JP2008069024A - Method of manufacturing sheet glass by fusion down draw method - Google Patents

Method of manufacturing sheet glass by fusion down draw method Download PDF

Info

Publication number
JP2008069024A
JP2008069024A JP2006247483A JP2006247483A JP2008069024A JP 2008069024 A JP2008069024 A JP 2008069024A JP 2006247483 A JP2006247483 A JP 2006247483A JP 2006247483 A JP2006247483 A JP 2006247483A JP 2008069024 A JP2008069024 A JP 2008069024A
Authority
JP
Japan
Prior art keywords
noble metal
molten glass
glass
temperature
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006247483A
Other languages
Japanese (ja)
Other versions
JP4673275B2 (en
Inventor
Noriaki Hara
範明 原
Yasunori Gama
保典 蒲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2006247483A priority Critical patent/JP4673275B2/en
Publication of JP2008069024A publication Critical patent/JP2008069024A/en
Application granted granted Critical
Publication of JP4673275B2 publication Critical patent/JP4673275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing sheet glass by a fusion down draw method by which reduction in the temperature of molten glass is suppressed and the forming of a product is performed under a uniform temperature distribution. <P>SOLUTION: A fusion cell 100 is obtained by depositing a platinum coating film on the whole surface of a base material comprising high alumina sintered brick by flame spraying. Electrodes 200, 210 and 220 for electric heating are mounted on the side face of the fusion cell 100. The platinum coating film 130 is electrically heated through the electrodes 200, 210 and 220. As a result, the reduction in the temperature and the unevenness of the temperature distribution of the molten glass to be passed are suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フュージョンダウンドロー法による板状ガラスの製造方法に関する。詳しくは、改良されたフュージョンセルを用いて、高品質の板ガラスを製造する方法に関する。   The present invention relates to a method for producing a sheet glass by a fusion downdraw method. In detail, it is related with the method of manufacturing a high quality plate glass using the improved fusion cell.

フュージョンダウンドロー法は、板ガラスの製造方法として一般的に用いられている。図3は、この方法で使用されるフュージョンセルを示すものであるが、フュージョンセルは、上部に樋状の溝部及び堰が形成されており、その下部に先細りのルートが形成されてなる。板ガラス製造においては、前処理として均質化、清澄化処理された溶融ガラスを上部の溝に導入し、やがて溝から溢れる溶融ガラスは側壁を通ってルートで融合して板状となり、これを引き出して板ガラスとする。この方法は、ガラス表面と成形部材との接触を極力回避することができ、高品位の表面が得られるというメリットがあることから、ディスプレイ用ガラス等製造方法として広く用いられている。
特表2005−514302号公報 特表2005−512926号公報
The fusion downdraw method is generally used as a method for producing plate glass. FIG. 3 shows a fusion cell used in this method. In the fusion cell, a bowl-shaped groove and a weir are formed in the upper part, and a tapered route is formed in the lower part. In plate glass production, molten glass that has been homogenized and clarified as a pre-treatment is introduced into the upper groove, and the molten glass that overflows from the groove eventually fuses in the route through the side wall into a plate shape that is drawn out. It is a plate glass. This method can avoid contact between the glass surface and the molded member as much as possible, and has a merit that a high quality surface can be obtained. Therefore, this method is widely used as a method for manufacturing display glass and the like.
JP-T-2005-514302 JP 2005-512926 A

ガラス製造においては、溶融ガラスの温度管理が重要な課題である。溶融ガラスの温度はその粘度に影響を及ぼし、温度分布及び粘度が不均一な溶融ガラスはその流れに悪影響が生じ、結果的に製品となるガラスの品質も悪化する。フュージョンダウンドロー法による板ガラス成形工程においては、この溶融ガラスの温度管理の問題がとりわけ重要である。フュージョンセルを通過するガラスは温度低下が大きく、その上部(溝)における温度とルートでの温度との間に温度差が生じ易い。そして、温度差が大きいと板ガラスの安定的な成形が困難となる。また、この方法において、サイズの大きい板ガラスを製造するためには、フュージョンセルを大型化することが必要であるが、そうなると通過する溶融ガラスの温度差、粘度差が生じ易くなり、製造される板ガラスの厚さに影響を及ぼす。更に、この工程は、板ガラス製品製造の最終的な工程であり、その前工程で如何に高品質な溶融ガラスを用意しても、この工程で温度管理を怠ることで製品品質が悪化するからである。   In glass production, temperature management of molten glass is an important issue. The temperature of the molten glass affects its viscosity, and a molten glass having a non-uniform temperature distribution and viscosity will adversely affect its flow, resulting in a deterioration in the quality of the resulting glass. In the glass sheet forming process by the fusion downdraw method, the problem of temperature control of the molten glass is particularly important. The glass passing through the fusion cell has a large temperature drop, and a temperature difference is likely to occur between the temperature at the upper part (groove) and the temperature at the route. And if a temperature difference is large, the stable shaping | molding of plate glass will become difficult. Moreover, in this method, in order to produce a large plate glass, it is necessary to enlarge the fusion cell. However, if this happens, a temperature difference and a viscosity difference of the molten glass that passes through easily occur, and the produced plate glass. Affects the thickness of the. Furthermore, this process is the final process for producing flat glass products, and no matter how high-quality molten glass is prepared in the previous process, product quality deteriorates due to neglecting temperature control in this process. is there.

そこで、これまでのフュージョンダウンドロー法による工程では、フュージョンセル各所にヒーターを設け、フュージョンセルを加熱することで溶融ガラスの温度低下及び温度分布の不均一を防止している。   Therefore, in the conventional process using the fusion downdraw method, heaters are provided at various portions of the fusion cell, and the fusion cell is heated to prevent a temperature drop of the molten glass and uneven temperature distribution.

しかしながら、ヒーターによる加熱は、局所的なものであり複数箇所にヒーターを設けても溶融ガラスの温度分布を完全に均一なものとするのは困難である。また、ヒーターの設置数を増加させることは、フュージョンセルの構造を複雑化すると共に消費電力の増大に繋がる。   However, heating by the heater is local, and even if heaters are provided at a plurality of locations, it is difficult to make the temperature distribution of the molten glass completely uniform. Moreover, increasing the number of heaters increases the power consumption while complicating the structure of the fusion cell.

本発明は、以上のような背景のもとになされたものであり、フュージョンダウンドロー法による板ガラスの製造方法において、溶融ガラスの温度低下を抑制し、かつ、その温度分布が均一な状態で製品の成形が可能であるものを提供する。   The present invention has been made based on the background as described above, and in the method for producing plate glass by the fusion down draw method, the temperature drop of the molten glass is suppressed, and the product in a state where the temperature distribution is uniform. The one that can be molded is provided.

本発明者等は、上記課題を解決する溶融ガラスの温度維持の方法として、従来と同様にフュージョンセルの加熱を行なうこととしつつ、その方法としてヒーター加熱に替えてセル表面に抵抗体となる金属被膜を形成し、これを通電することを見出し、本発明に想到した。   As a method for maintaining the temperature of the molten glass to solve the above-mentioned problems, the inventors have performed heating of the fusion cell in the same manner as in the past, and as a method, a metal that becomes a resistor on the cell surface instead of heater heating. The inventors have found that a film is formed and energized, and have arrived at the present invention.

即ち、本発明は、少なくとも溶融ガラスと接触する面に溶射による貴金属被膜を備えるフュージョンセルを用い、前記フュージョンセルに溶融ガラスを通過させるフュージョンダウンドロー法による板ガラスの製造方法であって、前記貴金属被膜を通電加熱しながら溶融ガラスを通過させる板ガラスの製造方法である。   That is, the present invention is a method for producing plate glass by a fusion down draw method in which a fusion cell having a noble metal coating by thermal spraying on at least a surface in contact with the molten glass is passed through the fusion cell, wherein the noble metal coating It is a manufacturing method of the plate glass which allows a molten glass to pass through, heating electricity.

本発明のように溶融ガラスとの接触面に貴金属からなる被膜を形成し、これを通電することで、被膜を形成した箇所は一様に加熱されることとなる。これにより、溶融ガラスの温度分布は均一なものとなり、流れが不安定となる等の不都合が解消される。また、金属被膜の通電による加熱温度は、抵抗体となる被膜の厚さ、印加する電力により容易に調整可能であり、利便性も高い。これにより、セル上部の溝付近、セルのルート付近において、被膜の厚さ又は印加電力を変化させることで各部位における加熱温度を変化させることもでき、各部位における温度低下を抑制することもできる。   By forming a film made of a noble metal on the contact surface with the molten glass as in the present invention and energizing this, the portion where the film is formed is uniformly heated. As a result, the temperature distribution of the molten glass becomes uniform, and problems such as unstable flow are eliminated. Moreover, the heating temperature by energization of the metal film can be easily adjusted by the thickness of the film serving as the resistor and the applied power, and is highly convenient. Thereby, the heating temperature in each part can be changed by changing the thickness of the coating or the applied power in the vicinity of the groove on the upper part of the cell and the route of the cell, and the temperature drop in each part can also be suppressed. .

ここで、本発明において、抵抗体となる金属被膜を貴金属としたのは、その高融点、高温強度によるものである。溶融ガラスの温度は1000℃以上の高温であり、かかる高温の流体と接触する被膜について一般的な金属材料を適用すると、変形、溶解が生じ、溶融ガラスを汚染することとなる。貴金属であれば溶融ガラスによる浸食を受けずに加熱することができる。   Here, in the present invention, the noble metal is used as the resistor metal film because of its high melting point and high temperature strength. The temperature of the molten glass is a high temperature of 1000 ° C. or higher. When a general metal material is applied to the coating film that comes into contact with such a high-temperature fluid, deformation and melting occur, and the molten glass is contaminated. If it is a noble metal, it can be heated without being eroded by molten glass.

貴金属被膜は、白金からなるものが好ましいが、この他、白金合金、例えば、白金−ロジウム合金、白金−イリジウム合金、白金−金合金を適用できる。白金合金については、白金より硬度等の特性に優れるものがあり、ガラス製造装置の部位によっては適用が好ましい場合がある。そして、貴金属被膜の形成法は溶射法による。溶射法は、厚膜の形成が可能であり、その厚さ制御が容易である。また、比較的大きいサイズの対象物に対しても施行可能な方法である。溶射法の具体的手法は、特に制限されるものはなく、フレーム溶射、プラズマ溶射等、何れも適用できる。   The noble metal coating is preferably made of platinum, but platinum alloys such as platinum-rhodium alloys, platinum-iridium alloys, and platinum-gold alloys can also be applied. Some platinum alloys are more excellent in properties such as hardness than platinum, and application may be preferable depending on the part of the glass manufacturing apparatus. The noble metal coating is formed by a thermal spraying method. With the thermal spraying method, a thick film can be formed, and the thickness can be easily controlled. Moreover, it is a method which can be implemented even for a relatively large size object. The specific method of the thermal spraying method is not particularly limited, and any of flame spraying and plasma spraying can be applied.

この溶射による貴金属被膜の厚さは、100〜1000μmとするのが好ましく、100〜500μmがより好ましい。100μm未満の膜厚では、溶融ガラスの浸食によりフュージョンセルの基材が損傷するおそれがあり、膜厚が1000μmを超えると溶射時の溶射膜が収縮する際に剥離が生じやすくなるからである。尚、被膜の厚さにより抵抗値は変化し、被膜を薄くする程、小電流で加熱することができる。そのため、被膜を薄くすることにより、通電のための装置構成を簡易なものとすることができる。従って、貴金属被膜の膜厚は、保護被膜として機能上必要な膜厚を考慮しつつ設定することが好ましい。また、膜厚はフュージョンセル全体で均一にしても良いが、部分に応じて変化させても良い。例えば、温度が高い状態にある、セル上部(溝部)での膜厚は厚くしつつ、温度低下が懸念されるルート下部については膜厚を薄くして抵抗値を上昇させて加熱の効率を確保する等、膜厚を調整することができる。 The thickness of the noble metal coating by this thermal spraying is preferably 100 to 1000 μm, and more preferably 100 to 500 μm. If the film thickness is less than 100 μm, the fusion cell substrate may be damaged by erosion of the molten glass, and if the film thickness exceeds 1000 μm, peeling tends to occur when the sprayed film shrinks during spraying. Note that the resistance value varies depending on the thickness of the coating, and the thinner the coating, the more heat can be applied. Therefore, by reducing the thickness of the coating, the device configuration for energization can be simplified. Therefore, it is preferable to set the film thickness of the noble metal film in consideration of the film thickness necessary for the protective film. Further, the film thickness may be uniform throughout the fusion cell, but may be changed depending on the part. For example, while increasing the film thickness at the upper part of the cell (groove part) in a high temperature state, the film thickness is reduced at the lower part of the route where there is a concern about the temperature decrease to increase the resistance value to ensure heating efficiency. For example, the film thickness can be adjusted.

また、フュージョンセルの材質は、従来から構成材料として用いられている電鋳煉瓦やデンスジルコン等の緻密質の耐火物材料を適用できる。電鋳煉瓦とは、電気溶融鋳造(電鋳)により製造される煉瓦であり、電気炉にて溶融したレンガ原料(Al2 3 −ZrO2 −SiO2 質セラミックやAl2 3 −SiO2 質セラミック等)を鋳型に流し込んで冷却させたものである。更に、本発明においては、基材として焼結煉瓦を用いることができる。焼結煉瓦とは、アルミナ、シリカ、ジルコニアを主成分とするセラミック原料と適宜の結合材とを混練して成形した後、焼成することによって得られる煉瓦材料である。焼結煉瓦は、電鋳煉瓦よりも緻密性には欠け、見掛気孔率で5〜50%程度のものであるため、そのままの状態では溶融ガラスによる浸食を免れないものであるが、本発明では、貴金属被膜が保護被膜として作用するため使用可能でなる。 As the material of the fusion cell, a dense refractory material such as electrocast brick or dense zircon conventionally used as a constituent material can be applied. An electrocast brick is a brick manufactured by electromelting casting (electroforming), and is a brick material (Al 2 O 3 —ZrO 2 —SiO 2 quality ceramic or Al 2 O 3 —SiO 2 ) melted in an electric furnace. Quality ceramic) is poured into a mold and cooled. Furthermore, in the present invention, sintered brick can be used as a base material. The sintered brick is a brick material obtained by kneading and forming a ceramic raw material mainly composed of alumina, silica, and zirconia and an appropriate binder and then firing the kneaded material. Sintered bricks are less dense than electrocast bricks and have an apparent porosity of about 5 to 50%, so that erosion by molten glass is unavoidable as it is. Then, the noble metal coating can be used because it acts as a protective coating.

尚、本発明においては、電鋳煉瓦、焼結煉瓦等からなる基材に直接、溶射膜を形成しても良いが、芯材上に適宜の中間層を形成し、その上に溶射膜を形成しても良い。   In the present invention, a sprayed film may be formed directly on a substrate made of electroformed brick, sintered brick, etc., but an appropriate intermediate layer is formed on the core material, and the sprayed film is formed thereon. It may be formed.

本発明は、上記のようにして貴金属被膜を形成したフュージョンセルを用い、貴金属被膜を通電加熱する板ガラスの製造方法であり、それ以外においては、従来の方法と異なることはない。貴金属被膜の通電加熱の方法としては、貴金属被膜に電極を設置し、この電極を介して貴金属被膜を通電することができる。この電極の設置部位としては特に限定されることはなく、また、複数設置することができ、これにより設置部位ごとに加熱温度を調整し、セルの上流部分と下流部分との温度差を解消することができる。   The present invention is a method for producing a plate glass in which a noble metal coating is formed by using the fusion cell in which the noble metal coating is formed as described above, and the noble metal coating is electrically heated. Otherwise, there is no difference from the conventional method. As a method for energizing and heating the noble metal coating, an electrode is placed on the noble metal coating, and the noble metal coating can be energized through this electrode. There are no particular limitations on the location of this electrode, and multiple locations can be installed, thereby adjusting the heating temperature for each location and eliminating the temperature difference between the upstream and downstream portions of the cell. be able to.

また、貴金属被膜の通電加熱の方法としては、ガラス製造装置において通常使用されているフュージョンセルの支持部材を利用することができる。この場合、貴金属被膜と、フュージョンセルの支持部材とが接触するように貴金属被膜を形成し、支持部材を介して貴金属被膜を通電する。   In addition, as a method for electrically heating the noble metal coating, a support member for a fusion cell that is normally used in a glass manufacturing apparatus can be used. In this case, the noble metal film is formed so that the noble metal film and the support member of the fusion cell are in contact with each other, and the noble metal film is energized through the support member.

貴金属被膜を通電する際の電力は、被膜の厚さや流れる溶融ガラスの条件に応じて調整できる。好適な印加電力の範囲は、ガラス製造装置の規模、フュージョンセルの寸法により変化するが、被膜の断線が生じない条件として、被膜の断面積を基準として電流密度が2.7〜30A/mmとなるようにするのが好ましい。 The electric power when energizing the noble metal coating can be adjusted according to the thickness of the coating and the conditions of the flowing molten glass. The range of suitable applied power varies depending on the scale of the glass manufacturing apparatus and the dimensions of the fusion cell, but the current density is 2.7 to 30 A / mm 2 on the basis of the cross-sectional area of the coating as a condition that the coating is not broken. It is preferable that

尚、本発明においては、貴金属被膜の通電加熱を単独で行なっても良いが、従来のヒーター加熱を併用しても良い。   In the present invention, the noble metal coating may be energized and heated alone, or conventional heater heating may be used in combination.

以上説明したように、本発明によればフュージョンセルを通過する溶融ガラスの温度低下及び温度分布の不均一を抑制し、効率的に高品質の板ガラスを製造することができる。   As described above, according to the present invention, it is possible to efficiently produce a high-quality plate glass by suppressing the temperature drop of the molten glass passing through the fusion cell and the uneven temperature distribution.

以下、本発明の実施形態について説明する。図1は、本実施形態で使用したフュージョンセル100を概略示すものである。このフュージョンセル100は、寸法が幅1m、溝部110の深さ20cm、側壁120の長さ60cmである基材(材質:ハイアルミナ焼結煉瓦)の全面にフレーム溶射法にて白金被膜130を形成したものである。白金被膜の厚さは、溝部110の内面については250μmとし、側壁120については300μmとし、側面は500μmとした。尚、溶射被膜を形成した後には、その表面を研摩ヤスリで研摩し表面粗さの調整処理を行なっている。   Hereinafter, embodiments of the present invention will be described. FIG. 1 schematically shows a fusion cell 100 used in the present embodiment. In this fusion cell 100, a platinum coating 130 is formed on the entire surface of a base material (material: high alumina sintered brick) having a width of 1 m, a depth of a groove 110 of 20 cm, and a side wall 120 of 60 cm in length by a flame spraying method. It is a thing. The thickness of the platinum coating was 250 μm for the inner surface of the groove 110, 300 μm for the side wall 120, and 500 μm for the side surface. In addition, after forming the thermal spray coating, the surface is polished with a polishing file to adjust the surface roughness.

そして、フュージョンセルの側面には、通電加熱のための電極200、210、220を3点設置している。この電極の構造を図2に示す。電極は、まず白金被膜130に白金プレート201をろう付けにより接合し、これに水冷式の銅製のバー202を溶接で接合したものである。この電極は、外部の電源及び制御装置(図示せず)に接続されている。   Three electrodes 200, 210, and 220 for energization heating are provided on the side surface of the fusion cell. The structure of this electrode is shown in FIG. The electrode is formed by first joining a platinum plate 201 to the platinum coating 130 by brazing, and joining a water-cooled copper bar 202 thereto by welding. This electrode is connected to an external power source and a control device (not shown).

このフュージョンセルを用いて板ガラス製造を行った。従来と同様に、目的組成に調合されたガラス原料を溶解槽にて溶融ガラスとし、これを清澄槽へ導入し清澄剤を投入して溶解槽での反応時に発生した泡を除去する。そして、清澄された溶融ガラスを攪拌槽へ導入して溶融ガラスを均質化する。このようにして、清澄、均質化された溶融ガラスをフォアハースに通過させてフュージョンセル100の溝部110に供給する。   Plate glass was produced using this fusion cell. In the same manner as in the prior art, a glass raw material prepared to have a target composition is made into molten glass in a melting tank, which is introduced into a clarification tank, and a clarifier is added to remove bubbles generated during the reaction in the dissolution tank. And the clarified molten glass is introduce | transduced into a stirring tank, and a molten glass is homogenized. In this way, the clarified and homogenized molten glass is passed through the forehearth and supplied to the groove 110 of the fusion cell 100.

このとき電極を介してフュージョンセルを通電加熱した。通電の条件は、電極200の電力を10kW(電流密度:5.0A/mm)、電極210の電力を15kW(電流密度:6.1A/mm)、電極220の電力を20kW(電流密度:7.1A/mm)と変化させた。 At this time, the fusion cell was energized and heated through the electrode. The energization conditions are as follows: the power of the electrode 200 is 10 kW (current density: 5.0 A / mm 2 ), the power of the electrode 210 is 15 kW (current density: 6.1 A / mm 2 ), and the power of the electrode 220 is 20 kW (current density). : 7.1 A / mm 2 ).

溝部110から溢れた溶融ガラスは側壁120を通過し、その端部で融合して板ガラスとなる。このとき上流である溝部110付近の溶融ガラスの温度は1230℃であった。そして、下流である側壁120の端部(ルート)における溶融ガラスの温度は1190℃であった。従って、本実施形態では、溶融ガラスの温度低下は40℃であった。   The molten glass overflowing from the groove 110 passes through the side wall 120 and is fused at the end to become a plate glass. At this time, the temperature of the molten glass in the vicinity of the groove 110 which is upstream was 1230 ° C. And the temperature of the molten glass in the edge part (root) of the side wall 120 which is downstream was 1190 degreeC. Therefore, in this embodiment, the temperature drop of the molten glass was 40 ° C.

これに対し、本実施形態と同様の箇所にヒーターを設置した電鋳煉瓦製のフュージョンセルを用いた場合においては、溶融ガラスの温度低下は100℃程度あった。   On the other hand, in the case of using an electrocast brick fusion cell in which a heater was installed at the same location as in this embodiment, the temperature drop of the molten glass was about 100 ° C.

本実施形態で製造したフュージョンセルの外観を示す図。The figure which shows the external appearance of the fusion cell manufactured by this embodiment. 本実施形態に係るフュージョンセルの電極取り付け部を示す図。The figure which shows the electrode attachment part of the fusion cell which concerns on this embodiment. フュージョンダウンドロー法で使用されるフュージョンセルを示す図。The figure which shows the fusion cell used by the fusion downdraw method.

Claims (4)

少なくとも溶融ガラスと接触する面に溶射による貴金属被膜を備えるフュージョンセルを用い、前記フュージョンセルに溶融ガラスを通過させるフュージョンダウンドロー法による板ガラスの製造方法であって、
前記貴金属被膜を通電加熱しながら溶融ガラスを通過させる板ガラスの製造方法。
Using a fusion cell having a noble metal coating by thermal spraying on at least a surface in contact with the molten glass, a method for producing plate glass by a fusion downdraw method in which the molten glass is passed through the fusion cell,
A method for producing plate glass, which allows molten glass to pass through while heating the noble metal coating.
貴金属被膜の厚さが、100〜1000μmである請求項1記載の板ガラスの製造方法。 The manufacturing method of the plate glass of Claim 1 whose thickness of a noble metal film is 100-1000 micrometers. 貴金属被膜に電極を設置し、前記電極を介して貴金属被膜を通電加熱する請求項1又は請求項2記載の板ガラスの製造方法。 The manufacturing method of the plate glass of Claim 1 or Claim 2 which installs an electrode in a noble metal film and heat-heats a noble metal film through the said electrode. 貴金属被膜と、フュージョンセルを支持する支持部材とが接触するように貴金属被膜を形成し、前記支持部材を介して貴金属被膜を通電する請求項1又は請求項2記載の板ガラスの製造方法。 The manufacturing method of the plate glass of Claim 1 or Claim 2 which forms a noble metal film so that a noble metal film and the support member which supports a fusion cell may contact, and electrifies a noble metal film through the said support member.
JP2006247483A 2006-09-13 2006-09-13 Method for producing sheet glass by fusion downdraw method Expired - Fee Related JP4673275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006247483A JP4673275B2 (en) 2006-09-13 2006-09-13 Method for producing sheet glass by fusion downdraw method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247483A JP4673275B2 (en) 2006-09-13 2006-09-13 Method for producing sheet glass by fusion downdraw method

Publications (2)

Publication Number Publication Date
JP2008069024A true JP2008069024A (en) 2008-03-27
JP4673275B2 JP4673275B2 (en) 2011-04-20

Family

ID=39290960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247483A Expired - Fee Related JP4673275B2 (en) 2006-09-13 2006-09-13 Method for producing sheet glass by fusion downdraw method

Country Status (1)

Country Link
JP (1) JP4673275B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024937A2 (en) * 2008-08-29 2010-03-04 Corning Incorporated Isopipes having improved dimensional stability
JP2010189220A (en) * 2009-02-18 2010-09-02 Avanstrate Inc Glass forming apparatus
JP2011168494A (en) * 2011-06-09 2011-09-01 Avanstrate Inc Sheet glass manufacturing method and glass forming apparatus
WO2011118333A1 (en) * 2010-03-23 2011-09-29 日本電気硝子株式会社 Thin glass sheet manufacturing device and method
WO2011122195A1 (en) * 2010-03-30 2011-10-06 日本電気硝子株式会社 Thin glass plate and process for production thereof
WO2012114842A1 (en) * 2011-02-22 2012-08-30 日本電気硝子株式会社 Device for manufacturing sheet glass, and method for manufacturing sheet glass
JP2012171837A (en) * 2011-02-22 2012-09-10 Nippon Electric Glass Co Ltd Flat glass manufacturing apparatus and flat glass manufacturing method
WO2012133463A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Glass sheet production device, glass sheet production method, and molded body
JP2013534895A (en) * 2010-06-21 2013-09-09 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Refractory block and glass furnace
JP2013216533A (en) * 2012-04-06 2013-10-24 Avanstrate Inc Method and apparatus for manufacturing glass sheet
CN103508658A (en) * 2012-06-28 2014-01-15 安瀚视特控股株式会社 Glass plate manufacturing method
US20140318523A1 (en) * 2013-04-29 2014-10-30 Corning Incorporated Method of making a glass forming apparatus with reduced weight
CN104386904A (en) * 2014-09-30 2015-03-04 陕西彩虹电子玻璃有限公司 Processing method capable of eliminating overflow-brick blank raw material defect

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139766A (en) * 1991-11-15 1993-06-08 Hoya Corp Molding for producing glass plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139766A (en) * 1991-11-15 1993-06-08 Hoya Corp Molding for producing glass plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149646B (en) * 2008-08-29 2013-05-22 康宁股份有限公司 Isopipes having improved dimensional stability
WO2010024937A3 (en) * 2008-08-29 2010-05-27 Corning Incorporated Isopipes having improved dimensional stability
WO2010024937A2 (en) * 2008-08-29 2010-03-04 Corning Incorporated Isopipes having improved dimensional stability
JP2010189220A (en) * 2009-02-18 2010-09-02 Avanstrate Inc Glass forming apparatus
WO2011118333A1 (en) * 2010-03-23 2011-09-29 日本電気硝子株式会社 Thin glass sheet manufacturing device and method
JP2011195419A (en) * 2010-03-23 2011-10-06 Nippon Electric Glass Co Ltd Thin glass plate manufacturing device and method for manufacturing the same
WO2011122195A1 (en) * 2010-03-30 2011-10-06 日本電気硝子株式会社 Thin glass plate and process for production thereof
JP2013534895A (en) * 2010-06-21 2013-09-09 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン Refractory block and glass furnace
JP2012171837A (en) * 2011-02-22 2012-09-10 Nippon Electric Glass Co Ltd Flat glass manufacturing apparatus and flat glass manufacturing method
WO2012114842A1 (en) * 2011-02-22 2012-08-30 日本電気硝子株式会社 Device for manufacturing sheet glass, and method for manufacturing sheet glass
WO2012133463A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Glass sheet production device, glass sheet production method, and molded body
JP5132012B2 (en) * 2011-03-31 2013-01-30 AvanStrate株式会社 Glass sheet manufacturing apparatus, glass sheet manufacturing method, and molded body
JP2011168494A (en) * 2011-06-09 2011-09-01 Avanstrate Inc Sheet glass manufacturing method and glass forming apparatus
JP2013216533A (en) * 2012-04-06 2013-10-24 Avanstrate Inc Method and apparatus for manufacturing glass sheet
CN103508658A (en) * 2012-06-28 2014-01-15 安瀚视特控股株式会社 Glass plate manufacturing method
CN103508658B (en) * 2012-06-28 2016-05-11 安瀚视特控股株式会社 The manufacture method of glass plate
US20140318523A1 (en) * 2013-04-29 2014-10-30 Corning Incorporated Method of making a glass forming apparatus with reduced weight
CN104386904A (en) * 2014-09-30 2015-03-04 陕西彩虹电子玻璃有限公司 Processing method capable of eliminating overflow-brick blank raw material defect

Also Published As

Publication number Publication date
JP4673275B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP4673275B2 (en) Method for producing sheet glass by fusion downdraw method
JP5122855B2 (en) Glass fiber production equipment
JP5075395B2 (en) Method for producing flat glass, especially float glass, which tends to become glass ceramic
JP2006248855A (en) Formation apparatus for plate glass and method for forming plate glass
JP7174360B2 (en) Glass article manufacturing method, melting furnace and glass article manufacturing apparatus
KR102497517B1 (en) Manufacturing method and melting furnace of glass article
KR102540619B1 (en) Glass melting furnace and method for producing glass articles
JP2004315287A (en) Formation apparatus for plate glass
JP2007153713A (en) Glass manufacturing unit
KR20190077577A (en) Forming body dimensional variation compensation method and apparatus
JP2008069025A (en) Bushing block for glass fiber manufacture and method of manufacturing glass fiber
JP2018193269A (en) Production method of glass article, and melting furnace
JP2005225738A (en) Method and apparatus for electrically heating glass
JP4478460B2 (en) Equipment for metering glass melt in the supply passage of float glass ribbon manufacturing equipment
JP4281107B2 (en) Sheet glass forming equipment
JP2020050545A (en) Glass melting furnace and glass melting method
WO2024084985A1 (en) Manufacturing method and manufacturing device of glass article
TWI833713B (en) Glass melting furnace and manufacturing method of glass articles
JPH06329420A (en) Glass melting furnace
WO2012114842A1 (en) Device for manufacturing sheet glass, and method for manufacturing sheet glass
JP2615966B2 (en) Glass melting furnace
JP2005206417A (en) Method and apparatus for forming plate glass
JP2012171837A (en) Flat glass manufacturing apparatus and flat glass manufacturing method
JP2022190511A (en) Molten glass supply device, and apparatus and method for manufacturing glass article
JPH0891848A (en) Vertical glass fusing furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110120

R150 Certificate of patent or registration of utility model

Ref document number: 4673275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees