JP2008070235A - Device and method for detecting defect of particle collection filter - Google Patents
Device and method for detecting defect of particle collection filter Download PDFInfo
- Publication number
- JP2008070235A JP2008070235A JP2006249301A JP2006249301A JP2008070235A JP 2008070235 A JP2008070235 A JP 2008070235A JP 2006249301 A JP2006249301 A JP 2006249301A JP 2006249301 A JP2006249301 A JP 2006249301A JP 2008070235 A JP2008070235 A JP 2008070235A
- Authority
- JP
- Japan
- Prior art keywords
- collection filter
- sound wave
- particulate collection
- defect
- defect detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
本発明は、自動車用、建設機械用、及び産業用定置エンジン、並びに燃焼機器等から排出される排ガスに含まれる燃焼排気微粒子捕集フィルタの欠陥検出装置および欠陥検出方法に関する。 The present invention relates to a defect detection device and a defect detection method for a combustion exhaust particulate collection filter contained in exhaust gas discharged from automobiles, construction machines, industrial stationary engines, combustion equipment, and the like.
両端を交互に目封止した多孔質壁ハニカム構造体の微粒子捕集フィルタ(DPF)がフィルタとして用いられている。この微粒子捕集フィルタは、次のような理由で、その欠陥を検知することが必要である。 A fine particle collection filter (DPF) having a porous wall honeycomb structure in which both ends are alternately plugged is used as a filter. This particulate collection filter needs to detect the defect for the following reasons.
第一には、DPFの製造時において、DPFが充分なフィルタ特性を有し、有害な欠陥の無いことを確認する必要がある。第二には、DPFの使用時において、何らかの破損によりフィルタ機能が低下するような欠陥に至った際、その検知をすばやく車上において知ることが望ましい。 First, when manufacturing the DPF, it is necessary to confirm that the DPF has sufficient filter characteristics and is free of harmful defects. Secondly, when using the DPF, it is desirable to quickly know the detection on the vehicle when a defect that causes the filter function to deteriorate due to some damage is reached.
前者については、実際に微粒子を流し、その透過量を測定したり、欠陥を観察する方法がとられている(特許文献1)。 For the former, a method of actually flowing fine particles and measuring the permeation amount or observing defects (Patent Document 1) is used.
後者に関しては入口出口間の圧力損失を測定し、異常な欠陥が発生した場合の圧力損失
の変化により、検出する方法が知られている(特許文献2)。または、出口側の微粒子濃度を測定する方法が試みられている。
実際に微粒子を流す計測では、微粒子発生装置、微粒子計測装置、または漏れ観察装置等が大掛かりになるという問題がある。また、検査後、微粒子を燃焼除去する等の後処理が必要であるという問題もある。さらに、条件のばらつきや計測のばらつきにより精度良く欠陥を検知することができないという問題がある。 In the measurement of actually flowing fine particles, there is a problem that a fine particle generation device, a fine particle measurement device, or a leakage observation device becomes large. There is also a problem that post-processing such as burning and removing fine particles after inspection is necessary. Furthermore, there is a problem that defects cannot be detected with high accuracy due to variations in conditions and variations in measurement.
一方、使用時の欠陥発生を圧力差の変化で検出する方法では、検出感度が鈍く、車上診断(OBD)で要求される、規制値の1.5倍漏れの検出は不可能である。 On the other hand, in the method of detecting the occurrence of a defect during use by the change in pressure difference, the detection sensitivity is low, and it is impossible to detect leakage of 1.5 times the regulation value required in on-board diagnosis (OBD).
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、簡単な方法で精度良く微粒子捕集フィルタの欠陥を発見する装置および方法を提供することにある。 The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an apparatus and a method for accurately detecting a defect of a particulate collection filter by a simple method. There is.
本発明者らは上記課題を達成すべく鋭意検討した結果、微粒子捕集フィルタの一方の端面から音波を投入し、他方の端面を通過する音波の強度を測定することによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors achieve the above-described problems by inputting sound waves from one end face of the particulate collection filter and measuring the intensity of sound waves passing through the other end face. As a result, the present invention has been completed.
即ち、本発明によれば、以下に示す微粒子捕集フィルタの欠陥検出装置および欠陥検出方法が提供される。 That is, according to the present invention, the following defect detection device and defect detection method for a particulate collection filter are provided.
[1] 隔壁により仕切られた軸方向に貫通する多数の流通孔を有する構造体の端面において、各流通孔の一方の端部を、千鳥状になるように、互い違いに目封止した微粒子捕集フィルタと、前記微粒子捕集フィルタの一方の端面側に配設された音波発生手段と、前記微粒子捕集フィルタの他方の端面側に配設された音波検出手段と、を含む、前記微粒子捕集フィルタの欠陥検出装置。 [1] On the end face of a structure having a large number of flow holes penetrating in the axial direction partitioned by the partition walls, one end of each flow hole is staggered so as to be staggered. A particulate filter, a sound wave generating means disposed on one end face side of the particulate collection filter, and a sound wave detecting means disposed on the other end face side of the particulate collection filter. Collection filter defect detection device.
[2] 前記微粒子捕集フィルタが内燃機関の排ガス流路に配設されている上記[1]に記載の微粒子捕集フィルタの欠陥検出装置。 [2] The defect detection device for a particulate collection filter according to [1], wherein the particulate collection filter is disposed in an exhaust gas flow path of an internal combustion engine.
[3] 隔壁により仕切られた軸方向に貫通する多数の流通孔を有する構造体の端面において、各流通孔の一方の端部を、千鳥状になるように、互い違いに目封止した微粒子捕集フィルタの、一方の端面側から音波を投入し、他方の端面側に通過する音波の強度を測定して、前記音波の減衰率から前記微粒子捕集フィルタの欠陥を検出する前記微粒子捕集フィルタの欠陥検出方法。 [3] In the end face of the structure having a large number of flow holes penetrating in the axial direction partitioned by the partition walls, one end of each flow hole is staggered so as to be staggered. The particulate collection filter for detecting a defect of the particulate collection filter from the attenuation rate of the acoustic wave by measuring the intensity of the acoustic wave that is input from one end surface side of the collection filter and passing through the other end surface side Defect detection method.
[4] 前記微粒子捕集フィルタが内燃機関の排ガス流路に配設されている上記[3]に記載の微粒子捕集フィルタの欠陥検出方法。 [4] The defect detection method for a particulate collection filter according to [3], wherein the particulate collection filter is disposed in an exhaust gas flow path of an internal combustion engine.
[5] 前記一方の端面側から高周波数の音波を投入する上記[3]または[4]に記載の微粒子捕集フィルタの欠陥検出方法。 [5] The defect detection method for a particulate collection filter according to the above [3] or [4], in which high-frequency sound waves are input from the one end face side.
[6] 前記高周波数の音波としてエンジン排気音の一部を使用する上記[3]〜[5]のいずれかに記載の微粒子捕集フィルタの欠陥検出方法。 [6] The defect detection method for a particulate collection filter according to any one of [3] to [5], wherein a part of engine exhaust sound is used as the high-frequency sound wave.
本発明の微粒子捕集フィルタの欠陥検出装置および検出方法によれば、容易に高精度な微粒子捕集フィルタの欠陥検出が可能となる。 According to the defect detection apparatus and detection method for the particulate collection filter of the present invention, it is possible to easily detect the defect of the particulate collection filter with high accuracy.
以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。 BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.
本発明の原理を本発明の原理図である図3および図4を参照して説明する。図3に示すように微粒子捕集フィルタ(DPF)の隔壁8に対して音波6を放出すると、音波6は隔壁8により減衰する。これに対して、図4に示すように、微粒子捕集フィルタの隔壁8に欠陥9が存在すると、隔壁8に向けて放出された音波6の一部は欠陥9を介して通過してしまうので、図3に比べて音波6の減衰率が低下する。本発明はこの減衰率の低下を定量して、減衰率の変化から微粒子捕集フィルタの欠陥を検出しようとするものである。 The principle of the present invention will be described with reference to FIGS. 3 and 4 which are principle diagrams of the present invention. As shown in FIG. 3, when the sound wave 6 is emitted to the partition wall 8 of the particulate collection filter (DPF), the sound wave 6 is attenuated by the partition wall 8. On the other hand, as shown in FIG. 4, if there is a defect 9 in the partition wall 8 of the particulate collection filter, a part of the sound wave 6 emitted toward the partition wall 8 passes through the defect 9. As compared with FIG. 3, the attenuation rate of the sound wave 6 is lowered. The present invention quantifies this decrease in the attenuation rate and attempts to detect a defect in the particulate collection filter from the change in the attenuation rate.
本発明の一実施形態である内燃機関の排気管に配設された微粒子捕集フィルタの欠陥検出装置の模式図(図1)を参照してさらに具体的に説明する。図1中、微粒子捕集フィルタ(DPF)1は被検物であり、上流側排気管4および下流側排気管5の間に配設されている。ガス流れは上流側排気管4から微粒子捕集フィルタ1を経て、下流側排気管5に流れる。この際、上流側排気管4を経由して流れてくる排ガス中の微粒子は、微粒子捕集フィルタ1で捕集される。ここで微粒子捕集フィルタに隔壁の穴(ピンホール)等の欠陥があれば、微粒子は、微粒子捕集フィルタ1を通過して、下流側排気管5に流れ込んでしまう。 A more specific description will be given with reference to a schematic view (FIG. 1) of a defect detection device for a particulate collection filter disposed in an exhaust pipe of an internal combustion engine according to an embodiment of the present invention. In FIG. 1, a particulate collection filter (DPF) 1 is a test object, and is disposed between the upstream exhaust pipe 4 and the downstream exhaust pipe 5. The gas flow flows from the upstream exhaust pipe 4 through the particulate collection filter 1 to the downstream exhaust pipe 5. At this time, the fine particles in the exhaust gas flowing through the upstream side exhaust pipe 4 are collected by the fine particle collecting filter 1. Here, if there is a defect such as a hole (pinhole) in the partition wall in the particulate collection filter, the particulate passes through the particulate collection filter 1 and flows into the downstream exhaust pipe 5.
図1中、音波発生手段としてのスピーカ2からは特定周波数の音波6が発生され、上流側排気管4を通過して、微粒子捕集フィルタ1に入る。この音波6は微粒子捕集フィルタ1で減衰した後、特定周波数の減衰した音波7として下流側排気管5に進む。この減衰した音波7は音波検出手段としてのマイクロホン3で検出される。 In FIG. 1, a sound wave 6 having a specific frequency is generated from a speaker 2 as a sound wave generating means, passes through an upstream exhaust pipe 4, and enters a particulate collection filter 1. The sound wave 6 is attenuated by the particulate collection filter 1 and then proceeds to the downstream exhaust pipe 5 as a sound wave 7 having a specific frequency. The attenuated sound wave 7 is detected by the microphone 3 as sound wave detecting means.
音波発生手段としてのスピーカ2から発生された音波6と音波検出手段としてのスピーカ3で検出された減衰した音波7とが電気的に比較され、減衰率が求められる。この減衰率をもとに微粒子捕集フィルタ1の欠陥が検出される。 The sound wave 6 generated from the speaker 2 as the sound wave generation means and the attenuated sound wave 7 detected by the speaker 3 as the sound wave detection means are electrically compared to determine the attenuation rate. Defects in the particulate collection filter 1 are detected based on this attenuation rate.
本明細書中、微粒子捕集フィルタとは、隔壁により仕切られた軸方向に貫通する多数の流通孔(セル)を有する構造体(ハニカム構造体)を各流通孔の一方の端部を、千鳥状になるように、互い違いに目封止したものを指す。 In the present specification, the particulate collection filter refers to a structure (honeycomb structure) having a large number of flow holes (cells) penetrating in the axial direction partitioned by partition walls at one end of each flow hole. It refers to what is alternately plugged so as to form a shape.
本発明において、微粒子捕集フィルタの材質は特に限定されないが、炭化珪素、コージェライト、アルミナタイタネイト、サイアロン、ムライト、窒化珪素、リン酸ジルコニウム、ジルコニア、チタニア、アルミナもしくはシリカ又はこれらの組み合わせからなるセラミックス、又は焼結金属を主成分とする材料から構成されているものが好適である。 In the present invention, the material of the particulate collection filter is not particularly limited, but is made of silicon carbide, cordierite, alumina titanate, sialon, mullite, silicon nitride, zirconium phosphate, zirconia, titania, alumina, silica, or a combination thereof. What is comprised from the material which has ceramics or a sintered metal as a main component is suitable.
微粒子捕集フィルタの欠陥の原因としては、隔壁の穴(ピンホール)、クラック(口の開いたもの)および溶損による空洞が考えられる。これらの欠陥は、微粒子捕集フィルタの捕集効率を低下させる原因となるので望ましくない。また、微粒子捕集フィルタに欠陥があれば、音波は通過しやすくなり、音波の減衰率が低下する。 As a cause of the defect of the particulate collection filter, a hole of a partition wall (pinhole), a crack (one having an opening), and a cavity due to melting damage are considered. These defects are undesirable because they cause a reduction in the collection efficiency of the particulate collection filter. Further, if there is a defect in the particulate collection filter, the sound wave easily passes and the attenuation rate of the sound wave decreases.
本明細書中、音波発生手段とは、被検物である微粒子捕集フィルタの一方の端面に対して特定の周波数の音波を投入することができるものであれば良い。具体的には、電気信号を音波に変換するスピーカや超音波振動子を例示することができるがこれに限られない。 In the present specification, the sound wave generation means may be any means that can inject sound waves of a specific frequency to one end face of the particulate collection filter that is the test object. Specifically, a speaker or an ultrasonic transducer that converts an electric signal into a sound wave can be exemplified, but the present invention is not limited thereto.
音波発生手段は微粒子捕集フィルタにおけるガス流れの上流側の端面に音波を投入できるように配設しても良いし、下流側の端面に音波を投入できるように配設しても良い。 The sound wave generation means may be disposed so that sound waves can be input to the upstream end face of the gas flow in the particulate collection filter, or may be disposed so that sound waves can be input to the downstream end face.
特定の周波数の音波としては高周波数の音波を使用することができる。具体的には、5kHz〜100kHzの間の特定の周波数に設定することが好ましく8kHz〜20kHzの間の特定の周波数に設定することがさらに好ましい。好ましい理由は、エンジン排気音がこの範囲の周波数成分を含んでいるとともに、微粒子を高い捕集効率で捕集するフィルタの特性として、この周波数範囲の音波を遮断する特性があるからである。 A high-frequency sound wave can be used as the sound wave having a specific frequency. Specifically, it is preferably set to a specific frequency between 5 kHz and 100 kHz, and more preferably set to a specific frequency between 8 kHz and 20 kHz. The reason for the preference is that the engine exhaust sound includes frequency components in this range, and the characteristic of the filter that collects fine particles with high collection efficiency is the characteristic of blocking sound waves in this frequency range.
特定の周波数の設定はフィルタ基材の細孔分布特性によっても異なり、適宜、フィルタにより遮断され易い周波数を選定する。 The setting of the specific frequency varies depending on the pore distribution characteristics of the filter base material, and a frequency that is easily cut off by the filter is selected as appropriate.
音波発生手段として、エンジンを採用することもできる。エンジンを駆動すれば、エンジン排気音が必然的に発生するものでありかつ、上述のとおり、エンジン排気音は、微粒子を高い捕集効率で捕集するフィルタにより遮断される特性を持つ周波数の音波成分を含んでいるからである。しかしながら、エンジンを用いず、他の音波発生手段を、DPFの一方の端面側に設置しても良い。 An engine can also be employed as the sound wave generation means. When the engine is driven, engine exhaust noise is inevitably generated, and as described above, engine exhaust noise is a sound wave having a frequency that is blocked by a filter that collects fine particles with high collection efficiency. This is because it contains ingredients. However, other sound wave generation means may be installed on one end face side of the DPF without using the engine.
この場合、特定の周波数の音波を発生するものであることが好ましいが、広い帯域の周波数の音波発生手段であっても、音波検出手段が検知する特定の周波数をその中に含んでいれば良い。 In this case, it is preferable to generate a sound wave having a specific frequency. However, even a sound wave generating unit having a wide frequency band may include a specific frequency detected by the sound wave detecting unit. .
本明細書中、音波検出手段とは、音波発生手段で発生された特定の周波数の音波を検出できるものであれば良い。具体的にはマイクロホンを例示することができるがこれに限らない。音波検出手段は、微粒子捕集フィルタに対して、音波発生手段とは反対側の端面に配設する。具体的には、音波発生手段が微粒子捕集フィルタにおけるガス流れの上流側の端面側に配設されている場合には、音波検出手段は、微粒子捕集フィルタにおけるガス流れの下流側の端面側に配設する。逆に、音波発生手段が微粒子捕集フィルタにおけるガス流れの下流側の端面側に配設されている場合には、音波検出手段は、微粒子捕集フィルタにおけるガス流れの上流側の端面側に配設する。 In the present specification, the sound wave detecting means may be any means that can detect sound waves of a specific frequency generated by the sound wave generating means. Specifically, a microphone can be exemplified, but not limited thereto. The sound wave detection means is disposed on the end surface opposite to the sound wave generation means with respect to the particulate collection filter. Specifically, when the sound wave generating means is disposed on the upstream end surface side of the gas flow in the particulate collection filter, the acoustic wave detection means is provided on the downstream end face side of the gas flow in the particulate collection filter. It arranges in. Conversely, when the sound wave generating means is disposed on the end face downstream of the gas flow in the particle collecting filter, the sound wave detecting means is disposed on the end face upstream of the gas flow in the particle collecting filter. Set up.
音波検出手段の特性として特定の周波数のみの音波を電気変換する特性を持たせるか、または、音波検出手段の電気信号の内、特定の周波数の強度を計測する回路を設けるかの方法により、DPFの下流側で、特定の周波数の音波の強度を測定するのが好ましい。 As a characteristic of the sound wave detection means, a DPF is obtained by a method of providing a characteristic of electrically converting a sound wave of only a specific frequency or by providing a circuit for measuring the intensity of a specific frequency in the electric signal of the sound wave detection means. It is preferable to measure the intensity of the sound wave of a specific frequency on the downstream side of the first frequency.
音波発生手段および音波検出手段は、DPFの上流側および下流側排気管の一部より分岐する、エンジン排気管より細い分岐配管を設置し、十分に温度が低くなる長さとして200mm以上の長さのその先端部に設置するのが好ましい。この時、音波検出手段の分岐配管の長さを特定の周波数で気柱振動が発生するようにして、特定の周波数における検出感度を上げることも可能である。また、分岐配管の途中にオリフィス等の絞り部を設けることにより音波検出手段の感度を調整することも可能である。 The sound wave generating means and the sound wave detecting means are provided with a branch pipe that is branched from a part of the upstream and downstream exhaust pipes of the DPF and is thinner than the engine exhaust pipe, and has a length of 200 mm or more as a length at which the temperature is sufficiently lowered. It is preferable to install it at its tip. At this time, it is possible to increase the detection sensitivity at a specific frequency by causing the air column vibration to occur at a specific frequency in the length of the branch pipe of the sound wave detection means. It is also possible to adjust the sensitivity of the sound wave detection means by providing a throttle part such as an orifice in the middle of the branch pipe.
以上は、ディーゼルエンジンの排気系に装着され、微粒子を捕集するフィルタの損傷を検知する手段としての使用方法であるが、この方法は、フィルタの製造時の欠陥検査方法としても、同様の原理で使用可能である。 The above is a method of use as a means for detecting damage to a filter that is attached to an exhaust system of a diesel engine and collects fine particles. This method is also used as a defect inspection method at the time of manufacturing a filter. Can be used.
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
DPFの上流側に周波数1kHz〜20kHzの発信機からなる音波発生手段とマイクロホンを設置し、下流側には、マイクロホンからなる音波検出手段を配設した。上流側、下流側にて音波の強度を、欠陥程度の異なるDPFにつき計測した。DPFの欠陥は、DPF端面の目封止を抜くことによりモデル化した。目封止を0%、10%、15%、30%抜いたDPFを作成して、これらを実験対象とした。これらのDPFにつき、エンジン排気系に設置した際の上流および下流の微粒子個数比をTSI社製SMPSにより計測し、DPFの微粒子捕集効率を測定した。エンジン条件としては2リットル排気量ディーゼルエンジンで回転数2000rpm、トルク50Nmの運転条件で行なった。周波数12kHzでの測定結果を表1に示す。 A sound wave generating means and a microphone composed of a transmitter having a frequency of 1 kHz to 20 kHz were installed on the upstream side of the DPF, and a sound wave detecting means composed of a microphone was disposed on the downstream side. The intensity of sound waves was measured for DPFs with different degrees of defects on the upstream side and the downstream side. The defect of the DPF was modeled by removing the plugging of the DPF end face. DPFs with 0%, 10%, 15%, and 30% of plugging were made and used as experimental objects. For these DPFs, the number ratio of the upstream and downstream particles when installed in the engine exhaust system was measured by SMPS manufactured by TSI, and the particle collection efficiency of the DPF was measured. The engine conditions were a 2-liter displacement diesel engine with operating speed of 2000 rpm and torque of 50 Nm. Table 1 shows the measurement results at a frequency of 12 kHz.
表1の結果に基づいて、縦軸に微粒子捕集フィルタ前後での12kHzの音波の強度比、横軸に微粒子(PM)捕集効率をプロットしたグラフを図2に示す。 Based on the results in Table 1, FIG. 2 is a graph in which the vertical axis plots the intensity ratio of 12 kHz sound waves before and after the particulate collection filter, and the horizontal axis plots the particulate (PM) collection efficiency.
図2から、出口側12kHzの音波の強度とフィルタの捕集効率に強い相関があり、12kHz音波の強度をフィルタ下流側で計測すれば、フィルタの欠陥程度、微粒子漏れの程度を検知できる、ことが分かる。 From FIG. 2, there is a strong correlation between the intensity of the sound wave at the outlet side 12 kHz and the collection efficiency of the filter, and if the intensity of the 12 kHz sound wave is measured at the downstream side of the filter, the degree of filter defects and the degree of particulate leakage can be detected. I understand.
本発明は、微粒子捕集フィルタの欠陥を検出するために使用することができる。 The present invention can be used to detect defects in particulate collection filters.
1:微粒子捕集フィルタ、2:スピーカ、3:マイクロホン、4:上流側排気管、5:下流側排気管、6:音波、7:減衰した音波、8:DPFの壁、9:欠陥 1: particulate collection filter, 2: speaker, 3: microphone, 4: upstream exhaust pipe, 5: downstream exhaust pipe, 6: sound wave, 7: attenuated sound wave, 8: DPF wall, 9: defect
Claims (6)
前記微粒子捕集フィルタの一方の端面側に配設された音波発生手段と、
前記微粒子捕集フィルタの他方の端面側に配設された音波検出手段と、
を含む、前記微粒子捕集フィルタの欠陥検出装置。 A particulate collection filter in which one end of each flow hole is alternately plugged in an end face of a structure having a large number of flow holes penetrating in the axial direction partitioned by a partition; ,
A sound wave generating means disposed on one end face side of the particulate collection filter;
A sound wave detecting means disposed on the other end face side of the particulate collection filter;
A defect detection apparatus for the particulate collection filter, comprising:
一方の端面側から音波を投入し、
他方の端面側に通過する音波の強度を測定して、
前記音波の減衰率から前記微粒子捕集フィルタの欠陥を検出する前記微粒子捕集フィルタの欠陥検出方法。 In the end face of the structure having a large number of flow holes penetrating in the axial direction partitioned by the partition walls, one end of each flow hole is staggered so as to be staggered. ,
Throw sound waves from one end face side,
Measure the intensity of the sound wave passing to the other end face side,
A defect detection method for the particle collection filter, wherein a defect of the particle collection filter is detected from the attenuation rate of the sound wave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006249301A JP2008070235A (en) | 2006-09-14 | 2006-09-14 | Device and method for detecting defect of particle collection filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006249301A JP2008070235A (en) | 2006-09-14 | 2006-09-14 | Device and method for detecting defect of particle collection filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008070235A true JP2008070235A (en) | 2008-03-27 |
Family
ID=39291943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006249301A Withdrawn JP2008070235A (en) | 2006-09-14 | 2006-09-14 | Device and method for detecting defect of particle collection filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008070235A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9709457B2 (en) | 2013-07-11 | 2017-07-18 | Denso Corporation | Method of detecting defects in honeycomb structural body |
JP2019509427A (en) * | 2016-03-21 | 2019-04-04 | シーティーエス・コーポレーションCts Corporation | High frequency process sensing, control and diagnostic networks and systems |
JP2019074345A (en) * | 2017-10-12 | 2019-05-16 | 株式会社ミスズ工業 | Micropore inspection apparatus and micropore inspection method |
-
2006
- 2006-09-14 JP JP2006249301A patent/JP2008070235A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9709457B2 (en) | 2013-07-11 | 2017-07-18 | Denso Corporation | Method of detecting defects in honeycomb structural body |
JP2019509427A (en) * | 2016-03-21 | 2019-04-04 | シーティーエス・コーポレーションCts Corporation | High frequency process sensing, control and diagnostic networks and systems |
JP2019074345A (en) * | 2017-10-12 | 2019-05-16 | 株式会社ミスズ工業 | Micropore inspection apparatus and micropore inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105822398B (en) | Diagnostic device for internal combustion engine and on-board diagnostic system | |
US7412889B2 (en) | System and method for monitoring a filter | |
KR100899967B1 (en) | Exhaust gas purifying apparatus | |
CN101782011B (en) | Apparatus and method for onboard performance monitoring of exhaust gas particulate filter | |
JP2005226519A (en) | Abnormality detection device for emission control device of internal combustion engine | |
US7395710B2 (en) | System and method for monitoring a filter | |
JP2008157199A (en) | Abnormality detection device of sensor | |
JP2807370B2 (en) | Inspection method and apparatus for pressure loss during regeneration of exhaust gas purifying honeycomb structure | |
US20070251221A1 (en) | System and method for monitoring a filter | |
US20130133631A1 (en) | System to measure parameters of a particulate laden flow | |
JP2004286703A (en) | Inspection method and inspection device of honeycomb structure | |
JP2007262973A (en) | Particulate quantity detection system | |
WO2010113295A1 (en) | Particulate matter concentration measuring device | |
JP2008070235A (en) | Device and method for detecting defect of particle collection filter | |
JP7488808B2 (en) | Inspection device and method for columnar honeycomb filters | |
JP4598655B2 (en) | Exhaust gas purification device | |
JP2009500600A (en) | Non-destructive test method for particle filter and apparatus for carrying out the method | |
JP5780515B2 (en) | Measurement method of accumulated amount of particulate matter in exhaust gas purification filter | |
JP2024037064A (en) | particulate filter | |
JP5526973B2 (en) | Filter evaluation method and evaluation apparatus | |
JP5175777B2 (en) | Honeycomb structure | |
JP2010270659A (en) | Exhaust emission control device | |
JP2001098925A (en) | Exhaust emission control device and filter therefor | |
JP2010144591A (en) | Exhaust emission control device | |
KR101834387B1 (en) | Active silencer for diesel engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20091201 |