図示のギア機構を介して連繋されて内軸4を正逆回転する。スイベル7は、マウントベース20に保持された支持枠26の内側に設けられて外部から送られてくるセメントミルクなどの改良材を供給管40に移送する。   The upper mount base 20 includes a pair of drive motors 50 that allow the inner shaft 4 penetrating the guide sleeve 25 to rotate forward and backward, and a supply pipe 40 in which an improved material transferred from the outside is piped into the inner shaft 4. And a swivel 7 that is transportable. Among these, each drive motor 50 is connected to the upper part of the inner shaft 4 inserted through the guide sleeve 25 via a gear mechanism (not shown) to rotate the inner shaft 4 forward and backward. The swivel 7 is provided inside the support frame 26 held by the mount base 20, and transfers an improving material such as cement milk sent from the outside to the supply pipe 40.

下マウントベース21には、外筒3を正逆回転可能にする対の駆動モータ51と、外部から移送されてくる改良材を外筒3の外周に配管された供給管30に移送可能にするスイベル8とが設けられている。このうち、各駆動モータ51は、外筒3の上部に不図示のギア機構を介して連繋されて外筒3を正逆回転する。スイベル8は、マウントベース21の下側に保持された支持枠27の内側に設けられて外部から送られてくるセメントミルクなどの改良材を外筒の供給管30に移送する。   In the lower mount base 21, a pair of drive motors 51 that can rotate the outer cylinder 3 forward and backward, and an improvement material transferred from the outside can be transferred to a supply pipe 30 piped on the outer periphery of the outer cylinder 3. A swivel 8 is provided. Among these, each drive motor 51 is connected to the upper part of the outer cylinder 3 via a gear mechanism (not shown) to rotate the outer cylinder 3 forward and backward. The swivel 8 is provided inside the support frame 27 held on the lower side of the mount base 21 and transfers an improving material such as cement milk sent from the outside to the supply pipe 30 of the outer cylinder.

そして、前記外側改良材吐出手段は、セメントミルクなどの改良材を外筒3の外周に配管された供給管30に移送可能にする外筒用スイベル8、外側掘削手段35に設けられて供給管30を介して移送されてくる改良材を受け入れて原地盤に吐出するノズル32などからなる。前記内側改良材吐出手段は、セメントミルクなどの改良材を内軸4内に配管された供給管40に移送可能にする内軸用スイベル7、内側掘削手段45に設けられて供給管40を介して移送される改良材を受け入れて原地盤に吐出するノズル42などからなる。   The outer improvement material discharge means is provided in the outer cylinder swivel 8 and the outer excavation means 35 that allow the improvement material such as cement milk to be transferred to the supply pipe 30 provided on the outer periphery of the outer cylinder 3. The nozzle 32 etc. which receive the improved material conveyed through 30 and discharge it to a raw ground. The inner improvement material discharge means is provided in the inner shaft swivel 7 and the inner excavation means 45 that allow the improvement material such as cement milk to be transferred to the supply pipe 40 piped in the inner shaft 4. And a nozzle 42 for receiving the improved material to be transported and discharging it to the original ground.

油圧シリンタ6は、本体である筒体6aが上マウントベース20の下面側に設けられた取付部22に連結支持され、筒体6aに出没されるピストン6bが下マウントベース21に設けられた取付部23に連結支持されている。そして、この例では、図2および図3の各(a)がピストン6bが筒内6aから突出した状態を示し、各(b)がピストン6bが筒内6aに没した状態を示している。各(a)のピストン6bの突出態では、外筒3の下端開口と内軸4の下端側との間の隙間が最小となる。各(b)のピストン6bの没状態では、前記隙間、つまり原地盤部分を外筒3内に取り込む取込口や外筒3内に取り込まれた原地盤部分を排出する吐出口が最大となる。   The hydraulic cylinder 6 has a cylindrical body 6a as a main body connected to and supported by a mounting portion 22 provided on the lower surface side of the upper mount base 20, and a piston 6b protruding and retracting from the cylindrical body 6a is provided on the lower mount base 21. The portion 23 is connected and supported. In this example, each (a) in FIGS. 2 and 3 shows a state in which the piston 6b protrudes from the cylinder 6a, and each (b) shows a state in which the piston 6b is submerged in the cylinder 6a. In the protruding state of the piston 6b of each (a), the gap between the lower end opening of the outer cylinder 3 and the lower end side of the inner shaft 4 is minimized. In each of the (b) pistons 6b in the collapsed state, the gap, that is, the intake port for taking the original ground portion into the outer cylinder 3 and the discharge port for discharging the original ground portion taken into the outer cylinder 3 are maximized. .

(変形例)図5は以上の内側掘削手段45の変形例を示している。この説明では上記形態と実質的に同じ部位には同一符号を付け、変更点を明らかにする。この内側掘削手段45Aは、内軸4と略同径の本体44と、本体44の周囲に設けられてスクリュ41と連続するスクリュ44aと、本体44の上面に突設されて内軸4の下端側に係合される連結軸44bとを有している。本体44および連結軸44bは、内側が供給管40を配置する筒状となっている。その筒状には、筒下端側に装着されて供給管40の下端に接続されたノズル42が装着されている。本体44およびスクリュ44aの下端には、複数の掘削ビット48が装着されている。スクリュ44aは、掘削作用および原地盤を移動する作用を兼ねる。掘削ビット48は本体44直下の原地盤を掘削する構成である。 (Modification) FIG. 5 shows a modification of the inner excavation means 45 described above. In this description, parts that are substantially the same as those in the above embodiment are given the same reference numerals, and changes are clarified. The inner excavation means 45A includes a main body 44 having substantially the same diameter as the inner shaft 4, a screw 44a provided around the main body 44 and continuing to the screw 41, and a lower end of the inner shaft 4 protruding from the upper surface of the main body 44. And a connecting shaft 44b engaged on the side. The main body 44 and the connecting shaft 44b have a cylindrical shape on the inner side where the supply pipe 40 is disposed. A nozzle 42 attached to the lower end side of the cylinder and connected to the lower end of the supply pipe 40 is attached to the cylinder. A plurality of excavation bits 48 are attached to the lower ends of the main body 44 and the screw 44a. The screw 44a doubles as an excavating action and an action of moving the original ground. The excavation bit 48 is configured to excavate the original ground just below the main body 44.

(地盤改良工法)次に、以上の地盤改良装置を用いて本発明の地盤改良工法により地盤改良する場合の施工手順として3例を挙げて説明する。図6〜図8において、図中楕円で示す回転方向は小さい方が内軸の回転方向、大きい方が外筒の回転方向を示している。実施工では、目標改良強度に合わせて事前に施工現場の土をボーリング採取し、上部層および下部層の境界深度、各層の長さなどが把握される。また、採取土にて室内配合実験を行い、改良材の現場施工配合量などが設定される。これらは従来同様である。 (Ground improvement method) Next, three examples will be described as construction procedures when the ground improvement method of the present invention is used to improve the ground using the above ground improvement device. 6 to 8, the smaller rotation direction indicated by an ellipse in the figure indicates the rotation direction of the inner shaft, and the larger rotation direction indicates the rotation direction of the outer cylinder. In the construction work, the soil at the construction site is bored in advance according to the target improvement strength, and the boundary depth of the upper layer and the lower layer, the length of each layer, etc. are grasped. In addition, an indoor blending experiment is performed on the collected soil, and the amount of on-site construction blending of the improved material is set. These are the same as before.

(地盤改良工法1)図6の多層系地盤は、上層部Aが砂系地盤、下層部Bが粘土系地盤を想定している。同(a)は、上記地盤改良装置を移動して、原地盤移動手段5、つまり外筒3および内軸4の下端を施工箇所に位置決めした状態を示している。この状態では、内軸4の先端部、つまり内側掘削手段45が外筒3の下端より大きく突出しており、原地盤の砂部分を外筒3内へ取り込み可能としている。 (Soil Improvement Method 1) The multi-layer ground shown in FIG. 6 assumes that the upper layer A is sand-based ground and the lower layer B is clay-based ground. The same (a) has shown the state which moved the said ground improvement apparatus, and positioned the original ground moving means 5, ie, the outer cylinder 3, and the lower end of the inner shaft 4, in the construction location. In this state, the tip end portion of the inner shaft 4, that is, the inner excavation means 45 protrudes larger than the lower end of the outer cylinder 3, and the sand portion of the original ground can be taken into the outer cylinder 3.

同(b)は、原地盤移動手段5、つまり外筒3および内軸4を下降開始した状態を示している。この下降では、図中の矢印に示すごとく改良材を内軸3の先端側ノズル42、および外側掘削手段35側のノズル32より吐出しつつ、内軸3および外筒4を正回転で下降させる。下降過程では、原地盤内を内側掘削手段45および外側掘削手段35にて掘削しつつ、各ノズル42,32より吐出した改良材を混合攪拌し、同(c)に示すごとく原地盤内に円柱状改良予備体を造成する。同時に、内軸3の正回転により原地盤の砂部分が外筒4の筒内に順次に取り込まれる。   The same (b) shows a state in which the original ground moving means 5, that is, the outer cylinder 3 and the inner shaft 4 are started to descend. In this lowering, the inner shaft 3 and the outer cylinder 4 are lowered in a normal rotation while discharging the improved material from the tip side nozzle 42 of the inner shaft 3 and the nozzle 32 on the outer excavating means 35 side as indicated by the arrows in the figure. . In the descending process, the improvement material discharged from the nozzles 42 and 32 is mixed and stirred while the inside excavation means 45 and the outside excavation means 35 excavate the inside of the original ground, and as shown in FIG. A column-shaped improved spare body is created. At the same time, the sand portion of the original ground is sequentially taken into the cylinder of the outer cylinder 4 by the forward rotation of the inner shaft 3.

同(c)は、原地盤移動手段5を構成している外筒3の下端ないしは外側掘削手段35が上層部Aと下層部Bとの境界付近まで下降された状態を示している。この境界の判定は、予めボーリング調査で判明している境界深度に外筒3の下端ないしは外側掘削手段35が到達したか否かにより判定される。勿論、砂系地盤の回転抵抗は粘土系のそれより高いため、回転トルクの急変動などによっても判定できるので、その判定も併用することが好ましい。   FIG. 6C shows a state where the lower end or outer excavation means 35 of the outer cylinder 3 constituting the original ground moving means 5 is lowered to the vicinity of the boundary between the upper layer portion A and the lower layer portion B. This boundary is determined by whether or not the lower end of the outer cylinder 3 or the outer excavation means 35 has reached a boundary depth that has been previously determined by a boring survey. Of course, since the rotational resistance of the sand-based ground is higher than that of the clay-based ground, it can be determined by a sudden change in rotational torque, and therefore it is preferable to use that determination in combination.

同(d)は、外筒3の下端ないしは外側掘削手段35が境界を超えて粘土系地盤に到達した後、内軸3を逆回転させて、外筒4内に取り込まれた砂部分を外筒下端開口から順次に原地盤に吐出し、これを改良材料として、この砂部分と下層部Bの粘土系地盤および各ノズル42,32より吐出される改良材とを混合している状態を示している。同(e)は、原地盤移動手段5を構成している外筒3の下端ないしは外側掘削手段35が目的の深度に到達した状態を示している。下層部Bの原地盤(粘土系地盤)は、外筒3内から吐出された砂部分の混合により粘土系の土粒子がバラバラにほぐされ、その状態で各ノズル42,32より吐出される改良材も混合されるため、土塊を生ずることなく均一な強度の円柱状改良体が造成可能となる。   (D) shows that after the lower end of the outer cylinder 3 or the outer excavation means 35 reaches the clay-based ground beyond the boundary, the inner shaft 3 is rotated backward to remove the sand portion taken into the outer cylinder 4. Sequentially discharged from the bottom end of the cylinder to the original ground, and using this as an improved material, this sand part and the clay-based ground of the lower layer B and the improved material discharged from the nozzles 42 and 32 are mixed. ing. (E) shows a state in which the lower end of the outer cylinder 3 or the outer excavation means 35 constituting the original ground moving means 5 has reached the target depth. The base ground (clay-based ground) of the lower layer B is improved in that clay-based soil particles are loosened apart by mixing the sand parts discharged from the outer cylinder 3 and discharged from the nozzles 42 and 32 in that state. Since the materials are also mixed, a cylindrical improvement body with uniform strength can be created without producing a mass of earth.

同(d)と(e)では、例えば、下層部Bの粘土系地盤として、特に粘土系土壌に腐葉土や腐植土が存在すると、その酸性によりセメントのアルカリ反応が抑止されて、固化不良を起こし易く強度発現し難くなるが、この工法のごとく上層部Aの砂部分の混入により酸性が緩和されるため、強度を比較的容易に満足できる。   In (d) and (e), for example, when humus or humus soil is present in the clay-based soil as the clay-based ground of the lower layer B, the alkali reaction of the cement is suppressed due to its acidity, resulting in poor solidification. Although it is easy to develop the strength, the acidity is relaxed by mixing the sand portion of the upper layer portion A as in this construction method, so that the strength can be satisfied relatively easily.

次に、施工目標深度まで到達した後、外筒3を逆転させ、原地盤移動手段5、つまり外筒3および内軸4を上昇させて引き抜き動作に移行される。同(f)は、そのように引き抜き動作に移行された後、外軸3の下端ないしは外側掘削手段35が地表GLに到達した状態を示している。以上のようにして造成された円柱状改良体は、互層地盤の各土壌の性状に関わりなく、粘土と砂および改良材が適度に混合されてほぼ均質なものとなる。また、この円柱状改良体は、上層部Aの砂部分を下層部Bの粘土系地盤の改良材として用いたため、ノズル42,33から吐出するセメントミルクなど改良材の使用量を減らして施工費を低減可能となる。   Next, after reaching the construction target depth, the outer cylinder 3 is reversed, the original ground moving means 5, that is, the outer cylinder 3 and the inner shaft 4 are raised, and the operation is shifted to the drawing operation. (F) shows a state in which the lower end of the outer shaft 3 or the outer excavation means 35 has reached the ground surface GL after the transition to the pulling-out operation. The cylindrical improvement body created as described above becomes almost homogeneous by mixing clay, sand, and improvement material appropriately regardless of the properties of each soil of the alternate layered ground. Moreover, since this cylindrical improvement body used the sand part of the upper layer part A as an improvement material of the clay type ground of the lower layer part B, it reduces the usage amount of improvement materials, such as cement milk discharged from the nozzles 42 and 33, and construction cost Can be reduced.

(地盤改良工法2)図7の多層系地盤は図6と同様、上層部A1が砂系地盤、下層部B1が粘土系地盤を想定している。この説明では、図6に比べ変更された構成についてだけ明らかにする。この地盤改良工法において、図7(a)〜(c)では、図6(a)〜(c)に比べ、各ノズル42,32から改良材を吐出しない点で異なっている。つまり、この工法では、内軸3の正回転により原地盤の砂部分を外筒4の筒内に順次に取り込むが、境界に達するまで各ノズル42,32より改良材を吐出しない。 (Soil Improvement Method 2) The multi-layered ground in FIG. 7 assumes that the upper layer portion A1 is sand-based ground and the lower layer portion B1 is clay-based ground, as in FIG. In this description, only the configuration changed from that in FIG. 6 will be clarified. In this ground improvement construction method, FIGS. 7A to 7C are different from FIGS. 6A to 6C in that the improvement material is not discharged from the nozzles 42 and 32. That is, in this construction method, the sand portion of the original ground is sequentially taken into the cylinder of the outer cylinder 4 by the normal rotation of the inner shaft 3, but the improvement material is not discharged from the nozzles 42 and 32 until the boundary is reached.

図7(d)〜(f)は、図6(d)〜(f)に比べ、外筒3の下端ないしは外側掘削手段35が境界を超えて粘土系地盤に到達した後、内軸3を逆回転させて、外筒4内に取り込まれた砂部分を外筒下端開口から順次に原地盤に吐出し、この吐出された砂部分と下層部B1の粘土系地盤および各ノズル42,32より吐出される改良材とを混合する点では同じである。しかし、外筒4内に取り込まれた砂部分については、図6の構成とは相違して改良材を含んでいない。このため、下層部B1に造成される円柱状改良体は、各ノズル42,32より吐出される改良材の吐出総量が図6と図7で同じであれば、改良材の含有率は図6に比べ図7の方が低くなる。   7 (d) to (f), compared with FIGS. 6 (d) to (f), after the lower end of the outer cylinder 3 or the outer excavation means 35 reaches the clay-based ground beyond the boundary, the inner shaft 3 is moved. By rotating in reverse, the sand portion taken into the outer cylinder 4 is sequentially discharged from the lower end opening of the outer cylinder to the original ground, and from the discharged sand portion and the clay-based ground of the lower layer B1 and the nozzles 42, 32 It is the same in that the improved material to be discharged is mixed. However, the sand portion taken into the outer cylinder 4 does not include an improving material unlike the configuration of FIG. For this reason, if the total amount of the improved material discharged from the nozzles 42 and 32 is the same in FIG. 6 and FIG. FIG. 7 is lower than FIG.

また、この工法では、図6(f)に比べ原地盤移動手段5、つまり外筒3および内軸4が貫入後、引き抜き過程において、境界よりも上昇されるときに改良材がノズル42より上層部A1の砂系地盤に吐出される。この吐出量は、例えば、上層部A1の砂系地盤より下層部B2に移動した砂部分の移動量に応じて決められる。   Further, in this construction method, compared with FIG. 6 (f), after the original ground moving means 5, that is, the outer cylinder 3 and the inner shaft 4 penetrates, the improvement material is higher than the nozzle 42 when it is raised above the boundary in the drawing process. It is discharged onto the sand-based ground of part A1. This discharge amount is determined according to, for example, the amount of movement of the sand portion that has moved from the sand-based ground of the upper layer portion A1 to the lower layer portion B2.

(地盤改良工法3)図8の多層系地盤は、上層部A2が粘土系地盤、下層部B2が砂系地盤を想定している。この説明でも、図7に比べ変更された構成についてだけ明らかにする。この地盤改良工法において、図8(a)〜(c)は、図7(a)〜(c)と実質的に同じ。すなわち、この工法では、各ノズル42,32より改良材を吐出せず、また、内軸3の正回転により原地盤の粘土部分を外筒4の筒内に順次に取り込む。 (Soil Improvement Method 3) The multilayer ground in FIG. 8 assumes that the upper layer portion A2 is clay-based ground and the lower layer portion B2 is sand-based ground. In this description, only the configuration changed from that in FIG. 7 will be clarified. In this ground improvement construction method, FIGS. 8A to 8C are substantially the same as FIGS. 7A to 7C. That is, in this construction method, the improvement material is not discharged from the nozzles 42 and 32, and the clay portion of the original ground is sequentially taken into the cylinder of the outer cylinder 4 by the normal rotation of the inner shaft 3.

図8(d)〜(f)は、外筒3の下端ないしは外側掘削手段35が境界を超えて砂系地盤に到達した後、内軸3を逆回転させて、外筒4内に取り込まれた粘土部分を外筒下端開口から順次に原地盤に吐出し、この吐出された粘土部分と下層部B1の砂系地盤とを混合する。しかし、この工法では、図7に比べ各ノズル42,32より改良材を吐出しない。このため、下層部B2に造成される円柱状改良体は、砂系地盤と上層部A2から移動された粘土部分とが混合攪拌されたものとなる。また、この工法でも、図7(f)に比べ原地盤移動手段5、つまり外筒3および内軸4が貫入後、引き抜き過程において、境界よりも上昇されるときに改良材がノズル42より上層部A2の砂系地盤に吐出される。この吐出量も、例えば、上層部A2の粘土系地盤より下層部B2に移動した粘土部分の移動量に応じて決められる。   FIGS. 8D to 8F show that the lower end of the outer cylinder 3 or the outer excavation means 35 reaches the sand-based ground beyond the boundary, and then the inner shaft 3 is reversely rotated to be taken into the outer cylinder 4. The clay portion thus discharged is sequentially discharged from the lower end opening of the outer cylinder to the original ground, and the discharged clay portion and the sand-based ground of the lower layer portion B1 are mixed. However, in this construction method, the improved material is not discharged from the nozzles 42 and 32 as compared to FIG. For this reason, the cylindrical improvement body created in lower layer part B2 becomes what the sand system ground and the clay part moved from upper layer part A2 mixed and stirred. Further, even in this construction method, the improved material is higher than the nozzle 42 when it is lifted from the boundary in the drawing process after the original ground moving means 5, that is, the outer cylinder 3 and the inner shaft 4 penetrates, as compared with FIG. It is discharged onto the sand-based ground of part A2. This discharge amount is also determined according to, for example, the amount of movement of the clay portion that has moved from the clay-based ground of the upper layer portion A2 to the lower layer portion B2.

なお、以上の形態例は本発明を何ら制約するものではない。本発明は、各請求項で特定される構成要素を備えておればよく、細部は必要に応じて種々変更したり展開可能なものである。例えば、装置的には、アタッチメントを上下に移動する昇降手段、内軸を外筒に対して相対的に上下動する上下移動手段、改良材を対応するノズルから吐出する構成などは施工規模や深さ、地盤性状、改良材の種類などに応じて適宜変更可能である。   Note that the above embodiments do not limit the present invention. The present invention only has to include the components specified in each claim, and the details can be variously changed and developed as necessary. For example, in terms of equipment, the lifting and lowering means for moving the attachment up and down, the vertical movement means for moving the inner shaft up and down relatively with respect to the outer cylinder, the configuration for discharging the improved material from the corresponding nozzle, etc. It can be appropriately changed according to the ground properties, the type of the improved material, and the like.

また、工法的には、対象の多層系地盤には、改良対象外の表層部を有していたり、上層部と下層部との間に中間層が横たわっていたり、更に互層地盤が交互に積み重なった複合的な多層系地盤なども含まれる。また、各層地盤の深さが異なる場合には、内軸の正逆回転数や貫入速度を変化させることにより、外筒内への取り込みおよび吐出量を調整し、各層で可及的に均質に混合できるようにすればよいことも勿論である。   In terms of construction, the target multi-layer ground has a surface layer that is not subject to improvement, an intermediate layer lies between the upper layer and the lower layer, and alternate layers are stacked alternately. This includes complex multi-layered ground. In addition, when the depth of each layer is different, by changing the forward / reverse rotation speed and penetration speed of the inner shaft, the amount of intake and discharge into the outer cylinder is adjusted so that each layer is as homogeneous as possible. Of course, it is only necessary to allow mixing.

1・・・・地盤改良装置
2・・・・アタッチメント
5・・・・原地盤移動手段(3は外筒、4は内軸、41はスクリュ)
6・・・・油圧シリンダ(上下移動手段)
7・・・・内軸用スイベル(内側改良材吐出手段)
8・・・・外筒用スイベル(外側改良材吐出手段)
9・・・・多層系地盤(Aは砂系地盤、Bは粘土系地盤)
9A・・・・多層系地盤(A1は砂系地盤、B1は粘土系地盤)
9B・・・・多層系地盤(A2は粘土系地盤、B2は砂系地盤)
45・・・・内側掘削手段(48は掘削ビット)
45A・・・内側掘削手段(48は掘削ビット)
10・・・・ベースマシン
14・・・・リーダ
15・・・・ガイドレール
30・・・・外筒の供給管(外側改良材吐出手段)
32・・・・ノズル(外側改良材吐出手段)
35・・・・外側掘削手段(38は掘削ビット)
39・・・・攪拌翼
40・・・・内軸の供給管(内側改良材吐出手段)
42・・・・ノズル(内側改良材吐出手段)
DESCRIPTION OF SYMBOLS 1 .... Ground improvement apparatus 2 .... Attachment 5 .... Original ground moving means (3 is an outer cylinder, 4 is an inner shaft, 41 is a screw)
6 .... Hydraulic cylinder (up and down movement means)
7 ... Swivel for inner shaft (inner improvement material discharge means)
8 ... Swivel for outer cylinder (outside improvement material discharge means)
9 ... Multilayer ground (A is sand ground, B is clay ground)
9A ... Multi-layered ground (A1 is sand-based ground, B1 is clay-based ground)
9B ... Multi-layered ground (A2 is clay-based ground, B2 is sand-based ground)
45... Inside drilling means (48 is a drill bit)
45A ... Inside drilling means (48 is a drill bit)
DESCRIPTION OF SYMBOLS 10 ... Base machine 14 ... Leader 15 ... Guide rail 30 ... Outer cylinder supply pipe (outside improvement material discharge means)
32 .... Nozzle (outside improved material discharge means)
35... Outer drilling means (38 is a drill bit)
39 ... Agitator blade 40 ... Inner shaft supply pipe (inner improvement material discharge means)
42... Nozzle (inner improvement material discharge means)

Claims (7)

上層部および下層部が異層の多層系地盤に適用される地盤改良工法において、
地盤下に貫入・引き抜かれる正逆回転可能な外筒、および螺旋状のスクリュを周囲に有して前記外筒の内側に貫通配置された正逆回転可能な内軸を備え、
前記内軸および外筒を前記多層系地盤に貫入する過程で、前記上層部または下層部の原地盤部分を前記内軸の正転により前記外筒下端より外筒内に取り込んだ後、更なる貫入過程または引き抜き過程で前記内軸の逆転により前記外筒内に取り込まれた原地盤部分を前記下層部または上層部に改良材料用として吐出し混合することを特徴とする地盤改良工法。
In the ground improvement method applied to the multi-layered ground where the upper layer and lower layer are different layers,
An outer cylinder that can be rotated forward and backward that penetrates and pulls out under the ground, and an inner shaft that can be rotated forward and reversely disposed inside the outer cylinder with a helical screw around the periphery,
In the process of penetrating the inner shaft and outer cylinder into the multi-layered ground, after the original ground portion of the upper layer part or the lower layer part is taken into the outer cylinder from the lower end of the outer cylinder by forward rotation of the inner shaft, further A ground improvement method characterized by discharging and mixing an original ground portion taken into the outer cylinder by reversal of the inner shaft in an intrusion process or a drawing process into the lower layer or upper layer for improvement material.
前記多層系地盤は、下層部が粘土系、上層部が砂系であり、前記上層部の砂部分を前記下層部の粘土に吐出し混合することを特徴とする請求項1に記載の地盤改良工法。   2. The ground improvement according to claim 1, wherein the multilayered ground is a clay-based lower layer part and a sand-based upper layer part, and the sand part of the upper layer part is discharged and mixed with the clay of the lower layer part. Construction method. 前記多層系地盤は、下層部が砂系、上層部が粘土系であり、前記上層部の粘土部分を前記下層部の砂に吐出し混合することを特徴とする請求項1に記載の地盤改良工法。   2. The ground improvement according to claim 1, wherein the multi-layered ground is sand-based in the lower layer and clay-based in the upper layer, and the clay portion in the upper layer is discharged and mixed with the sand in the lower layer. Construction method. 前記内軸を前記外筒に対して単独で上下動可能にする上下移動手段を有し、前記上下移動手段により前記外筒の下端開口と前記内軸の下端側との間の隙間を地盤性状に応じて調整することを特徴とする請求項1から3の何れかに記載の地盤改良工法。   It has vertical movement means that allows the inner shaft to move up and down independently with respect to the outer cylinder, and the vertical movement means allows a clearance between the lower end opening of the outer cylinder and the lower end side of the inner shaft to be ground The ground improvement construction method according to any one of claims 1 to 3, wherein the ground improvement method according to any one of claims 1 to 3 is adjusted according to the conditions. 前記内軸の下端に装着された攪拌翼兼用の内側掘削手段、および前記外筒の下端周囲に装着された攪拌翼兼用の外側掘削手段を有し、前記内側掘削手段および前記外側掘削手段が前記原地盤に対する外筒および内軸の貫入過程において原地盤を掘削するとともに攪拌することを特徴とする請求項1から4の何れかに記載の地盤改良工法。   An inner digging means also serving as a stirring wing attached to a lower end of the inner shaft, and an outer digging means serving also as a stirring wing attached to the periphery of the lower end of the outer cylinder, wherein the inner digging means and the outer digging means are the The ground improvement method according to any one of claims 1 to 4, wherein the ground is excavated and agitated in an intrusion process of the outer cylinder and the inner shaft with respect to the ground. 前記内軸の下端側に設けられて内軸内に沿って配管された供給管を介し移送されてくる改良材を原地盤に吐出する内側の改良材吐出手段、および前記外側掘削手段に設けられて外筒に沿って配管された供給管を介し移送されてくる改良材を原地盤に吐出する外側の改良材吐出手段を有し、前記内軸および外筒の多層系地盤への貫入過程、または/および、引き抜き過程にて前記改良材吐出手段により改良材を原地盤に吐出することを特徴とする請求項5に記載の地盤改良工法。   Provided in the inner improved material discharge means for discharging the improved material, which is provided on the lower end side of the inner shaft and transferred through a supply pipe routed along the inner shaft, to the original ground, and in the outer excavation means. And having an outer improvement material discharge means for discharging the improved material transferred through a supply pipe routed along the outer cylinder to the original ground, the process of penetrating the inner shaft and the outer cylinder into the multilayered ground, 6. The ground improvement method according to claim 5, wherein the improvement material is discharged onto the original ground by the improvement material discharge means in the drawing process. 上層部および下層部が異層の多層系地盤に適用される地盤改良工法に用いられる地盤改良装置において、
地盤に貫入・引き抜かれる正逆回転可能な外筒、および螺旋状のスクリュを周囲に有して前記外筒の内側に貫通配置された正逆回転可能な内軸を有し、前記内軸および外筒を前記多層系地盤へ貫入する過程で、前記上部層または下部層の原地盤部分を前記内軸の正逆の回転により前記外筒下端より外筒内に取込んだり再び原地盤に吐出混合する原地盤移動手段と、
前記内軸を前記外筒に対して相対的に上下動可能にする上下移動手段と、
前記内軸の下端に装着された攪拌翼兼用の内側掘削手段、および前記外筒の下端周囲に装着された攪拌翼兼用の外側掘削手段と、
前記内軸の下端側に設けらて内軸に沿って移送されてくる改良材を原地盤内に吐出する内側改良材吐出手段、および前記外側掘削手段に設けらて外筒に沿って移送されてくる改良材を原地盤に吐出する外側改良材吐出手段とを備えていることを特徴とする地盤改良装置。
In the ground improvement device used in the ground improvement method applied to the multi-layered ground where the upper layer and the lower layer are different layers,
An outer cylinder capable of rotating in the forward and reverse directions penetrating into and extracted from the ground, and an inner shaft capable of rotating in the forward and reverse directions having a helical screw around the inside and penetrating inside the outer cylinder; In the process of penetrating the outer cylinder into the multi-layered ground, the original ground portion of the upper layer or the lower layer is taken into the outer cylinder from the lower end of the outer cylinder by the forward and reverse rotation of the inner shaft, and is discharged again to the original ground. Raw ground moving means to be mixed;
Vertical movement means for allowing the inner shaft to move up and down relatively with respect to the outer cylinder;
An inner excavation means combined with a stirring blade attached to the lower end of the inner shaft, and an outer excavation means combined with an agitation blade attached around the lower end of the outer cylinder;
Inner improvement material discharge means provided at the lower end side of the inner shaft and discharged along the inner shaft into the original ground, and provided on the outer excavation means and transferred along the outer cylinder. A ground improvement device, comprising: an outside improvement material discharge means for discharging the coming improvement material to the original ground.
JP2016153143A 2016-08-03 2016-08-03 Ground improvement method and its equipment Active JP6752076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016153143A JP6752076B2 (en) 2016-08-03 2016-08-03 Ground improvement method and its equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153143A JP6752076B2 (en) 2016-08-03 2016-08-03 Ground improvement method and its equipment

Publications (2)

Publication Number Publication Date
JP2018021379A true JP2018021379A (en) 2018-02-08
JP6752076B2 JP6752076B2 (en) 2020-09-09

Family

ID=61164316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153143A Active JP6752076B2 (en) 2016-08-03 2016-08-03 Ground improvement method and its equipment

Country Status (1)

Country Link
JP (1) JP6752076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059856A (en) * 2019-10-03 2021-04-15 積水ハウス株式会社 Excavation agitator
CN113029654A (en) * 2021-03-17 2021-06-25 中建材西南勘测设计有限公司 Rock reconnaissance sampling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059856A (en) * 2019-10-03 2021-04-15 積水ハウス株式会社 Excavation agitator
CN113029654A (en) * 2021-03-17 2021-06-25 中建材西南勘测设计有限公司 Rock reconnaissance sampling device

Also Published As

Publication number Publication date
JP6752076B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP5274523B2 (en) Excavator and excavation method
KR101527723B1 (en) Complex Ground Improving Devive and Ground Improving Method Using The Same
KR101641943B1 (en) An deep wing mixing vibratinal agitator for hardening ground and the deep wing mixing method thereof
JP2018021379A (en) Method and device for ground improvement
JP5078511B2 (en) Embedded pile method using earth drill machine
KR20150070807A (en) Auger tail and apparatus for construction of compound cross-section foundation structure
JP2009299356A (en) Kelly-bar of earth drilling machine
JP2007255133A (en) Soil cement preparation device having agitating auxiliary blade
JP5015558B2 (en) Fiber reinforced cement ground improvement method
CN206034429U (en) Construction equipment who sprays stirring of vibrating creeps into
JP4698539B2 (en) Ground improvement device and method
JP2002538343A (en) Drill for drilling a large-diameter deep hole and method for performing the drilling
JP6526538B2 (en) Ground improvement device
JP7231273B1 (en) ground improvement method
CN220599716U (en) Rectangular slide-resistant pile drilling machine with armpit horizontal cantilever and step-by-step type size variable
JPH10159474A (en) Excavation method and device
KR101076383B1 (en) Agitating device for ground improvement
JP4365695B2 (en) Drilling rig
JP6724200B1 (en) Excavator
KR101145837B1 (en) Cutter iprovement soil machine
KR200466943Y1 (en) Agitation rod for excavating
KR20130102254A (en) Front edge expanded bulb constructing system and method
JP7231271B1 (en) Ground improvement method and ground improvement device
JP2013204404A (en) Construction method of steel pipe pile
JP2008308900A (en) Device and method for forming underground pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6752076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150