JP2008073603A - Electrolysis operation method of electrolytic water generator - Google Patents

Electrolysis operation method of electrolytic water generator Download PDF

Info

Publication number
JP2008073603A
JP2008073603A JP2006254844A JP2006254844A JP2008073603A JP 2008073603 A JP2008073603 A JP 2008073603A JP 2006254844 A JP2006254844 A JP 2006254844A JP 2006254844 A JP2006254844 A JP 2006254844A JP 2008073603 A JP2008073603 A JP 2008073603A
Authority
JP
Japan
Prior art keywords
storage tank
water
electrolyzed water
electrolyzed
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006254844A
Other languages
Japanese (ja)
Other versions
JP4759481B2 (en
Inventor
Yosuke Saito
洋介 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2006254844A priority Critical patent/JP4759481B2/en
Publication of JP2008073603A publication Critical patent/JP2008073603A/en
Application granted granted Critical
Publication of JP4759481B2 publication Critical patent/JP4759481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the insufficient collection of electrolytic water for users when the time for consuming electrolytic water staying in a storage tank is short and its consumption is large, that is, at the operation peak of collecting the electrolytic water. <P>SOLUTION: An electrolysis operation method is for an electrolytic water generator which comprises an electrolytic cell 11 electrolyzing supplied water to be electrolyzed and the storage tank 12 to which electrolytic water generated in the electrolytic cell 11 is supplied through an introduction pipe line 14, and starts electrolysis operation when a prescribed amount of the electrolytic water staying in the storage tank 12 is consumed to supply the prescribed amount of electrolytic water into the storage tank 12. In the electrolysis operation method, when the time for consuming the electrolytic water staying in the storage tank 12 is short and its consumption is large, the electrolysis operation is carried out so as to increase the supply flow rate of the electrolytic water to the storage tank 12 in comparison with when the time for consuming it is long and its consumption is small. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解水生成装置の電解運転方法に関する。   The present invention relates to an electrolytic operation method for an electrolyzed water generating apparatus.

電解水生成装置の一形式として、供給される被電解水を電解する電解槽、および、前記電解槽にて生成された電解生成水を導入管路を通して供給される貯溜タンクを備え、前記貯溜タンク内に滞溜する電解生成水が所定量消費された場合に電解運転を開始して、前記貯溜タンク内に所定量の電解生成水を供給するようにした電解水生成装置がある(特許文献1を参照)。当該形式の電解水生成装置においては、電解生成水の貯溜タンク内への供給方法、換言すれば、電解運転方法は、その目的に応じて種々の方法が採られる。   As one type of electrolyzed water generating device, an electrolyzer for electrolyzing supplied electrolyzed water, and a storage tank for supplying electrolyzed water generated in the electrolyzer through an introduction pipe line, the storage tank There is an electrolyzed water generating device which starts electrolysis operation when a predetermined amount of electrolyzed water stagnating therein is consumed and supplies a predetermined amount of electrolyzed water into the storage tank (Patent Document 1). See). In the electrolyzed water generating apparatus of this type, various methods can be adopted as a method for supplying electrolyzed water into the storage tank, in other words, an electrolysis operation method.

例えば、上記した特許文献1にて提案されている電解水生成装置においては、貯溜タンク内での電解生成水の滞溜時間の長短によって、滞溜する電解生成水が経時的に機能を低下させることを考慮して、滞溜する電解生成水の消費時間が早くて消費量が多い時間帯域(昼間)と消費時間が遅くて消費量が少ない時間帯域(夜間)での貯溜タンク内での電解生成水の滞溜量を異なるように供給する電解運転して、夜間における貯溜タンク内に滞溜する電解生成水量を少なくして、消費される際に機能を低下させる電解生成水の滞溜量をできるだけ少量として、電解生成水の機能低下に起因する問題の発生を抑止する方法が採られている。
特開2000−5750号公報
For example, in the electrolyzed water generating apparatus proposed in Patent Document 1 described above, the accumulated electrolyzed water deteriorates with time due to the length of time in which electrolyzed water stays in the storage tank. In consideration of this, electrolysis in the storage tank in the time zone (daytime) when the consumption time of the electrolyzed water that is stagnant is high and the consumption is high (daytime) and the time zone when the consumption time is slow and the consumption amount is low (nighttime) Electrolytic operation that supplies different amounts of accumulated water, and reduces the amount of electrolytically generated water that accumulates in the storage tank at night, reducing the amount of electrolytically generated water that is consumed when consumed Is used as much as possible, and a method of suppressing the occurrence of problems caused by the reduced function of electrolytically generated water has been adopted.
JP 2000-5750 A

本発明は、消費される電解生成水の機能低下に起因する問題の発生を極力抑止することを前提として、貯溜タンク内に滞溜する電解生成水の消費時間が早くてその消費量が多い場合、すなわち、電解生成水の採取の稼働ピーク時における、消費者に対する電解生成水の採取不足を解消することにある。   The present invention is based on the premise that the occurrence of problems caused by deterioration in the function of electrolyzed water to be consumed is suppressed as much as possible. That is, it is intended to eliminate the shortage of electrolytically generated water for consumers at the peak operating time of electrolytically generated water.

本発明は、電解水生成装置の電解運転方法に関するもので、供給される被電解水を電解する電解槽、および、前記電解槽にて生成された電解生成水を導入管路を通して供給される貯溜タンクを備え、前記貯溜タンク内に滞溜する電解生成水が所定量消費された場合に電解運転を開始して、前記貯溜タンク内に所定量の電解生成水を供給するようにした形式の電解水生成装置を電解運転の対象としている。   The present invention relates to an electrolytic operation method for an electrolyzed water generating apparatus, and an electrolyzer that electrolyzes water to be electrolyzed, and a reservoir in which electrolyzed water generated in the electrolyzer is supplied through an introduction pipe. An electrolysis of a type provided with a tank, wherein when a predetermined amount of electrolyzed water stagnating in the storage tank is consumed, an electrolysis operation is started and a predetermined amount of electrolyzed water is supplied into the storage tank. The water generator is the target of electrolytic operation.

しかして、本発明に係る電解運転方法においては、前記貯溜タンクに滞溜する電解生成水の消費時間がが速くて消費量が多い場合には、前記貯溜タンクに滞溜する電解生成水の消費時間が遅くて消費量が少ない場合に比較して、前記貯溜タンクに対する電解生成水の供給流量を増大させる電解運転を行うことを特徴とするものである。当該電解運転方法において、前記貯溜タンクに対する電解生成水の供給流量を増大させる電解運転では、被電解水の前記電解槽に対する供給流量を増大して電解条件を一定または変更した状態で電解運転を行うようにすることができる。   Therefore, in the electrolytic operation method according to the present invention, when the consumption time of the electrolyzed water staying in the storage tank is fast and the consumption amount is large, the electrolysis water staying in the storage tank is consumed. Compared to a case where the time is slow and the amount of consumption is small, the electrolysis operation is performed to increase the supply flow rate of the electrolyzed water to the storage tank. In the electrolysis operation method, in the electrolysis operation in which the supply flow rate of electrolyzed water to the storage tank is increased, the electrolysis operation is performed in a state where the electrolysis conditions are constant or changed by increasing the supply flow rate of the water to be electrolyzed to the electrolysis tank. Can be.

本発明に係る電解運転方法においては、前記貯溜タンクに、同貯溜タンク内に滞溜する電解生成水の水位を検出する水位センサである上方水位センサ、中立水位センサおよび下方水位センサを設置して、前記貯溜タンク内に滞溜する電解生成水の水位が上方位置から中立位置を経て下方位置に連続して移行する場合には、前記貯溜タンク内に滞溜する電解生成水の消費時間が速くて消費量が多い場合であると判定するようにすることができる。   In the electrolytic operation method according to the present invention, an upper water level sensor, a neutral water level sensor, and a lower water level sensor, which are water level sensors for detecting the water level of electrolyzed water stagnating in the storage tank, are installed in the storage tank. When the water level of the electrolyzed water stagnating in the storage tank continuously moves from the upper position to the lower position through the neutral position, the consumption time of the electrolyzed water stagnating in the storage tank is fast. Therefore, it can be determined that the consumption is large.

また、本発明に係る電解運転方法においては、前記貯溜タンク内に滞溜する電解生成水の使用形態が、電解生成水の消費時間が速くて消費量が多い時間帯域と電解生成水の消費時間が遅くて消費量が少ない時間帯域とがほぼ定まっている場合には、前者の時間帯域において、前記貯溜タンクに対する電解生成水の供給流量を後者の時間帯域における供給流量より増大させる電解運転を行うようにすることができる。   Further, in the electrolytic operation method according to the present invention, the use form of the electrolyzed water stagnating in the storage tank is a time zone in which the electrolyzed water consumption time is fast and the consumption is large, and the electrolyzed water consumption time. In the former time zone, an electrolytic operation is performed in which the supply flow rate of electrolyzed water to the storage tank is increased from the supply flow rate in the latter time zone. Can be.

本発明に係る電解運転方法においては、前記貯溜タンクに滞溜する電解生成水の消費時間が早くてその消費量が多い場合には、前記貯溜タンクに滞溜する電解生成水の消費時間が遅くて消費量が少ない場合に比較して、前記貯溜タンクに対する電解生成水の供給流量を増大させる電解運転を行うようにしている。このため、電解生成水の採取の稼働ピーク時においても、消費者の電解生成水の採取に対して十分に対処することができる。   In the electrolytic operation method according to the present invention, when the consumption time of the electrolyzed water stagnating in the storage tank is early and the consumption amount is large, the consumption time of the electrolyzed water stagnating in the storage tank is slow. In comparison with the case where the consumption is small, the electrolytic operation is performed to increase the supply flow rate of the electrolyzed water to the storage tank. For this reason, it is possible to sufficiently cope with the collection of electrolytically generated water by consumers even at the operation peak of the electrolytically generated water.

しかして、当該電解運転方法において、前記貯溜タンクに対する電解生成水の供給流量を増させるべき電解運転では、電解生成水の供給流量の増大に応じてその機能の低下が認められる。但し、電解生成水のこのような機能低下は、電解生成水の消費時間が遅くて前記貯溜タンク内での貯溜時間が長い場合に同貯留タンク内に供給される電解生成水の機能と比較しての低下である。前記貯留タンク内に貯溜する電解生成水においては、その機能が経時的に低下する現象があり、上記した機能低下した電解生成水の機能は、前記貯留タンク内で長時間貯溜している電解生成水の機能とは大差がなくて、当該電解生成水を使用する際の機能不足の問題が発生するおそれはほとんどない。   Therefore, in the electrolysis operation method, in the electrolysis operation in which the supply flow rate of the electrolyzed water to the storage tank is to be increased, the function is reduced as the supply flow rate of the electrolyzed water is increased. However, such a decline in the function of electrolyzed water is compared to the function of the electrolyzed water supplied to the storage tank when the electrolyzed water consumption time is slow and the storage time in the storage tank is long. It is a decline. In the electrolytically generated water stored in the storage tank, there is a phenomenon that the function of the electrolytically generated water decreases with time. There is no great difference from the function of water, and there is almost no risk of insufficient function when using the electrolyzed water.

本発明に係る電解運転方法は、有隔膜式の電解水生成装置および無隔膜式の電解水生成装置のいずれの方式の電解水生成装置に対しても採用することができる。当該運転方法は、有隔膜式の電解水生成装置にあっては、電解生成酸性水および電解生成アルカリ性水のいずれの電解生成水を採取する場合に適用できる。この場合、被電解水として電解補助剤を含有する被電解水を採用して、強酸性の電解生成酸性水および強アルカリ性の電解生成アルカリ性水を生成する場合にも適用され、また、被電解水として電解補助剤を含有しない被電解水を採用して、弱アルカリ性であるアルカリイオン水を生成する場合にも適用される。また、無隔膜式の電解水生成装置にあっては、次亜塩素酸ソーダ等を含有する略中性またはこれに近似する電解生成水を採取する場合に適用される。   The electrolytic operation method according to the present invention can be applied to any type of electrolyzed water generating device of a diaphragm type electrolyzed water generating device and a non-diaphragm type electrolyzed water generating device. The operation method can be applied to the case where any electrolytically generated acidic water or electrolytically generated alkaline water is collected in the diaphragm type electrolytic water generating apparatus. In this case, the present invention is also applied to the case where electrolyzed water containing an electrolysis auxiliary agent is employed as electrolyzed water to produce strongly acidic electrolyzed acidic water and strongly alkaline electrolyzed alkaline water. As described above, the present invention is also applied to the case where weakly alkaline alkaline ionized water is produced by employing electrolyzed water containing no electrolysis auxiliary. In addition, the diaphragm type electrolyzed water generating device is applied when collecting substantially neutral or similar electrolyzed water containing sodium hypochlorite or the like.

本発明は、電解水生成装置の電解運転方法に関する。図1には、本発明に係る電解運転方法を採用し得る有隔膜式の電解水生成装置を示している。当該電解水生成装置は、基本的には、従来公知の有隔膜式の電解水生成装置と同様の構成のものであり、有隔膜電解槽11、電解生成酸性水を貯留する第1貯留タンク12、電解生成アルカリ性水を貯留する第2貯留タンク13、有隔膜電解槽11にて生成される電解生成酸性水を第1貯留タンク12に導入する電解生成酸性水専用の第1導入管路14、および、有隔膜電解槽11にて生成される電解生成アルカリ性水を第2貯留タンク13に導入する電解生成アルカリ性水専用の第2導入管路15を備えている。   The present invention relates to an electrolytic operation method for an electrolyzed water generating apparatus. FIG. 1 shows a diaphragm-type electrolyzed water generating apparatus that can employ the electrolytic operation method according to the present invention. The electrolyzed water generating apparatus basically has the same configuration as a conventionally known diaphragm-type electrolyzed water generating apparatus, and includes a diaphragm electrolyzer 11 and a first storage tank 12 that stores electrolyzed acidic water. A second storage tank 13 for storing electrolytically generated alkaline water, a first introduction pipe 14 dedicated for electrolytically generated acidic water for introducing electrolytically generated acidic water generated in the diaphragm electrolytic cell 11 into the first storage tank 12, And the 2nd introduction pipe line 15 for exclusive use of electrolysis generation alkaline water which introduces electrolysis generation alkaline water generated in diaphragm membrane electrolysis tank 11 into the 2nd storage tank 13 is provided.

有隔膜電解槽11は、槽本体11aを隔膜11bにて区画して形成されている一対の電解室R1,R2を備え、各電解室R1,R2には、被電解水を供給する供給管路11cの分岐管部が接続されている。また、各電解室R1,R2には、電解生成水を流出する流出管路11d,11eが接続されている。各流出管路11d,11eは、流路切替弁16を介して、第1,第2導入管路14,15に接続されている。流路切替弁16は切替動作することにより、各流出管路11d,11eの各導入管路14,15に対する接続状態を切替えるべく機能する。当該有隔膜電解槽11においては、電解時には、各電解室R1,R2に配設されている各電極11f,11gに電圧を印加されて、印加される電圧の正負によって、各電解室R1,R2が陽極側電解室、陰極側電解室に設定される。また、電解が所定の時間経過した場合には、各電極11f,11gに印加される電圧の極性が正負反転されて、各電解室R1,R2の陽極側電解室および陰極側電解室の関係が変更される。また、流路切替弁16は、各電極11f,11gに対する印加電圧の極性の正負反転に応じて切替動作し、各流出管路11d,11eの各導入管路14,15に対する接続関係を変更させる。   The diaphragm electrolysis tank 11 includes a pair of electrolysis chambers R1 and R2 formed by partitioning the tank body 11a with a diaphragm 11b, and supply lines for supplying electrolyzed water to the electrolysis chambers R1 and R2. A branch pipe portion 11c is connected. Also, outflow conduits 11d and 11e for flowing out the electrolyzed water are connected to the electrolysis chambers R1 and R2. The outflow pipes 11 d and 11 e are connected to the first and second introduction pipes 14 and 15 via the flow path switching valve 16. The flow path switching valve 16 functions to switch the connection state of the outflow pipe lines 11d and 11e with respect to the introduction pipe lines 14 and 15 by switching operation. In the diaphragm electrolytic cell 11, during electrolysis, a voltage is applied to the electrodes 11 f and 11 g disposed in the electrolysis chambers R 1 and R 2, and the electrolysis chambers R 1 and R 2 are determined depending on whether the applied voltage is positive or negative. Are set in the anode-side electrolysis chamber and the cathode-side electrolysis chamber. In addition, when the electrolysis has passed for a predetermined time, the polarity of the voltage applied to each electrode 11f, 11g is reversed, and the relationship between the anode side electrolysis chamber and the cathode side electrolysis chamber of each electrolysis chamber R1, R2 is related. Be changed. Further, the flow path switching valve 16 performs switching operation according to the positive / negative reversal of the polarity of the applied voltage to the electrodes 11f and 11g, and changes the connection relationship of the outflow pipe lines 11d and 11e to the introduction pipe lines 14 and 15. .

当該電解水生成装置においては、有隔膜電解槽11の各電解室R1,R2に被電解水を供給するとともに、各電極11f,11gに一定の電圧を印加して、設定された電解電流の下で有隔膜電解される。例えば、電解室R1が陽極側電解室であり、かつ、電解室R2が陰極側電解室である場合には、電解室R1では電解生成酸性水が生成され、かつ、電解室R2では電解生成アルカリ性水が生成される。電解室R1にて生成された電解生成酸性水は、第1流出管路11d、流路切替弁16および第1導入管路14を通って第1貯留タンク12内に導入されて収容され、かつ、電解室R2にて生成された電解生成アルカリ性水は、第2流出管路11e、流路切替弁16および第2導入管路15を通って第2貯留タンク13内に導入されて収容される。   In the electrolyzed water generating apparatus, water to be electrolyzed is supplied to the electrolysis chambers R1 and R2 of the diaphragm electrolyzer 11, and a constant voltage is applied to the electrodes 11f and 11g so that the electrolysis water is reduced. The diaphragm is electrolyzed. For example, when the electrolysis chamber R1 is an anode-side electrolysis chamber and the electrolysis chamber R2 is a cathode-side electrolysis chamber, electrolysis-generated acidic water is generated in the electrolysis chamber R1, and electrolysis-generated alkaline is generated in the electrolysis chamber R2. Water is produced. The electrolytically generated acidic water generated in the electrolysis chamber R1 is introduced and stored in the first storage tank 12 through the first outflow pipe 11d, the flow path switching valve 16, and the first introduction pipe 14, and The electrolytically generated alkaline water generated in the electrolysis chamber R2 is introduced into the second storage tank 13 through the second outflow pipe 11e, the flow path switching valve 16 and the second introduction pipe 15 and stored therein. .

当該有隔膜電解槽11において、電解が長時間継続して行われると、特に、陽極側電解室(電解室R1)においては、被電解水が含有するカルシウムイオン等が不溶性物質として析出し、析出した不溶性物質は、陽極側電解室の内周壁、電極および隔膜にスケールとして付着する。このようなスケールが電解室内に大量に発生すると、電解効率を大きく損なうことになることから、このような状態が発生しないように、各電解室R1,R2の陽極側電解室および陰極側電解室の関係を定期的に変更して、例えば、陽極側電解室であった電解室R1を陰極側に変更するとともに、陰極側電解室であった電解室R2を陽極側に変更する手段が採られる。   In the diaphragm electrolytic cell 11, when electrolysis is continued for a long time, especially in the anode-side electrolysis chamber (electrolysis chamber R 1), calcium ions and the like contained in the electrolyzed water are precipitated as insoluble substances. The insoluble material thus deposited adheres as a scale to the inner peripheral wall, electrode and diaphragm of the anode-side electrolysis chamber. If a large amount of such scale is generated in the electrolytic chamber, the electrolysis efficiency is greatly impaired. Therefore, in order to prevent such a state from occurring, the anode-side electrolysis chamber and the cathode-side electrolysis chamber of each electrolysis chamber R1, R2 are prevented. Is periodically changed, for example, the electrolytic chamber R1 that was the anode side electrolytic chamber is changed to the cathode side, and the electrolytic chamber R2 that was the cathode side electrolytic chamber is changed to the anode side. .

各電解室R1,R2の陽極側電解室および陰極側電解室の関係を変更するには、上記したように、各電極11f,11gに対する印加電圧の極性を正負反転することにより行われる。これにより、陽極側電解室であった電解室R1は陰極側電解室に変更されて、電解室R1では電解生成アルカリ性水が生成され、かつ、陰極側電解室であった電解室R2は陽極側電解室に変更されて、電解室R2では電解生成酸性水が生成される。電解室R1で生成された電解生成アルカリ性水は、すでに若干析出している不溶性物質を溶解して電解室R1から流出させ、当該不溶性物質の電解室R1における各部位へのスケールとしての付着を規制する。   In order to change the relationship between the anode-side electrolysis chamber and the cathode-side electrolysis chamber of each electrolysis chamber R1, R2, as described above, the polarity of the voltage applied to each electrode 11f, 11g is reversed between positive and negative. As a result, the electrolysis chamber R1 that was the anode electrolysis chamber is changed to the cathode electrolysis chamber, and electrolysis generated alkaline water is generated in the electrolysis chamber R1, and the electrolysis chamber R2 that was the cathode electrolysis chamber is the anode side electrolysis chamber. By changing to an electrolysis chamber, electrolytically generated acidic water is generated in the electrolysis chamber R2. The electrolyzed alkaline water produced in the electrolysis chamber R1 dissolves insoluble material that has already been deposited slightly and causes it to flow out of the electrolysis chamber R1 and regulates the adhesion of the insoluble material as a scale to each part in the electrolysis chamber R1. To do.

当該電解水生成装置では、各電解室R1,R2の陽極側電解室および陰極側電解室の関係の変更に応じて流路切替弁16が切替動作して、第1流出管路11dを第2導入管路15に接続し、かつ、第2流出管路11eを第1導入管路14に接続する。これにより、電解室R1にて生成された電解生成アルカリ性水は、第1流出管路11d、流路切替弁16および第2導入管路15を通して第2貯留タンク13に導入され、かつ、電解室R2にて生成された電解生成酸性水は、第2流出管路11e、流路切替弁16および第1導入管路14を通して第1貯留タンク12に導入される。   In the electrolyzed water generating apparatus, the flow path switching valve 16 is switched according to the change in the relationship between the anode side electrolysis chamber and the cathode side electrolysis chamber of each electrolysis chamber R1, R2, and the first outflow pipe 11d is connected to the second outlet 11d. The second outflow pipe 11e is connected to the first introduction pipe 14 and connected to the introduction pipe 15. Thereby, the electrolytically generated alkaline water generated in the electrolysis chamber R1 is introduced into the second storage tank 13 through the first outflow pipe 11d, the flow path switching valve 16 and the second introduction pipe 15, and the electrolysis chamber. The electrolytically generated acidic water generated in R2 is introduced into the first storage tank 12 through the second outflow pipe 11e, the flow path switching valve 16 and the first introduction pipe 14.

当該電解水生成装置の電解運転は、電解生成酸性水を第1貯溜タンク12へ供給して同タンク内に貯溜させ、かつ、電解生成アルカリ性水を第2貯溜タンク13へ供給して同タンク内に貯溜させることを意図している。本実施形態では、第1貯溜タンク12および第2貯溜タンク13のそれぞれの内部に、各貯溜タンク12,13内の電解生成水の水位を検出する水位センサ17,18である上方水位センサ17a,18a、中立水位センサ17b,18b、および、下方水位センサ17c,18cを設置している。   The electrolysis operation of the electrolyzed water generating apparatus is to supply electrolyzed acidic water to the first storage tank 12 and store it in the same tank, and supply electrolyzed alkaline water to the second storage tank 13 and store it in the same tank. Is intended to be stored in. In the present embodiment, an upper water level sensor 17a, which is a water level sensor 17, 18 for detecting the level of electrolyzed water in each of the storage tanks 12, 13, is provided inside each of the first storage tank 12 and the second storage tank 13. 18a, neutral water level sensors 17b and 18b, and lower water level sensors 17c and 18c are installed.

各貯溜タンク12,13内には、設定された電解条件の下で、被電解水を一定の供給流量として電解運転を行って生成される電解生成酸性水または電解生成アルカリ性水が供給されて、第1貯溜タンク12では電解生成酸性水の水位が上方水位センサ17aの設置位置まで達しており、また、第2貯溜タンク13では電解生成アルカリ性水の水位が上方水位センサ18aの設置位置まで達している。   In each of the storage tanks 12 and 13, electrolytically generated acidic water or electrolytically generated alkaline water generated by performing an electrolysis operation with electrolyzed water at a constant supply flow rate under set electrolysis conditions is supplied, In the first storage tank 12, the electrolytically generated acidic water level reaches the installation position of the upper water level sensor 17a, and in the second storage tank 13, the electrolytically generated alkaline water level reaches the installation position of the upper water level sensor 18a. Yes.

当該電解水生成装置においては、第1貯溜タンク12内に滞溜する電解生成酸性水と第2貯溜タンク13内に滞溜する電解生成アルカリ性水の使用形態として、第1貯溜タンク12内に滞溜する電解生成酸性水の使用を主とし、第2貯溜タンク13内に滞溜する電解生成アルカリ性水の使用を従とする第1の使用形態、第1貯溜タンク12内に滞溜する電解生成酸性水の使用を従とし、第2貯溜タンク13内に滞溜する電解生成アルカリ性水の使用を主とする第2の使用形態、および、第1貯溜タンク12内に滞溜する電解生成酸性水の使用および第2貯溜タンク13内に滞溜する電解生成アルカリ性水の使用を共に主とする第3の使用形態、換言すれば、電解生成酸性水および電解生成アルカリ性水共に略同等の使用量(消費量)である使用態様の3通りの使用形態がある。   In the electrolyzed water generating device, the electrolyzed acidic water staying in the first storage tank 12 and the electrolyzed alkaline water staying in the second storage tank 13 are used in the first storage tank 12 as usage forms. The first form of use is mainly the use of the electrolytically generated acidic water that is stored and the secondary use of the electrolytically generated alkaline water that is stored in the second storage tank 13. The electrolytic generation that is stored in the first storage tank 12. A second usage pattern that mainly uses the electrolytically generated alkaline water that stays in the second storage tank 13, and the electrolytically generated acidic water that stays in the first storage tank 12. And the third usage mode mainly using the electrolytically generated alkaline water stagnating in the second storage tank 13, in other words, the electrolytically generated acidic water and the electrolytically generated alkaline water are used in substantially the same amount ( Consumption) It is the use form of three different embodiments.

これらの3通りの電解生成水の使用形態における電解運転では、第1の使用形態における電解運転あっては、第1貯溜タンク12内に設置した水位位置センサ17(各水位センサ17a〜17c)の検出動作機能を有効とし、第2貯溜タンク13内に配設した水位センサ18(各水位センサ18a〜18c)の検出動作機能を無効として電解運転を行う。また、第2使用形態における電解運転では、第1貯溜タンク12内に設置した各位置センサ17a〜17cの検出動作機能を無効とし、第2貯溜タンク13内に配設した各位置センサ18a〜18cの検出動作機能を有効として電解運転を行う。また、第3の使用形態における電解運転では、第1貯溜タンク12内に配設した各位置センサ17a〜17cの検出動作機能を有効とし、第2貯溜タンク13内に配設した各位置センサ18a〜18cの検出動作機能を有効として電解運転を行う。   In the electrolysis operation in these three types of use of electrolyzed water, in the electrolysis operation in the first use mode, the water level position sensor 17 (each water level sensor 17a to 17c) installed in the first storage tank 12 is used. The detection operation function is enabled, and the electrolysis operation is performed with the detection operation function of the water level sensor 18 (the water level sensors 18a to 18c) disposed in the second storage tank 13 being disabled. Further, in the electrolysis operation in the second usage pattern, the detection operation functions of the position sensors 17a to 17c installed in the first storage tank 12 are invalidated, and the position sensors 18a to 18c disposed in the second storage tank 13 are invalidated. Electrolytic operation is performed with the detection operation function of Further, in the electrolytic operation in the third usage pattern, the detection operation function of each of the position sensors 17a to 17c disposed in the first storage tank 12 is made effective, and each of the position sensors 18a disposed in the second storage tank 13 is enabled. The electrolytic operation is performed with the detection operation function of ˜18c being effective.

第1の使用形態においては、消費者は第1貯溜タンク12内に滞溜する電解生成酸性水を使用時毎に採取する。これにより、第1貯溜タンク12内に滞溜する電解生成酸性水の水位は漸次低下するが、電解生成酸性水の水位が下方水位センサ17cの設置位置に達すると、下方水位センサ17cが電解生成酸性水の水位が下方位置に達したことを検出し、この検出信号を図示しない制御装置に出力する。   In the first usage pattern, the consumer collects the electrolytically generated acidic water that stays in the first storage tank 12 every time it is used. As a result, the level of the electrolytically generated acidic water stagnating in the first storage tank 12 gradually decreases, but when the level of the electrolytically generated acidic water reaches the installation position of the lower water level sensor 17c, the lower water level sensor 17c generates electrolytically. It is detected that the water level of the acidic water has reached the lower position, and this detection signal is output to a control device (not shown).

制御装置は、当該検出信号に基づいて、電解運転を開始させる。当該電解運転は、基本的には、設定されている一定の電解条件でかつ被電解水の一定供給流量の下での通常の電解運転であり、第1貯溜タンク12内への電解生成酸性水は、設定されている通常の供給流量にて供給される。当該電解運転は、第1貯溜タンク12内の電解生成酸性水の水位が上方水位センサ17aの設置位置に達するまで継続され、電解生成酸性水の水位が上方水位センサ17aの設置位置に達すると、上方水位センサ17aはこれを検出して制御装置に検出信号を出力する。   The control device starts the electrolytic operation based on the detection signal. The electrolysis operation is basically a normal electrolysis operation under a set constant electrolysis condition and a constant supply flow rate of water to be electrolyzed, and the electrolytically generated acidic water into the first storage tank 12. Is supplied at a set normal supply flow rate. The electrolysis operation is continued until the level of the electrolyzed acidic water in the first storage tank 12 reaches the installation position of the upper water level sensor 17a, and when the level of the electrolyzed acidic water reaches the installation position of the upper water level sensor 17a, The upper water level sensor 17a detects this and outputs a detection signal to the control device.

制御装置は、当該検出信号に基づいて、電解運転を停止する。この間、電解運転で同時に生成される電解生成アルカリ性水は、第2貯溜タンク13内に、滞溜する電解生成アルカリ性水の水位に関わりなく供給され、滞溜する電解生成アルカリ性水の水位が上方水位センサ18aの設置位置を越える場合には、図示しないオーバフローパイプを通して、第2貯溜タンク13の外に排出される。   The control device stops the electrolysis operation based on the detection signal. During this time, the electrolyzed alkaline water generated simultaneously in the electrolysis operation is supplied to the second storage tank 13 regardless of the level of the electrolyzed alkaline water that remains, and the level of the electrolyzed alkaline water that remains is the upper water level. When the sensor 18a exceeds the installation position, it is discharged out of the second storage tank 13 through an overflow pipe (not shown).

第1の使用形態においては、電解生成酸性水の採取中に、第1貯溜タンク12内に滞溜する電解生成酸性水の水位が、上方水位センサ17aの設置位置から中立水位センサ17bの設置位置を経て下方水位センサ17cの設置位置まで連続して移行する場合には、制御装置は、第1貯溜タンク12内に滞溜している電解生成酸性水がすぐに大量に使用されるものと判定して、第1貯溜タンク12内への電解生成酸性水の供給流量を、通常の場合よりも多くする電解運転を開始する。当該電解運転では、例えば、被電解水の有隔膜電解槽11への供給流量を通常の電解運転の場合に比較して増大する手段を採り、必要により、電解条件をも変更する手段を採る。これにより、第1貯溜タンク12内へは、大量の電解生成酸性水が速やかに供給され、第1貯溜タンク12内に滞溜する電解生成酸性水が大量に採取される場合の消費者に対して十分に対処することができる。   In the first usage pattern, the level of the electrolytically generated acidic water that remains in the first storage tank 12 during the collection of the electrolytically generated acidic water changes from the installation position of the upper water level sensor 17a to the installation position of the neutral water level sensor 17b. In this case, the control device determines that the electrolytically generated acidic water remaining in the first storage tank 12 is immediately used in large quantities. Then, the electrolysis operation is started to increase the supply flow rate of the electrolyzed acidic water into the first storage tank 12 as compared with the normal case. In the electrolysis operation, for example, a means for increasing the supply flow rate of the water to be electrolyzed to the diaphragm electrolyzer 11 as compared with the case of the normal electrolysis operation is adopted, and means for changing the electrolysis conditions as necessary is adopted. As a result, a large amount of electrolytically generated acidic water is quickly supplied into the first storage tank 12, and a large amount of electrolytically generated acidic water that remains in the first storage tank 12 is collected. Can cope with it.

なお、第2の使用形態における電解運転では、第1の使用形態における電解運転で供給の対象とする電解生成酸性水を電解生成アルカリ性水に代えるとととも、供給すべき貯溜タンクを第1貯溜タンク12から第2貯溜タンク13に代える実施形態である。この場合には、第2貯溜タンク13内に設置してある各水位センサ18a〜18cが機能する。これにより、第2の貯溜タンク13には、大量の電解生成アルカリ性水が速やかに供給されて、第2貯溜タンク13内に滞溜する電解生成アルカリ性水が大量に採取される場合の消費者に対して十分に対処することができる。   In the electrolytic operation in the second usage pattern, the electrolytically generated acidic water to be supplied in the electrolytic operation in the first usage pattern is replaced with the electrolytically generated alkaline water, and the storage tank to be supplied is the first storage tank. This is an embodiment in which the tank 12 is replaced with the second storage tank 13. In this case, the water level sensors 18a to 18c installed in the second storage tank 13 function. Thereby, a large amount of electrolytically generated alkaline water is quickly supplied to the second storage tank 13, and a large amount of electrolytically generated alkaline water stagnating in the second storage tank 13 is collected. It is possible to deal with it sufficiently.

また、第3の使用態様における電解運転では、第1の使用態様での電解運転における電解生成酸性水の第1貯溜タンク12内への供給制御と、第2の使用態様での電解運転における電解生成アルカリ性水の第2貯溜タンク13内への供給制御とは同期的に行われる。当該電解運転では、第1貯溜タンク12内に設置してある各水位センサ17a〜17c、および、第2貯溜タンク13内に設置してある各水位センサ18a〜18cとが共に機能する。この場合、第1貯溜タンク12内に滞溜する電解生成酸性水と第2貯溜タンク13内に滞溜する電解生成アルカリ性水との消費速度(消費時間)および消費量の違いは当然に発生する。このため、電解運転の開始タイミングは、水位の連続的な変動を先に検出した方の各水位センサ17、18の動作機能を優先させるようにする。これにより、第1貯溜タンク12内に滞溜する電解生成酸性水が大量に採取される場合にも、また、第2貯溜タンク13内に滞溜する電解生成アルカリ性水が大量に採取される場合にも、消費者に対して十分に対処することができる。   Further, in the electrolysis operation in the third usage mode, the supply control of the electrolytically generated acidic water in the electrolysis operation in the first usage mode into the first storage tank 12 and the electrolysis in the electrolysis operation in the second usage mode are performed. The supply control of the generated alkaline water into the second storage tank 13 is performed synchronously. In the electrolysis operation, the water level sensors 17a to 17c installed in the first storage tank 12 and the water level sensors 18a to 18c installed in the second storage tank 13 function together. In this case, a difference in consumption rate (consumption time) and consumption amount between the electrolytically generated acidic water stagnating in the first storage tank 12 and the electrolytically generated alkaline water stagnating in the second storage tank 13 naturally occurs. . For this reason, priority is given to the operation function of each water level sensor 17 and 18 which detected the continuous fluctuation | variation of the water level previously for the start timing of electrolysis operation. Thereby, even when a large amount of electrolytically generated acidic water stagnating in the first storage tank 12 is collected, or when a large amount of electrolytically generated alkaline water stagnating in the second storage tank 13 is collected. In addition, it can deal with consumers enough.

一方、当該電解水生成装置においては、使用される設置場所によっては、電解生成水の採取頻度が高くて消費時間が速い時間帯域と電解生成水の採取頻度が低くて消費時間が遅い時間帯域とがほぼ定まっている場合がある。例えば、前者の時間帯域としては、就業活動の開始から終了までの活動時間帯域(昼間の時間帯域、昼夜の時間帯域)を挙げることができ、また、後者の時間帯域としては、就業活動の終了から開始までの非活動時間帯域(深夜の時間帯域)を挙げることができる。このような電解水生成装置の電解運転では、前者の時間帯域では、第1貯溜タンク12内への電解生成酸性水の供給流量、および/または、第2貯溜タンク13への電解生成アルカリ性水の供給流量を、通常の場合よりも多くする電解運転を行う。また、後者の時間帯域では、第1貯溜タンク12内への電解生成酸性水の供給流量、および/または、第2貯溜タンク13への電解生成アルカリ性水の供給流量を通常の場合である電解運転を行う。これにより、第1貯溜タンク12内に滞溜する電解生成酸性水が大量に採取される場合、および/または、第2貯溜タンク13内に滞溜する電解生成アルカリ性水が大量に採取される場合の消費者に対して十分に対処することができる。   On the other hand, in the electrolyzed water generating apparatus, depending on the installation location used, a time zone in which the electrolyzed water collection frequency is high and the consumption time is high, and a time zone in which the electrolysis water collection frequency is low and the consumption time is slow, May be almost fixed. For example, the former time band can include an activity time band from the start to the end of a work activity (day time band, day and night time band), and the latter time band can be the end of a job activity. Inactive time band (midnight time band) from start to start. In the electrolysis operation of such an electrolyzed water generating device, the supply flow rate of electrolyzed acidic water into the first storage tank 12 and / or the electrolyzed alkaline water to the second storage tank 13 in the former time zone. An electrolysis operation is performed in which the supply flow rate is increased as compared with a normal case. Further, in the latter time zone, the electrolysis operation is a normal case in which the supply flow rate of the electrolyzed acidic water into the first storage tank 12 and / or the supply flow rate of the electrolyzed alkaline water to the second storage tank 13 is normal. I do. As a result, when a large amount of electrolytically generated acidic water stagnating in the first storage tank 12 is collected and / or when a large amount of electrolytically generated alkaline water stagnating in the second storage tank 13 is collected. Can deal with consumers of the future.

なお、本発明に係る電解運転方法は、上記したごとき、有隔膜式の電解水生成装置の電解運転方法に実施できることは勿論のこと、無隔膜式の電解水生成装置の電解運転方法、および、被電解水として電解補助剤を含有しない被電解水を採用して弱酸性の電解生成酸性水および/または弱アルカリ性の電解生成アルカリ性水を生成する形式の電解水生成装置にも実施することができる。   In addition, the electrolytic operation method according to the present invention can be implemented in the electrolytic operation method of the diaphragm-type electrolytic water generation apparatus as described above, as well as the electrolytic operation method of the diaphragm-type electrolytic water generation apparatus, and The present invention can also be applied to an electrolyzed water generating apparatus that employs electrolyzed water that does not contain an electrolysis auxiliary agent as electrolyzed water to generate weakly acidic electrogenerated acidic water and / or weakly alkaline electrogenerated alkaline water. .

本発明に係る電解運転方法を実施する電解水生成装置の概略的構成図である。It is a schematic block diagram of the electrolyzed water generating apparatus which implements the electrolytic operation method which concerns on this invention.

符号の説明Explanation of symbols

11…有隔膜電解槽、11a…槽本体、11b…隔膜、11c…供給管路、11d,11e…流出管路、11f,11g…電極、R1,R2…電解室、12…第1貯留タンク、13…第2貯留タンク、14…第1導入管路、15…第2導入管路、16…流路切替弁、17,18…水位センサ、17a,18a…上方水位センサ、17b,18b…中立水位センサ、17c,18c…下方水位センサ。 DESCRIPTION OF SYMBOLS 11 ... Separator membrane electrolytic cell, 11a ... Tank main body, 11b ... Separator membrane, 11c ... Supply line, 11d, 11e ... Outflow line, 11f, 11g ... Electrode, R1, R2 ... Electrolytic chamber, 12 ... First storage tank, DESCRIPTION OF SYMBOLS 13 ... 2nd storage tank, 14 ... 1st introduction pipeline, 15 ... 2nd introduction pipeline, 16 ... Flow path switching valve, 17, 18 ... Water level sensor, 17a, 18a ... Upper water level sensor, 17b, 18b ... Neutral Water level sensors, 17c, 18c ... downward water level sensors.

Claims (4)

供給される被電解水を電解する電解槽、および、前記電解槽にて生成された電解生成水を導入管路を通して供給される貯溜タンクを備え、前記貯溜タンク内に滞溜する電解生成水が所定量消費された場合に電解運転を開始して、前記貯溜タンク内に所定量の電解生成水を供給するようにした電解水生成装置の電解運転方法であり、前記貯溜タンクに滞溜する電解生成水の消費時間が速くて消費量が多い場合には、前記貯溜タンクに滞溜する電解生成水の消費時間が遅くて消費量が少ない場合に比較して、前記貯溜タンクに対する電解生成水の供給流量を増大させる電解運転を行うことを特徴とする電解水生成装置の電解運転方法。 An electrolytic cell for electrolyzing supplied electrolyzed water, and a storage tank for supplying electrolytically generated water generated in the electrolytic cell through an introduction pipe line, and the electrolytically generated water stagnating in the storage tank An electrolysis operation method for an electrolyzed water generating device that starts electrolysis operation when a predetermined amount is consumed and supplies a predetermined amount of electrolyzed water into the storage tank. When the consumption time of the generated water is fast and the amount of consumption is large, the amount of electrolytically generated water for the storage tank is lower than when the consumption time of the electrolytically generated water stagnating in the storage tank is slow and the amount of consumption is small. An electrolytic operation method for an electrolyzed water generating apparatus, wherein an electrolytic operation for increasing a supply flow rate is performed. 請求項1に記載の電解水生成装置の電解運転方法において、前記貯溜タンクに対する電解生成水の供給流量を増大させる電解運転では、被電解水の前記電解槽に対する供給流量を増大して電解条件を一定または変更した状態で電解運転を行うことを特徴とする電解水生成装置の電解運転方法。 2. The electrolytic operation method for an electrolyzed water generating apparatus according to claim 1, wherein the electrolysis operation for increasing the supply flow rate of electrolyzed water to the storage tank increases the supply flow rate of water to be electrolyzed to the electrolyzer to satisfy electrolysis conditions. An electrolytic operation method for an electrolyzed water generating apparatus, wherein the electrolytic operation is performed in a constant or changed state. 請求項1または2に記載の電解水生成装置の電解運転方法において、前記貯溜タンクは同貯溜タンク内に滞溜する電解生成水の水位を検出する上方水位センサ、中立水位センサおよび下方水位センサを備え、前記貯溜タンク内に滞溜する電解生成水の水位が上方位置から中立位置を経て下方位置に連続して移行する場合には、前記貯溜タンク内に滞溜する電解生成水の消費時間が速くて消費量が多い場合であると判定することを特徴とする電解水生成装置の電解運転方法。 3. The electrolytic operation method for an electrolyzed water generating device according to claim 1 or 2, wherein the storage tank includes an upper water level sensor, a neutral water level sensor, and a lower water level sensor for detecting a water level of electrolyzed water accumulated in the storage tank. And when the water level of the electrolyzed water stagnating in the storage tank continuously moves from the upper position through the neutral position to the lower position, the consumption time of the electrolyzed water stagnated in the storage tank is An electrolytic operation method for an electrolyzed water generating apparatus, characterized in that it is determined to be a case where the amount of consumption is fast and high. 請求項1または2に記載の電解水生成装置の電解運転方法において、前記貯溜タンク内に滞溜する電解生成水の使用形態が、電解生成水の消費時間が速くて消費量が多い時間帯域と電解生成水の消費時間が遅くて消費量が少ない時間帯域とがほぼ定まっている場合には、前者の時間帯域において、前記貯溜タンクに対する電解生成水の供給流量を後者の時間帯域における供給流量より増大させる電解運転を行うことを特徴とする電解水生成装置の電解運転方法。 3. The electrolytic operation method for an electrolyzed water generating device according to claim 1 or 2, wherein the form of use of electrolyzed water stagnating in the storage tank is a time zone where consumption time of electrolyzed water is fast and consumption is large. When the time zone of the electrolyzed water consumption is slow and the consumption amount is low, the supply flow rate of the electrolyzed water to the storage tank in the former time zone is higher than the supply flow rate in the latter time zone. An electrolytic operation method for an electrolyzed water generating apparatus, wherein the electrolysis operation is increased.
JP2006254844A 2006-09-20 2006-09-20 Electrolytic operation method of electrolyzed water generator Expired - Fee Related JP4759481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254844A JP4759481B2 (en) 2006-09-20 2006-09-20 Electrolytic operation method of electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254844A JP4759481B2 (en) 2006-09-20 2006-09-20 Electrolytic operation method of electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2008073603A true JP2008073603A (en) 2008-04-03
JP4759481B2 JP4759481B2 (en) 2011-08-31

Family

ID=39346219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254844A Expired - Fee Related JP4759481B2 (en) 2006-09-20 2006-09-20 Electrolytic operation method of electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP4759481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213868A (en) * 2014-05-09 2015-12-03 株式会社日本トリム Electrolytic water generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156365A (en) * 1996-12-02 1998-06-16 Fuji Electric Co Ltd Functional water supply device
JPH11290853A (en) * 1998-04-07 1999-10-26 Corona Kogyo Kk Sterilizing water making apparatus
JP2000005750A (en) * 1998-06-24 2000-01-11 Hoshizaki Electric Co Ltd Electrolyzed water forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156365A (en) * 1996-12-02 1998-06-16 Fuji Electric Co Ltd Functional water supply device
JPH11290853A (en) * 1998-04-07 1999-10-26 Corona Kogyo Kk Sterilizing water making apparatus
JP2000005750A (en) * 1998-06-24 2000-01-11 Hoshizaki Electric Co Ltd Electrolyzed water forming device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213868A (en) * 2014-05-09 2015-12-03 株式会社日本トリム Electrolytic water generator

Also Published As

Publication number Publication date
JP4759481B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP6139809B1 (en) Electrolyzed water generating apparatus and electrolyzed water generating method
KR20100034088A (en) Apparatus for removing scale by electrochemical reaction and method thereof
CN101746853B (en) Water treatment apparatus
JP5002681B2 (en) Electrolyzed water generator
CN109311707A (en) Electrolytic water generating device
JP4759481B2 (en) Electrolytic operation method of electrolyzed water generator
JP5102553B2 (en) Electrolyzed water generator
KR100439998B1 (en) Apparatus creating electrolysed-water by multi-step and diaphram
JP2005319427A (en) Alkaline water generator
JP2010207668A (en) Electrolytic water generator
KR200240002Y1 (en) Apparatus creating electrolysed-water by multi-step and diaphram
JPH09206755A (en) Formation of alkaline ionized and hypochlorous acid sterilizing water and device therefor
JP2000005750A (en) Electrolyzed water forming device
JP7218024B1 (en) generator
KR102522491B1 (en) Water Cooling Typed Hydrogen Generator for Reducing Electrode Deterioration
JP2006159072A (en) Electrolytic water generator
JP5398859B2 (en) Acid water generator
JP4993882B2 (en) Electrolyzed water generator with water storage tank
JP2002028653A (en) Electrolytic water feeder
JP4931085B2 (en) Electrolyzed water generator
JPH06335681A (en) Alkaline ion water regulator
JP2001321770A (en) Electrolytic water generator
JPH0739877A (en) Multistage electrosyzed ionized water forming device
JPH0985245A (en) Electrolytic water preparation device
JPH1080685A (en) Alkali ionized water adjuster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees