JP2008071977A - Thin plate manufacturing equipment - Google Patents

Thin plate manufacturing equipment Download PDF

Info

Publication number
JP2008071977A
JP2008071977A JP2006250117A JP2006250117A JP2008071977A JP 2008071977 A JP2008071977 A JP 2008071977A JP 2006250117 A JP2006250117 A JP 2006250117A JP 2006250117 A JP2006250117 A JP 2006250117A JP 2008071977 A JP2008071977 A JP 2008071977A
Authority
JP
Japan
Prior art keywords
raw material
cooling member
crucible
thin plate
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006250117A
Other languages
Japanese (ja)
Inventor
Masayasu Futagawa
正康 二川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006250117A priority Critical patent/JP2008071977A/en
Publication of JP2008071977A publication Critical patent/JP2008071977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide thin plate manufacturing equipment in which a carbide of a crude material is removed from a molten crude material which is to be accommodated in a first crucible for growing a thin plate-shaped polycrystal, and which scarcely contains the carbide, and has a uniform quality, a high mechanical strength, and a good characteristic. <P>SOLUTION: The thin plate manufacturing equipment 1 contains a first melting heating furnace 2, a second melting heating furnace 3, a solid crude material supply means 4, a not-shown molten crude material supply means, a first cooling member 5, a not-shown first holding means, a second cooling member 6, a not-shown second holding means, and a not-shown first cooling member conveying means. The second cooling member 6 is dipped in a molten crude material 8 containing the carbide to be accommodated in the first crucible 10 included in the first melting heating furnace 2, whereby the carbide is adhered to a surface of the second cooling member 6 to remove the carbide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、薄板製造装置に関する。   The present invention relates to a thin plate manufacturing apparatus.

従来から、シリコンの薄板状多結晶体(以下単に「薄板状多結晶体」とする)は、太陽電池などの基板材料などとして広く用いられる。薄板状多結晶体は、たとえば、多結晶インゴットをワイヤーソー、内周刃などでスライスするスライシング工程を含む方法によって製造される。また、多結晶インゴットは、たとえば、不活性雰囲気中でリン、ボロンなどのドーパントを添加した高純度シリコン材料を坩堝中で加熱熔融させ、得られるシリコンの熔融液(以下「熔融シリコン」とする)を鋳型に流し込んで冷却するシリコン鋳造工程を含む方法によって製造される(たとえば、特許文献1参照)。このような薄板状多結晶体の製造方法では、シリコン鋳造工程に加え、高いコストを要するスライシング工程が必要になること、またスライシング工程においてワイヤーまたは内周刃の厚み分以上の材料損失を生じることなどが、薄板状多結晶体を低コストで製造する上での大きな障害になる。   Conventionally, a silicon thin plate-like polycrystalline body (hereinafter simply referred to as “thin plate-like polycrystalline body”) has been widely used as a substrate material for solar cells and the like. The thin plate-like polycrystalline body is produced, for example, by a method including a slicing step of slicing a polycrystalline ingot with a wire saw, an inner peripheral blade or the like. In addition, a polycrystalline ingot is obtained by, for example, heating and melting a high-purity silicon material to which a dopant such as phosphorus or boron is added in an inert atmosphere in a crucible, and obtaining a silicon melt (hereinafter referred to as “molten silicon”). It is manufactured by a method including a silicon casting process in which the material is poured into a mold and cooled (see, for example, Patent Document 1). In such a method for manufacturing a thin plate-like polycrystalline body, in addition to the silicon casting process, a slicing process requiring high cost is required, and in the slicing process, material loss more than the thickness of the wire or the inner peripheral blade is generated. This is a major obstacle to producing a thin plate-like polycrystalline body at a low cost.

この問題を解決するために、坩堝内に収容される熔融シリコンに冷却体を浸漬して引き上げることによって、冷却体の薄板生成面にシリコンを付着、成長させる薄板状多結晶体の製造方法が提案される(たとえば、特許文献2〜4参照)。これらの製造方法では、薄板状多結晶体の製造が進むに従って、坩堝内の熔融シリコンが消費されて徐々に減少するので、熔融シリコンがある程度減少した段階で薄板状多結晶体の形成を中止し、シリコンを補給する構成が採られる。シリコンの補給には、坩堝にシリコン(固形物、以下「固体シリコン」とする)を直接供給するか、固体シリコンを予め第2の坩堝で熔融し、得られる熔融シリコンを主坩堝である第1の坩堝内に供給することが考えられる。   In order to solve this problem, a method for manufacturing a thin plate-like polycrystalline body in which silicon is attached to and grown on the thin plate generation surface of the cooling body by immersing and pulling up the cooling body in the molten silicon contained in the crucible is proposed. (For example, see Patent Documents 2 to 4). In these production methods, as the production of the thin plate-like polycrystalline body proceeds, the molten silicon in the crucible is consumed and gradually decreases. Therefore, the formation of the thin plate-like polycrystalline body is stopped when the molten silicon is reduced to some extent. The structure which replenishes silicon is taken. For replenishment of silicon, silicon (solid matter, hereinafter referred to as “solid silicon”) is directly supplied to the crucible, or solid silicon is previously melted in the second crucible, and the obtained molten silicon is the first crucible which is the main crucible. It is conceivable to supply the crucible into the crucible.

固体シリコンを坩堝に直接供給する装置は、種々提案される。たとえば、円形の坩堝と、仕切り板と、固体シリコン供給手段と、加熱手段とを含む装置が提案される(たとえば、特許文献5〜6参照)。ここで、仕切り板は、坩堝の半径方向の端部近傍において鉛直方向に延び、坩堝の底面と間隙を有して離隔しかつ坩堝内の熔融シリコンの液面を2つに仕切るように設けられる。固体シリコン供給手段は、坩堝の半径方向端部の側壁と仕切り板とによって囲まれる部分(以下「シリコン供給部」という)に、固体シリコンを供給する。加熱手段は、主にシリコン供給部を固体シリコンが熔融するのに適した温度に加熱する。特許文献5の装置によれば、仕切り板を設け、固体シリコンと熔融シリコンとが坩堝内全体で混じり合うのを防止することによって、固体シリコンの直接供給を可能にする。また、熔融シリコンなどの熔融原料を坩堝に供給する装置も種々提案される(たとえば、特許文献7〜9参照)。特許文献7〜9の装置では、第1の坩堝の鉛直方向上方に設けられる第2の坩堝中で固体シリコンを熔融させ、得られる熔融シリコンを鉛直方向下方に落下させて第1の坩堝に供給する構成を採る。   Various apparatuses for directly supplying solid silicon to the crucible are proposed. For example, an apparatus including a circular crucible, a partition plate, solid silicon supply means, and heating means is proposed (see, for example, Patent Documents 5 to 6). Here, the partition plate extends in the vertical direction in the vicinity of the radial end portion of the crucible, is spaced apart from the bottom surface of the crucible, and is provided so as to partition the liquid level of the molten silicon in the crucible into two. . The solid silicon supply means supplies solid silicon to a portion surrounded by the side wall of the crucible in the radial direction and the partition plate (hereinafter referred to as “silicon supply portion”). The heating means mainly heats the silicon supply section to a temperature suitable for melting solid silicon. According to the apparatus of Patent Document 5, a partition plate is provided, and solid silicon and molten silicon are prevented from being mixed in the entire crucible, thereby enabling direct supply of solid silicon. Various apparatuses for supplying a melting raw material such as molten silicon to a crucible are also proposed (see, for example, Patent Documents 7 to 9). In the apparatuses of Patent Documents 7 to 9, solid silicon is melted in a second crucible provided vertically above the first crucible, and the obtained molten silicon is dropped downward in the vertical direction and supplied to the first crucible. The structure to do is taken.

特開平6−64913号公報Japanese Unexamined Patent Publication No. 6-64913 特開平10−29895号公報Japanese Patent Laid-Open No. 10-29895 特開2002−175996号公報JP 2002-175996 A 特開2003−59849号公報JP 2003-59849 A 特開昭61−36197号公報JP 61-361197 A 特開平5−117077号公報Japanese Patent Laid-Open No. 5-117077 特開平2−279582号公報JP-A-2-279582 特開平8−252650号公報JP-A-8-252650 特開平11−43318号公報JP 11-43318 A

上記従来技術では、シリコンの補給中は薄板状多結晶体の製造を停止するので、シリコン補給に長時間を要すると、装置の稼働率が低下して生産効率が悪化する。特に固体シリコンを坩堝内に直接供給する場合は、坩堝内の温度を固体シリコンの熔融に必要な温度まで昇温させる時間と、坩堝内の温度を薄板状多結晶体の製造に適する温度まで下げる時間とがさらに必要になるので、製造が停止する時間は一層長くなる。また、製造停止の頻発によって、生産される薄板状多結晶体の品質にばらつきを生じるおそれがある。   In the above prior art, since the production of the thin plate-like polycrystalline body is stopped during the replenishment of silicon, if the silicon replenishment takes a long time, the operating rate of the apparatus is lowered and the production efficiency is deteriorated. In particular, when supplying solid silicon directly into the crucible, the temperature in the crucible is raised to a temperature necessary for melting the solid silicon and the temperature in the crucible is lowered to a temperature suitable for producing a thin plate-like polycrystalline body. Since more time is required, the time during which production stops is even longer. Further, due to frequent production stoppage, the quality of the produced thin plate-like polycrystalline body may vary.

一方、熔融シリコンを第1の坩堝に供給する場合には、昇温時間および温度を下げる時間が必要なくなるので、その分だけ製造停止時間は短くなる。この場合、熔融シリコンを得るための第2の坩堝として、高周波誘導加熱炉などによって効率良く加熱できかつ熔融シリコンの生産性の高いカーボン製坩堝が主に用いられるけれども、熔融シリコンにカーボン製坩堝からカーボンが溶出するという問題点がある。シリコン−カーボン状態図から、熔融シリコンには飽和量またはそれに近い量のカーボンが溶出することが判っている。カーボン製坩堝内で、坩堝内の温度をシリコンの熔融温度よりも充分に高い温度下に固体シリコンを熔融させると、生成する熔融シリコン中にカーボンが溶出し、第1の坩堝には飽和量またはそれに近い量のカーボンを含む熔融シリコンが供給される。ところで、第1の坩堝内では、所望の板厚の薄板状多結晶体を得るために、坩堝内温度はシリコンの熔融温度付近に制御される。したがって、熔融シリコンの液温は、第2の坩堝であるカーボン製坩堝から第1の坩堝に送給される際に、シリコンの熔融温度よりも充分に高い温度からシリコンの熔融温度付近まで低下する。熔融シリコンの液温の低下に伴って、熔融シリコンに対するカーボンの飽和濃度も低下することから、熔融シリコンに溶解できなくなった量のカーボン原子がSiCの形で析出する。また、第1の坩堝中の熔融シリコンは直ぐに消費され、第2の坩堝からカーボンを含有する熔融シリコンを第1の坩堝に供給されるという循環が繰返し実行されるので、第1の坩堝中のSiC量は次第に増加する。SiCは製造される薄板状多結晶体中にも混入し、薄板状多結晶体の品質劣化を引き起こす原因になる。したがって、熔融シリコンを第1の坩堝に供給する構成でも、品質にばらつきのない薄板状多結晶体を製造するのは困難である。   On the other hand, when the molten silicon is supplied to the first crucible, the time for raising the temperature and the time for lowering the temperature are not necessary, and the production stop time is shortened accordingly. In this case, as a second crucible for obtaining molten silicon, a carbon crucible that can be efficiently heated by a high-frequency induction heating furnace or the like and has high productivity of molten silicon is mainly used. There is a problem that carbon is eluted. From the silicon-carbon phase diagram, it is known that a saturated amount of carbon is eluted in molten silicon. In a carbon crucible, when solid silicon is melted at a temperature sufficiently higher than the melting temperature of silicon, carbon is eluted into the generated molten silicon, and the first crucible is saturated or Molten silicon containing a near amount of carbon is supplied. By the way, in the first crucible, in order to obtain a thin plate-like polycrystalline body having a desired plate thickness, the temperature in the crucible is controlled in the vicinity of the melting temperature of silicon. Accordingly, the temperature of the molten silicon liquid is lowered from a temperature sufficiently higher than the melting temperature of silicon to around the melting temperature of silicon when fed from the carbon crucible as the second crucible to the first crucible. . As the liquid temperature of the molten silicon decreases, the saturation concentration of carbon relative to the molten silicon also decreases, so that an amount of carbon atoms that can no longer be dissolved in the molten silicon is deposited in the form of SiC. Further, since the molten silicon in the first crucible is consumed immediately and the molten silicon containing carbon is supplied from the second crucible to the first crucible, the circulation is repeatedly performed. The amount of SiC gradually increases. SiC is also mixed in the thin plate-like polycrystalline body to be produced, and causes deterioration of the quality of the thin plate-like polycrystalline body. Therefore, it is difficult to produce a thin plate-like polycrystalline body having no variation in quality even in a configuration in which molten silicon is supplied to the first crucible.

上記のような問題に鑑み、熔融シリコンにカーボン、その他の物質をほとんど溶出しないSiO製の坩堝を第2の坩堝として用いることが考えられる。しかしながら、SiO製の坩堝では加熱効率が低下することから、カーボン製坩堝で固体シリコンを熔融させるよりも、膨大な量の電力を必要とし、製造コストの上昇を免れ得ない。 In view of the above problems, it is conceivable to use, as the second crucible, a SiO 2 crucible that hardly elutes carbon and other substances into molten silicon. However, since the heating efficiency is reduced in the SiO 2 crucible, a huge amount of electric power is required rather than melting the solid silicon in the carbon crucible, and the increase in manufacturing cost is inevitable.

本発明の目的は、炭素材料製の第2の坩堝で固体原料を加熱して熔融原料を得、この熔融原料を第1の坩堝に供給する方式において、第1の坩堝中に蓄積する炭化物を効率的に除去でき、炭化物をほとんど含有しない品質の均一な薄板状多結晶体を安定的にかつ工業的に有利に製造し得る薄板製造装置を提供することである。   An object of the present invention is to obtain a molten raw material by heating a solid raw material in a second crucible made of a carbon material, and supplying the molten raw material to the first crucible. An object of the present invention is to provide an apparatus for producing a thin plate which can be efficiently removed and can produce a uniform thin plate-like polycrystalline body of a quality containing almost no carbide in a stable and industrially advantageous manner.

本発明は、
熔融原料を収容する凹所を有する第1の坩堝と、第1の坩堝を加熱する加熱手段とを備える第1の熔融加熱炉と、
熔融原料を収容する凹所を有する炭素材料製の第2の坩堝と、第2の坩堝を加熱する加熱手段とを備える第2の熔融加熱炉と、
第2の坩堝の凹所に固体原料を供給する固体原料供給手段と、
第2の坩堝の凹所に収容される熔融原料を第1の坩堝の凹所に送給する熔融原料送給手段と、
第1の坩堝の凹所に収容される熔融原料に浸漬可能に設けられ、その表面に熔融原料が固化してなる薄板が形成される第1の冷却部材と、
第1の冷却部材を保持し、第1の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬して引き上げる第1の保持手段と、
第1の坩堝の凹所に収容される熔融原料に浸漬可能に設けられる第2の冷却部材と、
第2の冷却部材を保持し、第2の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬し、浸漬した状態を維持して熔融原料中の炭化物をその表面に吸着した後に引き上げる第2の保持手段とを含むことを特徴とする薄板製造装置である。
The present invention
A first melting furnace comprising: a first crucible having a recess for accommodating a melting raw material; and a heating means for heating the first crucible;
A second melting heating furnace comprising a second crucible made of carbon material having a recess for accommodating a melting raw material, and a heating means for heating the second crucible;
Solid raw material supply means for supplying a solid raw material to the recess of the second crucible;
A melt raw material feeding means for feeding the melt raw material accommodated in the recess of the second crucible to the recess of the first crucible;
A first cooling member provided so as to be dipped in the melt raw material housed in the recess of the first crucible, and having a thin plate formed by solidifying the melt raw material on its surface;
A first holding means for holding the first cooling member and immersing the first cooling member in the melt raw material housed in the recess of the first crucible and pulling it up;
A second cooling member provided so as to be immersed in the melt raw material housed in the recess of the first crucible;
The second cooling member is held, and the second cooling member is immersed in the molten raw material accommodated in the recess of the first crucible, and the carbide in the molten raw material is adsorbed on the surface while maintaining the immersed state. A thin plate manufacturing apparatus including a second holding means to be pulled up later.

また本発明の薄板製造装置は、
第2の保持手段が、
第2の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬し、浸漬した状態を少なくとも30秒間維持した後に引き上げることを特徴とする。
Moreover, the thin plate manufacturing apparatus of the present invention is
The second holding means is
The second cooling member is immersed in a melt raw material accommodated in the recess of the first crucible, and is pulled up after maintaining the immersed state for at least 30 seconds.

さらに本発明の薄板製造装置は、
第2の保持手段が、
第1の坩堝の凹所に収容される熔融原料に対して、第1の保持手段による第1の冷却部材の浸漬が行われない状態で第2の冷却部材を浸漬させることを特徴とする。
Furthermore, the thin plate manufacturing apparatus of the present invention is
The second holding means is
The second cooling member is immersed in the molten raw material accommodated in the recess of the first crucible without the first cooling member being immersed by the first holding means.

さらに本発明の薄板製造装置は、第2の冷却部材を加熱する加熱手段をさらに含むことを特徴とする。   Furthermore, the thin plate manufacturing apparatus of the present invention further includes heating means for heating the second cooling member.

さらに本発明の薄板製造装置は、第2の冷却部材を冷却する冷却手段をさらに含むことを特徴とする。   Furthermore, the thin plate manufacturing apparatus of the present invention further includes a cooling means for cooling the second cooling member.

さらに本発明の薄板製造装置は、第2の冷却部材が炭素材料によって形成されることを特徴とする。   Furthermore, the thin plate manufacturing apparatus of the present invention is characterized in that the second cooling member is made of a carbon material.

さらに本発明の薄板製造装置は、
第2の冷却部材がその表面の少なくとも一部に設けられる断熱層を含むことを特徴とする。
さらに本発明の薄板製造装置は、第2の冷却部材が板状部材であることを特徴とする。
Furthermore, the thin plate manufacturing apparatus of the present invention is
The second cooling member includes a heat insulating layer provided on at least a part of the surface thereof.
Furthermore, the thin plate manufacturing apparatus of the present invention is characterized in that the second cooling member is a plate-like member.

本発明によれば、第1の熔融加熱炉と、第2の熔融加熱炉と、固体原料供給手段と、熔融原料供給手段と、第1の冷却部材と、第1の保持手段と、第2の冷却部材と、第2の保持手段とを含む薄板製造装置が提供される。第1の熔融加熱炉は、熔融原料を収容する凹所を有する第1の坩堝と、第1の坩堝を加熱する加熱手段とを含む。第2の熔融加熱炉は、熔融原料を収容する凹所を有する炭素材料製の第2の坩堝と、第2の坩堝を加熱する加熱手段とを含む。固体原料供給手段は、第2の坩堝の凹所に固体原料を供給する。熔融原料送給手段は、第2の坩堝の凹所に収容される熔融原料を第1の坩堝の凹所に送給する。第1の冷却部材は、第1の坩堝の凹所に収容される熔融原料に浸漬可能に設けられ、その表面に熔融原料が固化してなる薄板が形成される。第1の保持手段は、第1の冷却部材を保持し、第1の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬して引き上げる。第2の冷却部材は、第1の坩堝の凹所に収容される熔融原料に浸漬可能に設けられる。第2の保持手段は、第2の冷却部材を保持し、第2の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬し、浸漬した状態を維持して熔融原料中の炭化物をその表面に吸着した後に引き上げる。   According to the present invention, the first melting heating furnace, the second melting heating furnace, the solid raw material supply means, the molten raw material supply means, the first cooling member, the first holding means, and the second A thin plate manufacturing apparatus including the cooling member and the second holding means is provided. The first melt heating furnace includes a first crucible having a recess for accommodating a melt raw material, and a heating means for heating the first crucible. The second melt heating furnace includes a second crucible made of a carbon material having a recess for accommodating the melt raw material, and a heating means for heating the second crucible. The solid raw material supply means supplies the solid raw material to the recess of the second crucible. The molten raw material feeding means feeds the molten raw material accommodated in the recess of the second crucible to the recess of the first crucible. The first cooling member is provided so as to be dipped in the molten raw material accommodated in the recess of the first crucible, and a thin plate formed by solidifying the molten raw material is formed on the surface thereof. The first holding means holds the first cooling member and immerses and pulls up the first cooling member in the molten raw material accommodated in the recess of the first crucible. The second cooling member is provided so as to be immersed in the melt raw material accommodated in the recess of the first crucible. The second holding means holds the second cooling member, immerses the second cooling member in the molten raw material accommodated in the recess of the first crucible, and maintains the immersed state in the molten raw material. Pull up after adsorbing carbide on its surface.

本発明の薄板製造装置においては、第2の坩堝から第1の坩堝に炭素材料を含有する熔融原料が供給され、液温低下によって熔融原料中に原料の炭化物が生成しても、第2の保持手段が第2の冷却手段を用いて炭化物を吸着して除去するので、第1の坩堝中には炭化物をほとんど含むことのない熔融原料が常に収容される。したがって、本発明の薄板製造装置によれば、炭化物をほとんど含むことがなく、品質のばらつきが非常に少ない薄板状多結晶体を安定的にかつ生産性良く製造できる。   In the thin plate manufacturing apparatus of the present invention, even if a molten raw material containing a carbon material is supplied from the second crucible to the first crucible, and carbide of the raw material is generated in the molten raw material due to a decrease in liquid temperature, Since the holding means adsorbs and removes the carbide using the second cooling means, the first crucible always contains the molten raw material containing almost no carbide. Therefore, according to the thin plate manufacturing apparatus of the present invention, it is possible to stably manufacture a thin plate-like polycrystalline body that hardly contains carbides and has very little quality variation.

本発明によれば、第2の保持手段が、第2の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬し、浸漬した状態を少なくとも30秒間維持した後に引き上げるように構成することによって、第2の冷却部材によって充分量の炭化物が吸着除去されるので、品質のばらつきが一層少なくかつ特性の均一な薄板状多結晶体を安定的に製造できる。   According to the present invention, the second holding means is configured to immerse the second cooling member in the molten raw material accommodated in the recess of the first crucible and pull it up after maintaining the immersed state for at least 30 seconds. By doing so, a sufficient amount of carbide is adsorbed and removed by the second cooling member, so that a thin plate-like polycrystalline body with less variation in quality and uniform characteristics can be stably produced.

本発明によれば、第2の保持手段が、第1の坩堝の凹所に収容される熔融原料に対して、第1の保持手段による第1の冷却部材の浸漬が行われない状態で第2の冷却部材を浸漬させるように構成することによって、第1の冷却部材表面での薄板形成を円滑に行いつつ、熔融原料中の炭化物を効率的に除去できる。   According to the present invention, the second holding means does not immerse the first cooling member by the first holding means with respect to the molten raw material accommodated in the recess of the first crucible. By comprising so that 2 cooling members may be immersed, the carbide | carbonized_material in a molten raw material can be removed efficiently, performing the thin plate formation in the 1st cooling member surface smoothly.

本発明によれば、本発明の薄板製造装置が第2の冷却部材を加熱する加熱手段をさらに含むことによって、第2の冷却部材の温度が過剰に低下するのが防止され、適切な温度に制御することが可能になる。その結果、第2の冷却部材を熔融原料に浸漬する際に、その表面に炭化物のみが選択的に吸着して炭化物を効率的に除去できるとともに、熔融原料の部分的な固化も防止できる。熔融原料中に一部固化物が混入すると、均一な組織を有する薄板状多結晶体が得られなくなる。   According to the present invention, the thin plate manufacturing apparatus of the present invention further includes heating means for heating the second cooling member, so that the temperature of the second cooling member is prevented from excessively decreasing, and the temperature is adjusted to an appropriate temperature. It becomes possible to control. As a result, when the second cooling member is immersed in the molten raw material, only the carbide is selectively adsorbed on the surface of the second cooling member and the carbide can be efficiently removed, and partial solidification of the molten raw material can be prevented. If a part of solidified material is mixed in the melt raw material, a thin plate-like polycrystalline body having a uniform structure cannot be obtained.

本発明によれば、本発明の薄板製造装置が第2の冷却部材を冷却する冷却手段をさらに含むことによって、第2の冷却部材の温度が過剰に上昇するのが防止され、適切な温度に制御することが可能になる。その結果、第2の冷却部材を熔融原料に浸漬する際、第2の冷却部材の周囲に存在する熔融原料の温度が一時的に上がり、除去すべき炭化物が再び熔融原料中に溶解して除去できなくなるのを防止できる。したがって、炭化物を確実に除去できるとともに、製造される薄板状多結晶体の品質を確実に均一にできる。   According to the present invention, the thin plate manufacturing apparatus of the present invention further includes the cooling means for cooling the second cooling member, so that the temperature of the second cooling member is prevented from excessively rising, and the temperature is adjusted to an appropriate temperature. It becomes possible to control. As a result, when the second cooling member is immersed in the molten raw material, the temperature of the molten raw material existing around the second cooling member temporarily rises, and the carbide to be removed is dissolved and removed again in the molten raw material. It can be prevented from becoming impossible. Therefore, the carbide can be reliably removed, and the quality of the manufactured thin plate-like polycrystalline body can be reliably made uniform.

本発明によれば、第2の冷却部材を炭素材料で形成することによって、第1の坩堝に収容される熔融原料が炭素材料以外の不要な原子で汚染されることがなくいので、高品質の薄板状多結晶体を製造できる。   According to the present invention, since the second cooling member is formed of a carbon material, the melting raw material accommodated in the first crucible is not contaminated with unnecessary atoms other than the carbon material. A thin plate-like polycrystalline body can be produced.

本発明によれば、第2の冷却部材の表面における少なくとも一部に断熱層を設けることによって、第2の冷却部材における必要以上の放熱を防止できるので、第2の冷却部材表面への炭化物の析出と同時に、シリコンの凝固が起こるのを非常に少なくできる。   According to the present invention, by providing a heat insulating layer on at least a part of the surface of the second cooling member, it is possible to prevent heat dissipation more than necessary in the second cooling member, so that the carbide on the surface of the second cooling member At the same time as the precipitation, the solidification of the silicon can be greatly reduced.

本発明によれば、第2の冷却部材を板状部材にすることによって、第1の坩堝内において、第1の冷却部材を浸漬させて薄板状多結晶体を製造する薄板状多結晶体の生産処理領域と、第2の冷却部材を浸漬させる第2の冷却部材占有領域とを、相互干渉が起こらないように設定できる。したがって、第1の坩堝をいたずらに大きい寸法に形成する必要がなくなり、製造工場内における装置の占有面積を狭め、生産効率を向上させ得る。   According to the present invention, a thin plate-like polycrystalline body for producing a thin plate-like polycrystalline body by immersing the first cooling member in the first crucible by making the second cooling member into a plate-like member. The production processing region and the second cooling member occupation region in which the second cooling member is immersed can be set so that mutual interference does not occur. Therefore, it is not necessary to form the first crucible with an unnecessarily large size, and the area occupied by the device in the manufacturing plant can be narrowed and the production efficiency can be improved.

図1は、本発明の実施の第1形態である薄板製造装置1の構成を模式的に示す断面図である。図2は、図1に示す薄板製造装置1の要部の構成を模式的に示す拡大断面図である。図3は、第1の坩堝22における第1の冷却部材5の浸漬領域を示す図面である。図3(a)は第1の冷却部材5の浸漬領域を示す上面図である。図3(b)は第1の冷却部材5の浸漬動作を示す断面図である。図4は、第1の冷却部材5の浸漬領域と第2の冷却部材6の浸漬領域とを示す図面である。図4(a)は第1の冷却部材5の浸漬領域と第2の冷却部材6の浸漬領域とを示す上面図である。図4(b)は第2の冷却部材6の浸漬状態を示す断面図である。薄板製造装置1は、第1の熔融加熱炉2と、第2の熔融加熱炉3と、固体原料供給手段4と、図示しない熔融原料供給手段と、第1の冷却部材5と、図示しない第1の保持手段と、第2の冷却部材6と、図示しない第2の保持手段と、図示しない第1の冷却部材搬送手段とを含む。   FIG. 1 is a cross-sectional view schematically showing a configuration of a thin plate manufacturing apparatus 1 according to a first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view schematically showing a configuration of a main part of the thin plate manufacturing apparatus 1 shown in FIG. FIG. 3 is a drawing showing an immersion region of the first cooling member 5 in the first crucible 22. FIG. 3A is a top view showing an immersion region of the first cooling member 5. FIG. 3B is a cross-sectional view showing the immersion operation of the first cooling member 5. FIG. 4 is a drawing showing an immersion region of the first cooling member 5 and an immersion region of the second cooling member 6. FIG. 4A is a top view showing the immersion region of the first cooling member 5 and the immersion region of the second cooling member 6. FIG. 4B is a cross-sectional view showing the immersion state of the second cooling member 6. The thin plate manufacturing apparatus 1 includes a first melting heating furnace 2, a second melting heating furnace 3, a solid raw material supply means 4, a molten raw material supply means (not shown), a first cooling member 5, and a first cooling member (not shown). 1 holding means, a second cooling member 6, a second holding means (not shown), and a first cooling member transport means (not shown).

第1の熔融加熱炉2は、第1の坩堝10と、加熱手段11と、図示しない電源とを含む。第1の坩堝10は鉛直方向上方に向けて開口する凹所10aを有する容器状部材である。第1の坩堝10は、たとえば、グラファイトなどの炭素材料によって形成される。第1の坩堝10の鉛直方向側面には、図示しない断熱層および/または絶縁層が形成されても良い。断熱層は、たとえば、カーボンフェルトなどの断熱材料によって形成される。絶縁層は、たとえば、アルミナ繊維などの絶縁材料によって形成される。凹所10aは、第1の坩堝10の鉛直方向上面における少なくとも一部から鉛直方向下方に向けて形成される空間であり、熔融原料収容槽になる。本実施の形態では、凹所10aの直径は約700mmである。凹所10aには、熔融原料8が収容される。熔融原料8は飽和量の炭素を含む。炭素は後述する第2の坩堝15から溶出するものであり、第1の坩堝10を上記のように炭素材料で形成する場合には第1の坩堝10からも溶出する。飽和量を超える炭素原子15は熔融原料8中に析出し、熔融原料8と反応して該原料の炭化物粒子13として熔融原料8中に浮遊する。炭化物粒子12は、通常原料自体よりも融点が高いので、該原料の融点付近の温度に保持される熔融原料8中では固形物として存在する。熔融原料8が熔融シリコンであれば、炭化物粒子12は炭化珪素の粒子である。炭化物粒子12をそのまま浮遊させておくと、薄板状多結晶体9に混入し、薄板状多結晶体9の機械的強度、特性などを低下させる原因になるので、後記する第2の冷却部材6を用いて熔融原料8中から除去する。   The first melting furnace 2 includes a first crucible 10, a heating means 11, and a power source (not shown). The first crucible 10 is a container-like member having a recess 10a that opens upward in the vertical direction. The first crucible 10 is formed of, for example, a carbon material such as graphite. A heat insulating layer and / or an insulating layer (not shown) may be formed on the side surface in the vertical direction of the first crucible 10. The heat insulating layer is formed of a heat insulating material such as carbon felt, for example. The insulating layer is formed of an insulating material such as alumina fiber, for example. The recess 10a is a space formed from at least a part of the upper surface of the first crucible 10 in the vertical direction downward in the vertical direction, and serves as a molten raw material storage tank. In the present embodiment, the diameter of the recess 10a is about 700 mm. The melt raw material 8 is accommodated in the recess 10a. The melt raw material 8 contains a saturated amount of carbon. Carbon elutes from a second crucible 15 described later, and when the first crucible 10 is formed of a carbon material as described above, it elutes from the first crucible 10 as well. The carbon atoms 15 exceeding the saturation amount are precipitated in the molten raw material 8 and react with the molten raw material 8 to float in the molten raw material 8 as carbide particles 13 of the raw material. Since the carbide particles 12 usually have a higher melting point than the raw material itself, the carbide particles 12 exist as a solid in the molten raw material 8 maintained at a temperature near the melting point of the raw material. If molten raw material 8 is molten silicon, carbide particles 12 are silicon carbide particles. If the carbide particles 12 are allowed to float as they are, they will be mixed into the thin plate-like polycrystalline body 9 and cause the mechanical strength, characteristics, etc. of the thin plate-like polycrystalline body 9 to be lowered. Is removed from the molten raw material 8 using

加熱手段11は、第1の坩堝10の周囲に、第1の坩堝10の鉛直方向側壁に対して間隙を有して平行に離隔するように設けられ、熔融原料8が固化しないように一定温度に加熱する。加熱温度は、該原料の融点付近または融点よりも若干高い温度である。本実施の形態では、加熱手段11としては高周波誘導コイルが用いられる。本実施の形態では、高周波誘導コイルはその内径が約800mmになる。図示しない電源は、薄板製造装置1の外部に設けられて加熱手段11に発熱のための電力を供給する。熔融原料8の液温の温度制御は、たとえば、加熱手段11と、第1の坩堝10の鉛直方向下面に設けられる図示しない熱電対とを用い、薄板製造装置1の全動作を制御する図示しない制御手段によって行われる。熱電対は、熔融原料8の液温を検知する。制御手段は記憶部と演算部と制御部とを含む。記憶部には、熔融原料8の液温の設定温度が予め書き込まれ、さらに熱電対による検知結果が書き込まれる。演算部は、記憶部から熔融原料8の設定温度および検知結果を取り出し、検知結果が設定温度より低いか否かを判定する。そして、演算部が設定温度よりも低いかまたは数分程度の短時間で設定温度よりも低くなると判定した場合は、制御部は演算部による判定結果に応じて、加熱手段11に発熱用の電力を供給する図示しない電源に制御信号を送り、該電源から加熱手段11への電力供給を制御する。これによって、熔融原料8の液温が設定温度に保持される。熔融原料8の液温は、薄板状多結晶体を製造する際の諸条件に応じて適宜選択されるけれども、該原料の融点付近が好ましく、該原料の融点よりも30〜100℃程度高い温度がさらに好ましい。熔融原料8が熔融シリコンである場合は、シリコンの融点(1412℃)を勘案して、1440〜1600℃程度が好ましい。   The heating means 11 is provided around the first crucible 10 so as to be spaced apart in parallel with the vertical side wall of the first crucible 10, and at a constant temperature so that the melt raw material 8 does not solidify. Heat to. The heating temperature is a temperature near or slightly higher than the melting point of the raw material. In the present embodiment, a high frequency induction coil is used as the heating means 11. In the present embodiment, the high frequency induction coil has an inner diameter of about 800 mm. A power source (not shown) is provided outside the thin plate manufacturing apparatus 1 to supply power for heating to the heating means 11. The temperature control of the liquid temperature of the melt raw material 8 is not shown, for example, by using the heating means 11 and a thermocouple (not shown) provided on the lower surface in the vertical direction of the first crucible 10 to control the entire operation of the thin plate manufacturing apparatus 1. This is done by the control means. The thermocouple detects the liquid temperature of the melt raw material 8. The control means includes a storage unit, a calculation unit, and a control unit. In the storage unit, the set temperature of the liquid temperature of the melt raw material 8 is written in advance, and further the detection result by the thermocouple is written. The calculation unit retrieves the set temperature and detection result of the melt raw material 8 from the storage unit, and determines whether or not the detection result is lower than the set temperature. Then, when it is determined that the calculation unit is lower than the set temperature or lower than the set temperature in a short time of about several minutes, the control unit supplies heating power to the heating unit 11 according to the determination result by the calculation unit. A control signal is sent to a power source (not shown) that supplies power to control the power supply from the power source to the heating means 11. Thereby, the liquid temperature of the melt raw material 8 is maintained at the set temperature. Although the liquid temperature of the melt raw material 8 is appropriately selected according to various conditions in producing the thin plate-like polycrystalline body, it is preferably near the melting point of the raw material, and is a temperature that is about 30 to 100 ° C. higher than the melting point of the raw material. Is more preferable. When the melting raw material 8 is a molten silicon, about 1440-1600 degreeC is preferable in consideration of melting | fusing point (1412 degreeC) of silicon.

第1の熔融加熱炉2によれば、第1の熔融加熱炉2の起動時には、凹所10aを満たすように充填される固体原料7を融解させて熔融原料8とする。また、凹所10aに熔融原料8が収容される場合には、熔融原料8が凝固を起さないように、熔融原料8の液温を該原料の融点付近の温度またはそれよりも若干高い温度に保持する。   According to the first melt heating furnace 2, when starting the first melt heating furnace 2, the solid raw material 7 filled so as to fill the recess 10 a is melted to obtain a melt raw material 8. Further, when the molten raw material 8 is accommodated in the recess 10a, the liquid temperature of the molten raw material 8 is set to a temperature near or slightly higher than the melting point of the raw material 8 so that the molten raw material 8 does not solidify. Hold on.

第2の熔融加熱炉3は、第2の坩堝13と、加熱手段14と、図示しない電源とを含み、第1の熔融加熱炉2の鉛直方向上方に設けられる。また、第2の熔融加熱炉3は、図示しない熔融原料供給手段によって矢符16の方向に傾動可能に支持される。すなわち第2の熔融加熱炉3は、熔融原料供給手段によって矢符16の方向に傾動する際に、第2の坩堝13内に貯留される熔融原料8が、第2の坩堝13における第1の熔融加熱炉2に最も近接する上端部から鉛直方向下方に落下し、第1の坩堝10における凹所10a内に供給されるように配置される。また、第2の坩堝13は、その鉛直方向上面に鉛直方向上方に向けて開口する凹所13aを有する炭素材料製の容器状部材である。第2の坩堝13は、グラファイトなどの炭素材料によって形成される。第2の坩堝13の鉛直方向側面には、図示しない断熱層および/または絶縁層が形成されても良い。断熱層は、たとえば、カーボンフェルトなどの断熱材料によって形成される。絶縁層は、たとえば、アルミナ繊維などの絶縁材料によって形成される。   The second melting furnace 3 includes a second crucible 13, a heating means 14, and a power source (not shown), and is provided above the first melting furnace 2 in the vertical direction. The second melting furnace 3 is supported so as to be tiltable in the direction of the arrow 16 by a melt raw material supply means (not shown). That is, when the second melt heating furnace 3 is tilted in the direction of the arrow 16 by the melt raw material supply means, the melt raw material 8 stored in the second crucible 13 is changed into the first crucible 13 in the second crucible 13. It arrange | positions so that it may fall to the perpendicular direction downward from the upper end part nearest to the fusion heating furnace 2, and may be supplied in the recess 10a in the 1st crucible 10. FIG. The second crucible 13 is a container-like member made of carbon material having a recess 13a that opens upward in the vertical direction on the upper surface in the vertical direction. The second crucible 13 is formed of a carbon material such as graphite. A heat insulating layer and / or an insulating layer (not shown) may be formed on the side surface in the vertical direction of the second crucible 13. The heat insulating layer is formed of a heat insulating material such as carbon felt, for example. The insulating layer is formed of an insulating material such as alumina fiber, for example.

凹所13aは、第2の坩堝13の鉛直方向上面における少なくとも一部から鉛直方向下方に向けて形成される空間であり、固体原料熔融槽になる。凹所13aには固体原料供給手段4から固体原料7が供給される。凹所13aに供給される固体原料7は、加熱手段16によって、固体原料7の融点よりも充分に高い温度に加熱されることによって熔融し、熔融原料8として凹所13aに貯留される。この熔融原料8には凹所13aの内壁面から炭素15が溶出し、その温度下における熔融原料8に対する飽和濃度またはそれに近い濃度で存在する。なお、図1では炭素15を円で示すけれども、実際には炭素15は熔融原料8に溶解しており、粒子状に観察されるわけではない。凹所13aに貯留される熔融原料8は、第1の熔融加熱炉2における熔融原料8の消費状況に応じて第1の熔融加熱炉2に供給される。したがって、第2の熔融加熱炉3中において、熔融原料8中に該原料の炭化物が生成することは少ない。   The recess 13a is a space formed from at least a part of the upper surface of the second crucible 13 in the vertical direction downward in the vertical direction, and becomes a solid raw material melting tank. The solid material 7 is supplied from the solid material supply means 4 to the recess 13a. The solid raw material 7 supplied to the recess 13 a is melted by being heated to a temperature sufficiently higher than the melting point of the solid raw material 7 by the heating means 16, and stored as the molten raw material 8 in the recess 13 a. In the molten raw material 8, carbon 15 is eluted from the inner wall surface of the recess 13 a, and exists at or near the saturated concentration with respect to the molten raw material 8 at that temperature. Although carbon 15 is indicated by a circle in FIG. 1, the carbon 15 is actually dissolved in the molten raw material 8 and is not observed in the form of particles. The melt raw material 8 stored in the recess 13 a is supplied to the first melt heating furnace 2 according to the consumption status of the melt raw material 8 in the first melt heating furnace 2. Therefore, in the second melting heating furnace 3, the carbide of the raw material is rarely generated in the molten raw material 8.

加熱手段14は、第2の坩堝13の周囲に、第2の坩堝13の鉛直方向側壁に対して間隙を有して平行に離隔するように設けられる。加熱手段14は、第2の坩堝13に供給される固体原料7を加熱する。これによって熔融原料8が得られる。加熱温度は、該原料の融点よりも充分に高い温度、好ましくは100〜250℃高い温度である。熔融原料8が熔融シリコンである場合は、シリコンの融点が1412℃であることから、加熱温度は好ましくは1550〜1650℃程度、さらに好ましくは1600℃付近で保持される。本実施の形態では、加熱手段14としては高周波誘導コイルが用いられる。本実施の形態では、高周波誘導コイルは内径約300mm、高さ約200mmである。図示しない電源は、薄板製造装置1の外部に設けられ、薄板製造装置1の外壁に設けられる図示しないフランジを介して高周波誘導コイルの両末端の図示しない銅線に接続され、加熱手段14に発熱のための電力を供給する。電源の最大出力は、第2の坩堝13の大きさに応じて適宜選択できるけれども、本実施の形態では100kWである。電源から加熱手段14に供給される電力値(W)は、該電力値(W)を、高周波誘導コイルを構成する電熱線(銅線)の軸線方向に垂直な方向の断面積(cm)で除した値が20W/cm以上になるように選択するのが好ましく、50W/cm以上になるように選択するのがさらに好ましい。これによって、第2の坩堝13内の固体原料7が効率良く融解される。第2の坩堝13における加熱温度は、加熱手段と第2の坩堝13の鉛直方向下面に設けられる図示しない熱電対とを用い、制御手段によって制御される。制御自体は、第1の熔融加熱炉2における加熱温度の制御と同様にして行われる。本実施の形態では、加熱手段14としては高周波誘導コイルが用いられる。第2の熔融加熱炉3によれば、固体原料供給手段4から第2の坩堝13に供給される固体原料7が、加熱手段14によって加熱され、熔融原料8となる。 The heating means 14 is provided around the second crucible 13 so as to be spaced apart from and parallel to the vertical side wall of the second crucible 13. The heating means 14 heats the solid raw material 7 supplied to the second crucible 13. Thereby, the melt raw material 8 is obtained. The heating temperature is a temperature sufficiently higher than the melting point of the raw material, preferably a temperature higher by 100 to 250 ° C. When the melting raw material 8 is molten silicon, since the melting point of silicon is 1412 ° C., the heating temperature is preferably maintained at about 1550 to 1650 ° C., more preferably around 1600 ° C. In the present embodiment, a high frequency induction coil is used as the heating means 14. In the present embodiment, the high frequency induction coil has an inner diameter of about 300 mm and a height of about 200 mm. A power source (not shown) is provided outside the thin plate manufacturing apparatus 1 and is connected to copper wires (not shown) at both ends of the high-frequency induction coil via flanges (not shown) provided on the outer wall of the thin plate manufacturing apparatus 1. Supply power for. Although the maximum output of the power supply can be appropriately selected according to the size of the second crucible 13, it is 100 kW in the present embodiment. The power value (W) supplied from the power source to the heating means 14 is the cross-sectional area (cm 2 ) in the direction perpendicular to the axial direction of the heating wire (copper wire) constituting the high-frequency induction coil. The value divided by is preferably selected to be 20 W / cm 2 or more, and more preferably selected to be 50 W / cm 2 or more. Thereby, the solid raw material 7 in the second crucible 13 is efficiently melted. The heating temperature in the second crucible 13 is controlled by the control means using a heating means and a thermocouple (not shown) provided on the lower surface in the vertical direction of the second crucible 13. The control itself is performed in the same manner as the control of the heating temperature in the first melt heating furnace 2. In the present embodiment, a high frequency induction coil is used as the heating means 14. According to the second melt heating furnace 3, the solid raw material 7 supplied from the solid raw material supply means 4 to the second crucible 13 is heated by the heating means 14 to become the molten raw material 8.

原料供給手段4には、たとえば、シュータを使用できる。シュータは、鉛直方向上部が薄板製造装置1の上部外壁に挿通され、該外壁から鉛直方向上方に向けて突出し、鉛直方向下部が薄板製造装置1の内部において、鉛直方向に対して角度を有して傾斜するように設けられる中空状部材である。シュータの鉛直方向上部の上端部には図示しないゲートバルブが接続され、ゲートバルブからシュータ内に固体原料7が供給される。この固体原料8はシュータ内面を滑り落ちて、シュータの鉛直方向下端部の開口から排出される。シュータの鉛直方向下端部は、凹所13aの一端部の鉛直方向上方に位置し、該下端部から排出される固体原料7が凹所13aに確実に供給されるように配置される。固体原料7には、たとえば、半導体材料、金属材料などを使用できる。本実施の形態では、シリコンを使用する。   For the raw material supply means 4, for example, a shooter can be used. The upper portion of the shuta is inserted into the upper outer wall of the thin plate manufacturing apparatus 1 and protrudes upward from the outer wall in the vertical direction, and the lower portion of the vertical direction has an angle with respect to the vertical direction inside the thin plate manufacturing apparatus 1. It is the hollow member provided so that it may incline. A gate valve (not shown) is connected to the upper upper end of the vertical direction of the shuter, and the solid material 7 is supplied from the gate valve into the shooter. The solid raw material 8 slides down the inner surface of the shooter and is discharged from the opening at the lower end in the vertical direction of the shooter. The lower end portion in the vertical direction of the shuter is positioned above the one end portion of the recess 13a in the vertical direction, and is arranged so that the solid raw material 7 discharged from the lower end portion is reliably supplied to the recess 13a. For the solid material 7, for example, a semiconductor material, a metal material, or the like can be used. In this embodiment, silicon is used.

図示しない熔融原料供給手段は、第2の熔融加熱炉3を傾動可能に支持し、第2の熔融加熱炉3を矢符16の方向に傾動させることによって、第2の坩堝13の凹所13aに貯留される熔融原料8を第1の坩堝10の凹所10aに供給する。熔融原料供給手段には一般的な傾動装置を使用できる。傾動装置の具体例としては、たとえば、第2の熔融加熱炉3を矢符16の方向に傾動自在に支持する可傾支持手段と、第2の熔融加熱炉3に矢符16方向の傾動力を付与する油圧シリンダとを含む傾動装置が挙げられる。また、第2の熔融加熱炉3の外周面に固着されるトラニオンリングと、トラニオンリングの支持軸を回転自在に支持する軸受けと、支持軸に固着されるブルギアと、ブルギアを駆動する駆動ギアと、駆動ギアを回転駆動するための駆動機構(モータなど)とを含む傾動装置が挙げられる。また、第2の熔融加熱炉3を支持する図示しない支持フレームを垂直面(鉛直方向側面)に沿って傾動可能に枢支する固定フレームと、前記枢支部分を中心にする円弧に沿って支持フレームの側面に設けられるラックと、ラックに噛合するピニオンと、固定フレーム側に設けられてモータの回転力を減速して上記ピニオンに伝達する減速機構と、モータとを含む傾動装置が挙げられる。   The melt raw material supply means (not shown) supports the second melt heating furnace 3 so as to be tiltable, and tilts the second melt heating furnace 3 in the direction of the arrow 16, thereby forming the recess 13 a of the second crucible 13. The molten raw material 8 stored in is supplied to the recess 10 a of the first crucible 10. A general tilting device can be used as the melt raw material supply means. As a specific example of the tilting device, for example, tiltable support means for tiltingly supporting the second melting heating furnace 3 in the direction of the arrow 16 and tilting power in the direction of the arrow 16 in the second melting heating furnace 3. And a tilting device that includes a hydraulic cylinder that imparts. Also, a trunnion ring fixed to the outer peripheral surface of the second melting furnace 3, a bearing that rotatably supports the support shaft of the trunnion ring, a bull gear fixed to the support shaft, and a drive gear that drives the bull gear; And a tilting device including a drive mechanism (such as a motor) for rotationally driving the drive gear. Further, a support frame (not shown) that supports the second melting heating furnace 3 is supported along a fixed frame that pivots along a vertical surface (vertical side surface) so as to be tiltable, and an arc centered on the pivot portion. There is a tilting device including a rack provided on the side surface of the frame, a pinion meshing with the rack, a speed reduction mechanism provided on the fixed frame side for reducing the rotational force of the motor and transmitting it to the pinion, and a motor.

第1の冷却部材5は、その鉛直方向下面の表面にシリコンなどの薄板状多結晶体を成長させるための基板であり、図示しない第1の保持手段によって支持される。第1の坩堝10の凹所10aに収容される熔融原料8の液温が安定したことが確認された上で、冷却部材5は第1の保持手段によって、たとえば、矢符20の方向すなわち円軌道または楕円軌道で凹所10a内の熔融原料8に浸漬される。第1の冷却部材5は、図3(a)に示すように、第1の坩堝10の凹所10aに収容される熔融原料8の液面における浸漬領域21に対して、第1の坩堝10における長手方向の一端部から浸漬されかつ他端部から引き上げられる。第1の冷却部材5の表面には図示しないピラミッド状突起が規則的に形成されており、第1の冷却部材5が熔融原料8に浸漬されると、ピラミッド状突起の頂点から結晶が成長し、第1の冷却部材5の鉛直方向下面に薄板状多結晶体9が形成される。第1の冷却部材5は、薄板状多結晶体9が成長した後に熔融原料8から引き上げられる。なお、第1の冷却部材5の厚み方向において薄板状多結晶体9の成長面とは反対側の面(以下「反対側面」という)には凸部が形成される。凸部は反対側面の短手方向において第1の冷却部材5の一端部から他端部に延びるように形成される。凸部は、好ましくは反対側面の長手方向の中央部付近に形成される。凸部は、凸部が延びる方向に垂直な断面が台形になるように形成される。凸部は、前記断面において、反対側面に接する線と反対側面から離隔する線とが平行になり、反対側面に接する線が反対側面から離隔する線よりも短くなるように形成される。   The first cooling member 5 is a substrate for growing a thin plate-like polycrystalline body such as silicon on the surface of the lower surface in the vertical direction, and is supported by a first holding means (not shown). After confirming that the liquid temperature of the melt raw material 8 accommodated in the recess 10a of the first crucible 10 is stable, the cooling member 5 is moved by the first holding means, for example, in the direction of the arrow 20, that is, the circle. It is immersed in the melt raw material 8 in the recess 10a in an orbital or elliptical orbit. As shown in FIG. 3A, the first cooling member 5 has a first crucible 10 with respect to the immersion region 21 in the liquid surface of the molten raw material 8 accommodated in the recess 10 a of the first crucible 10. Is dipped from one end in the longitudinal direction and pulled up from the other end. A pyramidal protrusion (not shown) is regularly formed on the surface of the first cooling member 5. When the first cooling member 5 is immersed in the melt raw material 8, crystals grow from the apex of the pyramidal protrusion. A thin plate-like polycrystalline body 9 is formed on the lower surface in the vertical direction of the first cooling member 5. The first cooling member 5 is pulled up from the melt raw material 8 after the thin plate-like polycrystalline body 9 is grown. In the thickness direction of the first cooling member 5, a convex portion is formed on the surface opposite to the growth surface of the thin plate-like polycrystalline body 9 (hereinafter referred to as “opposite side surface”). The convex portion is formed so as to extend from one end portion of the first cooling member 5 to the other end portion in the lateral direction of the opposite side surface. The convex portion is preferably formed near the central portion in the longitudinal direction of the opposite side surface. The convex portion is formed so that a cross section perpendicular to the direction in which the convex portion extends is trapezoidal. In the cross section, the convex portion is formed such that a line in contact with the opposite side surface is parallel to a line separated from the opposite side surface, and a line in contact with the opposite side surface is shorter than a line separated from the opposite side surface.

図示しない第1の保持手段は、たとえば、固定部材と、水平方向移動手段と、鉛直方向移動手段と、スライド手段とを含む。固定部材は、凹凸形状によって冷却部材5と相互に嵌合する機構によって、第1の冷却部材5を支持する。固定部材の厚み方向における一方の面には、第1の冷却部材5の凸部に対応する凹所が形成される。固定部材の凹所は、該凹所が延びる方向に垂直な方向の断面が、第1の冷却部材5の凸部に対応する台形状であり、凹所の底辺が台形の上辺になり、凹所開口部の凹所が延びる方向に垂直な方向の寸法が台形の下辺になり、上辺の寸法よりも下辺の寸法の方が長い台形である。固定部材はその凹所と第1の冷却部材5の凸部とを嵌合させることによって、第1の冷却部材5を支持する。水平方向移動手段は、固定部材を水平方向に移動可能に支持する。鉛直方向移動手段は、固定部材を鉛直方向に移動可能に支持する。水平方向移動手段および鉛直方向移動手段には、たとえば、モータ、2軸ロボット、3軸ロボットなどを使用できる。スライド手段は、冷却部材5をその凸部が延びる方向またはその逆方向にスライドさせる。これによって、冷却部材5が固定部材から脱着される。このような保持手段は、たとえば、特開2003−59849号公報、特開2003−183015号公報、特開2003−277187号公報などに記載される。   The first holding means (not shown) includes, for example, a fixing member, horizontal direction moving means, vertical direction moving means, and slide means. The fixing member supports the first cooling member 5 by a mechanism that engages with the cooling member 5 in an uneven shape. A recess corresponding to the convex portion of the first cooling member 5 is formed on one surface in the thickness direction of the fixing member. The concave portion of the fixing member has a trapezoidal shape in which the cross section in the direction perpendicular to the direction in which the concave portion extends corresponds to the convex portion of the first cooling member 5, and the bottom of the concave portion becomes the upper side of the trapezoid. The dimension in the direction perpendicular to the direction in which the recess of the opening portion extends is the lower side of the trapezoid, and the lower side has a longer dimension than the upper side. The fixing member supports the first cooling member 5 by fitting the recess and the convex portion of the first cooling member 5. The horizontal direction moving means supports the fixing member so as to be movable in the horizontal direction. The vertical direction moving means supports the fixing member so as to be movable in the vertical direction. For the horizontal direction moving means and the vertical direction moving means, for example, a motor, a biaxial robot, a triaxial robot or the like can be used. The sliding means slides the cooling member 5 in the direction in which the convex portion extends or in the opposite direction. As a result, the cooling member 5 is detached from the fixing member. Such holding means are described in, for example, Japanese Patent Application Laid-Open Nos. 2003-59849, 2003-183015, 2003-277187, and the like.

第2の冷却部材6は、図示しない第2の保持手段によってその軸線が鉛直方向に一致しかつ鉛直方向に移動可能に支持され、少なくとも鉛直方向下端部(以下特に断わらない限り単に「下端部」とする)が第1の坩堝10の凹所10aに収容される熔融原料8に浸漬可能に設けられる炭素材料製の円柱状部材である。第2の冷却部材6を形成する炭素材料には、たとえば、グラファイトを使用できる。第2の冷却部材6の下端部を熔融原料8に浸漬すると、熔融原料8に浸漬した下端部周辺で熔融原料8の適度な温度低下が起こる。これによって、熔融原料8中に溶解する炭素原子15が炭化物の形態で下端部表面に付着する。この状態で第2の冷却部材6を熔融原料8から引き上げれば、熔融原料8中から炭素原子15を除去できる。第2の冷却部材6は、第1の坩堝10の凹所10aに収容される熔融原料8の液面において、図3(a)に示す第1の冷却部材5の浸漬領域21と同じ領域に浸漬してもよく、熔融原料8の温度分布、熔融原料8の液面の安定性などを考慮すると、浸漬領域21の中央部分に浸漬するのが好ましい。また、図4(a)に示すように、第1の冷却部材5の浸漬領域21とは異なる領域に浸漬してもよい。これによって、第1の冷却部材5と第2の冷却部材6とが互いの影響を受けることないので、第1の冷却部材5と第2の冷却部材6とを同時に熔融原料8内に浸漬させ得る。また、第1の冷却部材5および第2の冷却部材6の機能が効率良く発揮される。ただし、この場合は、第1の冷却部材5の浸漬領域21を充分に広くし、第1の冷却部材5の浸漬および引き上げ動作を容易に実施できるようにするためには、第1の坩堝10および凹所10aの寸法を矢符22の方向に拡大する必要が生じる。   The second cooling member 6 is supported by a second holding means (not shown) so that its axis coincides with the vertical direction and is movable in the vertical direction, and is at least a lower end in the vertical direction (hereinafter simply referred to as “lower end” unless otherwise specified). Is a columnar member made of a carbon material provided so as to be immersed in the melt raw material 8 accommodated in the recess 10a of the first crucible 10. For the carbon material forming the second cooling member 6, for example, graphite can be used. When the lower end portion of the second cooling member 6 is immersed in the molten raw material 8, an appropriate temperature drop of the molten raw material 8 occurs around the lower end portion immersed in the molten raw material 8. Thereby, the carbon atom 15 melt | dissolved in the melt raw material 8 adheres to a lower end part surface with the form of a carbide | carbonized_material. If the second cooling member 6 is pulled up from the molten raw material 8 in this state, the carbon atoms 15 can be removed from the molten raw material 8. The second cooling member 6 is in the same area as the immersion area 21 of the first cooling member 5 shown in FIG. 3A on the liquid surface of the melt raw material 8 accommodated in the recess 10a of the first crucible 10. In consideration of the temperature distribution of the melt raw material 8, the stability of the liquid surface of the melt raw material 8, etc., it is preferable to immerse in the central portion of the immersion region 21. Moreover, as shown to Fig.4 (a), you may immerse in the area | region different from the immersion area | region 21 of the 1st cooling member 5. FIG. Accordingly, the first cooling member 5 and the second cooling member 6 are not affected by each other, so that the first cooling member 5 and the second cooling member 6 are immersed in the melt raw material 8 at the same time. obtain. Moreover, the function of the 1st cooling member 5 and the 2nd cooling member 6 is exhibited efficiently. However, in this case, in order to sufficiently widen the immersion region 21 of the first cooling member 5 so that the first cooling member 5 can be immersed and pulled up easily, the first crucible 10 is used. In addition, it is necessary to enlarge the dimension of the recess 10 a in the direction of the arrow 22.

第2の冷却部材6には、適切な吸熱能力(冷却能力)が要求される。たとえば、吸熱能力が大きすぎると、熔融原料8に浸漬する際に大幅な温度低下が発生し、第2の冷却部材6の周囲において比較的多量の熔融原料8が固化する。その結果、炭素原子15の効率的な除去が困難になる。一方、吸熱能力が低すぎると、充分な温度低下が発生せず、炭素原子の除去に長時間を要し、薄板状多結晶体の生産効率を低下させる。したがって、本発明においては、第2の冷却部材6における熔融原料8に浸漬されない表面は、断熱層18を設けることによって、第2の冷却部材6の吸熱量を適切な値に調整する。断熱層18は、たとえば、カーボンフェルトなどの断熱材料によって形成される。さらに、第2の冷却部材6を冷却する冷却手段、第2の冷却部材6を加熱する加熱手段などを設けてもよい。これらを設けることによって、第2の冷却部材6の吸熱能力を一層適切な範囲に調整できるので、炭素原子15を一層効率良く除去できる。   The second cooling member 6 is required to have an appropriate heat absorption capability (cooling capability). For example, if the endothermic capacity is too large, a significant temperature drop occurs when immersed in the molten raw material 8, and a relatively large amount of the molten raw material 8 is solidified around the second cooling member 6. As a result, efficient removal of the carbon atoms 15 becomes difficult. On the other hand, if the endothermic capacity is too low, a sufficient temperature drop does not occur, and it takes a long time to remove carbon atoms, thereby reducing the production efficiency of the thin plate-like polycrystalline body. Therefore, in the present invention, the surface of the second cooling member 6 that is not immersed in the melt raw material 8 is provided with the heat insulating layer 18 to adjust the heat absorption amount of the second cooling member 6 to an appropriate value. The heat insulating layer 18 is formed of a heat insulating material such as carbon felt, for example. Furthermore, a cooling unit that cools the second cooling member 6, a heating unit that heats the second cooling member 6, and the like may be provided. By providing these, the heat absorption capability of the second cooling member 6 can be adjusted to a more appropriate range, so that the carbon atoms 15 can be removed more efficiently.

第2の冷却部材6の熔融原料8中への浸漬時間は、熔融原料8の液温、種類、第2の冷却部材6の材質などに応じて広い範囲から適宜選択できるけれども、炭化物を効率良く除去することを考慮すると30秒以上、好ましくは30秒〜10分である。   The immersion time of the second cooling member 6 in the melt raw material 8 can be appropriately selected from a wide range according to the liquid temperature and type of the melt raw material 8, the material of the second cooling member 6, and the like. In consideration of removal, it is 30 seconds or longer, preferably 30 seconds to 10 minutes.

図示しない第2の保持手段は、たとえば、支持手段と、鉛直方向移動手段とを含む。支持手段は、第2の冷却部材6を着脱自在に支持する。鉛直移動手段は、第2の冷却部材6を支持する支持手段を鉛直方向に移動可能に支持する。支持手段によって支持される第2の冷却部材6は、鉛直方向移動手段によってその下端部が第1の坩堝10における凹所10a内の熔融原料8に浸漬され、所定時間経過後、熔融原料8中から引き上げられる。第2の保持手段には、たとえば、2軸ロボットなどを使用できる。   The second holding means (not shown) includes, for example, a support means and a vertical direction moving means. The support means detachably supports the second cooling member 6. The vertical moving means supports the supporting means for supporting the second cooling member 6 so as to be movable in the vertical direction. The lower end of the second cooling member 6 supported by the supporting means is immersed in the molten raw material 8 in the recess 10a of the first crucible 10 by the vertical movement means, and after a predetermined time has passed, It is raised from. For example, a two-axis robot can be used as the second holding means.

熔融原料8からの炭素原子15の除去は、第2の冷却部材6と第2の保持手段とを用い、たとえば、次のようにして行われる。第2の冷却部材6の下端部を熔融原料8に浸漬すると、第2の冷却部材6は一種の吸熱部材として機能するので、該下端部周囲の熔融原料8の温度が低下し、それによって熔融原料8の比重が高くなるとともに、熔融原料8の一部が固化し、さらに熔融原料8中に溶解する炭素原子が熔融原料8と反応して該原料の炭化物の形態で析出する。固化物および炭化物を含み且つ比重の高くなった熔融原料8は、第1の坩堝10における凹所10a底面に沈み込む、凹所10aの底面を凹所10aの内側面に向かって移動して加熱手段11によって加熱され、熔融原料8の液面まで上昇し、さらに第2の冷却部材6の下端部に向かって流れる。すなわち、凹所10a内における熔融原料8中では、矢符19方向の対流が発生する。そして、第2の冷却部材6の下端部における熔融原料8の液面との接触部分は、温度の低下が特に顕著である。このため、前記接触部分を中心にして、固化した原料をバインダとして原料炭化物の塊18(以下「炭化物塊18」という)が成長する。熔融原料8がシリコンの場合は、原料炭化物は炭化珪素である。炭化物塊18を成長させるには矢符19方向の安定した対流が必要であり、そのためには、第2の冷却部材6を熔融原料8中に30秒以上浸漬させることが望ましい。   The removal of the carbon atoms 15 from the melting raw material 8 is performed as follows using the second cooling member 6 and the second holding means, for example. When the lower end portion of the second cooling member 6 is immersed in the melt raw material 8, the second cooling member 6 functions as a kind of heat absorbing member, so that the temperature of the melt raw material 8 around the lower end portion is lowered, thereby melting As the specific gravity of the raw material 8 increases, a part of the molten raw material 8 is solidified, and the carbon atoms dissolved in the molten raw material 8 react with the molten raw material 8 and precipitate in the form of carbides of the raw material. The molten raw material 8 containing solidified material and carbide and having a high specific gravity sinks into the bottom surface of the recess 10a in the first crucible 10 and moves by moving the bottom surface of the recess 10a toward the inner surface of the recess 10a. Heated by the means 11, rises to the liquid level of the melt raw material 8, and further flows toward the lower end of the second cooling member 6. That is, convection in the direction of the arrow 19 occurs in the melt raw material 8 in the recess 10a. And as for the contact part with the liquid level of the melting raw material 8 in the lower end part of the 2nd cooling member 6, the fall of temperature is especially remarkable. For this reason, a raw material carbide lump 18 (hereinafter referred to as “carbide lump 18”) grows with the solidified raw material as a binder, centering on the contact portion. When the melting raw material 8 is silicon, the raw material carbide is silicon carbide. In order to grow the carbide lump 18, stable convection in the direction of the arrow 19 is necessary. For this purpose, it is desirable to immerse the second cooling member 6 in the molten raw material 8 for 30 seconds or more.

第2の冷却部材6の表面に炭化物塊18がある程度成長した段階で、第2の冷却部材6を熔融原料8中から引き上げ、第2の冷却部材6の下端部に付着する炭化物塊18を取り外す。炭化物塊18の取り外しは、薄板製造装置1の内部で行っても良く、また外部で行っても良い。薄板製造装置1の内部で実施する場合には、第2の冷却部材6から炭化物塊18を取り外す手段と、取り外された炭化物塊18を貯留する貯留手段と、貯留手段中の炭化物塊18を薄板製造装置1の外部に排出する排出手段とが設けられる。取り外し手段は、たとえば、アームなどの挟持手段と、モータなどの駆動手段とを含み、挟持手段によって炭化物塊18を挟持しつつ、駆動手段により挟持手段に引っ張り力を付与することによって、第2の冷却部材6から炭化物塊18を取り外す装置である。引っ張り力を付与する際に、振動を付加しても良い。また、取り外し手段は挟持手段と衝撃付与手段とを含み、挟持手段によって炭化物塊18を挟持しつつ、衝撃付与手段により挟持手段に衝撃を付与することによって、第2の冷却部材6から炭化物塊18を取り外す装置である。取り外し手段はこれらに限定されることなく、固形物に付着するセラミックス片を取り外すのに用いられる装置を適宜使用できる。取り外し手段は炭化物塊18を挟持したまま貯留手段に搬送する。貯留手段内に所定量の炭化物塊18が貯留されると、搬送手段が薄板製造装置1に形成される図示しない専用の開口から貯留手段自体を搬出し、貯留手段中の炭化物塊18を廃棄した後、前記開口から貯留手段を薄板製造装置1の内部に搬入する。また、薄板製造装置1の外部で実施する場合には、炭化物塊18が付着する第2の冷却部材6を薄板製造装置1の外部に搬送する搬送手段が設けられる。炭化物塊18が付着する第2の冷却部材6は、薄板製造装置1に形成される図示しない専用の開口から搬送手段によって薄板製造装置1の外部に搬出される。そして、搬送手段によって、炭化物塊18が取り外された第2の冷却部材6または新しい第2の冷却部材6が前記開口から薄板製造装置1内に搬入され、第2の保持手段に受け渡される。このようにして、熔融原料8中の炭素原子15が、原料と炭素原子15との反応物である炭化物塊18として熔融原料8中から除去される。   When the carbide lump 18 has grown to some extent on the surface of the second cooling member 6, the second cooling member 6 is pulled up from the molten raw material 8, and the carbide lump 18 attached to the lower end of the second cooling member 6 is removed. . The removal of the carbide lump 18 may be performed inside the thin plate manufacturing apparatus 1 or may be performed outside. When implemented inside the thin plate manufacturing apparatus 1, the means for removing the carbide lump 18 from the second cooling member 6, the storage means for storing the removed carbide lump 18, and the carbide lump 18 in the storage means are thinned. Discharging means for discharging to the outside of the manufacturing apparatus 1 is provided. The detaching means includes, for example, a clamping means such as an arm and a driving means such as a motor. The clamping means 18 applies a tensile force to the clamping means while holding the carbide lump 18 by the clamping means. This is a device for removing the carbide lump 18 from the cooling member 6. When applying the tensile force, vibration may be added. Further, the detaching means includes a clamping means and an impact applying means. The carbide mass 18 is applied from the second cooling member 6 by applying an impact to the clamping means by the impact applying means while holding the carbide mass 18 by the clamping means. It is a device to remove. The removal means is not limited to these, and an apparatus used for removing the ceramic pieces adhering to the solid material can be used as appropriate. The removing means conveys the carbide lump 18 to the storage means while sandwiching it. When a predetermined amount of carbide lump 18 is stored in the storage means, the conveying means carries out the storage means itself from a dedicated opening (not shown) formed in the thin plate manufacturing apparatus 1, and the carbide lump 18 in the storage means is discarded. Thereafter, the storage means is carried into the thin plate manufacturing apparatus 1 from the opening. Moreover, when it implements outside the thin plate manufacturing apparatus 1, the conveyance means which conveys the 2nd cooling member 6 to which the carbide lump 18 adheres to the exterior of the thin plate manufacturing apparatus 1 is provided. The second cooling member 6 to which the carbide lump 18 adheres is carried out of the thin plate manufacturing apparatus 1 by a conveying means from a dedicated opening (not shown) formed in the thin plate manufacturing apparatus 1. Then, the second cooling member 6 from which the carbide lump 18 is removed or the new second cooling member 6 is carried into the thin plate manufacturing apparatus 1 from the opening and transferred to the second holding means by the conveying means. In this way, the carbon atoms 15 in the molten raw material 8 are removed from the molten raw material 8 as a carbide lump 18 that is a reaction product of the raw material and the carbon atoms 15.

図示しない第1の冷却部材搬送手段は、第1の冷却部材5を外部から薄板製造装置1の内部に搬入して第1の保持手段に受け渡し、薄板状多結晶体9が形成された第1の冷却部材5を第1の保持手段から受け取って薄板製造装置1の外部に搬出する。第1の冷却部材搬送手段には、たとえば、図示しない駆動手段によって回転駆動可能に設けられる回転ローラと、回転ローラの回転駆動に従動回転可能に設けられ、回転ローラと同じ径を有する複数の従動ローラとを含み、回転ローラおよび複数の従動ローラが、それぞれの軸心が1つの水平面内に含まれるように配置される第1の冷却部材搬送手段が挙げられる。第1の冷却部材搬送手段は、回転ローラおよび従動ローラの上に載置される第1の冷却部材5を、回転ローラおよび従動ローラの回転によって、薄板製造装置1の図示しない受入口に搬送する。第1の冷却部材5は、そこで第1の保持手段のスライド機構によって固定部材に嵌合され、浸漬・引き上げの後、薄板製造装置1の図示しない受渡口に搬送され、スライド手段によって固定部材から離脱され、再度搬送手段に載置され、次工程に搬送される。   The first cooling member conveying means (not shown) carries the first cooling member 5 from the outside into the thin plate manufacturing apparatus 1 and transfers it to the first holding means, whereby the thin plate-like polycrystalline body 9 is formed. The cooling member 5 is received from the first holding means and carried out of the thin plate manufacturing apparatus 1. The first cooling member transport means includes, for example, a rotating roller that is rotatably driven by a driving means (not shown), and a plurality of driven members that are rotatably driven by the rotational driving of the rotating roller and have the same diameter as the rotating roller. There is a first cooling member conveying means including a roller, and the rotating roller and the plurality of driven rollers are arranged so that the respective axis centers are included in one horizontal plane. The first cooling member conveying means conveys the first cooling member 5 placed on the rotating roller and the driven roller to a receiving port (not shown) of the thin plate manufacturing apparatus 1 by the rotation of the rotating roller and the driven roller. . Then, the first cooling member 5 is fitted to the fixing member by the slide mechanism of the first holding means, and after being immersed and pulled up, is conveyed to a delivery port (not shown) of the thin plate manufacturing apparatus 1 and is removed from the fixing member by the sliding means. Detached, placed again on the transport means, and transported to the next step.

本発明の薄板製造装置1によれば、たとえば、次のようにして、薄板状多結晶体9が製造される。まず、第1の熔融加熱炉2における第1の坩堝10の凹所10aに固体原料7が充填され、加熱手段11によって加熱されて熔融原料8になる。熔融原料8は、液温が該原料の融点付近またはそれよりも若干高い温度に保持される。一方、第2の熔融加熱炉3においても、第2の坩堝13における凹所13aに、原料供給手段4から固体原料7が供給される。この固体原料7は加熱手段14によって該原料の融点よりも充分に高い温度に加熱され、熔融原料8になって凹所13a内に貯留される。このとき、熔融原料8中に、凹所13aの内壁面から炭素原子15が溶出する。炭素原子15の溶出は、その温度における飽和量に達するまで継続される。この状態で、第1の冷却部材5が第1の冷却部材搬送手段によって薄板製造装置1内に搬入される。第1の冷却部材5は、図示しない第1の保持手段に受け渡され、矢符20の方向で、第1の坩堝10の凹所10aに収容される熔融原料8中に浸漬され、引き上げられる。引き上げられた第1の冷却部材5の鉛直方向下面には薄板状多結晶体9が析出される。この第1の冷却部材5は、第1の保持手段から再度第1の冷却部材搬送手段に引き渡され、薄板製造装置1の外部に搬出され、次工程に供される。以後、同様にして第1の冷却部材5表面に薄板状多結晶体9が形成される。   According to the thin plate manufacturing apparatus 1 of the present invention, for example, the thin plate-like polycrystalline body 9 is manufactured as follows. First, the solid raw material 7 is filled in the recess 10 a of the first crucible 10 in the first melting heating furnace 2 and heated by the heating means 11 to become the molten raw material 8. The molten raw material 8 is maintained at a temperature near or slightly higher than the melting point of the raw material. On the other hand, also in the second melting furnace 3, the solid raw material 7 is supplied from the raw material supply means 4 to the recess 13 a in the second crucible 13. The solid raw material 7 is heated to a temperature sufficiently higher than the melting point of the raw material by the heating means 14, becomes a molten raw material 8, and is stored in the recess 13a. At this time, the carbon atoms 15 are eluted from the inner wall surface of the recess 13 a into the melt raw material 8. The elution of carbon atoms 15 is continued until a saturation amount at that temperature is reached. In this state, the first cooling member 5 is carried into the thin plate manufacturing apparatus 1 by the first cooling member conveying means. The first cooling member 5 is transferred to a first holding means (not shown) and is immersed in the molten raw material 8 accommodated in the recess 10a of the first crucible 10 in the direction of the arrow 20 and pulled up. . A thin plate-like polycrystal 9 is deposited on the lower surface of the pulled up first cooling member 5 in the vertical direction. The first cooling member 5 is transferred again from the first holding means to the first cooling member conveying means, and is carried out of the thin plate manufacturing apparatus 1 for use in the next process. Thereafter, a thin plate-like polycrystalline body 9 is formed on the surface of the first cooling member 5 in the same manner.

第1の坩堝10の凹所10aに収容される熔融原料8が消費され、第1の冷却部材5の浸漬が困難になった時点で、第1の冷却部材5の薄板製造装置1内部への搬入が一時的に停止される。そして、第1の坩堝10には、第2の熔融加熱炉3における第2の坩堝13から炭素原子15を含む熔融原料8が補給される。熔融原料8の補給後、第2の坩堝13の凹所13aには原料供給手段4から固体原料7が供給される。この固体原料7は、前記と同様にして加熱され、熔融原料8になる。熔融原料8中にはやはり炭素原子15が溶出する。一方、第2の坩堝13から第1の坩堝10に供給される熔融原料8は、2つの坩堝10,13における保持温度の違いによって温度が低下する。このため、熔融原料8中には炭素原子が析出し、熔融原料8と反応して炭化物粒子12の形態で浮遊する。炭化物粒子12を除去するために、第2の冷却部材6の下端部を熔融原料8中に浸漬し、下端部周囲に炭化物粒子12を付着させた後、第2冷却部材6を熔融原料8中から引き上げることによって熔融原料8から炭化物粒子12を除去する。その後、第1の冷却部材5の薄板製造装置1への搬入を再開し、薄板状多結晶体9を製造する。これらの操作を繰返し実行することによって、機械的強度、特性などの低下を招くことなく、薄板状多結晶体9を効率良く生産できる。   When the melting raw material 8 accommodated in the recess 10a of the first crucible 10 is consumed and it becomes difficult to immerse the first cooling member 5, the first cooling member 5 enters the thin plate manufacturing apparatus 1 inside. Loading is temporarily stopped. Then, the first crucible 10 is supplied with the melt raw material 8 containing carbon atoms 15 from the second crucible 13 in the second melting furnace 3. After replenishment of the molten raw material 8, the solid raw material 7 is supplied from the raw material supply means 4 to the recess 13 a of the second crucible 13. This solid raw material 7 is heated in the same manner as described above to become a molten raw material 8. Carbon atoms 15 are also eluted in the melt raw material 8. On the other hand, the temperature of the molten raw material 8 supplied from the second crucible 13 to the first crucible 10 is lowered due to the difference in holding temperature between the two crucibles 10 and 13. For this reason, carbon atoms are precipitated in the molten raw material 8, react with the molten raw material 8 and float in the form of carbide particles 12. In order to remove the carbide particles 12, the lower end of the second cooling member 6 is immersed in the molten raw material 8, and the carbide particles 12 are attached around the lower end, and then the second cooling member 6 is placed in the molten raw material 8. The carbide particles 12 are removed from the molten raw material 8 by pulling up from the melt. Then, carrying in of the 1st cooling member 5 to the thin plate manufacturing apparatus 1 is restarted, and the thin plate-like polycrystal 9 is manufactured. By repeatedly executing these operations, the thin plate-like polycrystalline body 9 can be efficiently produced without causing a decrease in mechanical strength, characteristics and the like.

本実施の形態では、円柱状部材である第2の冷却部材6を用いるけれども、第2の冷却部材6の形状は円柱形状には限定されず、他の形状を有する第2の冷却部材6を使用できる。図5は、別形態である第2の冷却部材25を第1の坩堝10の凹所10aに収容される熔融原料8に浸漬した状態を示す斜視図である。図6は、第2の冷却部材25を第1の坩堝10の凹所10aに収容される熔融原料8に浸漬した状態を示す図面である。図6(a)は上面図である。図6(b)は断面図である。なお、図5および図6において、第2の冷却部材25の表面に設けられる断熱層は図示を省略する。第2の冷却部材25は、板状部材であることを特徴とする。第2の冷却部材25は、熔融原料8の液面と接触する部分の長さが第2の冷却部材6と同じに形成される。これによって、炭化物の除去能力は同じでも、下記のように形状の違いによる利点があることを明白に示すことができる。   In the present embodiment, the second cooling member 6 that is a columnar member is used. However, the shape of the second cooling member 6 is not limited to the columnar shape, and the second cooling member 6 having another shape is used. Can be used. FIG. 5 is a perspective view showing a state in which the second cooling member 25 according to another embodiment is immersed in the melt raw material 8 accommodated in the recess 10 a of the first crucible 10. FIG. 6 is a view showing a state in which the second cooling member 25 is immersed in the melt raw material 8 accommodated in the recess 10 a of the first crucible 10. FIG. 6A is a top view. FIG. 6B is a cross-sectional view. 5 and 6, the illustration of the heat insulating layer provided on the surface of the second cooling member 25 is omitted. The second cooling member 25 is a plate-like member. The second cooling member 25 is formed to have the same length as that of the second cooling member 6 in the length of the portion in contact with the liquid surface of the melt raw material 8. As a result, it is possible to clearly show that there is an advantage due to the difference in shape as described below even though the carbide removal ability is the same.

第2の冷却部材25も、第2の冷却部材6と同様に、通常は図3(a)に示す浸漬領域21のほぼ中央部に浸漬されるけれども、それに限定されない。たとえば、図5および図6に示すように、第1の冷却部材5の浸漬領域21における外側に浸漬し得る。第2の冷却部材25は板状なので、第1の冷却部材5の浸漬領域21を外れた部分に浸漬領域を設けても、第1の坩堝10および凹所10aの寸法を拡大する必要がないかまたは少しの拡大で済み、第2の冷却部材25を設けることによるコスト上昇が少ないという利点を有する。これによって、第1の冷却部材5と第2の冷却部材6とを同時に熔融原料8中に浸漬させても、互いに干渉することがない。したがって、第1の冷却部材5の浸漬領域21を充分広くでき、第2の冷却部材6およびその周辺に存在する炭化物粒子12などに接触することなく、第1の冷却部材5の浸漬および引き上げが確実に実行され、均一な組織を有する薄板状多結晶体が得られる。また、第1の冷却部材5および第2の冷却部材6の機能がそれぞれ充分に発揮されるので、炭化物含有量の非常に低い薄板状多結晶体9が得られる。   Similarly to the second cooling member 6, the second cooling member 25 is normally immersed in the substantially central portion of the immersion region 21 shown in FIG. 3A, but is not limited thereto. For example, as shown in FIGS. 5 and 6, the first cooling member 5 can be immersed outside the immersion region 21. Since the second cooling member 25 is plate-shaped, it is not necessary to enlarge the dimensions of the first crucible 10 and the recess 10a even if the immersion region is provided in a portion outside the immersion region 21 of the first cooling member 5. However, there is an advantage that the cost increase due to the provision of the second cooling member 25 is small. Thereby, even if the 1st cooling member 5 and the 2nd cooling member 6 are immersed in the melt raw material 8 simultaneously, they do not interfere with each other. Therefore, the immersion region 21 of the first cooling member 5 can be sufficiently widened, and the first cooling member 5 can be immersed and pulled up without contacting the second cooling member 6 and the carbide particles 12 present in the vicinity thereof. A thin plate-like polycrystalline body that is executed reliably and has a uniform structure is obtained. Further, since the functions of the first cooling member 5 and the second cooling member 6 are sufficiently exhibited, the thin plate-like polycrystalline body 9 having a very low carbide content can be obtained.

さらに、本実施の形態では、鉛直方向上方から見た形状がほぼ矩形に近い第1の坩堝10を用いるので、それに合わせて、鉛直方向上方から見た形状が平面状である第2の冷却部材を用いるけれども、それに限定されず、第1の坩堝10および凹所10aの形状に応じて、第2の冷却部材の形状を変更できる。たとえば、鉛直方向上方から見た形状が円形のであれば、円弧状、円環状などの形状を有する第2の冷却部材を用いてもよい。であっ   Further, in the present embodiment, the first crucible 10 whose shape viewed from above in the vertical direction is substantially rectangular is used, and accordingly, the second cooling member whose shape viewed from above in the vertical direction is planar. However, the present invention is not limited to this, and the shape of the second cooling member can be changed according to the shapes of the first crucible 10 and the recess 10a. For example, if the shape viewed from above in the vertical direction is circular, a second cooling member having an arc shape, an annular shape, or the like may be used. So

本発明の実施の第1形態である薄板製造装置の構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the thin plate manufacturing apparatus which is 1st Embodiment of this invention. 図1に示す薄板製造装置の要部の構成を模式的に示す拡大断面図である。It is an expanded sectional view which shows typically the structure of the principal part of the thin plate manufacturing apparatus shown in FIG. 第1の坩堝における第1の冷却部材の浸漬領域を示す図面である。It is drawing which shows the immersion area | region of the 1st cooling member in a 1st crucible. 第1の冷却部材の浸漬領域と第2の冷却部材の浸漬領域とを示す図面である。It is drawing which shows the immersion area | region of a 1st cooling member, and the immersion area | region of a 2nd cooling member. 別形態である第2の冷却部材を熔融原料に浸漬した状態を示す斜視図である。It is a perspective view which shows the state which immersed the 2nd cooling member which is another form in the melt raw material. 図5に示す第2の冷却部材を熔融原料に浸漬した状態を示す図面である。It is drawing which shows the state which immersed the 2nd cooling member shown in FIG. 5 in the melt raw material.

符号の説明Explanation of symbols

1 薄板製造装置
2 第1の熔融加熱炉
3 第2の熔融加熱炉
4 固体原料供給手段
5 第1の冷却部材
6,25 第2の冷却部材
7 固体原料
8 熔融原料
9 薄板状多結晶体
10 第1の坩堝
10a 凹所
11,14 加熱手段
12 炭化物粒子
13 第2の坩堝
15 炭素原子
16,19,20 矢符
17 断熱層
18 炭化物
21 浸漬領域
DESCRIPTION OF SYMBOLS 1 Thin plate manufacturing apparatus 2 1st fusion heating furnace 3 2nd fusion heating furnace 4 Solid raw material supply means 5 1st cooling member 6,25 2nd cooling member 7 Solid raw material 8 Melting raw material 9 Thin plate-like polycrystal 10 1st crucible 10a Recess 11, 14 Heating means 12 Carbide particle 13 2nd crucible 15 Carbon atom 16, 19, 20 Arrow 17 Heat insulation layer 18 Carbide 21 Immersion area

Claims (8)

熔融原料を収容する凹所を有する第1の坩堝と、第1の坩堝を加熱する加熱手段とを備える第1の熔融加熱炉と、
熔融原料を収容する凹所を有する炭素材料製の第2の坩堝と、第2の坩堝を加熱する加熱手段とを備える第2の熔融加熱炉と、
第2の坩堝の凹所に固体原料を供給する固体原料供給手段と、
第2の坩堝の凹所に収容される熔融原料を第1の坩堝の凹所に送給する熔融原料送給手段と、
第1の坩堝の凹所に収容される熔融原料に浸漬可能に設けられ、その表面に熔融原料が固化してなる薄板が形成される第1の冷却部材と、
第1の冷却部材を保持し、第1の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬して引き上げる第1の保持手段と、
第1の坩堝の凹所に収容される熔融原料に浸漬可能に設けられる第2の冷却部材と、
第2の冷却部材を保持し、第2の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬し、浸漬した状態を維持して熔融原料中の炭化物をその表面に吸着した後に引き上げる第2の保持手段とを含むことを特徴とする薄板製造装置。
A first melting furnace comprising: a first crucible having a recess for accommodating a melting raw material; and a heating means for heating the first crucible;
A second melting heating furnace comprising a second crucible made of carbon material having a recess for accommodating a melting raw material, and a heating means for heating the second crucible;
Solid raw material supply means for supplying a solid raw material to the recess of the second crucible;
A melt raw material feeding means for feeding the melt raw material accommodated in the recess of the second crucible to the recess of the first crucible;
A first cooling member provided so as to be dipped in the melt raw material housed in the recess of the first crucible, and having a thin plate formed by solidifying the melt raw material on its surface;
A first holding means for holding the first cooling member and immersing the first cooling member in the melt raw material housed in the recess of the first crucible and pulling it up;
A second cooling member provided so as to be immersed in the melt raw material housed in the recess of the first crucible;
The second cooling member is held, and the second cooling member is immersed in the molten raw material accommodated in the recess of the first crucible, and the carbide in the molten raw material is adsorbed on the surface while maintaining the immersed state. A thin plate manufacturing apparatus including a second holding means to be pulled up later.
第2の保持手段は、
第2の冷却部材を第1の坩堝の凹所に収容される熔融原料に浸漬し、浸漬した状態を少なくとも30秒間維持した後に引き上げることを特徴とする請求項1記載の薄板製造装置。
The second holding means is
2. The apparatus for producing a thin plate according to claim 1, wherein the second cooling member is immersed in a melt raw material accommodated in a recess of the first crucible and pulled up after maintaining the immersed state for at least 30 seconds.
第2の保持手段は、
第1の坩堝の凹所に収容される熔融原料に対して、第1の保持手段による第1の冷却部材の浸漬が行われない状態で第2の冷却部材を浸漬させることを特徴とする請求項1または2記載の薄板製造装置。
The second holding means is
The second cooling member is immersed in the molten raw material accommodated in the recess of the first crucible in a state where the first cooling member is not immersed by the first holding means. Item 3. A thin plate manufacturing apparatus according to item 1 or 2.
第2の冷却部材を加熱する加熱手段をさらに含むことを特徴とする請求項1〜3のいずれか1つに記載の薄板製造装置。   The thin plate manufacturing apparatus according to any one of claims 1 to 3, further comprising a heating unit that heats the second cooling member. 第2の冷却部材を冷却する冷却手段をさらに含むことを特徴とする請求項1〜4のいずれか1つに記載の薄板製造装置。   The thin plate manufacturing apparatus according to claim 1, further comprising a cooling unit that cools the second cooling member. 第2の冷却部材は、
炭素材料によって形成されることを特徴とする請求項1〜5のいずれか1つに記載の薄板製造装置。
The second cooling member is
It forms with a carbon material, The thin plate manufacturing apparatus as described in any one of Claims 1-5 characterized by the above-mentioned.
第2の冷却部材は、
その表面の少なくとも一部に断熱層が設けられることを特徴とする請求項1〜6のいずれか1つに記載の薄板製造装置。
The second cooling member is
The thin plate manufacturing apparatus according to any one of claims 1 to 6, wherein a heat insulating layer is provided on at least a part of the surface.
第2の冷却部材は、
板状部材であることを特徴とする請求項1〜7のいずれか1つに記載の薄板製造装置。
The second cooling member is
It is a plate-shaped member, The thin plate manufacturing apparatus as described in any one of Claims 1-7 characterized by the above-mentioned.
JP2006250117A 2006-09-14 2006-09-14 Thin plate manufacturing equipment Pending JP2008071977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006250117A JP2008071977A (en) 2006-09-14 2006-09-14 Thin plate manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006250117A JP2008071977A (en) 2006-09-14 2006-09-14 Thin plate manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2008071977A true JP2008071977A (en) 2008-03-27

Family

ID=39293307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006250117A Pending JP2008071977A (en) 2006-09-14 2006-09-14 Thin plate manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2008071977A (en)

Similar Documents

Publication Publication Date Title
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
WO1993012272A1 (en) Method of and apparatus for casting crystalline silicon ingot by electron beam melting
US20160230307A1 (en) Apparatus and methods for producing silicon-ingots
US20100320638A1 (en) Device and method for producing crystalline bodies by directional solidification
JP2020063163A (en) Apparatus for manufacturing single crystal
US5462011A (en) Method for pulling single crystals
JP2010083685A (en) Raw material feeding device and apparatus and method for producing single crystal
JP2007290914A (en) Apparatus for supplying molten raw material and apparatus for manufacturing polycrystal substance or single-crystal substance
JP5728385B2 (en) Sheet manufacturing method and sheet manufacturing apparatus from melt
JP2005336020A (en) Silicon single crystal puller and method of manufacturing silicon single crystal
JP6562525B2 (en) Single crystal manufacturing equipment
JP2010070404A (en) Apparatus for forming silicon melt
KR101801867B1 (en) PRODUCTION METHOD FOR SiC SINGLE CRYSTALS
JP2008071977A (en) Thin plate manufacturing equipment
JP5425858B2 (en) Single crystal silicon ingot growth device with reusable silicon melting double crucible
JP2000344595A (en) Method and apparatus for producing oxide single crystal
JP2010064930A (en) Method for pulling up silicon single crystal, and doping apparatus used for the same
JP2007254162A (en) Single crystal manufacturing device and recharge method
CN113668046A (en) Preparation device of monocrystalline silicon and use method thereof
JP2009274920A (en) Production method of silicon single crystal
JP4807669B2 (en) Raw material supply device for pulling device
JP2009274921A (en) Production method of silicon single crystal
JP2018504359A (en) Method for producing polycrystalline silicon
JP2008127254A (en) Method for manufacturing silicon ingot
JP5029184B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus thereof