JP2008069923A - Electric anticorrosion rolling bearing for motor - Google Patents

Electric anticorrosion rolling bearing for motor Download PDF

Info

Publication number
JP2008069923A
JP2008069923A JP2006251193A JP2006251193A JP2008069923A JP 2008069923 A JP2008069923 A JP 2008069923A JP 2006251193 A JP2006251193 A JP 2006251193A JP 2006251193 A JP2006251193 A JP 2006251193A JP 2008069923 A JP2008069923 A JP 2008069923A
Authority
JP
Japan
Prior art keywords
rolling bearing
sealing
ether compound
coating
epoxy group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251193A
Other languages
Japanese (ja)
Other versions
JP4746503B2 (en
Inventor
Kazutoyo Murakami
和豊 村上
Katsutoshi Muramatsu
勝利 村松
Toshiaki Kaneko
敏昭 兼子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006251193A priority Critical patent/JP4746503B2/en
Publication of JP2008069923A publication Critical patent/JP2008069923A/en
Application granted granted Critical
Publication of JP4746503B2 publication Critical patent/JP4746503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent occurrence of electric corrosion on a raceway surface and a surface of a rolling element of a rolling bearing, by suppressing secular degradation in physical property such as a sealing characteristic (a mechanical characteristic or an electrical characteristic). <P>SOLUTION: A ceramic thermal spray coating after sealing treatment is disposed to an area which can prevent the occurrence of electric corrosion on the raceway surface and the surface of the rolling element of the rolling bearing. A sealing agent for sealing treatment contains an epoxy group-containing component and a hardening agent and does not contain a polymerizable vinyl group-containing solvent. The epoxy group-containing component is a mixture of a polyglycidyl ether compound in which the number of epoxy groups comprised in one molecule is three or more as an essential component, and containing at least one of an alkylene diglycidyl ether compound and a cycloaliphatic diepoxy compound in which the number of epoxy groups comprised in one molecule is two. A ratio of 10-80 wt.% of polyglycidyl ether compound is blended with respect to a whole epoxy group-containing component in the mixture other than the hardener. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は鉄道車両用モータの軸受等に使用されるモータ用電食防止転がり軸受に関する。   The present invention relates to an electric corrosion prevention rolling bearing for a motor used for a bearing of a motor for a railway vehicle.

鉄道車両用のモータ等に使用される転がり軸受には、帰路電流、モータ軸電流等の電流が流れる場合がある。転がり軸受に電流が流れた場合、電流の通路となる部分、例えば転動体と軌道輪との間の接触部に腐食が進む電食現象が発生し、転がり軸受の寿命が著しく短縮してしまう場合がある。この電食の発生を防止するために、外輪や内輪の、少なくともハウジングまたは軸が嵌合される面に絶縁被膜を設けて、外部からの電流を遮断する方法が知られている(特許文献1および特許文献2)。   A rolling bearing used for a motor for a railway vehicle or the like may flow a current such as a return current or a motor shaft current. When a current flows through a rolling bearing, corrosion occurs at the part that becomes the current path, for example, the contact part between the rolling element and the bearing ring, and the life of the rolling bearing is significantly shortened. There is. In order to prevent the occurrence of this electric corrosion, a method is known in which an insulating film is provided on at least the surface of the outer ring or inner ring where the housing or the shaft is fitted to cut off electric current from the outside (Patent Document 1). And Patent Document 2).

絶縁被膜が樹脂被膜の場合、金型内に被処理物をインサートし絶縁性の樹脂材料を射出成型する製造方法で絶縁層が形成される。しかしながら、金属と比べ熱伝導率が低い樹脂材料は、軸受運転時の発熱をハウジングに逃がすために、熱伝導率の高いフィラーを高濃度に樹脂中に配合しなければならない。その結果樹脂材料の溶融粘度は増加し、射出成型時の金型内への充填性が劣るため、絶縁被膜層を薄く設計することが困難となり、結果的に転がり軸受の寸法精度が保てない問題があった。
また、絶縁被膜に用いられる樹脂材料は総じて金属と比較し、機械的物性や寸法安定性や、高温時の耐クリープ特性が大きく劣るため、これら特性を必要領域まで確保するために設計面での工夫を要し、転がり軸受製品の設計自由度を低下させる原因ともなっていた。さらに各転がり軸受品番ごとに専用の射出成型金型を準備する必要があり、製品の製造コスト面でも不利であった。
一方、絶縁被膜をセラミック系材料を用いた溶射被膜とした場合、樹脂被膜とは異なり、上記に示すような懸念事項は緩和される。また、樹脂材料よりも耐熱性にすぐれるため、運転時の温度上昇が比較的厳しい鉄道車両用のモータの転がり軸受に、好適な製品とすることができる。
When the insulating coating is a resin coating, the insulating layer is formed by a manufacturing method in which an object to be processed is inserted into a mold and an insulating resin material is injection molded. However, a resin material having a lower thermal conductivity than a metal must contain a filler having a high thermal conductivity in the resin at a high concentration in order to release heat generated during bearing operation to the housing. As a result, the melt viscosity of the resin material increases and the filling property in the mold at the time of injection molding is inferior, making it difficult to design the insulating coating layer thin, and as a result, the dimensional accuracy of the rolling bearing cannot be maintained. There was a problem.
Resin materials used for insulating coatings are generally inferior to metals in terms of mechanical properties, dimensional stability, and creep resistance at high temperatures. Ingenuity was required, and this was a cause of lowering the degree of freedom in designing rolling bearing products. Furthermore, it is necessary to prepare a dedicated injection mold for each rolling bearing product number, which is disadvantageous in terms of product manufacturing costs.
On the other hand, when the insulating coating is a thermal spray coating using a ceramic material, unlike the resin coating, the above-mentioned concerns are alleviated. In addition, since it has better heat resistance than a resin material, it can be a suitable product for rolling bearings for motors for railway vehicles, in which the temperature rise during operation is relatively severe.

しかしながら、セラミック系材料を用いた溶射被膜はその被膜形成の過程で生じる空隙や間隙、ボイド等の気孔を有している。気孔の中で、あるものは基材表面から基材素地に通じる連通孔の形態を示し、被膜表層が接している環境と、被膜が被覆されている基材とを連通している。この連通孔を通じて、溶射被膜外部に接触した気体や液体が基材素地まで浸透、拡散したりする現象がみられる。その結果、溶射材自身が腐食劣化したり、素地基材が炭素鋼などの場合は、被膜と基材の接触界面で、基材が選択的に腐食劣化して、溶射被膜の基材に対する接合性が損なわれ剥離したりする場合がある。また、転がり軸受と、この転がり軸受が嵌合されるハウジングとの間の絶縁性を確保しようとすると、セラミックス溶射被膜は、上述の気体や液体の浸透拡散現象によって絶縁破壊され、所望の絶縁抵抗が発揮されなくなる場合もある。その結果、鉄道車両用のモータ等に使用される転がり軸受の転動体と軌道輪との間に電食現象が生じる懸念があった。   However, a thermal sprayed coating using a ceramic material has pores such as voids, gaps, and voids generated in the process of forming the coating. Some of the pores show the form of communication holes that lead from the substrate surface to the substrate substrate, and communicate the environment where the coating surface layer is in contact with the substrate on which the coating is coated. There is a phenomenon in which the gas or liquid in contact with the outside of the thermal spray coating penetrates and diffuses to the base material through this communication hole. As a result, when the thermal spray material itself deteriorates due to corrosion, or when the base substrate is carbon steel or the like, the substrate selectively deteriorates at the contact interface between the coating and the substrate, and the spray coating is bonded to the substrate. It may lose its properties and peel off. Moreover, when it is going to ensure the insulation between a rolling bearing and the housing with which this rolling bearing is fitted, a ceramic sprayed coating will be dielectrically destroyed by the above-mentioned penetration diffusion phenomenon of gas and liquid, and desired insulation resistance will be carried out. May not be exhibited. As a result, there is a concern that an electrolytic corrosion phenomenon may occur between the rolling elements of the rolling bearing used for the motor for a railway vehicle and the raceway.

そこで、軸受の内外輪の両方もしくは何れか一方の他部材と接する部位に溶射被膜を形成し、その後何らかの封孔処理を施し、被膜の環境遮断性を高める封孔処理を行ない、軸受を絶縁させる手法が行なわれてきた。従来から広く知られる一般的な封孔処理方法として、エポキシ樹脂、アクリル樹脂、ウレタン樹脂、フェノール樹脂、フッ素樹脂等の合成樹脂を有機溶剤に溶解させた封孔処理剤を溶射被膜に塗布する方法がある。しかし、この方法では、溶射被膜表面に塗布されるだけで細孔の底部までは浸透しない。したがって形状(寸法)精度を保つために、封孔処理後に溶射被膜表面を研削あるいは研磨などで除去した場合、溶射被膜に対する封孔処理効果はほとんど期待できないことがある。また、使用している過程で、機械の振動や温度上昇の繰り返しに伴う軸受位置の微小変位に起因して合成樹脂の塗膜が摩耗し、封孔処理の効果が持続しない場合も見られる。   Therefore, a thermal spray coating is formed on the inner and / or outer ring of the bearing in contact with the other member, and then a sealing process is performed, and the sealing process is performed to increase the environmental barrier property of the coating to insulate the bearing. The technique has been carried out. As a general well-known sealing treatment method, a method of applying a sealing treatment agent in which a synthetic resin such as an epoxy resin, an acrylic resin, a urethane resin, a phenol resin, or a fluororesin is dissolved in an organic solvent is applied to the spray coating. There is. However, in this method, it is only applied to the surface of the sprayed coating and does not penetrate to the bottom of the pores. Therefore, when the surface of the sprayed coating is removed by grinding or polishing after the sealing treatment in order to maintain the shape (dimension) accuracy, the sealing treatment effect on the sprayed coating may be hardly expected. In addition, in the process of use, there are cases where the coating effect of the synthetic resin is worn due to minute displacement of the bearing position due to repeated vibration of the machine and temperature rise, and the effect of the sealing treatment is not sustained.

一方、封孔処理を施すことで、金属基材と溶射被膜材との密着力を向上させようとする試みもしばしば行なわれる。一般的な溶射被膜は、被膜を製膜させたい表面とは化学的な結合を形成するのではなく、機械的な締結力(アンカー効果、投錨効果などという。)が主となって基材との密着力を構成する。特に鉄道車両用モータの転がり軸受など、金属基材からなる寸法精度の要求が厳しい機械部品表面に対し溶射を適用する場合、これら機械部品の表面は研摩で仕上げることが多く、表面粗さRaが1μm 未満になっていることが多い。よって、これら金属部品の表面に溶射を行なう場合、ショットブラストあるいはタンブラー処理などの公知の表面改質手法にて、表面粗さRaを1μm 以上程度まで増大させる処理を行なうことが多い。この手法により、ある程度溶射被膜と基材との間の接着力の向上は可能であるが、表面改質の程度次第では基材の寸法精度が悪化したり、表層部の焼き鈍りが起こることで基材材質の物性が低下するなどの弊害が起こりうる。結果的に、この手法による密着力の向上手法には限界がある。   On the other hand, attempts are often made to improve the adhesion between the metal substrate and the thermal spray coating material by applying a sealing treatment. A general thermal sprayed coating does not form a chemical bond with the surface on which the coating is to be formed, but a mechanical fastening force (referred to as an anchoring effect, anchoring effect, etc.) and the base material. Consistency of contact. In particular, when spraying is applied to the surface of a machine part that requires a dimensional accuracy such as a rolling bearing of a motor for a railway vehicle, the surface of the machine part is often finished by polishing, and the surface roughness Ra is low. It is often less than 1 μm. Therefore, when spraying the surfaces of these metal parts, a process of increasing the surface roughness Ra to about 1 μm or more is often performed by a known surface modification method such as shot blasting or tumbling. This technique can improve the adhesion between the thermal spray coating and the substrate to some extent, but depending on the degree of surface modification, the dimensional accuracy of the substrate may deteriorate or the surface layer may be annealed. Defects such as deterioration of physical properties of the base material may occur. As a result, there is a limit to the method for improving the adhesion by this method.

そこで、物理的な密着力を補助するために化学的な接着力を併用するよう努力がなされてきたが、上記に示す一般的な封孔処理方法では、溶射被膜表面に塗布されるだけで細孔の底部の基材界面まで浸透しないため、溶射被膜の最外表面近傍のセラミックス粒子間の接着力のみを高めるだけに留まってしまい、金属基材と溶射被膜材との間で化学的な接着力を発揮させるには到らないという問題がある。   Therefore, efforts have been made to use chemical adhesion in combination to assist physical adhesion. However, in the general sealing treatment method described above, the coating is only applied to the surface of the sprayed coating. Since it does not penetrate to the base material interface at the bottom of the hole, it only increases the adhesion between the ceramic particles near the outermost surface of the thermal spray coating, and the chemical adhesion between the metal base and the thermal spray coating material. There is a problem that it cannot reach its full potential.

これらを改善する方法として、例えば、封孔処理剤に、可視光線により硬化する光硬化性樹脂を利用する方法(特許文献3)、電着塗料により、塗料粒子の電気泳動現象で溶射被膜の細孔中に析出・充填させようとする方法(特許文献4)、ガラス質物質を形成するB23を添加した溶射材を母材表面に溶射した後、溶射被膜を加熱してB23を溶融させ、溶射被膜中に発生している間隙に充填する方法(特許文献5)、溶射材料中にガラス質物質を形成するB23を添加して被膜を形成し、その後の加熱処理で溶融B23が気孔充填作用を行なうもの(特許文献5)などが知られている。しかし、これらの方法は、加圧または減圧工程に加え、いずれも特殊な装置や煩雑な工程を必要とするなど、工業的生産方法に適さないという問題がある。
特許第3736486号公報 実用新案登録第2560391号公報 特開平5−106014号公報 特開平6−212391号公報 特開平10−259469号公報
As a method for improving these, for example, a method of using a photocurable resin that is cured by visible light as a sealing agent (Patent Document 3), an electrodeposition coating, and an electrophoretic phenomenon of coating particles, the fineness of a sprayed coating is reduced. A method of depositing and filling the pores (Patent Document 4), a thermal spray material added with B 2 O 3 forming a vitreous material is sprayed on the surface of the base material, and then the thermal spray coating is heated to form B 2 O 3 is melted and filled in the gap generated in the sprayed coating (Patent Document 5), and a coating is formed by adding B 2 O 3 that forms a vitreous substance in the sprayed material, followed by heating. Known is one in which molten B 2 O 3 performs pore filling in the treatment (Patent Document 5). However, these methods have a problem that they are not suitable for industrial production methods, such as requiring special equipment and complicated steps in addition to the pressurization or decompression step.
Japanese Patent No. 3736486 Utility Model Registration No. 2560391 JP-A-5-106014 JP-A-6-212391 JP-A-10-259469

本発明は、かかる問題に対処するためになされたものであり、気孔(間隙)に対する浸透性および充填性に優れ、溶射被膜材の間隙が実質的に全て充填されている状態まで封孔処理を施すことができ、経時的な封孔特性(機械的特性、電気的特性)などの物性の劣化を抑制することで、軸受の軌道面および転動体の表面に生じる電食の発生を防ぐ鉄道車両用のモータ等に使用できるモータ用電食防止転がり軸受の提供を目的とする。   The present invention has been made in order to cope with such problems, and has excellent permeability and filling ability to pores (gap), and sealing treatment is performed until substantially all gaps of the thermal spray coating material are filled. Railway vehicles that can be applied and prevent deterioration of physical properties such as sealing characteristics (mechanical characteristics, electrical characteristics) over time, preventing the occurrence of electrolytic corrosion on the raceway surface of rolling bearings and the surface of rolling elements The purpose of the present invention is to provide an electric corrosion-preventing rolling bearing for a motor that can be used for a motor for a motor.

本発明のモータ用電食防止転がり軸受は、鉄道車両用モータに用いられる転がり軸受の軌道面および転動体の表面に生じる電食の発生を防ぐことができる部位に封孔処理されたセラミック溶射被膜を有する。封孔処理するための封孔処理剤は、エポキシ基含有成分と硬化剤とを含み、重合性ビニル基含有溶剤を含まず、上記エポキシ基含有成分が、1分子中に含まれるエポキシ基の数が3個以上のポリグリシジルエーテル化合物を必須成分とし、1分子中に含まれるエポキシ基の数が2個のアルキレンジグリシジルエーテル化合物および環状脂肪族ジエポキシ化合物から選ばれた少なくとも1つを含む混合物であり、上記硬化剤を除くエポキシ基含有成分全体に対して、ポリグリシジルエーテル化合物が 10〜80 重量%配合された封孔処理剤であることを特徴とする。
また、封孔処理されたセラミック溶射被膜を有するモータ用電食防止転がり軸受における電食の発生を防ぐことができる部位が、転がり軸受と、少なくともハウジングまたは軸とが嵌合する面であることを特徴とする。
また、封孔処理するための封孔処理剤を構成するエポキシ基含有成分は、更に1分子中に含まれるエポキシ基の数が1個のモノグリシジルエーテル化合物を含むことを特徴とする。
The electric corrosion-preventing rolling bearing for a motor of the present invention is a ceramic sprayed coating that is sealed in a portion that can prevent the occurrence of electrolytic corrosion that occurs on the raceway surface and rolling element surface of a rolling bearing used in a motor for a railway vehicle. Have The sealing agent for sealing treatment contains an epoxy group-containing component and a curing agent, does not contain a polymerizable vinyl group-containing solvent, and the epoxy group-containing component is the number of epoxy groups contained in one molecule. Is a mixture containing 3 or more polyglycidyl ether compounds as an essential component and containing at least one selected from alkylene diglycidyl ether compounds and cycloaliphatic diepoxy compounds having two epoxy groups in one molecule. Yes, it is a sealing agent in which the polyglycidyl ether compound is blended in an amount of 10 to 80% by weight with respect to the entire epoxy group-containing component excluding the curing agent.
In addition, the portion that can prevent the occurrence of electrolytic corrosion in a motorized electric corrosion-preventing rolling bearing having a ceramic sprayed coating that has been sealed is that the rolling bearing and at least the housing or the shaft are fitted to each other. Features.
In addition, the epoxy group-containing component constituting the sealing agent for sealing treatment is characterized by further containing a monoglycidyl ether compound having one epoxy group in one molecule.

本発明のモータ用電食防止転がり軸受は、セラミック溶射被膜を封孔処理するための封孔処理剤として、上記所定の封孔処理剤を用いるので、溶射被膜の気孔(間隙)を密に充填することができる。そのため、基材と溶射被膜間の密着力を向上させ、更に大気中の水分の侵入を防止し、酸化物セラミックス溶射被膜の固有の値を低減させることなく、絶縁抵抗値および耐電圧特性の低下を抑制できる。その結果、本発明のモータ用電食防止転がり軸受は、長期間にわたって電食の原因となる、電流の伝達を抑制でき、長期間高い電食防止効果を有する。   The electric corrosion-preventing rolling bearing for motor of the present invention uses the predetermined sealing treatment agent as a sealing treatment agent for sealing the ceramic spray coating, so that the pores (gap) of the spray coating are closely packed. can do. Therefore, the adhesion between the base material and the thermal spray coating is improved, and further, moisture in the air is prevented from entering, and the insulation resistance value and withstand voltage characteristics are reduced without reducing the intrinsic value of the oxide ceramic thermal spray coating. Can be suppressed. As a result, the electric corrosion prevention rolling bearing for a motor of the present invention can suppress electric current transmission that causes electric corrosion over a long period of time, and has a high electric corrosion prevention effect for a long period of time.

モータ用電食防止転がり軸受の1例を図1に基づいて説明する。
図1はハウジングと嵌合する面である外輪外周面に封孔処理されたセラミック溶射被膜を形成したモータ用電食防止円筒ころ軸受の部分断面図である。
図1に示すように、モータ用電食防止転がり軸受は、内輪1と外輪2との間に保持器3に保持された複数のころ状の転動体4を介在させ、外輪2をハウジング5等に収納し、軸6を内輪1の内径に固定する軸受であって、外輪2の外周面2aに封孔処理されたセラミック溶射被膜7が形成されている。内輪1、外輪2および転動体4は、軸受鋼等の金属材からなる。
封孔処理されたセラミック溶射被膜7は、ハウジング5と嵌合する面、例えば外輪2の外径面a、この外径面aから幅面bにわたる範囲で、面取部cも含めた範囲の面に形成される。
An example of the electric corrosion prevention rolling bearing for a motor will be described with reference to FIG.
FIG. 1 is a partial cross-sectional view of an electric corrosion-preventing cylindrical roller bearing for a motor in which a ceramic sprayed coating that has been sealed is formed on the outer peripheral surface of an outer ring, which is a surface that fits with a housing.
As shown in FIG. 1, the electric corrosion prevention rolling bearing for a motor has a plurality of roller-like rolling elements 4 held by a cage 3 between an inner ring 1 and an outer ring 2, and the outer ring 2 is connected to a housing 5 or the like. The ceramic sprayed coating 7 is formed on the outer peripheral surface 2 a of the outer ring 2 and is sealed to fix the shaft 6 to the inner diameter of the inner ring 1. The inner ring 1, the outer ring 2 and the rolling element 4 are made of a metal material such as bearing steel.
The ceramic sprayed coating 7 that has been subjected to the sealing treatment is a surface that fits with the housing 5, for example, an outer diameter surface a of the outer ring 2, a surface in the range from the outer diameter surface a to the width surface b, and including the chamfered portion c. Formed.

また、被膜7は、上記外輪2の外周面2aの他、内輪1の内周面1aに形成されていてもよい。なお、本発明において内輪1の内周面1aとは、少なくとも内輪1が軸6等と接触する範囲の全面である。
上記のように、外輪とハウジング等とが接触する面、および、内輪と軸等とが接触する面の少なくとも一方に封孔処理されたセラミック溶射被膜7を形成することにより絶縁性能が担保され、電食を防ぐことができる。
Further, the coating 7 may be formed on the inner peripheral surface 1 a of the inner ring 1 in addition to the outer peripheral surface 2 a of the outer ring 2. In the present invention, the inner peripheral surface 1a of the inner ring 1 is at least the entire surface in a range where the inner ring 1 contacts the shaft 6 and the like.
As described above, the insulating performance is ensured by forming the ceramic sprayed coating 7 sealed on at least one of the surface where the outer ring and the housing contact, and the surface where the inner ring and the shaft contact, Electric corrosion can be prevented.

モータ用電食防止転がり軸受の他の1例を図2に示す。図2は内輪および外輪の転走面以外に封孔処理されたセラミック溶射被膜を形成したモータ用電食防止深溝玉軸受の断面図である。
図2に示すように、モータ用電食防止深溝玉軸受は、内輪1と外輪2との間に保持された複数のボール状の転動体4aを介在させ、外輪2をハウジング等(図示を省略)に、軸(図示を省略)を内輪1の内径に固定する軸受であって、外輪2の外周面および内輪1の内周面に封孔処理されたセラミック溶射被膜7が形成されている。内輪1、外輪2および転動体4aは、軸受鋼等の金属材からなる。なお、3は保持器、3aはシール部材、3bはグリースである。
Another example of the electric corrosion prevention rolling bearing for a motor is shown in FIG. FIG. 2 is a cross-sectional view of an electric corrosion-preventing deep groove ball bearing for a motor in which a ceramic sprayed coating that has been sealed is formed in addition to the rolling surfaces of the inner and outer rings.
As shown in FIG. 2, the electric corrosion prevention deep groove ball bearing for a motor has a plurality of ball-shaped rolling elements 4a held between an inner ring 1 and an outer ring 2, and the outer ring 2 is a housing or the like (not shown). And a ceramic sprayed coating 7 which is sealed on the outer peripheral surface of the outer ring 2 and the inner peripheral surface of the inner ring 1. The inner ring 1, the outer ring 2 and the rolling element 4a are made of a metal material such as bearing steel. 3 is a cage, 3a is a sealing member, and 3b is grease.

外輪外周面等への封孔処理されたセラミック溶射被膜7の形成方法を図1に基づいて説明する。被膜7の形成は、まず、外輪2の外周面2aに溶射法により溶射セラミックス被膜を形成する。
溶射セラミックス被膜は、鋼等の基材金属の表面に酸化物セラミックス、炭化物サーメット等の溶射材を公知の溶射方法で形成する。
溶射材として用いる酸化物セラミックスとしてはアルミナ、ジルコニア、チタニア等を、炭化物サーメットとしてはクロム炭化物、タングステン炭化物等を、それぞれ挙げることができる。
なお、溶射セラミック被膜の形成において、溶射被膜と基材金属の密着性を高めるために、ニッケルなどの金属粉末を最下層に溶射することができる。また、溶射セラミック被膜が受ける外部からの機械的衝撃を緩和する目的で、金属被膜を最表層に形成することができる。
溶射方法としては、例えばプラズマ溶射法、高速ガス炎溶射法等を用いることができる。溶射被膜の膜厚は、溶射材料の種類や得られる溶射被膜被覆部材の用途に応じて適宜設定することができるが、通常、炭素鋼を基材として、溶射材をアルミナとした場合、20〜2000μm 程度、好ましくは 50〜1000μm 程度である。
A method for forming the ceramic sprayed coating 7 that has been sealed on the outer peripheral surface of the outer ring will be described with reference to FIG. The coating 7 is formed by first forming a sprayed ceramic coating on the outer peripheral surface 2a of the outer ring 2 by a spraying method.
The sprayed ceramic coating is formed by forming a sprayed material such as oxide ceramics or carbide cermet on the surface of a base metal such as steel by a known spraying method.
Examples of the oxide ceramic used as the thermal spray material include alumina, zirconia, and titania, and examples of the carbide cermet include chromium carbide and tungsten carbide.
In forming the thermal sprayed ceramic coating, a metal powder such as nickel can be sprayed on the lowermost layer in order to improve the adhesion between the thermal spray coating and the base metal. Moreover, a metal film can be formed in the outermost layer for the purpose of relieving the external mechanical impact which a thermal spraying ceramic film receives.
As the spraying method, for example, a plasma spraying method, a high-speed gas flame spraying method, or the like can be used. The film thickness of the thermal spray coating can be appropriately set according to the type of the thermal spray material and the use of the resulting thermal spray coating coating member, but usually when carbon steel is the base material and the thermal spray material is alumina, 20 ~ It is about 2000 μm, preferably about 50 to 1000 μm.

セラミック溶射被膜への封孔処理は、処理される溶射被膜を形成している粒子境界融着構造により封孔処理剤の浸透・充填性が左右される。このため、溶射被膜の粒子境界融着構造および封孔後の溶射被膜の要求特性に適した最適な封孔処理剤を選択するのが望ましい。
例えば、後述する本発明で使用される封孔処理剤は、形成された溶射被膜の気孔率が 10%以下である場合の封孔処理に用いることが好ましい。また、該封孔処理剤は、溶射材としてセラミック粉末や炭化物サーメット等を用いてプラズマ溶射、高速ガス炎溶射法によって形成した溶射被膜の気孔率 10 %以下である場合の封孔処理に用いることが好ましい。該封孔処理剤を用いてこれら溶射被膜に封孔処理を施した場合、非常に優れた絶縁特性などの封孔効果を発揮し、表層を、例えば 200μm 程度、研削除去しても封孔効果を確認することができる。
In the sealing treatment to the ceramic sprayed coating, the penetration and filling properties of the sealing agent are affected by the particle boundary fusion structure forming the sprayed coating to be processed. For this reason, it is desirable to select an optimal sealing treatment agent suitable for the particle boundary fusion structure of the thermal spray coating and the required characteristics of the thermal spray coating after sealing.
For example, the sealing agent used in the present invention to be described later is preferably used for sealing treatment when the formed sprayed coating has a porosity of 10% or less. The sealing agent should be used for sealing when the porosity of the sprayed coating formed by plasma spraying or high-speed gas flame spraying method using ceramic powder or carbide cermet as the spraying material is 10% or less. Is preferred. When these thermal spray coatings are subjected to a sealing treatment using the sealing agent, the sealing effect such as excellent insulating properties is exhibited, and the sealing effect is obtained even if the surface layer is removed by grinding, for example, about 200 μm. Can be confirmed.

後述する封孔処理剤を用いることにより、溶射被膜の気孔(間隙)がエポキシ基を重合して得られる樹脂で実質的に全て充填されるので、間隙のない連続被膜表面を有する溶射被膜被覆部材を得ることができる。
ここで、溶射被膜の気孔(間隙)が「実質的に全て充填されている」とは、溶射被膜表面に塗膜形状で存在している封孔処理剤により形成された層(封孔処理剤に含まれる成分の硬化物などからなる)を含めた溶射被膜の最外層部分(例えば、表面から厚さ 0.2 mm程度)を研削・研磨して除去した後、JIS H 8666に基づく染色浸透試験において、着色が見られないことを意味する。
By using a sealing agent to be described later, the pores (gap) of the thermal spray coating are substantially completely filled with a resin obtained by polymerizing epoxy groups, so that the thermal spray coating coating member having a continuous coating surface without gaps Can be obtained.
Here, the pores (gap) of the sprayed coating are “substantially all filled” means that the layer formed by the sealing agent existing in the form of a coating on the surface of the sprayed coating (sealing agent) In the dye penetration test based on JIS H 8666, the outermost layer portion (for example, about 0.2 mm thick from the surface) of the thermal spray coating including the cured product of the components contained in the material is removed by grinding and polishing. , Meaning no coloration.

封孔処理は、溶射後の溶射被膜に対し速やかに施すことが好ましい。溶射被膜は、粒子径分布のある多数の粒子が粒子間表層のみで融着して形成された被膜である。必然的に粒子境界に間隙が生成するため、被膜形成の直後から粒子境界の間隙をぬって水分や異物が侵入するなど、環境条件の影響を受けることが多い。したがって封孔効率の低下を防ぐには溶射後、溶射被膜の封孔処理をできる限り早く施すことが望ましい。
封孔処理方法としては、溶射被膜への封孔処理剤の塗布、封孔処理剤への溶射被膜の浸漬等、公知の方法を用いることができる。その後、所定の硬化条件で硬化することにより封孔処理されたセラミック溶射被膜を得ることができる。
The sealing treatment is preferably performed quickly on the sprayed coating after spraying. The thermal spray coating is a coating formed by fusing a large number of particles having a particle size distribution only at the interparticle surface layer. Since gaps are inevitably generated at the particle boundaries, it is often affected by environmental conditions such as moisture and foreign matter entering through the gaps at the grain boundaries immediately after the formation of the coating. Therefore, in order to prevent a decrease in the sealing efficiency, it is desirable to perform the sealing treatment of the sprayed coating as soon as possible after spraying.
As the sealing treatment method, known methods such as application of a sealing treatment agent to the spray coating and immersion of the spray coating in the sealing treatment agent can be used. Thereafter, a ceramic sprayed coating that has been sealed can be obtained by curing under predetermined curing conditions.

封孔処理方法は、封孔処理剤が溶射被膜底部まで浸透し充填性が向上することにより、粒子間境界の間隙が確実に埋められることで粒子間の個々の結合力や、基材との密着力が増大し、粒子間境界の間隙を全て埋めることができる。このため大気中における環境水分や異物の侵入が遮断され、酸化物セラミックス溶射被膜の固有の値を低減させることなく、絶縁抵抗値および絶縁破壊値の低下を抑制することができる。また得られた封孔処理済みの溶射被膜は表面を研削または研磨などした場合にも露出する間隙が存在しない。したがって、得られた溶射被膜被覆部材は、機械的強さや基材との密着強さが高められ、更に絶縁抵抗値および絶縁破壊値など電気特性が向上する溶射被膜を鉄道車両用モータに用いられる転がり軸受の外輪外周面等形成するので、ハウジング等と軸受とが絶縁され、電食の発生を防ぐことができる。   In the sealing treatment method, the sealing agent penetrates to the bottom of the thermal spray coating and the filling property is improved, so that the gap at the boundary between the particles is reliably filled, so that the bonding force between the particles and the base material can be reduced. The adhesion force is increased, and all gaps between the boundaries between particles can be filled. For this reason, the penetration | invasion of environmental moisture and a foreign material in air | atmosphere is interrupted | blocked, and the fall of an insulation resistance value and a dielectric breakdown value can be suppressed, without reducing the intrinsic | native value of an oxide ceramic sprayed coating. Further, the obtained thermally sprayed coating after sealing does not have an exposed gap even when the surface is ground or polished. Therefore, the obtained thermal spray coating member can be used in a railway vehicle motor with a thermal spray coating that has improved mechanical strength and adhesion strength to the base material, and further improves electrical characteristics such as insulation resistance value and dielectric breakdown value. Since the outer peripheral surface of the outer ring of the rolling bearing is formed, the housing and the bearing are insulated and the occurrence of electrolytic corrosion can be prevented.

後述する封孔処理剤を用いて封孔処理を施すと、溶射被膜の間隙が封孔処理剤で実質的に全て充填された後、溶射被膜表層を隠蔽する形で封孔処理剤による塗膜状の薄い層が形成される。この塗膜状の薄い層を有する被覆部材はそのまま使用することもできるが、被覆部材の寸法精度を保つためには、研削砥石、研磨紙、不織布バフなどを用いて溶射被膜の表面を研削・研磨してかかる層を除去することができる。   When sealing treatment is performed using a sealing treatment agent described later, the coating with the sealing treatment agent is formed so as to conceal the surface layer of the thermal spray coating after the gap between the thermal spray coatings is substantially filled with the sealing treatment agent. A thin layer is formed. The coated member having a thin layer in the form of a coating can be used as it is, but in order to maintain the dimensional accuracy of the coated member, the surface of the sprayed coating is ground and ground using a grinding wheel, abrasive paper, non-woven buff, etc. This layer can be removed by polishing.

本発明のモータ用電食防止転がり軸受は、軸受構成部材表面にセラミック溶射膜を形成し、エポキシ基含有成分と硬化剤とを含み、重合性ビニル基含有溶剤を含まない封孔処理剤で封孔処理を施す。
上記エポキシ基含有成分は、1分子中に含まれるエポキシ基の数が3個以上のポリグリシジルエーテル化合物を必須成分とし、1分子中に含まれるエポキシ基の数が2個のアルキレンジグリシジルエーテル化合物および環状脂肪族ジエポキシ化合物から選ばれた少なくとも1つを含む混合物であり、上記エポキシ基含有成分は、硬化剤を除く、エポキシ基含有成分全体に対して、ポリグリシジルエーテル化合物の配合割合が 10〜80 重量%である。上記エポキシ基含有成分は、更に1分子中に含まれるエポキシ基の数が1個のモノグリシジルエーテル化合物を含むことができる。
The electric corrosion-preventing rolling bearing for motors of the present invention forms a ceramic sprayed coating on the surface of a bearing component, contains an epoxy group-containing component and a curing agent, and is sealed with a sealing agent that does not contain a polymerizable vinyl group-containing solvent. Apply hole treatment.
The epoxy group-containing component is a polyglycidyl ether compound having 3 or more epoxy groups contained in one molecule as an essential component, and an alkylene diglycidyl ether compound having 2 epoxy groups contained in one molecule. And a mixture containing at least one selected from cycloaliphatic diepoxy compounds, and the epoxy group-containing component has a polyglycidyl ether compound content of 10 to 10 with respect to the entire epoxy group-containing component excluding the curing agent. 80% by weight. The epoxy group-containing component may further contain a monoglycidyl ether compound having one epoxy group in one molecule.

本発明に用いる封孔処理剤は、エポキシ基含有成分と硬化剤とを含み、重合性ビニル基含有溶剤を含まない、溶射被膜の封孔処理剤であって、上記エポキシ基含有成分が所定のポリグリシジルエーテル化合物を主成分とする混合物であるので、封孔処理剤における溶剤の揮発による空隙の発生を効果的に抑制し、溶射被膜材の間隙が実質的に全て充填されている状態まで封孔処理を施すことができる。
複数のポリグリシジルエーテル化合物の混合物は、分子構造が類似するので相溶性に優れるため、相分離などが生じるおそれがないことから気孔内に容易に浸透することができる。このため溶射被膜材の封孔状態や経時的な封孔特性の劣化のおそれを回避でき、使用時における溶射被膜の剥離や亀裂発生などの破損を防止し、破損部位から侵入する通電物質の皮膜内への侵入を防ぐ。そして、軸受の内外輪間の電位差の発生を防ぐことで、軌道面および転動体表面への電食の発生を防ぐことで、結果的に鉄道車両用のモータの軸受の寿命を向上させることができる。
The sealing agent used in the present invention is a thermal spray coating sealing agent containing an epoxy group-containing component and a curing agent, and not containing a polymerizable vinyl group-containing solvent, wherein the epoxy group-containing component is a predetermined component. Since the mixture is mainly composed of a polyglycidyl ether compound, it effectively suppresses the generation of voids due to the volatilization of the solvent in the sealing agent, and seals until the gap between the sprayed coating materials is substantially filled. Hole treatment can be applied.
A mixture of a plurality of polyglycidyl ether compounds is excellent in compatibility since the molecular structure is similar, and therefore can easily penetrate into the pores since there is no possibility of phase separation or the like. For this reason, it is possible to avoid the possibility of deterioration of the sealing state of the thermal spray coating material and sealing characteristics over time, and prevent damage such as peeling of the thermal spray coating or cracking during use, and coating of the energized substance entering from the damaged site Prevent intrusion. And by preventing the occurrence of a potential difference between the inner and outer rings of the bearing, it is possible to prevent the occurrence of electrolytic corrosion on the raceway surface and the rolling element surface, and consequently improve the life of the bearing of the motor for the railway vehicle. it can.

また、本発明に用いる封孔処理剤は、溶射被膜の気孔(間隙)に対する浸透性および充填性に優れるものであるため、封孔処理後に溶射被膜表層部分を研削あるいは研磨除去した場合でも封孔処理剤の浸透・充填層が十分存在し、その結果被膜の基材保護性を研摩後であっても大幅に向上させ、更に機械的性質、電気的性質などの物性も高いまま維持させることができる。
これは優れた浸透性および充填性により粒子境界に侵入した封孔処理剤が粒子境界を適切に充填し、優れた接着力により粒子境界と強固に接着し、かつ重合性ビニル基含有溶剤を含まないので、溶剤の揮発による空隙の発生を効果的に抑制することにより、溶射被膜材の間隙が実質的に全て充填されている状態まで封孔処理を施すことができたことによると考えられる。本発明はこのような知見に基づき完成されたものである。
In addition, since the sealing agent used in the present invention is excellent in the permeability and filling property to the pores (gap) of the sprayed coating, the sealing layer is sealed even when the surface layer portion of the sprayed coating is ground or polished after the sealing treatment. There is a sufficient penetration / filling layer of the treatment agent, and as a result, the substrate protection of the coating can be greatly improved even after polishing, and the physical properties such as mechanical properties and electrical properties can be kept high. it can.
This is because the sealing agent that has penetrated the particle boundary due to its excellent permeability and filling property properly fills the particle boundary, firmly adheres to the particle boundary due to excellent adhesive force, and contains a solvent containing a polymerizable vinyl group Therefore, it is considered that the sealing treatment could be performed to a state where substantially all the gaps of the thermal spray coating material were filled by effectively suppressing the generation of voids due to the volatilization of the solvent. The present invention has been completed based on such findings.

本発明に用いる封孔処理剤は、1分子中に含まれるエポキシ基の数が3個以上のポリグリシジルエーテル化合物を必須成分とし、この必須成分に加えて、1分子中に含まれるエポキシ基の数が2個のアルキレンジグリシジルエーテル化合物および/または1分子中に含まれるエポキシ基の数が2個の環状脂肪族ジエポキシ化合物を含む混合物である。ポリグリシジルエーテル化合物および環状脂肪族ジエポキシ化合物はその分子内にオキシラン環が解裂して形成される繰り返し単位を含まない化合物である。本発明の混合物は硬化剤と反応して硬化物を形成する。   The sealing agent used in the present invention comprises a polyglycidyl ether compound having 3 or more epoxy groups contained in one molecule as an essential component, and in addition to this essential component, an epoxy group contained in one molecule. It is a mixture containing an alkylene diglycidyl ether compound having two numbers and / or a cycloaliphatic diepoxy compound having two epoxy groups contained in one molecule. A polyglycidyl ether compound and a cycloaliphatic diepoxy compound are compounds that do not contain a repeating unit formed by cleavage of an oxirane ring in the molecule. The mixture of the present invention reacts with a curing agent to form a cured product.

1分子中に含まれるエポキシ基の数が3個以上のポリグリシジルエーテル化合物としては、トリグリシジルエーテル化合物、テトラグリシジルエーテル化合物等が挙げられる。ポリグリシジルエーテル化合物の例としては、トリメチロールプロパンポリグリシジルエーテル、グリセロールトリグリシジルエーテル、ソルビトールポリグリシジルエーテルを挙げることができる。
これらの中で、封孔処理剤の粘度を下げる観点から、トリグリシジルエーテル化合物が好ましく、特にトリメチロールプロパンポリグリシジルエーテルが好ましい。
Examples of the polyglycidyl ether compound having 3 or more epoxy groups contained in one molecule include triglycidyl ether compounds and tetraglycidyl ether compounds. Examples of the polyglycidyl ether compound include trimethylolpropane polyglycidyl ether, glycerol triglycidyl ether, and sorbitol polyglycidyl ether.
Among these, from the viewpoint of lowering the viscosity of the sealing agent, a triglycidyl ether compound is preferable, and trimethylolpropane polyglycidyl ether is particularly preferable.

1分子中に含まれるエポキシ基の数が2個のアルキレンジグリシジルエーテル化合物としては、ネオペンチルグリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテルを挙げることができる。   Examples of the alkylene diglycidyl ether compound having two epoxy groups contained in one molecule include neopentyl glycol diglycidyl ether, glycerol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6- Mention may be made of hexanediol diglycidyl ether.

1分子中に含まれるエポキシ基の数が2個の環状脂肪族ジエポキシ化合物は、脂環式化合物の環を形成する炭素原子において、隣接する2つの炭素原子がオキシラン環を形成している、いわゆる脂環式エポキシ化合物であって、オキシラン環を2つ含む脂環式ジエポキシ化合物、例えば、1,2,8,9−ジエポキシリモネンが挙げられる。封孔処理剤の粘度を低下させつつ処理物の物性の低下を効果的に防止する好ましい化合物である。また、水素添加ビスフェノールA、テトラヒドロフタル酸のジグリシジルエーテルなどの脂環式化合物のジグリシジルエーテルも使用することができる。   The cycloaliphatic diepoxy compound having two epoxy groups contained in one molecule is a so-called alicyclic compound in which two adjacent carbon atoms form an oxirane ring. Examples of the alicyclic epoxy compound include alicyclic diepoxy compounds containing two oxirane rings, such as 1,2,8,9-diepoxy limonene. It is a preferred compound that effectively prevents the physical properties of the treated product from being lowered while lowering the viscosity of the sealing agent. Further, diglycidyl ethers of alicyclic compounds such as hydrogenated bisphenol A and diglycidyl ether of tetrahydrophthalic acid can also be used.

本発明で使用できる封孔処理剤は、取り扱い性の向上や、溶射被膜材への更なる浸透性向上の目的で、1分子中に含まれるエポキシ基の数が1個のモノグリシジルエーテル化合物を配合することができる。1分子中に含まれるエポキシ基の数が1個のモノグリシジルエーテル化合物としては、ブチルグリシジルエーテルなどのアルキルモノグリシジルエーテル、アルキルフェノールモノグリシジルエーテル等、公知のモノグリシジルエーテル化合物を挙げることができる。   The sealing agent that can be used in the present invention is a monoglycidyl ether compound having one epoxy group in one molecule for the purpose of improving the handleability and further improving the permeability to the spray coating material. Can be blended. Examples of the monoglycidyl ether compound having one epoxy group contained in one molecule include known monoglycidyl ether compounds such as alkyl monoglycidyl ethers such as butyl glycidyl ether and alkylphenol monoglycidyl ethers.

トリグリシジルエーテル化合物は、溶射被膜と金属基材との間の接着力を飛躍的に高める封孔処理剤成分として使用できる。同時に該化合物自体の粘度が低いために、後述するジグリシジルエーテル化合物等と混合することによって、キシレン、メチルエチルケトンなどの有機溶剤や、重合性ビニル基含有溶剤などの添加を必要とせず、封孔剤に対し、充分な浸透性を付与できる。   The triglycidyl ether compound can be used as a sealing agent component that dramatically increases the adhesion between the thermal spray coating and the metal substrate. At the same time, since the viscosity of the compound itself is low, it is not necessary to add an organic solvent such as xylene and methyl ethyl ketone, or a polymerizable vinyl group-containing solvent by mixing with a diglycidyl ether compound described later, and a sealing agent. In contrast, sufficient permeability can be imparted.

また、樹脂中に含む塩素イオン量を 0.5 重量%以下とすることで、湿潤雰囲気下における絶縁抵抗などの電気特性の低下や、基材の腐食性などが抑えられる。
トリグリシジルエーテル化合物の 25℃における粘度は 500 mPa・s 以下であることが好ましい。500 mPa・s をこえると浸透性に劣る。
In addition, when the amount of chlorine ions contained in the resin is 0.5% by weight or less, it is possible to suppress deterioration of electrical characteristics such as insulation resistance in a humid atmosphere and corrosivity of the base material.
The viscosity of the triglycidyl ether compound at 25 ° C. is preferably 500 mPa · s or less. If it exceeds 500 mPa · s, the permeability is poor.

封孔処理剤としての混合物全体に対して、トリグリシジルエーテル化合物の配合割合が 10〜80 重量%であることが好ましく、より好ましくは 20〜50 重量%である。10 重量%未満のときは、封孔液自体の粘度を低く設定できるため、硬化物の浸透性は高まるものの、一方ではトリグリシジルエーテル化合物の接着性向上効果が得られにくくなるため、基材との接着力は減少する。また、トリグリシジルエーテル化合物の配合割合が 80 重量%をこえるときは封孔処理剤の粘度が高くなるため浸透性に劣る。   The blending ratio of the triglycidyl ether compound is preferably 10 to 80% by weight, more preferably 20 to 50% by weight, based on the entire mixture as the sealing agent. If it is less than 10% by weight, the viscosity of the sealing liquid itself can be set low. The adhesive strength of is reduced. Further, when the blending ratio of the triglycidyl ether compound exceeds 80% by weight, the viscosity of the sealing agent is increased, so that the permeability is poor.

1分子中に含まれるエポキシ基の数が2個のアルキレンジグリシジルエーテル化合物は、それ自体が低粘度のエポキシ化合物であるため、ポリグリシジルエーテルへの添加によって封孔剤の粘度を低下させることができるため好ましい。また、1,2,8,9−ジエポキシリモネンに示されるような環状脂肪族ジエポキシ化合物の添加も好ましい。これら化合物は、硬化反応時にエポキシ分子と共重合することで一体化するため、配合による硬化物の物性低下や、硬化時の体積減少を防ぐことができるため好ましい。   Since the alkylene diglycidyl ether compound having two epoxy groups contained in one molecule is an epoxy compound having a low viscosity in itself, the viscosity of the sealant may be reduced by addition to the polyglycidyl ether. This is preferable because it is possible. Addition of a cycloaliphatic diepoxy compound as shown in 1,2,8,9-diepoxy limonene is also preferred. Since these compounds are integrated by copolymerizing with epoxy molecules at the time of the curing reaction, it is preferable because the physical properties of the cured product can be prevented from being reduced by blending and the volume at the time of curing can be prevented.

アルキレンジグリシジルエーテル化合物の 25℃における粘度は 30 mPa・s 以下であることが好ましい。30 mPa・s をこえると封孔剤の粘度が上昇するため浸透性が劣る。混合物全体に対して、アルキレンジグリシジルエーテル化合物の配合割合が 10〜80 重量%であることが好ましく、より好ましくは 50〜80 重量%である。10 重量%未満のときは封孔剤の粘度低減効果が小さくなり、封孔剤の浸透性を高めることができない。また、80 重量%をこえると、封孔剤の浸透性は高まるが、相対的に硬化時に高密度の架橋構造を形成する役割を持つトリグリシジルエーテル化合物の配合割合が、相対的に減少するため、硬化後のエポキシ樹脂の物性は低下する。   The viscosity of the alkylene diglycidyl ether compound at 25 ° C. is preferably 30 mPa · s or less. If it exceeds 30 mPa · s, the viscosity of the sealant will increase, resulting in poor permeability. The blending proportion of the alkylene diglycidyl ether compound is preferably 10 to 80% by weight, more preferably 50 to 80% by weight, based on the entire mixture. When it is less than 10% by weight, the effect of reducing the viscosity of the sealant is reduced, and the permeability of the sealant cannot be increased. If the amount exceeds 80% by weight, the permeability of the sealant increases, but the blending ratio of the triglycidyl ether compound, which has a role of forming a high-density cross-linked structure at the time of curing, relatively decreases. The physical properties of the cured epoxy resin are lowered.

アルキレンジグリシジルエーテル化合物は、上記トリグリシジルエーテル化合物と所定量混合することで、トリグリシジルエーテル化合物単体の持つ基材密着力や、分子の架橋密度、樹脂硬度を大幅に低下させることなく、封孔処理剤の浸透度を確保することで溶射被膜用の封孔処理剤として充分な機能が発現させることができる。   The alkylene diglycidyl ether compound is mixed with the above-mentioned triglycidyl ether compound in a predetermined amount so that the substrate adhesion force, molecular cross-linking density, and resin hardness of the triglycidyl ether compound itself are not significantly reduced. By ensuring the penetration of the treatment agent, a sufficient function as a sealing treatment agent for thermal spray coating can be exhibited.

1分子中に含まれるエポキシ基の数が1個のモノグリシジルエーテル化合物は単官能基を介して樹脂の一部と結合することができる。また、それ自身が低粘度のエポキシ化合物であるため封孔処理剤の粘度を低下させることができ、一方で、硬化後の樹脂内部の残留応力の低減や、硬化速度の調整効果を与えることができる。モノグリシジルエーテル化合物の配合量は、混合物全体に対して、0〜50 重量%とすることが好ましい。モノグリシジルエーテル化合物の添加量が 50 重量%をこえると、揮発量が増加したり、トリグリシジルエーテル化合物の量が相対的に減少し、硬化後樹脂の架橋密度が不足し、物性が大きく低下したり硬化物が形成しにくくなる。またポリグリシジルエーテル化合物の配合量も減少するため、溶射被膜と基材間の密着力が小さくなる。   A monoglycidyl ether compound having one epoxy group contained in one molecule can be bonded to a part of the resin through a monofunctional group. In addition, since it is a low-viscosity epoxy compound itself, the viscosity of the sealing agent can be lowered, and on the other hand, it can reduce the residual stress inside the cured resin and provide an effect of adjusting the curing rate. it can. It is preferable that the compounding quantity of a monoglycidyl ether compound shall be 0-50 weight% with respect to the whole mixture. When the added amount of monoglycidyl ether compound exceeds 50% by weight, the amount of volatilization increases, the amount of triglycidyl ether compound decreases relatively, the crosslinking density of the resin after curing is insufficient, and the physical properties are greatly reduced. It becomes difficult to form a cured product. Moreover, since the compounding quantity of a polyglycidyl ether compound also reduces, the adhesive force between a thermal spray coating and a base material becomes small.

上記グリシジルエーテル化合物の混合物に対して硬化剤が配合される。硬化剤としては、酸無水物類および脂肪族アミン化合物、脂環式アミン化合物、芳香族アミン化合物などのアミン化合物類、イミダゾール類などの公知のエポキシ樹脂用硬化剤を単体あるいは組合せて使用することができる。   A curing agent is blended with the mixture of the glycidyl ether compounds. As the curing agent, a known epoxy resin curing agent such as an acid anhydride and an aliphatic amine compound, an alicyclic amine compound, an aromatic amine compound, or an imidazole may be used alone or in combination. Can do.

酸無水物類としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビストリメリテート、グリセロールトリストリメリテート、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、無水コハク酸、ドデセニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物およびその誘導体等を挙げることができる。   Examples of the acid anhydrides include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bistrimellitate, glycerol trislimitate, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydro Phthalic anhydride, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride, succinic anhydride, dodecenyl succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylcyclohexene Examples thereof include dicarboxylic acid anhydrides and derivatives thereof.

アミン化合物類としては、ジエチレントリアミン、トリエチレンテトラミンなどの鎖状脂肪族ポリアミン、N−アミノエチルピペラジン、イソホロンジアミンなどの環状脂肪族ポリアミン、キシリレンジアミンなどの脂肪芳香族アミン、メタフェニレンジアミン、ジアミノジフェニルアミンなどの芳香族アミンおよびその誘導体等を挙げることができる。   Examples of amine compounds include chain aliphatic polyamines such as diethylenetriamine and triethylenetetramine, cyclic aliphatic polyamines such as N-aminoethylpiperazine and isophoronediamine, aliphatic aromatic amines such as xylylenediamine, metaphenylenediamine, and diaminodiphenylamine. And aromatic amines and derivatives thereof.

これらの中で 25℃における粘度が 50 mPa・s 以下の酸無水物硬化剤や、25℃における粘度が 10 mPa・s 以下の脂肪族アミン系硬化剤は、添加によって封孔処理剤系全体の粘度を顕著に低下できるため、好適な硬化剤となる。特に封孔処理剤のポットライフを長くすることができ、また硬化時の収縮率が小さく、電気特性に優れる酸無水物硬化剤が好ましい。酸無水物硬化剤の配合量は、エポキシ基1当量に対して 0.80〜0.95 当量とすることが好ましい。   Of these, acid anhydride curing agents with a viscosity at 25 ° C of 50 mPa · s or less, and aliphatic amine curing agents with a viscosity at 25 ° C of 10 mPa · s or less, Since the viscosity can be remarkably lowered, it becomes a suitable curing agent. In particular, an acid anhydride curing agent that can prolong the pot life of the sealing agent, has a low shrinkage during curing, and is excellent in electrical characteristics is preferable. It is preferable that the compounding quantity of an acid anhydride hardening | curing agent shall be 0.80-0.95 equivalent with respect to 1 equivalent of epoxy groups.

本発明に使用できる封孔処理剤には、その他材料として界面活性剤を添加できる。特に効果のある界面活性剤としては、フッ素系界面活性剤やシリコン系界面活性剤が挙げられ、特に公知のフッ素系界面活性剤の使用が好ましい。本発明において、公知のアニオン性、カチオン性、ノニオン性および両性の界面活性剤を使用できる。本発明の封孔処理剤に、フッ素系界面活性剤を配合する場合は、単独でまたは2種以上を混合して使用することができる。また、シリコーンオイルなど界面活性効果や浸透効果を高める添加剤であれば、発明の特徴を妨げない範囲で使用できる。   A surfactant can be added as an additional material to the sealing agent that can be used in the present invention. Particularly effective surfactants include fluorine-based surfactants and silicon-based surfactants, and it is particularly preferable to use known fluorine-based surfactants. In the present invention, known anionic, cationic, nonionic and amphoteric surfactants can be used. When a fluorine-based surfactant is added to the sealing agent of the present invention, it can be used alone or in admixture of two or more. Moreover, if it is an additive which improves the surface active effect and the osmosis | permeation effect, such as silicone oil, it can be used in the range which does not disturb the characteristic of invention.

アニオン性界面活性剤としては、スルホン酸塩、硫酸塩、カルボン酸塩、リン酸塩、ホスホン酸塩、リン酸エステル等を使用できる。カチオン性界面活性剤としては、第四級アンモニウム塩、アミノハロゲン塩等を使用できる。ノニオン性界面活性剤としては、ポリオキシエチレンエステル型、ポリオキシエチレンエーテル型、ソルビタンエステル型等を使用できる。両性界面活性剤としては、イミダゾリン型、ベタイン型等を使用できる。   As the anionic surfactant, sulfonate, sulfate, carboxylate, phosphate, phosphonate, phosphate ester and the like can be used. As the cationic surfactant, a quaternary ammonium salt, an amino halogen salt, or the like can be used. As the nonionic surfactant, polyoxyethylene ester type, polyoxyethylene ether type, sorbitan ester type and the like can be used. As the amphoteric surfactant, imidazoline type, betaine type and the like can be used.

実施例1〜実施例5および比較例1〜比較例7
表1で用いた材料を以下に示す。
(1)グリシジルエーテル化合物または環状脂肪族ジエポキシ化合物
(1−1)トリメチロールプロパントリグリシジルエーテル:ナガセケムテックス社製、デナコールEX−321L、粘度; 500 mPa・s (25℃)
(1−2)フェニレンジグリシジルエーテル:ナガセケムテックス社製、デナコールEX−201、粘度; 240 mPa・s (25℃)
(1−3)アルキレンジグリシジルエーテル:ジャパンエポキシレジン社製、YED216M、粘度; 15 mPa・s (25℃)
(1−4)アルキレンモノグリシジルエーテル:ジャパンエポキシレジン社製、YED111E、粘度; 7 mPa・s (25℃)
(1−5)環状脂肪族ジエポキシ化合物:ダイセル化学工業社製、セロキサイド3000、粘度; 10 mPa・s (25℃)
(2)エポキシ樹脂
(2−1)ビスフェノールF型エポキシ樹脂:ジャパンエポキシレジン社製、エピコート806、粘度; 2000 mPa・s (25℃)
(3)硬化剤、硬化促進剤
(3−1)酸無水物系硬化剤:大日本インキ化学工業社製、エピクロンB−570、粘度; 40 mPa・s (25℃)
(3−2)イミダゾール系硬化促進剤:四国化成工業社製、OR−2E4MZ
(4)重合性ビニル基含有溶剤
(4−1)スチレンモノマー:和光純薬社製、試薬
Examples 1 to 5 and Comparative Examples 1 to 7
The materials used in Table 1 are shown below.
(1) Glycidyl ether compound or cycloaliphatic diepoxy compound (1-1) Trimethylolpropane triglycidyl ether: manufactured by Nagase ChemteX Corporation, Denacol EX-321L, viscosity: 500 mPa · s (25 ° C.)
(1-2) Phenylenediglycidyl ether: manufactured by Nagase ChemteX Corporation, Denacol EX-201, viscosity; 240 mPa · s (25 ° C.)
(1-3) alkylene diglycidyl ether: manufactured by Japan Epoxy Resin Co., Ltd., YED216M, viscosity; 15 mPa · s (25 ° C.)
(1-4) Alkylene monoglycidyl ether: manufactured by Japan Epoxy Resin, YED111E, viscosity; 7 mPa · s (25 ° C.)
(1-5) Cycloaliphatic diepoxy compound: Daicel Chemical Industries, Celoxide 3000, viscosity; 10 mPa · s (25 ° C.)
(2) Epoxy resin (2-1) Bisphenol F type epoxy resin: manufactured by Japan Epoxy Resin, Epicoat 806, viscosity; 2000 mPa · s (25 ° C.)
(3) Curing agent, curing accelerator (3-1) Acid anhydride curing agent: manufactured by Dainippon Ink & Chemicals, Epicron B-570, viscosity; 40 mPa · s (25 ° C.)
(3-2) Imidazole-based curing accelerator: Shikoku Kasei Kogyo Co., Ltd., OR-2E4MZ
(4) Polymerizable vinyl group-containing solvent (4-1) Styrene monomer: Wako Pure Chemical Industries, reagent

表1に示す各成分を室温で充分に撹拌混合し、混合樹脂中の気泡を抜くため30分静置して封孔処理剤を得た。得られた封孔処理剤の評価を焼成後重量減少率試験により行なった。
<焼成後重量減少率試験>
得られた封孔処理剤を、140℃×2 時間の条件で充分に乾燥させ、異物付着のない(容量 3 ml )のガラス製容器に約 2 g 秤量し、焼成前秤量値とした。その後、ガラス容器の口を開放したまま、80℃×1 時間予備焼成し、その後 120℃×2 時間焼成を行ない、焼成後の重量を測定し焼成後秤量値とし、下記の式にしたがって封孔処理剤の重量減少率を計測した。測定結果を表1に示す。なお、測定結果に対する判定基準は、重量減少率が 1 %をこえると溶射被膜に残存する微小空隙内で硬化後に空隙部を生じたり、発生ガスによって硬化物中の残留気泡の発生が多くなったりする懸念があるため「不可」と判定され、1 %以下を「可」と判定できる。また、「未硬化」は上記焼成条件において固体状にならなかった場合である。

焼成後重量減少率(%)=100×(焼成前秤量値−焼成後秤量値)/焼成前秤量値
Each component shown in Table 1 was sufficiently stirred and mixed at room temperature, and left to stand for 30 minutes to remove bubbles in the mixed resin, thereby obtaining a sealing agent. The obtained sealing agent was evaluated by a weight reduction rate test after firing.
<Weight reduction test after firing>
The obtained sealing agent was sufficiently dried at 140 ° C. for 2 hours, and weighed about 2 g in a glass container with no foreign matter adhered (capacity: 3 ml) to obtain a weighed value before firing. Then, with the mouth of the glass container kept open, pre-fired at 80 ° C for 1 hour, then fired at 120 ° C for 2 hours, measured the weight after firing, set the weight after firing, and sealed according to the following formula The weight reduction rate of the treatment agent was measured. The measurement results are shown in Table 1. The criterion for the measurement results is that if the weight loss rate exceeds 1%, voids will form after curing in the microscopic voids remaining in the sprayed coating, or the generation of residual bubbles in the cured product will increase due to the generated gas. Therefore, it is judged as “impossible” and 1% or less can be judged as “possible”. Further, “uncured” is a case where the material did not become solid under the above-described firing conditions.

Weight reduction rate after firing (%) = 100 × (weighed value before firing−weighed value after firing) / weighed value before firing

次に、φ20 mm×25 mm のSUJ2製試験片(以下「試験片基材」と記す)を準備し、その円筒端面に膜厚 400 μm のアルミナセラミック溶射被膜を大気プラズマ溶射法により形成した。
溶射面の表面に室温雰囲気下において、ポリアミド製ブラシを用いて表1に示す封孔処理剤を塗布し 30 分静置した。その後ポリエチレン製のヘラで表面付着分の過剰な封孔処理剤を掻き取った状態をもって、封孔処理剤の塗布済み試験片とした。その後、これら塗布済み試験片を 80℃×1 時間予備焼成し、その後 120℃×2 時間焼成を行ない、封孔処理剤を硬化させた。次に、セラミック平面と平行にダイヤモンド砥石を用いて研削除去を行なった。研削除去量は、下記に示す2水準を設定した。
(1)表層部の硬化樹脂層を重点的に除去する目的でセラミック部を約 10 μm 研削除去した。
(2)硬化試験片の表面から約 200 μm の深さまでの樹脂浸透層を除去する目的で、約 200 μm 研削除去した。
表面を研削除去して得られた硬化試験片を用いて以下に示す浸透性試験、密着力試験、絶縁抵抗試験、耐電圧特性試験により浸透性、密着力、絶縁抵抗値、耐電圧特性を測定した。
Next, a φ20 mm × 25 mm SUJ2 test piece (hereinafter referred to as “test piece base material”) was prepared, and an alumina ceramic sprayed coating having a film thickness of 400 μm was formed on the cylindrical end face by an atmospheric plasma spraying method.
On the surface of the sprayed surface, the sealing agent shown in Table 1 was applied using a polyamide brush in a room temperature atmosphere and allowed to stand for 30 minutes. Thereafter, a test piece coated with a sealing agent was prepared by scraping off the excess sealing agent on the surface with a polyethylene spatula. Thereafter, these coated test pieces were pre-fired at 80 ° C. for 1 hour, and then fired at 120 ° C. for 2 hours to cure the sealing agent. Next, grinding removal was performed using a diamond grindstone parallel to the ceramic plane. The grinding removal amount was set to the following two levels.
(1) The ceramic part was ground and removed by about 10 μm for the purpose of intensively removing the cured resin layer on the surface layer part.
(2) About 200 μm was ground and removed for the purpose of removing the resin permeation layer from the surface of the cured specimen to a depth of about 200 μm.
Measure the permeability, adhesion, insulation resistance, and withstand voltage characteristics with the following permeability test, adhesion test, insulation resistance test, and withstand voltage test using the cured specimen obtained by grinding and removing the surface. did.

<浸透性試験>
硬化試験片の浸透性試験は、封封孔処理を施した硬化試験片基材8の被膜面9に対しJIS H 8666に基づくフェロキシル試験を適用して行なった。フェロキシル試験の概略を図3に示す。試験条件は、図3に示す試験液を浸漬させたろ紙10、スズ板11、ウエイト12の形状が試験片に合わせたもの(φ16 mm )となっている点を除き、試験液組成、試験面圧、放置時間等の条件はすべてJIS H 8666に準拠した。ろ紙10が着色することは、溶射被膜9に試験片基材8と外部空間とを連結する連通孔があるため、フェロキシル試験溶液が試験片基材8の鉄イオンに接触して青色に呈色したことを示す。判定基準は、元来白色であったろ紙10の表面に青色の斑点が 1 個以上見られたものを「斑点あり」とし、青色の斑点が 0 個であったものを「斑点無し」とし、浸透性測定結果を表1に併記する。
<Penetration test>
The permeability test of the cured test piece was performed by applying a ferroxyl test based on JIS H 8666 to the coating surface 9 of the cured test piece base material 8 subjected to the sealing treatment. An outline of the ferroxyl test is shown in FIG. The test conditions were the test solution composition, test surface, except that the shape of the filter paper 10, the tin plate 11, and the weight 12 immersed in the test solution shown in FIG. 3 was adjusted to the test piece (φ16 mm). All conditions such as pressure and standing time were in accordance with JIS H 8666. When the filter paper 10 is colored, the sprayed coating 9 has a communication hole for connecting the test piece base 8 and the external space, so that the ferroxyl test solution comes into contact with the iron ions of the test piece base 8 and becomes blue. Indicates that Judgment criteria are “spotted” if one or more blue spots were seen on the surface of filter paper 10 that was originally white, and “no spots” if zero blue spots were found, The permeability measurement results are also shown in Table 1.

<密着力試験>
密着力試験の概略を図4に示す。焼成後の表層部分を 200μm 研削除去した硬化試験片基材8に対し、高粘度エポキシ系接着剤を介して引張治具13(接着部の形状:φ16 mm )をエポキシ接着面9aで接着し、引張圧縮試験機にて矢印方向に引っ張って単位面積あたりの溶射被膜9の密着力を測定した。測定結果を表1に併記する。判定基準は、密着力が 2 MPa 以上で「可」、2 MPa より下回ると「不可」と判定される。
<Adhesion test>
An outline of the adhesion test is shown in FIG. A tensile jig 13 (adhesive shape: φ16 mm) is bonded to the cured test piece base material 8 with the surface layer portion after firing removed by grinding by 200 μm via an epoxy adhesive surface 9a through a high-viscosity epoxy adhesive. The adhesion of the thermal spray coating 9 per unit area was measured by pulling in the direction of the arrow with a tensile and compression tester. The measurement results are also shown in Table 1. Judgment criteria are “possible” when the adhesion is 2 MPa or more, and “impossible” when it is below 2 MPa.

<絶縁抵抗試験>
絶縁抵抗試験の概略を図5に示す。硬化試験片基材8を 80℃の温水に 1 時間浸漬後、配線16に取り付けた 1000 V DC絶縁抵抗計15を用いて、溶射被膜9表面と試験片基材8間の絶縁抵抗を測定した。14は電極である。測定結果を表1に併記する。判定基準は、2000 MΩ以上(表中に>2000 として表示)の抵抗率を示す場合は「可」、2000 MΩより下回る抵抗率の場合は「不可」と判定される。
<Insulation resistance test>
An outline of the insulation resistance test is shown in FIG. After immersing the cured specimen base material 8 in 80 ° C. warm water for 1 hour, the insulation resistance between the surface of the sprayed coating 9 and the specimen base material 8 was measured using a 1000 V DC insulation resistance meter 15 attached to the wiring 16. . Reference numeral 14 denotes an electrode. The measurement results are also shown in Table 1. The criterion is “Yes” when the resistivity is 2000 MΩ or more (indicated as> 2000 in the table), and “No” when the resistivity is lower than 2000 MΩ.

<耐電圧特性試験>
耐電圧特性試験の概略を図6に示す。溶射被膜9と試験片基材8との間の配線16に取り付けた高電圧発生装置17によりDC 5 kV の電圧を印加してモニタ18により耐電圧特性を評価した。14は電極である。測定結果を表1に併記する。判定基準は、DC 5 kV を 5 分間印加させ、絶縁破壊を生じなかったら「可」、絶縁破壊を生じた場合「不可」とした。
<Withstand voltage characteristics test>
An outline of the withstand voltage characteristic test is shown in FIG. A voltage of DC 5 kV was applied by a high voltage generator 17 attached to the wiring 16 between the thermal spray coating 9 and the test piece substrate 8, and the withstand voltage characteristics were evaluated by the monitor 18. Reference numeral 14 denotes an electrode. The measurement results are also shown in Table 1. The judgment criteria were DC 5 kV applied for 5 minutes, "No" if no dielectric breakdown occurred, and "No" if dielectric breakdown occurred.

次に、モータ用電食防止転がり軸受として使用できる深溝玉軸受6204(以下「軸受試験片19」と記す)の製作を行なった。
製作方法の詳細を下記に示す。
(1)6204軸受外輪試験片を準備し、石油ベンジンを用い防錆油などを異物を充分に除去する。
(2)外輪内周面にショットブラスト粉が入り込まないように、円盤状のマスキング治具を取付け、回転装置に軸受試験片を取付ける。
(3)軸受試験片を 10 rpm で回転させながら、円筒外周面および両側の端面にアルミナセラミック溶射被膜を大気プラズマ溶射法により、膜厚が 400 μm となるように形成した。なお、この時、軸受内部より乾燥空気を吹きつけ冷却を行なった。
(4)マスキング治具とワークとの間をダイヤモンド砥石で縁切りし、マスキング治具を分離する。
(5)軸受試験片の溶射面の表面に室温雰囲気下において、ポリアミド製ブラシを用いて表1に示す各封孔処理剤を塗布し 30 分静置した。その後ポリエチレン製のヘラで表面付着分の過剰な封孔処理剤を掻き取る。その後、これら試験片を 80℃×1 時間予備焼成し、その後 120℃×2 時間焼成を行ない、封孔処理剤を硬化させた。
(6)ダイヤモンド砥石を用いて軸受試験片の外形および幅面の研削除去を行なった。研削による溶射面の除去量は、約 200 μm とした。
軸受試験片の外径および幅面の表面を研削除去して得られた試験片を用い、以下に示す絶縁抵抗試験および耐電圧特性試験を行なった。
Next, a deep groove ball bearing 6204 (hereinafter referred to as “bearing test piece 19”) that can be used as an electric corrosion prevention rolling bearing for a motor was manufactured.
Details of the manufacturing method are shown below.
(1) A 6204 bearing outer ring test piece is prepared, and foreign substances such as rust preventive oil are sufficiently removed using petroleum benzine.
(2) A disc-shaped masking jig is attached so that shot blast powder does not enter the inner peripheral surface of the outer ring, and a bearing test piece is attached to the rotating device.
(3) While rotating the bearing test piece at 10 rpm, an alumina ceramic sprayed coating was formed on the outer peripheral surface of the cylinder and both end faces by an atmospheric plasma spraying method so that the film thickness was 400 μm. At this time, cooling was performed by blowing dry air from the inside of the bearing.
(4) Edge the masking jig and the workpiece with a diamond grindstone to separate the masking jig.
(5) Each sealing agent shown in Table 1 was applied to the surface of the sprayed surface of the bearing test piece in a room temperature atmosphere using a polyamide brush and allowed to stand for 30 minutes. Then, the excess sealing agent on the surface is scraped off with a polyethylene spatula. Thereafter, these test pieces were pre-fired at 80 ° C. for 1 hour and then fired at 120 ° C. for 2 hours to cure the sealing agent.
(6) The outer shape and the width surface of the bearing test piece were ground and removed using a diamond grindstone. The removal amount of the sprayed surface by grinding was about 200 μm.
Using the test piece obtained by grinding and removing the outer diameter and the width surface of the bearing test piece, the following insulation resistance test and withstand voltage characteristic test were performed.

<軸受試験片による絶縁抵抗試験>
軸受試験片による絶縁抵抗試験の概略を図7に示す。軸受試験片19を 80℃の温水に 1 時間浸漬後乾燥布で拭取り、常温まで放冷後、締め代 20 μm となるようなハウジング5aに圧入し、幅面固定蓋20をボルト止めして固定する。配線16に取り付けた 1000 V DC絶縁抵抗計15を用いて、軸受試験片19とハウジング5a間の絶縁抵抗を測定した。測定結果を表1に併記する。判定基準は、2000MΩ以上(表中に>2000 として表示)の抵抗率を示す場合は「可」、2000 MΩより下回る抵抗率の場合は「不可」と判定される。
<Insulation resistance test using bearing specimen>
An outline of the insulation resistance test using a bearing test piece is shown in FIG. The bearing test piece 19 is immersed in warm water of 80 ° C for 1 hour, wiped with a dry cloth, allowed to cool to room temperature, and then press-fitted into the housing 5a with a tightening margin of 20 µm, and the width surface fixing lid 20 is fixed with bolts. To do. Using a 1000 V DC insulation resistance meter 15 attached to the wiring 16, the insulation resistance between the bearing test piece 19 and the housing 5a was measured. The measurement results are also shown in Table 1. Judgment criteria are determined as “Yes” when the resistivity is 2000 MΩ or more (indicated as> 2000 in the table), and “Not possible” when the resistivity is lower than 2000 MΩ.

<軸受試験片による耐電圧特性試験>
耐電圧特性試験の基本的な構成は、上記軸受試験片による絶縁抵抗試験と同様であるため図示を省略する。軸受試験片19をハウジング5aに取り付け、両部材間に取り付けた高電圧発生装置17によりDC 3 kV の電圧を印加してモニタにより耐電圧特性を評価した。測定結果を表1に併記する。判定基準は、DC 3 kV を1 分間印加させ、絶縁破壊を生じなかったら「可」、絶縁破壊を生じた場合「不可」とした。
<Withstand voltage characteristics test using bearing specimen>
Since the basic configuration of the withstand voltage characteristic test is the same as the insulation resistance test using the bearing test piece, the illustration is omitted. A bearing test piece 19 was attached to the housing 5a, a voltage of DC 3 kV was applied by a high voltage generator 17 attached between both members, and the withstand voltage characteristics were evaluated by a monitor. The measurement results are also shown in Table 1. The criterion was DC 3 kV applied for 1 minute, “No” if no dielectric breakdown occurred, and “No” if dielectric breakdown occurred.

Figure 2008069923
Figure 2008069923

表1に示すように、各実施例の封孔処理剤は重量減少率が 1 %を下回る。比較例2、6、7は比較的揮発しやすい2官能エポキシ成分や単官能エポキシ成分量が多いため、浸透性は問題ないものの、硬化後の化合物に欠陥が生じ物性が低下したと考える。特に比較例2、6は高密度な架橋点を硬化物中に形成する役割を持つ、3官能エポキシ成分の含有量が少なかったため、加熱時の熱量および硬化反応時の反応熱によって2官能および単官能エポキシ成分の揮発が進行したものと考える。また、比較例1は、本硬化条件においては硬化物を形成しなかった。   As shown in Table 1, the sealing agent of each example has a weight reduction rate of less than 1%. Since Comparative Examples 2, 6, and 7 have relatively large amounts of bifunctional epoxy components and monofunctional epoxy components that are relatively volatile, the permeability is not a problem, but it is considered that defects occurred in the cured compound and the physical properties decreased. In particular, Comparative Examples 2 and 6 had a role of forming a high-density cross-linking point in the cured product, and therefore the content of the trifunctional epoxy component was small. It is considered that the volatilization of the functional epoxy component has progressed. Further, Comparative Example 1 did not form a cured product under the main curing conditions.

研削除去量 200 μm 時において、各実施例の封孔処理を施した試験片の密着力は、比較例5と7を除く全ての比較例よりも高い。本発明の封孔処理剤の組成であれば、溶射被膜の気孔(間隙)を充填することにとどまらず、試験片基材界面まで浸透し、封孔処理剤の持つ固有の接着性も有効に発揮したと考えられる。   When the grinding removal amount is 200 μm, the adhesion of the test pieces subjected to the sealing treatment of each example is higher than that of all the comparative examples except comparative examples 5 and 7. The composition of the sealing agent of the present invention not only fills the pores (gap) of the sprayed coating, but also penetrates to the test piece base material interface, and the inherent adhesion of the sealing agent is also effective. It is thought that it demonstrated.

研削除去量 200 μm 時において、各実施例の絶縁抵抗値は 2000 MΩ以上となり、比較例3、4、5は 1 MΩ以下であった。各実施例は、被膜内への水分の侵入によると考えられる導通現象を、封孔処理により防止することによって、アルミナ本来の絶縁抵抗値の低下が抑制されたものと考えられる。比較例5は硬化物を形成することができたが、用いた2官能エポキシ化合物が高粘度の芳香族エポキシ化合物であったため基材界面部までの浸透は図れなかったと考える。また、比較例2、6は粘度が充分に低いため浸透性が確保され、被膜内への水分の侵入は防ぐことができたが、3官能グリジジルエーテル基の量が少ないため、充分な密着力が得られなかった。
また、各実施例の試験片は何れも 10 分間安定して絶縁性が維持されたが、全ての比較例の試験片は、電圧印加の直後に火花放電が生じ、絶縁破壊が生じた。
When the grinding removal amount was 200 μm, the insulation resistance value of each example was 2000 MΩ or more, and Comparative Examples 3, 4 and 5 were 1 MΩ or less. In each example, it is considered that the decrease in the original insulation resistance value of alumina is suppressed by preventing the conduction phenomenon considered to be due to the intrusion of moisture into the film by the sealing treatment. Although the comparative example 5 was able to form hardened | cured material, since the used bifunctional epoxy compound was a high-viscosity aromatic epoxy compound, it thinks that the penetration | permeation to a base-material interface part was not aimed at. In Comparative Examples 2 and 6, the viscosity was sufficiently low so that the permeability was secured and the intrusion of moisture into the coating could be prevented. However, since the amount of trifunctional glycidyl ether groups was small, sufficient adhesion was achieved. I couldn't get power.
In addition, although all the test pieces of each example were stably maintained for 10 minutes, all the test pieces of the comparative examples were subjected to spark discharge immediately after voltage application, resulting in dielectric breakdown.

本発明のモータ用電食防止転がり軸受は、セラミック溶射被膜を封孔処理するための封孔処理剤として、所定の封孔処理剤を用いるので、長期間にわたって電食の原因となる、電流の伝達を抑制でき、長期間高い電食防止効果を有する。その結果、鉄道車両用モータの軸受等に好適に利用できる。   The electric corrosion prevention rolling bearing for a motor of the present invention uses a predetermined sealing treatment agent as a sealing treatment agent for sealing a ceramic sprayed coating, and therefore causes electric corrosion over a long period of time. It can suppress transmission and has a high effect of preventing electric corrosion for a long time. As a result, it can be suitably used for a bearing of a railway vehicle motor or the like.

モータ用電食防止円筒ころ軸受の部分断面図である。It is a fragmentary sectional view of the electric corrosion prevention cylindrical roller bearing for motors. モータ用電食防止深溝玉軸受の断面図である。It is sectional drawing of the electric corrosion prevention deep groove ball bearing for motors. フェロキシル試験の概略を示す図である。It is a figure which shows the outline of a ferroxyl test. 密着力試験の概略を示す図である。It is a figure which shows the outline of an adhesive force test. 絶縁抵抗試験の概略を示す図である。It is a figure which shows the outline of an insulation resistance test. 耐電圧特性試験の概略を示す図である。It is a figure which shows the outline of a withstand voltage characteristic test. 軸受試験片による絶縁抵抗試験の概略を示す図である。It is a figure which shows the outline of the insulation resistance test by a bearing test piece.

符号の説明Explanation of symbols

1 内輪
2 外輪
3 保持器
4 転動体
5 ハウジング
6 軸
7 封孔処理されたセラミック溶射被膜
8 試験片基材
9 封孔処理済み溶射被膜
10 フェロキシル試験溶液付きろ紙
11 スズ板
12 ウェイト
13 引張治具
14 電極
15 絶縁抵抗計
16 配線
17 高電圧発生装置
18 モニタ
19 軸受試験片
20 幅面固定蓋
DESCRIPTION OF SYMBOLS 1 Inner ring 2 Outer ring 3 Cage 4 Rolling body 5 Housing 6 Shaft 7 Sealed ceramic sprayed coating 8 Test piece base material 9 Sealed sprayed coating 10 Filter paper with ferroxyl test solution 11 Tin plate 12 Weight 13 Tensile jig 14 Electrode 15 Insulation resistance meter 16 Wiring 17 High voltage generator 18 Monitor 19 Bearing test piece 20 Width surface fixed lid

Claims (3)

鉄道車両用モータに用いられる転がり軸受の軌道面および転動体の表面に生じる電食の発生を防ぐことができる部位に封孔処理されたセラミック溶射被膜を有するモータ用電食防止転がり軸受であって、
前記封孔処理するための封孔処理剤は、エポキシ基含有成分と硬化剤とを含み、重合性ビニル基含有溶剤を含まず、前記エポキシ基含有成分は、1分子中に含まれるエポキシ基の数が3個以上のポリグリシジルエーテル化合物を必須成分とし、1分子中に含まれるエポキシ基の数が2個のアルキレンジグリシジルエーテル化合物および環状脂肪族ジエポキシ化合物から選ばれた少なくとも1つを含む混合物であり、前記硬化剤を除く、前記エポキシ基含有成分全体に対して、ポリグリシジルエーテル化合物が 10〜80 重量%配合された封孔処理剤であることを特徴とするモータ用電食防止転がり軸受。
An electric corrosion-preventing rolling bearing for a motor having a ceramic sprayed coating sealed in a portion capable of preventing the occurrence of electric corrosion generated on the raceway surface and rolling element surface of a rolling bearing used in a motor for a railway vehicle. ,
The sealing agent for performing the sealing treatment includes an epoxy group-containing component and a curing agent, does not include a polymerizable vinyl group-containing solvent, and the epoxy group-containing component is an epoxy group contained in one molecule. A mixture containing, as an essential component, a polyglycidyl ether compound having a number of 3 or more, and containing at least one selected from an alkylene diglycidyl ether compound and a cycloaliphatic diepoxy compound having two epoxy groups in one molecule An electroerosion-preventing rolling bearing for motors, characterized in that it is a sealing agent in which 10 to 80% by weight of a polyglycidyl ether compound is blended with respect to the entire epoxy group-containing component excluding the curing agent. .
前記電食の発生を防ぐことができる部位は、前記転がり軸受と、少なくともハウジングまたは軸とが嵌合する面であることを特徴とする請求項1記載のモータ用電食防止転がり軸受。   2. The electric corrosion-preventing rolling bearing for motor according to claim 1, wherein the portion capable of preventing the occurrence of electrolytic corrosion is a surface on which the rolling bearing and at least a housing or a shaft are fitted. 前記エポキシ基含有成分は、更に1分子中に含まれるエポキシ基の数が1個のモノグリシジルエーテル化合物を含むことを特徴とする請求項1記載のモータ用電食防止転がり軸受。   2. The electric corrosion-preventing rolling bearing for motor according to claim 1, wherein the epoxy group-containing component further comprises a monoglycidyl ether compound having one epoxy group contained in one molecule.
JP2006251193A 2006-09-15 2006-09-15 Anti-corrosion rolling bearing for motor Active JP4746503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251193A JP4746503B2 (en) 2006-09-15 2006-09-15 Anti-corrosion rolling bearing for motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251193A JP4746503B2 (en) 2006-09-15 2006-09-15 Anti-corrosion rolling bearing for motor

Publications (2)

Publication Number Publication Date
JP2008069923A true JP2008069923A (en) 2008-03-27
JP4746503B2 JP4746503B2 (en) 2011-08-10

Family

ID=39291680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251193A Active JP4746503B2 (en) 2006-09-15 2006-09-15 Anti-corrosion rolling bearing for motor

Country Status (1)

Country Link
JP (1) JP4746503B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944690B2 (en) 2009-08-28 2015-02-03 Saint-Gobain Performance Plastics Pampus Gmbh Corrosion resistant bushing
US9004802B2 (en) 2003-04-17 2015-04-14 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring assembly
JP2016156409A (en) * 2015-02-23 2016-09-01 Ntn株式会社 Rolling bearing
US10371213B2 (en) 2009-09-25 2019-08-06 Saint-Gobain Performance Plastics Rencol Limited System, method and apparatus for tolerance ring control of slip interface sliding forces
CN112714834A (en) * 2018-09-27 2021-04-27 Ntn株式会社 Anti-electric erosion rolling bearing
US11005334B2 (en) 2017-12-15 2021-05-11 Saint-Gobain Performance Plastics Rencol Limited Annular member, method, and assembly for component displacement control
WO2023021786A1 (en) 2021-08-20 2023-02-23 日本精工株式会社 Rolling bearing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134639B2 (en) 2017-03-24 2022-09-12 アクティエボラゲット・エスコーエッフ Rolling bearing with electrical insulating layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552223A (en) * 1991-08-21 1993-03-02 Ntn Corp Electrocorrosion preventive rolling bearing
JP2002181055A (en) * 2000-12-14 2002-06-26 Ntn Corp Ceramics spray raceway ring and sealing treatment method
JP2003183806A (en) * 2001-12-19 2003-07-03 Tocalo Co Ltd Sealing agent, sealing method, and sealed spray-film- covered member
JP2004225116A (en) * 2003-01-23 2004-08-12 Masakatsu Umagome Sealant for thermal-sprayed surface
JP2004300509A (en) * 2003-03-31 2004-10-28 Nippon Paint Co Ltd Sealing treatment method for thermal spray coating
JP2005133876A (en) * 2003-10-31 2005-05-26 Ntn Corp Electrical corrosion prevention rolling bearing
WO2007119763A1 (en) * 2006-04-13 2007-10-25 Ntn Corporation Sealer, members covered with sprayed coatings, and bearings
JP2007284724A (en) * 2006-04-13 2007-11-01 Ntn Corp Sealing agent, thermal spray coated member and bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552223A (en) * 1991-08-21 1993-03-02 Ntn Corp Electrocorrosion preventive rolling bearing
JP2002181055A (en) * 2000-12-14 2002-06-26 Ntn Corp Ceramics spray raceway ring and sealing treatment method
JP2003183806A (en) * 2001-12-19 2003-07-03 Tocalo Co Ltd Sealing agent, sealing method, and sealed spray-film- covered member
JP2004225116A (en) * 2003-01-23 2004-08-12 Masakatsu Umagome Sealant for thermal-sprayed surface
JP2004300509A (en) * 2003-03-31 2004-10-28 Nippon Paint Co Ltd Sealing treatment method for thermal spray coating
JP2005133876A (en) * 2003-10-31 2005-05-26 Ntn Corp Electrical corrosion prevention rolling bearing
WO2007119763A1 (en) * 2006-04-13 2007-10-25 Ntn Corporation Sealer, members covered with sprayed coatings, and bearings
JP2007284724A (en) * 2006-04-13 2007-11-01 Ntn Corp Sealing agent, thermal spray coated member and bearing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9004802B2 (en) 2003-04-17 2015-04-14 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring assembly
US9206853B2 (en) 2003-04-17 2015-12-08 Saint-Gobain Performance Plastics Rencol Limited Tolerance ring assembly
US10203004B2 (en) 2003-04-17 2019-02-12 Saint-Gobain Performance Plastics Rencol Limited Method of using a tolerance ring
US8944690B2 (en) 2009-08-28 2015-02-03 Saint-Gobain Performance Plastics Pampus Gmbh Corrosion resistant bushing
US10371213B2 (en) 2009-09-25 2019-08-06 Saint-Gobain Performance Plastics Rencol Limited System, method and apparatus for tolerance ring control of slip interface sliding forces
JP2016156409A (en) * 2015-02-23 2016-09-01 Ntn株式会社 Rolling bearing
US11005334B2 (en) 2017-12-15 2021-05-11 Saint-Gobain Performance Plastics Rencol Limited Annular member, method, and assembly for component displacement control
CN112714834A (en) * 2018-09-27 2021-04-27 Ntn株式会社 Anti-electric erosion rolling bearing
CN112714834B (en) * 2018-09-27 2023-09-05 Ntn株式会社 Anti-electric erosion rolling bearing
WO2023021786A1 (en) 2021-08-20 2023-02-23 日本精工株式会社 Rolling bearing

Also Published As

Publication number Publication date
JP4746503B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4843431B2 (en) Insulated rolling bearings and rolling bearings for wind power generators
JP4746503B2 (en) Anti-corrosion rolling bearing for motor
JP4789287B2 (en) Sealing agent, thermal spray coating member and bearing
EP2009145B1 (en) Sealer, members covered with sprayed coatings, and bearings
JP2008069924A (en) Rolling bearing for electric equipment of automobile
JP7202763B2 (en) An apparatus for spraying a ceramic precursor solution onto the surface of an Nd--Fe--B system permanent magnetic material, and a method for forming a ceramic layer on the surface of the Nd--Fe--B system permanent magnetic material.
JP5069473B2 (en) Sealing agent, thermal spray coating member and bearing
CN103333579B (en) A kind of hot spray coating surface-sealing agent and application thereof
JP2011162785A (en) Coating material composition and magnet system having insulation coating film
JP3598401B2 (en) Sealing treatment agent, sealing treatment method, and thermal spray coating member subjected to sealing treatment
JP5052120B2 (en) Sealing agent coating apparatus and sealing processing method
JP2008156690A (en) Sprayed coating-coated member, its production method, and bearing
JP4980660B2 (en) Sealing agent, thermal spray coating member and bearing
KR102387311B1 (en) curable resin composition
JP5069460B2 (en) Sealing agent, thermal spray coating member and bearing
JP2008095178A (en) Sealing treatment agent coating device, sealing treatment method, and bearing
JP4980659B2 (en) Sealing agent, thermal spray coating member and bearing
JP4980661B2 (en) Sealing agent, thermal spray coating member and bearing
WO2023054182A1 (en) Alumina thermal-sprayed bearing
CN112714834B (en) Anti-electric erosion rolling bearing
CN218235858U (en) Insulating bearing
WO2020067012A1 (en) Electrocorrosion-preventing rolling bearing
JP2024056391A (en) Coated metal member and method of manufacturing same
KR20230138219A (en) Insulation coating method for bearing outer ring
JP2019173040A (en) Aluminum-magnesium spray coating, substrate, rough surface coating, and complex having aluminum-magnesium spray coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250