JP2008069201A - Light-emitting material and method for producing the same - Google Patents

Light-emitting material and method for producing the same Download PDF

Info

Publication number
JP2008069201A
JP2008069201A JP2006246991A JP2006246991A JP2008069201A JP 2008069201 A JP2008069201 A JP 2008069201A JP 2006246991 A JP2006246991 A JP 2006246991A JP 2006246991 A JP2006246991 A JP 2006246991A JP 2008069201 A JP2008069201 A JP 2008069201A
Authority
JP
Japan
Prior art keywords
powder
light
emitting material
producing
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006246991A
Other languages
Japanese (ja)
Inventor
Yohei Ono
陽平 大野
Naohito Yamada
直仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006246991A priority Critical patent/JP2008069201A/en
Publication of JP2008069201A publication Critical patent/JP2008069201A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a light-emitting material having electrical conduction property and to provide a method for producing the same. <P>SOLUTION: The light-emitting material having electrical conduction property is produced by adding Pr (praseodymium) as a light-emitting center ion to a matrix of titanate represented by a composition formula Ca<SB>4</SB>Ti<SB>3</SB>O<SB>10</SB>and firing the mixture in a reducing atmosphere. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、1[kV]程度以下の低加速電圧の電子線(低速電子線)を励起源として利用するFED(Field Emission Display)等の表示装置に適用して好適な発光材料及びその製造方法に関する。   The present invention is suitable for application to a display device such as an FED (Field Emission Display) that uses an electron beam (low speed electron beam) with a low acceleration voltage of about 1 [kV] or less as an excitation source, and a method for manufacturing the same. About.

従来より、ペロブスカイト型構造に類似したルドルスデン−ホッパー(Ruddlesden-Popper)型層状構造を結晶構造として有するチタン酸塩An+1Ti3n+1(AはCa又はSr示し,nは1,2,∞を示す)のうち、希土類元素のPrをドープさせたSrTiO,SrTiO,SrTi,CaTiは可視光発光を示すことが報告されている(非特許文献1参照)。この中で、PrをドープさせたSrTiとCaTiは比較的強い赤色発光を示すことが知られている。
Japanese Journal of Applied Physics,44,1B,2005,pp761-764)
Conventionally, titanate An n + 1 Ti n O 3n + 1 having a Ruddlesden-Popper type layered structure similar to a perovskite type structure as a crystal structure (A is Ca or Sr, n is 1, 2 or ∞) SrTiO 3 , Sr 2 TiO 4 , Sr 3 Ti 2 O 7 , and Ca 3 Ti 2 O 7 doped with rare earth element Pr have been reported to show visible light emission (non-patent literature). 1). Among these, it is known that Pr doped with Sr 3 Ti 2 O 7 and Ca 3 Ti 2 O 7 emit relatively strong red light.
Japanese Journal of Applied Physics, 44,1B, 2005, pp761-764)

しかしながら、上述の蛍光体材料は、大気雰囲気で焼成することにより製造されるために絶縁体特性を有する。従って、上述の蛍光材料をFED等で用いられる低速電子線によって励起した場合には、蛍光材料表面で帯電が生じ、後続の電子が蛍光体膜に侵入できず、良好な発光が期待できない。また、低速電子線励起下では、電子の侵入長が稼げないために、CRT等で実施されている帯電防止のための処置(メタルバック)が施せない。このような背景から、低速電子線によって良好な発光特性を得るためには、電気伝導性を有する蛍光材料の提供が急務となっている。   However, since the above-described phosphor material is manufactured by firing in an air atmosphere, it has an insulator characteristic. Therefore, when the above-described fluorescent material is excited by a low-speed electron beam used in FED or the like, charging occurs on the surface of the fluorescent material, and subsequent electrons cannot enter the phosphor film, and good light emission cannot be expected. Also, under low-energy electron beam excitation, the penetration length of electrons cannot be gained, so that the antistatic treatment (metal back) implemented in CRT or the like cannot be performed. From such a background, in order to obtain good light emission characteristics by a low-speed electron beam, it is an urgent need to provide a fluorescent material having electrical conductivity.

本発明は、上述の課題を解決するためになされたものであり、その目的は、電気伝導性を有する発光材料及びその製造方法を提供することにある。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a light-emitting material having electrical conductivity and a method for manufacturing the same.

本願発明の発明者らは、精力的な研究を重ねてきた結果、組成式CaTi10で表されるチタン酸塩の母体にPr(プラセオジウム)を発光中心イオンとして添加し、還元雰囲気で焼成することにより、電気伝導性を有する発光材料を製造できることを知見した。 As a result of intensive research, the inventors of the present invention have added Pr (praseodymium) as a luminescent center ion to a titanate base represented by the composition formula Ca 4 Ti 3 O 10 , and reduced atmosphere. It was found that a light-emitting material having electrical conductivity can be produced by firing at 1.

本発明の発光材料及びその製造方法によれば、電気伝導性を有する発光材料を提供することができる。また、本発明に係る発光材料を表示装置に適用した場合には、表示装置の信頼性を向上させることができる。   According to the luminescent material and the method for producing the same of the present invention, a luminescent material having electrical conductivity can be provided. In addition, when the light emitting material according to the present invention is applied to a display device, the reliability of the display device can be improved.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

〔実施例1〕
実施例1では、始めに、CaCO粉末,TiO粉末,及びPr11粉末を3.99:3:0.0016のモル比で秤量し、秤量した粉末と溶媒としてイソプロピルアルコールを円筒状のプラスチック製ポットに入れた。次に、プラスチック製ポットを1分間自転公転回転混合させた後、プラスチック製ポット内のスラリーを1分間超音波ホモジナイザーで分散させ、再度プラスチック製ポットを1分間自転公転回転混合させ、混合スラリーを得た。次に、得られた混合スラリーを110[℃]の窒素気流中で乾燥させ、実施例1の原料粉末を得た。次に、原料粉末を200[kgf/cm]の圧力で一軸加圧成形することによりφ50[mm],厚さ5[mm]程度の円盤状成形体を作製し、作製した成形体をさらにCIP成形した後、焼成用黒鉛サヤに収納して焼成することにより、実施例1の蛍光材料を得た。なお、焼成処理には常圧カーボン炉を利用し、焼成温度1500[℃]で1時間保持した後に冷却した。また、焼成雰囲気は、室温状態から0.15[MPa]の窒素ガス又はアルゴンガスを導入した。
[Example 1]
In Example 1, first, CaCO 3 powder, TiO 2 powder, and Pr 6 O 11 powder were weighed at a molar ratio of 3.99: 3: 0.0016, and isopropyl alcohol was used as the solvent in a cylindrical shape. In a plastic pot. Next, after rotating and rotating and mixing the plastic pot for 1 minute, the slurry in the plastic pot is dispersed with an ultrasonic homogenizer for 1 minute and the plastic pot is rotated and rotated and rotated again for 1 minute to obtain a mixed slurry. It was. Next, the obtained mixed slurry was dried in a nitrogen stream at 110 [° C.] to obtain a raw material powder of Example 1. Next, the raw material powder is uniaxially pressed at a pressure of 200 [kgf / cm 2 ] to produce a disk-shaped molded body having a diameter of about 50 [mm] and a thickness of about 5 [mm]. After CIP molding, the phosphor material of Example 1 was obtained by storing in a firing graphite sheath and firing. In addition, the normal pressure carbon furnace was utilized for baking processing, and it cooled, after hold | maintaining for 1 hour with the baking temperature of 1500 [degreeC]. Moreover, 0.15 [MPa] nitrogen gas or argon gas was introduce | transduced into the baking atmosphere from the room temperature state.

〔比較例1〕
比較例1では、CaCO粉末の代わりにSrCO粉末を用い、SrCO粉末,TiO粉末,及びPr11粉末をモル比2.99:2:0.0016で秤量した以外は実施例1と同様の処理を行うことにより、比較例1の蛍光材料を得た。
[Comparative Example 1]
Comparative Example 1 is an example except that SrCO 3 powder was used instead of CaCO 3 powder, and SrCO 3 powder, TiO 2 powder, and Pr 6 O 11 powder were weighed in a molar ratio of 2.99: 2: 0.0016. The fluorescent material of Comparative Example 1 was obtained by performing the same treatment as in Example 1.

〔比較例2〕
比較例2では、CaCO粉末,TiO粉末,及びPr11粉末をモル比0.99:1:0.0016で秤量した以外は実施例1と同様の処理を行うことにより、比較例2の蛍光材料を得た。
[Comparative Example 2]
In Comparative Example 2, the same treatment as in Example 1 was carried out except that CaCO 3 powder, TiO 2 powder, and Pr 6 O 11 powder were weighed at a molar ratio of 0.99: 1: 0.0016, thereby giving a comparative example. Two fluorescent materials were obtained.

〔比較例3〕
比較例3では、CaCO粉末とPr11粉末の代わりにSrCO粉末とEu粉末を用い、SrCO粉末,TiO粉末,及びEu粉末をモル比2.99:2:0.0016で秤量した以外は実施例1と同様の処理を行うことにより、比較例3の蛍光材料を得た。
[Comparative Example 3]
In Comparative Example 3, SrCO 3 powder and Eu 2 O 3 powder were used instead of CaCO 3 powder and Pr 6 O 11 powder, and the molar ratio of SrCO 3 powder, TiO 2 powder, and Eu 2 O 3 powder was 2.99: 2: A fluorescent material of Comparative Example 3 was obtained by performing the same treatment as in Example 1 except that it was weighed at 0.0016.

〔電気伝導率〕
上記実施例1及び比較例1〜3の蛍光材料それぞれの電気伝導率をJIS C2141に準じた方法により室温大気中で測定した。試験片形状はφ35×1[mm]とし、主電極径10[mm],ガード電極内径20[mm],ガード電極外径30[mm],印加電極径30[mm]となるように各電極を銀で形成した。印加電圧は100[V/mm]とし、電圧印加後1分時の電流を読み取り、電気伝導率を算出した。この結果を以下の表1,2に示す。表1,2から明らかなように、実施例1の蛍光材料の電気伝導率は、比較例1〜3の電気伝導率よりも大幅に大きいことが明らかになった。

Figure 2008069201
Figure 2008069201
[Electric conductivity]
The electrical conductivity of each of the fluorescent materials of Example 1 and Comparative Examples 1 to 3 was measured in the air at room temperature by a method according to JIS C2141. The shape of the test piece is 35 mm × 1 [mm], and each electrode has a main electrode diameter of 10 [mm], a guard electrode inner diameter of 20 [mm], a guard electrode outer diameter of 30 [mm], and an applied electrode diameter of 30 [mm]. Was formed of silver. The applied voltage was 100 [V / mm], the current at 1 minute after voltage application was read, and the electrical conductivity was calculated. The results are shown in Tables 1 and 2 below. As is clear from Tables 1 and 2, it was found that the electrical conductivity of the fluorescent material of Example 1 was significantly greater than that of Comparative Examples 1 to 3.
Figure 2008069201
Figure 2008069201

〔結晶相の評価〕
上記実施例及び比較例の蛍光材料の結晶相を(株)理学電機製の回転対陰極型X線回折装置(測定条件:CuKα線源,35[kV],20[mA],2θ=10〜70°)を用いて同定した。代表として実施例1の蛍光材料から得られたX線回折プロファイルを図1に、その他の実施例及び比較例の蛍光材料についての同定結果を表1,2に示す。同定の結果、実施例1の蛍光材料はCaTi10のみから形成され、比較例1〜3の蛍光材料も同様に単相であることが確認された。
[Evaluation of crystal phase]
The crystal phases of the fluorescent materials of the above examples and comparative examples were changed to a rotating counter cathode type X-ray diffractometer manufactured by Rigaku Corporation (measurement conditions: CuKα radiation source, 35 [kV], 20 [mA], 2θ = 10 70 °). As an example, FIG. 1 shows an X-ray diffraction profile obtained from the fluorescent material of Example 1, and Tables 1 and 2 show the identification results of the fluorescent materials of other Examples and Comparative Examples. As a result of identification, it was confirmed that the fluorescent material of Example 1 was formed only from Ca 4 Ti 3 O 10 , and the fluorescent materials of Comparative Examples 1 to 3 were also single phase.

〔発光強度〕
上記実施例及び比較例の蛍光材料の発光特性を日本分光(株)製の分光蛍光光度計FP−6300を用いて測定した。具体的には、蛍光材料を専用ホルダー内に充填し、任意の紫外線波長域の励起光を照射し、蛍光(PhotoLuminescence:PL)スペクトルを測定した。得られたPLスペクトルのピーク波長における励起スペクトルを220〜400[nm]の波長範囲で測定した。さらに励起スペクトルのピーク波長を照射して400〜700[nm]の波長範囲でPLスペクトルを測定し、最大強度を与える励起波長でのPLスペクトルを得た。図2に実施例1の蛍光材料から得られた最大励起波長でのPLスペクトル、図3に比較例1〜3の蛍光材料から得られた最大励起波長でのPLスペクトル、表1,2に実施例1及び比較例1〜3の蛍光材料から得られたPLスペクトルにおける最大ピーク波長を示す。図2から明らかなように、実施例1の蛍光材料はピーク波長611[nm]の赤色発光を示すことが確認された。また、比較例1〜3の蛍光材料は570[nm]以上650[nm]以下の波長範囲内に発光のピークを有することが確認された。
[Luminescence intensity]
The light emission characteristics of the fluorescent materials of the above examples and comparative examples were measured using a spectrofluorophotometer FP-6300 manufactured by JASCO Corporation. Specifically, a fluorescent material was filled in a dedicated holder, irradiated with excitation light in an arbitrary ultraviolet wavelength region, and a fluorescence (PhotoLuminescence: PL) spectrum was measured. The excitation spectrum at the peak wavelength of the obtained PL spectrum was measured in the wavelength range of 220 to 400 [nm]. Further, the PL spectrum was measured in the wavelength range of 400 to 700 [nm] by irradiating the peak wavelength of the excitation spectrum, and the PL spectrum at the excitation wavelength giving the maximum intensity was obtained. 2 shows the PL spectrum at the maximum excitation wavelength obtained from the fluorescent material of Example 1, FIG. 3 shows the PL spectrum at the maximum excitation wavelength obtained from the fluorescent material of Comparative Examples 1 to 3, and Tables 1 and 2 show the results. The maximum peak wavelength in PL spectrum obtained from the fluorescent material of Example 1 and Comparative Examples 1-3 is shown. As is clear from FIG. 2, it was confirmed that the fluorescent material of Example 1 emitted red light having a peak wavelength of 611 [nm]. Moreover, it was confirmed that the fluorescent materials of Comparative Examples 1 to 3 have emission peaks within a wavelength range of 570 [nm] or more and 650 [nm] or less.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

実施例1の発光材料のX線回折プロファイルを示す。The X-ray-diffraction profile of the luminescent material of Example 1 is shown. 実施例1の発光材料の光励起発光スペクトルを示す。The photoexcitation emission spectrum of the luminescent material of Example 1 is shown. 比較例1〜3の発光材料の光励起発光スペクトルを示す。The photoexcitation emission spectrum of the luminescent material of Comparative Examples 1-3 is shown.

Claims (3)

結晶構造がルドルスデン−ホッパー型層状構造であり、組成式Ca4−xPrTi10(0.0001≦x≦0.1)で表される発光材料。 A light-emitting material whose crystal structure is a Rudolsden-hopper type layered structure and which is represented by a composition formula Ca 4-x Pr x Ti 3 O 10 (0.0001 ≦ x ≦ 0.1). 請求項1に記載の発光材料であって、10−12[S/cm]以上の電気伝導率を有することを特徴とする発光材料。 The luminescent material according to claim 1, wherein the luminescent material has an electric conductivity of 10 −12 [S / cm] or more. CaCO粉末、TiO粉末、及びPr11粉末を還元雰囲気で焼成する工程を有することを特徴とする発光材料の製造方法。 A method for producing a luminescent material, comprising a step of firing CaCO 3 powder, TiO 2 powder, and Pr 6 O 11 powder in a reducing atmosphere.
JP2006246991A 2006-09-12 2006-09-12 Light-emitting material and method for producing the same Withdrawn JP2008069201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246991A JP2008069201A (en) 2006-09-12 2006-09-12 Light-emitting material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246991A JP2008069201A (en) 2006-09-12 2006-09-12 Light-emitting material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008069201A true JP2008069201A (en) 2008-03-27

Family

ID=39291082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246991A Withdrawn JP2008069201A (en) 2006-09-12 2006-09-12 Light-emitting material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008069201A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121062A (en) * 2008-11-20 2010-06-03 Nec Lighting Ltd Fluorescent substance and light emitting device using the same
CN107502350A (en) * 2017-08-28 2017-12-22 五邑大学 A kind of praseodymium doped laminated perovskite type red long afterglow luminous material, Its Preparation Method And Use
CN116179006A (en) * 2022-12-30 2023-05-30 中国科学院福建物质结构研究所 Long-afterglow luminous paint, preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121062A (en) * 2008-11-20 2010-06-03 Nec Lighting Ltd Fluorescent substance and light emitting device using the same
CN107502350A (en) * 2017-08-28 2017-12-22 五邑大学 A kind of praseodymium doped laminated perovskite type red long afterglow luminous material, Its Preparation Method And Use
CN116179006A (en) * 2022-12-30 2023-05-30 中国科学院福建物质结构研究所 Long-afterglow luminous paint, preparation method and application thereof
CN116179006B (en) * 2022-12-30 2024-06-11 中国科学院福建物质结构研究所 Long-afterglow luminous paint, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5229878B2 (en) Luminescent device using phosphor
JP5234781B2 (en) Phosphor, method for producing the same, and light emitting device
JP5224439B2 (en) Phosphor and light emitting device using the same
JP5322053B2 (en) Phosphor, method for producing the same, and light emitting device
JP5713305B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JP5294245B2 (en) Phosphor, method for producing the same, and light emitting device
JP4836229B2 (en) Phosphor and light emitting device
JP6040500B2 (en) Phosphor, method for manufacturing the same, light emitting device, and image display device
JPWO2007066733A1 (en) Phosphor, method for producing the same, and light emitting device
JP2008069201A (en) Light-emitting material and method for producing the same
JP2017210529A (en) Phosphor, production method thereof, light-emitting device, image display device, pigment, and, uv-absorber
JP5071714B2 (en) Phosphor, method for producing the same, and light emitting device using the same
JP5071709B2 (en) Phosphors and light emitting devices
JP5881176B2 (en) Phosphor, lighting apparatus and image display device
JP4173057B2 (en) Fluorescent substance and fluorescent display device
JP5170640B2 (en) Phosphor, method for producing the same, and light emitting device
JP5187814B2 (en) Phosphors and light emitting devices
KR101420978B1 (en) An apparatus for synthesizing phospor using dielectric barrier discharge and a method using the same
JP4178271B2 (en) Oxide electroluminescent material and electroluminescent device using the same
JP6265408B2 (en) Phosphor, method for producing the same, and light emitting device using the same
JP2005076024A (en) Method for preparing thin film of rare earth element-doped gallium oxide-tin oxide multicomponent oxide fluorescent material for electroluminescent element
JP2013193898A (en) Carnet type oxide crystal and method of manufacturing the same
JP2009035623A (en) Inorganic oxide phosphor and light source using the same
JP2018087278A (en) Phosphor, method for producing the same, luminescent device thereof, and ultraviolet use device thereof
JP2004107451A (en) Phosphor and fluorescent display device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091201