JP2008074729A - Method for producing amino acid - Google Patents

Method for producing amino acid Download PDF

Info

Publication number
JP2008074729A
JP2008074729A JP2006253412A JP2006253412A JP2008074729A JP 2008074729 A JP2008074729 A JP 2008074729A JP 2006253412 A JP2006253412 A JP 2006253412A JP 2006253412 A JP2006253412 A JP 2006253412A JP 2008074729 A JP2008074729 A JP 2008074729A
Authority
JP
Japan
Prior art keywords
amino acid
cooh
acid
sch
hydroxylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253412A
Other languages
Japanese (ja)
Inventor
Tomoo Shiobara
友雄 塩原
Hiroki Fujioka
宏樹 藤岡
Yasuhiro Futamura
泰弘 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006253412A priority Critical patent/JP2008074729A/en
Publication of JP2008074729A publication Critical patent/JP2008074729A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an amino acid, with which various amino acids are produced by the same method only by changing raw materials, further, many kinds of amino acids are produced and a mixed formation ratio of D isomer and L isomer is increased in a yield of only either the D isomer or a the L isomer. <P>SOLUTION: The method for producing an amino acid comprises reacting a compound represented by general formula (1) [X is H or CH<SB>3</SB>, CH<SB>2</SB>OH, CH<SB>2</SB>SH, OCH<SB>3</SB>, SCH<SB>3</SB>, CH(CH<SB>3</SB>)<SB>2</SB>, C(CH<SB>3</SB>)<SB>3</SB>, CH(CH<SB>3</SB>)CH<SB>2</SB>CH<SB>3</SB>, CH<SB>2</SB>CH(CH<SB>3</SB>)<SB>2</SB>, CH<SB>2</SB>CH<SB>2</SB>SCH<SB>3</SB>, CH<SB>2</SB>COOH, CH<SB>2</SB>CH<SB>2</SB>COOH, CH<SB>2</SB>C<SB>6</SB>H<SB>5</SB>, CH<SB>2</SB>C<SB>6</SB>H<SB>4</SB>OH or the like] with hydroxylamine in the presence of a proton donative compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原料を替えるだけで、種々のアミノ酸を同じ方法で製造することができ、更には、多種類のアミノ酸を同時に製造すること、D体、L体の混合生成比を一方だけのものに生成収率を向上させることができるアミノ酸の製造方法に関する。 In the present invention, various amino acids can be produced by the same method only by changing the raw materials, and moreover, various types of amino acids can be produced at the same time, and the mixed product ratio of D-form and L-form is only one. The present invention also relates to a method for producing an amino acid capable of improving the production yield.

従来用いられてきたグリシンの製造方法としては、例えば、ストレッカー法、ヒダントイン法等が挙げられる。
ストレッカー法によれば、ホルムアルデヒドと青酸とアンモニアとからグリシノニトリルを合成し、これを水酸化ナトリウム等のアルカリで加水分解してグリシンの金属塩を製造した後、硫酸等の酸で中和することによりグリシンを製造する。
ヒダントイン法によれば、ホルムアルデヒドと青酸とからグリコロニトリルを合成し、これとアンモニアと炭酸ガスとを水の存在下にて反応させることによりヒダントインを製造した後、加水分解によりグリシンを製造する。
これらの方法によれば、アルカリや酸を大量に用いるため環境に悪影響を与えるという問題や、中和により硫酸ナトリウム等の中和塩が副成されるためグリシンの純度や収率が低下し、またこの中和塩の処理にコストがかかるという問題があった。
Conventionally used methods for producing glycine include, for example, the Strecker method and the hydantoin method.
According to the Strecker method, glycinonitrile is synthesized from formaldehyde, hydrocyanic acid and ammonia, and this is hydrolyzed with an alkali such as sodium hydroxide to produce a metal salt of glycine, and then neutralized with an acid such as sulfuric acid. To produce glycine.
According to the hydantoin method, glycolonitrile is synthesized from formaldehyde and hydrocyanic acid, and hydantoin is produced by reacting this with ammonia and carbon dioxide in the presence of water, and then glycine is produced by hydrolysis.
According to these methods, the problem of adversely affecting the environment because a large amount of alkali and acid are used, and the neutralization salt such as sodium sulfate is by-produced by neutralization, so the purity and yield of glycine is reduced. In addition, there is a problem that the treatment of the neutralized salt is costly.

このような問題に対し、微生物を用いてグリシノニトリルからグリシンを製造する方法が提案され、例えば、特許文献1にはグリシノニトリルの水溶液にシュードモナス属に属する微生物を作用させてグリシンを製造する方法が開示されている。 For such a problem, a method for producing glycine from glycinonitrile using a microorganism has been proposed. For example, Patent Document 1 discloses that glycine is produced by allowing a microorganism belonging to the genus Pseudomonas to act on an aqueous solution of glycinonitrile. A method is disclosed.

このような方法によれば、グリシンを高純度かつ高収率で製造することができるが、グリシン以外のアミノ酸の製造方法には応用ができないため、種々のアミノ酸の製造方法にも応用ができ、また、多種類のアミノ酸を同時に製造することができるアミノ酸の製造方法が求められている。
更には、通常の化学合成で各アミノ酸を製造すると、ほぼラセミ体のアミノ酸が製造されるため、D体L体のいずれかの光学体のみが必要な場合には通常の化学合成では製造効率が悪く、任意の光学体のアミノ酸のみを効率よく製造することができるアミノ酸の製造方法も求められているのが現状である。
特開2001−340096号公報
According to such a method, glycine can be produced with high purity and high yield, but since it cannot be applied to the production method of amino acids other than glycine, it can also be applied to production methods of various amino acids, Moreover, the manufacturing method of the amino acid which can manufacture many types of amino acids simultaneously is calculated | required.
Furthermore, when each amino acid is produced by ordinary chemical synthesis, a racemic amino acid is produced. Therefore, when only one of the optical bodies of D-form and L-form is required, production efficiency can be improved by ordinary chemical synthesis. Unfortunately, there is also a need for an amino acid production method that can efficiently produce only an amino acid of an arbitrary optical body.
JP 2001-340096 A

本発明は、上記現状に鑑み、原料を替えるだけで、種々のアミノ酸を同じ方法で製造することができ、更には、多種類のアミノ酸を同時に製造すること、D体、L体の混合生成比を一方だけのものに生成収率を向上させることができるアミノ酸の製造方法を提供することを目的とする。 In view of the above situation, the present invention allows various amino acids to be produced by the same method only by changing the raw materials. Furthermore, the production of many types of amino acids at the same time, the mixed product ratio of D-form and L-form An object of the present invention is to provide a method for producing an amino acid capable of improving the production yield to only one of them.

本発明は、下記一般式(1)で表される化合物とヒドロキシルアミンとをプロトン供給性化合物の存在下で反応させるアミノ酸の製造方法である。
以下に本発明を詳述する。
The present invention is a method for producing an amino acid by reacting a compound represented by the following general formula (1) with hydroxylamine in the presence of a proton-feeding compound.
The present invention is described in detail below.

Figure 2008074729
Xは、H、CH、CHOH、CHSH、OCH、SCH、CH(CH、C(CH、CH(CH)CHCH、CHCH(CH、CHCHSCH、CHCOOH、CHCHCOOH、CH、CHOH、下記化学式(2)又は下記化学式(3)を表す。
Figure 2008074729
X is H, CH 3 , CH 2 OH, CH 2 SH, OCH 3 , SCH 3 , CH (CH 3 ) 2 , C (CH 3 ) 3 , CH (CH 3 ) CH 2 CH 3 , CH 2 CH ( CH 3 ) 2 , CH 2 CH 2 SCH 3 , CH 2 COOH, CH 2 CH 2 COOH, CH 2 C 6 H 5 , CH 2 C 6 H 4 OH, the following chemical formula (2) or the following chemical formula (3) .

Figure 2008074729
Figure 2008074729

Figure 2008074729
Figure 2008074729

本発明者らは、鋭意検討の結果、特定の化合物と、ヒドロキシルアミンとを、プロトン供給性化合物の存在下で反応させることにより、大量の酸やアルカリを用いずにアミノ酸を製造することができ、また、該特定の化合物の種類を変えるだけで同じ製造方法により種々のアミノ酸を製造することができ、更には、特定の反応条件とするだけで多種類のアミノ酸を同時に製造することや、D体、L体の混合生成比を一方だけのものに生成収率を向上させることができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors can produce an amino acid without using a large amount of acid or alkali by reacting a specific compound with hydroxylamine in the presence of a proton-feeding compound. In addition, various amino acids can be produced by the same production method only by changing the kind of the specific compound, and moreover, various kinds of amino acids can be produced at the same time only by using specific reaction conditions. The present inventors have found that the production yield can be improved by making the mixed production ratio of the isomer and the L isomer only one, and the present invention has been completed.

本発明においては、下記一般式(1)で表される化合物と、ヒドロキシルアミンとを用いる。 In the present invention, a compound represented by the following general formula (1) and hydroxylamine are used.

Figure 2008074729
Figure 2008074729

Xは、H、CH、CHOH、CHSH、OCH、SCH、CH(CH、C(CH、CH(CH)CHCH、CHCH(CH、CHCHSCH、CHCOOH、CHCHCOOH、CH、CHOH、下記化学式(2)又は下記化学式(3)を表す。 X is H, CH 3 , CH 2 OH, CH 2 SH, OCH 3 , SCH 3 , CH (CH 3 ) 2 , C (CH 3 ) 3 , CH (CH 3 ) CH 2 CH 3 , CH 2 CH ( CH 3 ) 2 , CH 2 CH 2 SCH 3 , CH 2 COOH, CH 2 CH 2 COOH, CH 2 C 6 H 5 , CH 2 C 6 H 4 OH, the following chemical formula (2) or the following chemical formula (3) .

Figure 2008074729
Figure 2008074729

Figure 2008074729
Figure 2008074729

上記一般式(1)で表される化合物の具体例としては、例えば、グリオキシリック酸(H、グリシン)、ピルビン酸(CH、アラニン)、β−ヒドロキシピルビン酸(CHOH、セリン)、メルカプトピルビン酸(CHSH、システイン)、3−メチル−2−オキソブチリック酸(CH(CH、バリン)、DL−3−メチル−2−オキソバレリック酸(CH(CH)CHCH、イソロイシン)、4−メチル−2−オキソバレリック酸(CHCH(CH、ロイシン)、α−ケト−γ−(メチルチオ)−ブチリック酸(CHCHSCH、メチオニン)、オキサルアセティック酸(CHCOOH、アスパラ銀酸)、α−ケトグルタリック酸(CHCHCOOH、グルタミン酸)、フェニルピルビン酸(CHPh、フェニルアラニン)、4−ヒドロキシフェニルピルビン酸(CHPhOH、チロシン)、4−イミダゾールピラビック酸(上記化学式(2)、ヒスチジン)、インドール−3−ピルビン酸(上記化学式(3)、トリプトファン)等が挙げられる。なお、カッコ内には、Xが表す官能基と、各化合物を用いた場合に主に得られるアミノ酸とを示した。
上記一般式(1)で表される化合物は、単独で用いられてもよいし、2種以上が併用されてもよい。
Specific examples of the compound represented by the general formula (1) include glyoxylic acid (H, glycine), pyruvic acid (CH 3 , alanine), β-hydroxypyruvic acid (CH 2 OH, serine). , Mercaptopyruvic acid (CH 2 SH, cysteine), 3-methyl-2-oxobutyric acid (CH (CH 3 ) 2 , valine), DL-3-methyl-2-oxovaleric acid (CH (CH 3 ) CH 2 CH 3, isoleucine), 4-methyl-2-oxo-Barre Rick acid (CH 2 CH (CH 3) 2, leucine), alpha-keto-.gamma.-(methylthio) - Buchirikku acid (CH 2 CH 2 SCH 3, methionine), oxa Le acetic acid (CH 2 COOH, asparagus Ginsan), alpha-keto glutarate Rick acid (CH 2 CH 2 COOH, glutamic acid), Fe Rupirubin acid (CH 2 Ph, phenylalanine), 4-hydroxyphenyl pyruvic acid (CH 2 PhOH, tyrosine), 4-imidazole Pila big acid (Formula (2), histidine), indole-3-pyruvate (the chemical formula ( 3), tryptophan) and the like. In parentheses, the functional group represented by X and the amino acid obtained mainly when each compound is used are shown.
The compound represented by the general formula (1) may be used alone or in combination of two or more.

ヒドロキシルアミンは、ヒドロキシルアミン塩酸塩錯体の形で用いてもよい。
ヒドロキシルアミンの添加量としては特に限定されないが、上記一般式(1)で表される化合物1molに対して好ましい下限が0.9mol、好ましい上限が1.2molである。ヒドロキシルアミンと上記一般式(1)で表される化合物とは等モルで反応するため、上記範囲を超えると、原料を無駄にするだけでなく不純物混入のリスクを高めることとなる。
Hydroxylamine may be used in the form of a hydroxylamine hydrochloride complex.
The addition amount of hydroxylamine is not particularly limited, but a preferable lower limit is 0.9 mol and a preferable upper limit is 1.2 mol with respect to 1 mol of the compound represented by the general formula (1). Since the hydroxylamine and the compound represented by the general formula (1) react in equimolar amounts, exceeding the above range not only wastes raw materials but also increases the risk of contamination.

本発明のアミノ酸の製造方法においては、上記一般式(1)で表される化合物と、ヒドロキシルアミンとをプロトン供給性化合物の存在下で反応させる。 In the method for producing an amino acid of the present invention, the compound represented by the general formula (1) is reacted with hydroxylamine in the presence of a proton-feeding compound.

上記プロトン供給性化合物としては特に限定されず、例えば、塩酸、p−トリエンスルホン酸、硫酸、トリクロル酢酸等が挙げられる。なお、ヒドロキシルアミンとしてヒドロキシルアミン塩酸塩錯体を用いる場合には、電離による塩酸塩の量を考慮してプロトン供給性化合物を添加すればよい。 The proton supply compound is not particularly limited, and examples thereof include hydrochloric acid, p-trienesulfonic acid, sulfuric acid, trichloroacetic acid and the like. When a hydroxylamine hydrochloride complex is used as hydroxylamine, a proton-feeding compound may be added in consideration of the amount of hydrochloride due to ionization.

上記プロトン供給性化合物の添加量としては特に限定されないが、上記一般式(1)で表される化合物1molに対して好ましい下限が1mol、好ましい上限が1.5molである。上記プロトン供給性化合物と上記一般式(1)で表される化合物とは等モルで反応するため、上記範囲を超えると、原料を無駄にするだけでなく不純物混入のリスクを高めることとなる。 The addition amount of the proton-feeding compound is not particularly limited, but a preferable lower limit is 1 mol and a preferable upper limit is 1.5 mol with respect to 1 mol of the compound represented by the general formula (1). Since the proton-providing compound and the compound represented by the general formula (1) react in equimolar amounts, exceeding the above range not only wastes raw materials but also increases the risk of contamination.

本発明のアミノ酸の製造方法においては、上記一般式(1)で表される化合物とヒドロキシルアミンとを適当な溶媒を用いてプロトン供給性化合物の存在下で反応させればよい。
上記溶媒としては特に限定されず、例えば、メタノール、エタノール、プロパノール等のアルコール、水、アルカリ性溶媒等が挙げられる。なかでも、メタノール、エタノール、プロパノール等のアルコールや水等のプロトン性溶媒が好適である。ここで、プロトン性溶媒とは、解離して容易にプロトンを放出する溶媒である。
また、上記溶媒は、窒素、酸素、ヘリウム、アルゴン、空気等の常温常圧で気体である流体等を併用してもよい。
また、反応容器として特に限定されないが、気体を封入することが容易であることから、図1に示すようなオートクレーブが好適である。
In the method for producing an amino acid of the present invention, the compound represented by the general formula (1) and hydroxylamine may be reacted in the presence of a proton-feeding compound using an appropriate solvent.
It does not specifically limit as said solvent, For example, alcohol, such as methanol, ethanol, and propanol, water, an alkaline solvent, etc. are mentioned. Of these, alcohols such as methanol, ethanol and propanol, and protic solvents such as water are preferable. Here, the protic solvent is a solvent that dissociates and readily releases protons.
The solvent may be a fluid such as nitrogen, oxygen, helium, argon, air, etc. that is a gas at normal temperature and pressure.
Moreover, although it does not specifically limit as a reaction container, Since it is easy to enclose gas, an autoclave as shown in FIG. 1 is suitable.

図1(a)に本発明のアミノ酸の製造方法で用いることができる製造装置の模式図を示し、(b)には製造装置のうちオートクレーブの模式図を示した。本発明のアミノ酸の製造方法においては、オートクレーブ本体立型2内にプロトン供給性化合物と、上記一般式(1)で表される化合物と、ヒドロキシルアミンと、溶媒とを添加し、オートクレーブ蓋3をオートクレーブ本体立型2に固定し、溶媒として二酸化炭素を用いる場合には圧入口5から二酸化炭素ガスを封入し、超臨界状態又は亜臨界状態で反応させる場合には相応の温度で30〜120分間加熱し、反応させる方法が挙げられる。
なお、オートクレーブ内に直接試料を添加して反応を行うと、酸性の状態ではオートクレーブに由来する鉄イオンが溶出し、得られるアミノ酸が変化する場合があるので、オートクレーブ内にガラスの試験管タイプの円筒管を挿入して反応を行ってもよいし、グラスライニングしたものを挿入して反応を行ってもよい。
FIG. 1 (a) shows a schematic diagram of a production apparatus that can be used in the method for producing an amino acid of the present invention. FIG. 1 (b) shows a schematic diagram of an autoclave in the production apparatus. In the method for producing an amino acid of the present invention, a proton-feeding compound, a compound represented by the above general formula (1), hydroxylamine, and a solvent are added in the autoclave body vertical mold 2, and the autoclave lid 3 is attached. When fixed to the autoclave main body 2 and using carbon dioxide as a solvent, carbon dioxide gas is sealed from the pressure inlet 5, and when reacting in a supercritical state or subcritical state, at a corresponding temperature for 30 to 120 minutes. The method of heating and making it react is mentioned.
If the sample is added directly to the autoclave and the reaction is performed, iron ions derived from the autoclave are eluted in an acidic state, and the resulting amino acid may change. The reaction may be performed by inserting a cylindrical tube, or the reaction may be performed by inserting a glass-lined tube.

本発明のアミノ酸の製造方法においては、特に、上記一般式(1)で表される化合物とヒドロキシルアミンとを、プロトン供給性化合物の存在下、pHを2以下にして反応を行うことにより、得られるアミノ酸のうちD体の比率を高めることができる。
このことは、得られたアミノ酸を、例えば、CROWNPAKキラルカラム(DICEL社製)等を用いてHPLC測定を行うことにより確認することができる。
In the method for producing an amino acid of the present invention, the compound represented by the general formula (1) and hydroxylamine are obtained by reacting at a pH of 2 or less in the presence of a proton-feeding compound. The ratio of D form among the amino acids to be obtained can be increased.
This can be confirmed by performing HPLC measurement on the obtained amino acid using, for example, a CROWNPAK chiral column (manufactured by DICEL).

また、本発明のアミノ酸の製造方法においては、特に、上記一般式(1)で表される化合物とヒドロキシルアミンとを、プロトン供給性化合物の存在下、超臨界状態又は亜臨界状態の水と二酸化炭素との混合溶媒中で反応させると、上記一般式(1)で表される化合物を複数種用いなくとも多種類のアミノ酸を同時に得ることができる。このことは、例えば、L−8500アミノ酸分析計(日立製作所社製)を用いてアミノ酸分析することにより確認することができる。
また、水及び二酸化炭素は安価であることに加え、無毒であることから、環境に悪影響を与えず、回収等のコストを抑えることができる。また、二酸化炭素の臨界温度は304K、臨界圧力は7.39MPaであり、臨界温度が比較的低い温度であることから高温によりアミノ酸が分解することがない。更に、水の臨界温度は647K、臨界圧力は22MPaであることから、超臨界状態又は亜臨界状態の水中では雑菌やプリオン等の異常タンパク質等の分解が進み、得られるペプチド等の加水分解性化合物中にこれらの雑菌や異常タンパク質が混入するのを防ぐことができる。
In the method for producing an amino acid of the present invention, in particular, the compound represented by the general formula (1) and hydroxylamine are combined with water in a supercritical state or a subcritical state in the presence of a proton-feeding compound. When reacted in a mixed solvent with carbon, a plurality of types of amino acids can be obtained simultaneously without using a plurality of types of compounds represented by the general formula (1). This can be confirmed by, for example, amino acid analysis using an L-8500 amino acid analyzer (manufactured by Hitachi, Ltd.).
In addition to being inexpensive, water and carbon dioxide are non-toxic, so they do not adversely affect the environment and can reduce the cost of recovery and the like. Carbon dioxide has a critical temperature of 304 K and a critical pressure of 7.39 MPa. Since the critical temperature is relatively low, amino acids are not decomposed by high temperatures. Furthermore, since the critical temperature of water is 647 K and the critical pressure is 22 MPa, hydrolysis of abnormal proteins such as bacteria and prions proceeds in supercritical or subcritical water, and the resulting hydrolyzable compounds such as peptides. It is possible to prevent contamination with these germs and abnormal proteins.

ここで、本明細書において超臨界状態とは、臨界圧力(以下Pcともいう)以上、かつ、臨界温度(以下Tcともいう)以上の状態を意味する。水の場合には、22MPa以上、かつ、647K以上の状態をいい、二酸化炭素の場合には、7.39MPa以上、かつ、304K以上の状態をいう。
また、本明細書において亜臨界状態とは、超臨界状態以外の状態であって、圧力をP、温度をTとするとき、0.1<P/Pc<1.0かつ0.5<T/Tc、又は、0.1<P/Pcかつ0.5<T/Tc<1.0を満たす温度、圧力の状態を意味する。水の場合には、2.2MPaを超えて22MPa未満かつ324Kを超える状態、又は、2.2MPaを超えかつ324Kを超えて647K未満の状態をいい、二酸化炭素の場合には、0.739MPaを超えて7.39MPa未満かつ152Kを超える状態、又は、0.739MPaを超えかつ152Kを超えて304K未満の状態をいう。
Here, in this specification, the supercritical state means a state higher than a critical pressure (hereinafter also referred to as Pc) and higher than a critical temperature (hereinafter also referred to as Tc). In the case of water, it means a state of 22 MPa or more and 647 K or more, and in the case of carbon dioxide, it means a state of 7.39 MPa or more and 304 K or more.
Further, in this specification, the subcritical state is a state other than the supercritical state, where 0.1 <P / Pc <1.0 and 0.5 <T when the pressure is P and the temperature is T. / Tc, or a temperature and pressure state satisfying 0.1 <P / Pc and 0.5 <T / Tc <1.0. In the case of water, it means a state exceeding 2.2 MPa and less than 22 MPa and exceeding 324 K, or a state exceeding 2.2 MPa and exceeding 324 K and less than 647 K. In the case of carbon dioxide, 0.739 MPa is used. A state exceeding 7.39 MPa and exceeding 152K, or a state exceeding 0.739 MPa and exceeding 152K to less than 304K.

上記超臨界状態又は亜臨界状態の水と二酸化炭素との混合溶媒における水と二酸化炭素との混合比としては特に限定されないが、水の比率の好ましい下限が0.1重量%である。0.1重量%未満であると、原料が反応しにくいことがある。より好ましい下限は1重量%、より好ましい上限は10重量%である。 The mixing ratio of water and carbon dioxide in the mixed solvent of water and carbon dioxide in the supercritical state or subcritical state is not particularly limited, but a preferable lower limit of the water ratio is 0.1% by weight. If it is less than 0.1% by weight, the raw material may not easily react. A more preferred lower limit is 1% by weight, and a more preferred upper limit is 10% by weight.

本発明のアミノ酸の製造方法によれば、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、フェニルアラニン、トリプトファン、チロシン、プロリン、シスチン等のモノアミノモノカルボン酸(中性アミノ酸)、グルタミン酸、アスパラギン酸、グルタミン、アスパラギン等のモノアミノジカルボン酸(酸性アミノ酸)、リシン、アルギニン、ヒスチジン等のジアミノモノカルボン酸等を製造することができる。 According to the method for producing an amino acid of the present invention, monoamino monocarboxylic acids (neutral amino acids) such as glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, phenylalanine, tryptophan, tyrosine, proline, cystine, etc. Monoamino dicarboxylic acids (acidic amino acids) such as glutamic acid, aspartic acid, glutamine and asparagine, and diaminomonocarboxylic acids such as lysine, arginine and histidine can be produced.

本発明によれば、原料を替えるだけで、種々のアミノ酸を同じ方法で製造することができ、更には、多種類のアミノ酸を同時に製造すること、D体、L体の混合生成比を一方だけのものに生成収率を向上させることができるアミノ酸の製造方法を提供することができる。 According to the present invention, various amino acids can be produced by the same method only by changing the raw materials. Furthermore, the production of many kinds of amino acids at the same time, and the mixed product ratio of D-form and L-form only on one side. It is possible to provide a method for producing an amino acid capable of improving the production yield.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
三角フラスコにピルビン酸5.52g(0.065mol)、ヒドロキシルアミン塩酸塩4.55g(0.065mol)、超純水(Milli−Q:MILLIPORE)20mLを仕込み、5分間攪拌して完全に均一透明に溶解させた後、pH試験機(HORIBA社製、pH METER F−21)で酸性度を測定するとpH=−0.20を提示した。再度攪拌を行いしばらくすると38度まで上昇し、90分間攪拌を続けるとともに白色沈殿が形成された。一夜放置した後、攪拌を60分間行い、濾過しエーテル洗浄を行い、真空乾燥機で40℃3時間乾燥することにより結晶を得た。
上記結晶について、L−8500アミノ酸分析計(日立製作所社製)を用いてアミノ酸分析を行なったところ、アラニンを含むことがわかった。さらに、LCT質量分析計(MICROMASS)にてESI−MS測定を行い、正イオンを測定したところ、アラニンと同じ分子量89の物質が検出された。結果を表1に示した。
(Example 1)
An Erlenmeyer flask was charged with 5.52 g (0.065 mol) of pyruvic acid, 4.55 g (0.065 mol) of hydroxylamine hydrochloride, and 20 mL of ultrapure water (Milli-Q: MILLIPORE) and stirred for 5 minutes to be completely uniform and transparent. Then, the acidity was measured with a pH tester (manufactured by HORIBA, pH METER F-21), and pH = −0.20 was presented. Stirring was performed again, and after a while, the temperature rose to 38 ° C., and stirring was continued for 90 minutes, and a white precipitate was formed. After standing overnight, the mixture was stirred for 60 minutes, filtered, washed with ether, and dried in a vacuum dryer at 40 ° C. for 3 hours to obtain crystals.
When the above crystals were subjected to amino acid analysis using an L-8500 amino acid analyzer (manufactured by Hitachi, Ltd.), it was found to contain alanine. Furthermore, when ESI-MS measurement was performed with an LCT mass spectrometer (MICROMASS) and positive ions were measured, a substance having the same molecular weight 89 as alanine was detected. The results are shown in Table 1.

(実施例2)
三角フラスコにピルビン酸5.52g(0.065mol)、ヒドロキシルアミン塩酸塩4.55g(0.065mol)、超純水(Milli−Q:MILLIPORE)20mLを仕込み、5分間攪拌して完全に均一透明に溶解させた後、pH試験機(HORIBA社製、pH METER F−21)で酸性度を測定するとpH=−0.20を提示した。この溶液を50mLオートクレーブ本体立型に移した後、蓋をして密封し、圧入口から二酸化炭素20gを封入した。オートクレーブを333Kの油浴であたためながら、8.11MPaの超臨界状態で2時間維持した。その後、オートクレーブを水中につけ、室温になるまで冷却した後、オートクレーブの排気孔から二酸化炭素ガスを放出し、オートクレーブの蓋を開封し、内容物を取り出した。内容物を濾過しエーテル洗浄を行い、真空乾燥機で40℃3時間乾燥することにより結晶を得た。
上記結晶について、L−8500アミノ酸分析計(日立製作所社製)を用いてアミノ酸分析を行なったところ、アラニンを含むことがわかった。さらに、LCT質量分析計(MICROMASS)にてESI−MS測定を行い、正イオンを測定したところ、アラニンと同じ分子量89の物質が検出された。結果を表2に示した。
(Example 2)
An Erlenmeyer flask was charged with 5.52 g (0.065 mol) of pyruvic acid, 4.55 g (0.065 mol) of hydroxylamine hydrochloride, and 20 mL of ultrapure water (Milli-Q: MILLIPORE) and stirred for 5 minutes to be completely uniform and transparent. Then, the acidity was measured with a pH tester (manufactured by HORIBA, pH METER F-21), and pH = −0.20 was presented. This solution was transferred to a 50 mL autoclave main body, sealed with a lid, and 20 g of carbon dioxide was sealed from the pressure inlet. The autoclave was maintained in a supercritical state of 8.11 MPa for 2 hours while being heated in a 333 K oil bath. Then, after putting the autoclave in water and cooling to room temperature, carbon dioxide gas was released from the exhaust hole of the autoclave, the lid of the autoclave was opened, and the contents were taken out. The contents were filtered, washed with ether, and dried in a vacuum dryer at 40 ° C. for 3 hours to obtain crystals.
When the above crystals were subjected to amino acid analysis using an L-8500 amino acid analyzer (manufactured by Hitachi, Ltd.), it was found to contain alanine. Furthermore, when ESI-MS measurement was performed with an LCT mass spectrometer (MICROMASS) and positive ions were measured, a substance having the same molecular weight 89 as alanine was detected. The results are shown in Table 2.

(実施例3)
グリオキシリック酸・一水和物0.025mol及びヒドロキシルアミン塩酸塩錯体0.025molを超純水(Milli−Q:MILLIPORE)2mLに溶かして混合し、50mLオートクレーブ本体立型に移した後、蓋をして密封し、圧入口から二酸化炭素20gを封入した。オートクレーブを333Kの油浴であたためながら、8.11MPaの超臨界状態で2時間維持した。その後、オートクレーブを水中につけ、室温になるまで冷却した後、オートクレーブの排気孔から二酸化炭素ガスを放出し、オートクレーブの蓋を開封し、内容物を取り出した。
その内容物をエーテルで抽出後、333Kの湯浴で加温しながら、ロータリーエバポレーター(NAJ−100T:東京理化器械社製)を用いて溶媒を除き結晶を得た。その結晶をガラス濾過フィルタに移した後、真空乾燥機(VO−420:ADVANTEC)を用いて313Kで16時間以上乾燥した。
その乾燥物を、L−8500アミノ酸分析計(日立製作所社製)を用いてアミノ酸分析を行なったところ、0.7重量%でグリシンを含むことがわかった。更に、LCT質量分析計(MICROMASS)にてESI−MS測定を行い、正イオンを測定したところ、グリシンと同じ分子量75の物質が検出された。
(Example 3)
0.025 mol of glyoxylic acid monohydrate and 0.025 mol of hydroxylamine hydrochloride complex were dissolved in 2 mL of ultrapure water (Milli-Q: MILLIPORE), mixed, transferred to a 50 mL autoclave main body, and then covered. Then, 20 g of carbon dioxide was sealed from the pressure inlet. The autoclave was maintained in a supercritical state of 8.11 MPa for 2 hours while being heated in a 333 K oil bath. Then, after putting the autoclave in water and cooling to room temperature, carbon dioxide gas was released from the exhaust hole of the autoclave, the lid of the autoclave was opened, and the contents were taken out.
After the contents were extracted with ether, the solvent was removed using a rotary evaporator (NAJ-100T: manufactured by Tokyo Rika Kikai Co., Ltd.) while heating in a hot water bath at 333 K to obtain crystals. The crystals were transferred to a glass filter and then dried at 313K for 16 hours or more using a vacuum dryer (VO-420: ADVANTEC).
When the dried product was subjected to amino acid analysis using an L-8500 amino acid analyzer (manufactured by Hitachi, Ltd.), it was found that 0.7% by weight contained glycine. Furthermore, when ESI-MS measurement was performed with an LCT mass spectrometer (MICROMASS) and positive ions were measured, a substance having the same molecular weight 75 as glycine was detected.

(実施例4)
ピルビン酸0.05mol及びヒドロキシルアミン塩酸塩錯体0.05molを超純水(Milli−Q:MILLIPORE)2mLに溶かして混合し、50mLオートクレーブ本体立型に移した後、蓋をして密封し、圧入口から二酸化炭素20gを封入した。容器を333Kの油浴であたためながら、8.11MPaの超臨界状態で2時間維持した。その後、オートクレーブを水中につけ、室温になるまで冷却した後、オートクレーブの排気孔から二酸化炭素ガスを放出し、オートクレーブの蓋を開封し、溶液を取り出した。
その溶液を、加水分解後L−8500アミノ酸分析計(日立製作所社製)を用いてアミノ酸分析を行なったところ、4.6mg/mLのアラニンと0.023mg/mLのグリシンが検出された。
CROWNPAKキラルカラム(DICEL)を用いてHPLCを行なったところ、保持時間1.653分のところに、41904236μV秒、2.311分のところに11293623μV秒の面積をもつピークを検出した。この2つのピークの比率は3.710:1であった(標準物質:D−アラニン1.670分、L−アラニン2.232分)。
Example 4
0.05 mol of pyruvic acid and 0.05 mol of hydroxylamine hydrochloride complex are dissolved in 2 mL of ultrapure water (Milli-Q: MILLIPORE), mixed, transferred to a 50 mL autoclave main body, sealed with a lid, and sealed. Carbon dioxide (20 g) was sealed from the inlet. The container was maintained in a supercritical state of 8.11 MPa for 2 hours while being heated in a 333 K oil bath. Then, after putting the autoclave in water and cooling to room temperature, carbon dioxide gas was released from the exhaust hole of the autoclave, the lid of the autoclave was opened, and the solution was taken out.
When the solution was subjected to amino acid analysis after hydrolysis using an L-8500 amino acid analyzer (manufactured by Hitachi, Ltd.), 4.6 mg / mL alanine and 0.023 mg / mL glycine were detected.
When HPLC was performed using a CROWNPAK chiral column (DICEL), a peak having an area of 4194236 μV seconds at a retention time of 1.653 minutes and 1293623 μV seconds at 2.311 minutes was detected. The ratio of these two peaks was 3.710: 1 (standard: D-alanine 1.670 minutes, L-alanine 2.232 minutes).

(実施例5)
ピルビン酸0.05mol及びヒドロキシルアミン塩酸塩錯体0.05molを超純水(Milli−Q:MILLIPORE)2mLに溶かして混合し、ガラスの試験管タイプの円筒管を挿入した50mLオートクレーブ本体立型に移した後、蓋をして密封し、圧入口から二酸化炭素20gを封入した。容器を333Kの油浴であたためながら、8.11MPaの超臨界状態で2時間維持した。その後、オートクレーブを水中につけ、室温になるまで冷却した後、オートクレーブの排気孔から二酸化炭素ガスを放出し、オートクレーブの蓋を開封し、円筒管を取り出した。円筒管内の流体を一晩放置したところ結晶が析出した。
その結晶をガラス濾過フィルタに移した後、真空乾燥機(VO−420:ADVANTEC)を用いて313Kで4時間以上乾燥した。
その乾燥物を、加水分解後L−8500アミノ酸分析計(日立製作所社製)を用いてアミノ酸分析を行なったところ、4種類のアミノ酸が検出され、アラニンを12.297ng/mg、グルタミン酸を11.051ng/mg、グリシンを7.316ng/mg、セリンを6.852ng/mgを含む結果が示された。
(Example 5)
Dissolve 0.05 mol of pyruvic acid and 0.05 mol of hydroxylamine hydrochloride complex in 2 mL of ultrapure water (Milli-Q: MILLIPORE), mix, and transfer to a 50 mL autoclave main body with a glass tube tube inserted. After that, it was sealed with a lid, and 20 g of carbon dioxide was sealed from the pressure inlet. The container was maintained in a supercritical state of 8.11 MPa for 2 hours while being heated in a 333 K oil bath. Then, after putting the autoclave in water and cooling to room temperature, carbon dioxide gas was discharged from the exhaust hole of the autoclave, the lid of the autoclave was opened, and the cylindrical tube was taken out. When the fluid in the cylindrical tube was left overnight, crystals precipitated.
The crystals were transferred to a glass filter and then dried at 313K for 4 hours or more using a vacuum dryer (VO-420: ADVANTEC).
The dried product was hydrolyzed and subjected to amino acid analysis using an L-8500 amino acid analyzer (manufactured by Hitachi, Ltd.). As a result, four types of amino acids were detected, alanine was 12.297 ng / mg, and glutamic acid was 11. Results including 051 ng / mg, glycine 7.316 ng / mg and serine 6.852 ng / mg were shown.

(比較例1)
ヒドロキシルアミン塩酸塩を用いる代わりに、塩酸を0.065mol添加したこと以外は、実施例2と同様にして反応を行ったが、目的とするアミノ酸(アラニン)は得られなかった。
(Comparative Example 1)
The reaction was carried out in the same manner as in Example 2 except that 0.065 mol of hydrochloric acid was added instead of using hydroxylamine hydrochloride, but the target amino acid (alanine) was not obtained.

(比較例2)
ヒドロキシルアミン塩酸塩を用いる代わりに、ヒドロキシルアミンを0.065mol添加したこと以外は、実施例2と同様にして反応を行ったが、目的とするアミノ酸(アラニン)は得られなかった。
(Comparative Example 2)
The reaction was carried out in the same manner as in Example 2 except that 0.065 mol of hydroxylamine was added instead of using hydroxylamine hydrochloride, but the target amino acid (alanine) was not obtained.

Figure 2008074729
Figure 2008074729

Figure 2008074729
Figure 2008074729

本発明によれば、原料を替えるだけで、種々のアミノ酸を同じ方法で製造することができ、更には、多種類のアミノ酸を同時に製造すること、D体、L体の混合生成比を一方だけのものに生成収率を向上させることができるアミノ酸の製造方法を提供することができる。 According to the present invention, various amino acids can be produced by the same method only by changing the raw materials. Furthermore, the production of many kinds of amino acids at the same time, and the mixed product ratio of D-form and L-form only on one side. It is possible to provide a method for producing an amino acid capable of improving the production yield.

本発明のアミノ酸の製造方法においてアミノ酸を製造する際の製造装置の一例を模式的に示した図である。It is the figure which showed typically an example of the manufacturing apparatus at the time of manufacturing an amino acid in the manufacturing method of the amino acid of this invention.

符号の説明Explanation of symbols

1 オートクレーブ
2 オートクレーブ本体立型
3 オートクレーブ蓋
4 油浴
5 圧入口
6 排気孔
1 Autoclave 2 Autoclave body vertical 3 Autoclave lid 4 Oil bath 5 Pressure inlet 6 Exhaust hole

Claims (3)

下記一般式(1)で表される化合物とヒドロキシルアミンとをプロトン供給性化合物の存在下で反応させることを特徴とするアミノ酸の製造方法。
Figure 2008074729
Xは、H、CH、CHOH、CHSH、OCH、SCH、CH(CH、C(CH、CH(CH)CHCH、CHCH(CH、CHCHSCH、CHCOOH、CHCHCOOH、CH、CHOH、下記化学式(2)又は下記化学式(3)を表す。
Figure 2008074729
Figure 2008074729
A method for producing an amino acid, comprising reacting a compound represented by the following general formula (1) with hydroxylamine in the presence of a proton-feeding compound.
Figure 2008074729
X is H, CH 3 , CH 2 OH, CH 2 SH, OCH 3 , SCH 3 , CH (CH 3 ) 2 , C (CH 3 ) 3 , CH (CH 3 ) CH 2 CH 3 , CH 2 CH ( CH 3 ) 2 , CH 2 CH 2 SCH 3 , CH 2 COOH, CH 2 CH 2 COOH, CH 2 C 6 H 5 , CH 2 C 6 H 4 OH, the following chemical formula (2) or the following chemical formula (3) .
Figure 2008074729
Figure 2008074729
下記一般式(1)で表される化合物とヒドロキシルアミンとをプロトン供給性化合物の存在下、pH2以下で反応させることを特徴とするアミノ酸の製造方法。
Figure 2008074729
Xは、H、CH、CHOH、CHSH、OCH、SCH、CH(CH、C(CH、CH(CH)CHCH、CHCH(CH、CHCHSCH、CHCOOH、CHCHCOOH、CH、CHOH、下記化学式(2)又は下記化学式(3)を表す。
Figure 2008074729
Figure 2008074729
A method for producing an amino acid, comprising reacting a compound represented by the following general formula (1) with hydroxylamine in the presence of a proton-feeding compound at a pH of 2 or less.
Figure 2008074729
X is H, CH 3 , CH 2 OH, CH 2 SH, OCH 3 , SCH 3 , CH (CH 3 ) 2 , C (CH 3 ) 3 , CH (CH 3 ) CH 2 CH 3 , CH 2 CH ( CH 3 ) 2 , CH 2 CH 2 SCH 3 , CH 2 COOH, CH 2 CH 2 COOH, CH 2 C 6 H 5 , CH 2 C 6 H 4 OH, the following chemical formula (2) or the following chemical formula (3) .
Figure 2008074729
Figure 2008074729
下記一般式(1)で表される化合物とヒドロキシルアミンとをプロトン供給性化合物の存在下、超臨界状態又は亜臨界状態の水と二酸化炭素との混合溶媒中で反応させることを特徴とするアミノ酸の製造方法。
Figure 2008074729
Xは、H、CH、CHOH、CHSH、OCH、SCH、CH(CH、C(CH、CH(CH)CHCH、CHCH(CH、CHCHSCH、CHCOOH、CHCHCOOH、CH、CHOH、下記化学式(2)又は下記化学式(3)を表す。
Figure 2008074729
Figure 2008074729
An amino acid characterized in that a compound represented by the following general formula (1) and hydroxylamine are reacted in a mixed solvent of supercritical or subcritical water and carbon dioxide in the presence of a proton-providing compound. Manufacturing method.
Figure 2008074729
X is H, CH 3 , CH 2 OH, CH 2 SH, OCH 3 , SCH 3 , CH (CH 3 ) 2 , C (CH 3 ) 3 , CH (CH 3 ) CH 2 CH 3 , CH 2 CH ( CH 3 ) 2 , CH 2 CH 2 SCH 3 , CH 2 COOH, CH 2 CH 2 COOH, CH 2 C 6 H 5 , CH 2 C 6 H 4 OH, the following chemical formula (2) or the following chemical formula (3) .
Figure 2008074729
Figure 2008074729
JP2006253412A 2006-09-19 2006-09-19 Method for producing amino acid Pending JP2008074729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253412A JP2008074729A (en) 2006-09-19 2006-09-19 Method for producing amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253412A JP2008074729A (en) 2006-09-19 2006-09-19 Method for producing amino acid

Publications (1)

Publication Number Publication Date
JP2008074729A true JP2008074729A (en) 2008-04-03

Family

ID=39347161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253412A Pending JP2008074729A (en) 2006-09-19 2006-09-19 Method for producing amino acid

Country Status (1)

Country Link
JP (1) JP2008074729A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153639A (en) * 1984-08-24 1986-03-17 Fuji Photo Film Co Ltd Heat developing photosensitive material
JPH0625235A (en) * 1992-02-14 1994-02-01 Shell Internatl Res Maatschappij Bv Agricultural chemical compound
JP2000063341A (en) * 1998-08-11 2000-02-29 Rohm & Haas Co Improved synthesis of haloformimine compound
WO2005082850A1 (en) * 2004-02-27 2005-09-09 Ajinomoto Co., Inc. Process for producing monatin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153639A (en) * 1984-08-24 1986-03-17 Fuji Photo Film Co Ltd Heat developing photosensitive material
JPH0625235A (en) * 1992-02-14 1994-02-01 Shell Internatl Res Maatschappij Bv Agricultural chemical compound
JP2000063341A (en) * 1998-08-11 2000-02-29 Rohm & Haas Co Improved synthesis of haloformimine compound
WO2005082850A1 (en) * 2004-02-27 2005-09-09 Ajinomoto Co., Inc. Process for producing monatin

Similar Documents

Publication Publication Date Title
IE65956B1 (en) New process for the synthesis of the levodopa
JPH06503471A (en) Method for producing C-terminally amidated peptide compound
CN104892521B (en) A kind of synthesis of alpha-amido acid compounds and purification process
AU648708B2 (en) 1-cyanomethyl-4-carboxymethyl-2-ketopiperazine, salts thereof, and process for their preparation
JP2008074729A (en) Method for producing amino acid
US3808268A (en) Resolution of dl cysteine
WO2009136249A1 (en) An improved process for the preparation of levothyroxine sodium with reduced levels of impurities
JP5928987B2 (en) Method for producing peptide
EP2006279B1 (en) Method for production of a phosphate salt of an amino acid
JP2009196951A (en) Method for producing alkyl hydrosulfide compound or derivative thereof
CA1303628C (en) Method for racemization of optically active serine
JP4001628B2 (en) Process for producing N-acetyl-D, L-α-aminocarboxylic acid
JPH0717941A (en) Production of n-alkoxycarbonylamino acid
KR20000053858A (en) A process for preparing metal chelates, and stock feed comprising the same
JP2007191470A (en) Method for producing optically active 2-aminobutanamide or its salt
CN106573895B (en) Novel 5-acylsulfanyl-histidine compounds as precursors for the corresponding 5-sulfanylhistidines and disulfides thereof
AU743601B2 (en) Iron alkali salt of S,S-ethylenediamine-N,N&#39;-disuccinic acid and process for producing the same
JP6896093B2 (en) Method for Producing 5-Hydroxy-1H-Imidazole-4-Carboxamide 3/4 Hydrate
JP4462999B2 (en) Method for producing cyclic diglutamyl peptide
US8178722B2 (en) Method for producing theanine
JP2735778B2 (en) Method for producing N-alkoxycarbonyl amino acid
JPH10175930A (en) Production of polyfunctional aminocarboxylic acid
CN117777044A (en) Preparation method of sodium combo Qu Gai and intermediate thereof
JP2005306782A (en) New method for synthesizing l-carnosine
JPS63183550A (en) Racemization of optically active alpha-amino acid amide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612