JP2008067523A - Portable terminal - Google Patents

Portable terminal Download PDF

Info

Publication number
JP2008067523A
JP2008067523A JP2006243409A JP2006243409A JP2008067523A JP 2008067523 A JP2008067523 A JP 2008067523A JP 2006243409 A JP2006243409 A JP 2006243409A JP 2006243409 A JP2006243409 A JP 2006243409A JP 2008067523 A JP2008067523 A JP 2008067523A
Authority
JP
Japan
Prior art keywords
battery
state
internal resistance
charging
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006243409A
Other languages
Japanese (ja)
Other versions
JP4783700B2 (en
Inventor
Takaaki Ishii
孝明 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006243409A priority Critical patent/JP4783700B2/en
Publication of JP2008067523A publication Critical patent/JP2008067523A/en
Application granted granted Critical
Publication of JP4783700B2 publication Critical patent/JP4783700B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a portable terminal which can accurately determine the deterioration of a battery by itself in a short time, while charging the battery by connecting the portable terminal to an AC adapter, and can display or output the result with an arbitrary timing. <P>SOLUTION: While turning power supply to loads 12-14 off and charging a battery 6 with a constant current, battery voltage 6a is measured, while raising precision at a detecting section 16, when the battery voltage is in the vicinity of full charge voltage; and then the measured voltage is recorded in a measurement data storage memory 19 (voltage before the change). Subsequently, charging is stopped, and power supply to the loads is turned on and then the battery voltage 6a is measured and recorded (voltage after the change). Charging is sustained. The voltage difference before and after change is divided by previously a known current difference a before and after change, to obtain the internal resistance of the battery 6. Furthermore, the internal resistance is corrected by the temperature measured by a thermistor 7, and the corrected internal resistance is recorded in the measurement data storage memory 19. Deterioration of the battery is decided by this variational amount in the corrected internal resistance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二次電池を搭載した携帯端末にあって、二次電池を搭載したまま、二次電池の特性劣化の判定と表示を行う携帯端末に関する。   The present invention relates to a portable terminal equipped with a secondary battery, which performs determination and display of characteristic deterioration of the secondary battery while the secondary battery is mounted.

(背景技術1)
二次電池は、充放電の繰り返し、高温、高電圧などのストレスにより経年劣化し、内部抵抗が増し、電池容量が減少する。電池の劣化の判断方法として、この内部抵抗を測定する方法や、電池の放電終止状態から満充電までの充電量を測定する方法がある。しかし、電池の内部抵抗は、測定条件によりばらつき、本来の電池劣化に伴う内部抵抗の変化を測定することがむずかしい。充電量を充放電して測定する方法は、測定に時間を要する。内部抵抗値と電池容量の関係は個体バラツキも大きく、内部抵抗値を測定しても電池容量と必ずしも正確に対応が付かないとの問題も有った。
また、二次電池を搭載した携帯電話機では、二次電池を携帯電話機から取り外して、専用の電池測定器で電池特性を測定しており、携帯電話機の販売店などに出向く必要があり、携帯電話機の使用者にとっては不便であった。また、携帯電話機も、二次電池を容易に取り外し可能な構造とする必要があり、構造が複雑になっていた。
(Background Technology 1)
Secondary batteries deteriorate over time due to stress such as repeated charge / discharge, high temperature, high voltage, etc., increasing internal resistance and decreasing battery capacity. As a method for determining the deterioration of the battery, there are a method for measuring the internal resistance and a method for measuring a charge amount from a discharge end state of the battery to a full charge. However, the internal resistance of the battery varies depending on the measurement conditions, and it is difficult to measure the change in internal resistance accompanying the original battery deterioration. The method of measuring the charge amount by charging / discharging requires time for measurement. The relationship between the internal resistance value and the battery capacity has a large individual variation, and there is a problem that even if the internal resistance value is measured, it does not always correspond to the battery capacity accurately.
In addition, in a mobile phone equipped with a secondary battery, the secondary battery is removed from the mobile phone, and the battery characteristics are measured with a dedicated battery measuring instrument. It was inconvenient for users. Also, the mobile phone needs to have a structure in which the secondary battery can be easily detached, and the structure is complicated.

(背景技術2)
電池の内部抵抗を測定して、電池寿命の表示を行う電池残容量表示装置がある(例えば、特許文献1参照。)。この特許文献1では、電池から定電流負荷回路7に放電した時の電圧降下により電池の内部抵抗を測る。更に、温度を測定して、常温以外と判断した場合は、前記内部抵抗値に温度補正を加える。この温度補正後の内部抵抗値により電池寿命を判断して、電池交換の表示をしている(段落0024〜0039)。
(Background Technology 2)
There is a battery remaining capacity display device that displays the battery life by measuring the internal resistance of the battery (see, for example, Patent Document 1). In Patent Document 1, the internal resistance of the battery is measured by a voltage drop when the battery is discharged to the constant current load circuit 7. Furthermore, when the temperature is measured and it is determined that the temperature is other than room temperature, temperature correction is added to the internal resistance value. The battery life is determined based on the internal resistance value after the temperature correction, and the battery replacement is displayed (paragraphs 0024 to 0039).

(背景技術3)
電池の内部抵抗を測定して、電池劣化の判定を行う電池劣化判定装置がある(例えば、特許文献2参照。)。この特許文献2では、電池から抵抗12に放電した時の電圧降下により電池の内部抵抗を測り、更に温度で補正して記憶する。この処理を、電池の出荷時の初期状態で行う。また、実使用上の定期的もしくは任意の時に行い、初期内部抵抗からの変化量でもって劣化を判定している(段落0006〜0016)。また、電池の初期状態と実使用時において、トリクル充電中の満充電状態での電圧を測定する。電池が劣化して内部抵抗が高くなると充電電流により前記満充電状態での電圧も高くなるので、初期状態と実使用時とで前記満充電状態での電圧を比較することにより、劣化を判定している(段落0017)。これらの方法により、電池固体間の内部抵抗ばらつきの問題を解決している。
特開2000−12104号公報(段落0024〜0039、図1、図2、図4) 特開2000−215923号公報(段落0006〜0019、図1〜図5)
(Background Technology 3)
There is a battery deterioration determination device that determines the battery deterioration by measuring the internal resistance of the battery (see, for example, Patent Document 2). In Patent Document 2, the internal resistance of the battery is measured based on a voltage drop when the battery is discharged to the resistor 12, and further corrected and stored by temperature. This process is performed in the initial state when the battery is shipped. In addition, the deterioration is determined by the amount of change from the initial internal resistance at regular or arbitrary times in actual use (paragraphs 0006 to 0016). In addition, the voltage in the fully charged state during trickle charging is measured in the initial state and actual use of the battery. When the battery deteriorates and the internal resistance increases, the voltage in the fully charged state also increases due to the charging current, so the deterioration is determined by comparing the voltage in the fully charged state between the initial state and actual use. (Paragraph 0017). By these methods, the problem of the internal resistance variation between battery solids is solved.
Japanese Unexamined Patent Publication No. 2000-12104 (paragraphs 0024 to 0039, FIGS. 1, 2, and 4) JP 2000-215923 A (paragraphs 0006 to 0019, FIGS. 1 to 5)

電池の内部抵抗は、電池のSOC(State of Charge;満充電や完全放電等を表す充電状態)によっても内部抵抗がばらつくが、背景技術2(特許文献1)、背景技術3(特許文献2)には、その記載はない。また、背景技術1の携帯電話機では、「高頻度充電」又は「低放電深度充電」などと言われるように、使用者は、少し使用してはすぐに充電台に置くという操作が多く、その場合、電池は、常時、満充電状態、つまり、特定のSOC状態におかれることになる。その場合、内部抵抗の測定に工夫を必要とする。
また、内部抵抗の測定は、電池の放電時、または充電時のみに行っており、その場合、電圧降下の値は小さくて測定精度が悪くなる。また、電池の放電時にのみに測定を行うと、測定のために電池電流を消費してしまうという問題がある。
The internal resistance of the battery varies depending on the SOC of the battery (State of Charge; charged state indicating full charge, complete discharge, etc.), but Background Art 2 (Patent Document 1) and Background Technology 3 (Patent Document 2) Does not have that description. Moreover, in the mobile phone of Background Art 1, as is often referred to as “high frequency charging” or “low discharge depth charging”, the user often puts it on the charging stand immediately after using it a little. In this case, the battery is always in a fully charged state, that is, in a specific SOC state. In that case, a device is required for measuring the internal resistance.
Further, the internal resistance is measured only when the battery is discharged or charged. In this case, the voltage drop value is small and the measurement accuracy is deteriorated. Further, if the measurement is performed only when the battery is discharged, there is a problem that the battery current is consumed for the measurement.

本発明は、従来の問題点を解決して、携帯端末をACアダプタに載置して充電しながら、携帯端末自体で電池劣化の判定を短時間で正確に行い、内部抵抗値と電池容量の関係の個体バラツキの影響が無く、その結果を表示または出力することができる携帯端末を提供することを目的とする。   The present invention solves the conventional problems and accurately determines battery deterioration in a short time by placing the mobile terminal on an AC adapter while charging the mobile terminal itself. It is an object of the present invention to provide a portable terminal that can display or output the result without being affected by the individual variation of the relationship.

上記目的を達成するために、本発明の携帯端末は、充電可能な電池と、前記電池から電流を供給される負荷部と、前記電池電圧が所定の満充電近辺の電圧のとき、前記負荷部に第1負荷電流を流す第1状態と当該第1負荷電流より多い第2負荷電流を流す第2状態とを切り替え、前記第1状態と第2状態の電池電圧を測定して当該電池電圧の差分を算出、又は、当該電池電圧差分を前記第1状態と第2状態の電池電流差分で除算して前記電池の内部抵抗を算出し、更に、前記電池電圧差分の変化量又は前記内部抵抗の変化量を算出し、前記電池電圧差分の変化量又は前記内部抵抗の変化量に対応して前記電池の特性に関する情報を報知する制御手段とを具備することを特徴とする。   In order to achieve the above object, the portable terminal of the present invention includes a rechargeable battery, a load unit supplied with current from the battery, and the load unit when the battery voltage is a voltage near a predetermined full charge. The first state in which the first load current is passed to the second state and the second state in which the second load current greater than the first load current is passed are switched, the battery voltages in the first state and the second state are measured, and the battery voltage The difference is calculated, or the battery voltage difference is divided by the battery current difference between the first state and the second state to calculate the internal resistance of the battery. Further, the change amount of the battery voltage difference or the internal resistance Control means for calculating a change amount and notifying information on the battery characteristics corresponding to the change amount of the battery voltage difference or the change amount of the internal resistance is provided.

本発明によれば、携帯端末に電池を搭載したまま、携帯端末自体で電池劣化の判定を短時間で正確に行い、その結果を表示または出力することが可能となる。   According to the present invention, it is possible to accurately determine battery deterioration in a short time with the mobile terminal itself while the battery is mounted on the mobile terminal, and display or output the result.

以下、本発明の実施例を、図面を参照して説明する。
図1は、本発明の各実施例に係る携帯端末の関連部分のブロック図である。携帯端末100は、接点1、ダイオード2、充電回路3、電池6、サーミスタ7、操作部8、トランジスタスイッチ9〜11、送信パワーアンプ12、LCD13、白色LED14、制御部15などによって構成される。更に、充電回路3は、トランジスタスイッチ4、電圧制御回路5などを有する。また、制御部15は、検出部16、電流記憶メモリ17、電池温度特性メモリ18、測定データ記憶メモリ19、充電回数カウンタ20などを有する。図示しないACアダプタ200は、携帯端末100の充電用の定電流源であり、充電時は、携帯端末100がACアダプタ200に載置される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of relevant portions of a mobile terminal according to each embodiment of the present invention. The portable terminal 100 includes a contact 1, a diode 2, a charging circuit 3, a battery 6, a thermistor 7, an operation unit 8, transistor switches 9 to 11, a transmission power amplifier 12, an LCD 13, a white LED 14, a control unit 15, and the like. Furthermore, the charging circuit 3 includes a transistor switch 4, a voltage control circuit 5, and the like. The control unit 15 includes a detection unit 16, a current storage memory 17, a battery temperature characteristic memory 18, a measurement data storage memory 19, a charge number counter 20, and the like. The AC adapter 200 (not shown) is a constant current source for charging the mobile terminal 100, and the mobile terminal 100 is placed on the AC adapter 200 during charging.

携帯端末100の接点1は、ACアダプタ200との接続接点である。ダイオード2は、純正以外のACアダプタが間違って極性が逆に接続された時の携帯端末100の保護用である。また、ダイオード2は、電池6から充電回路3内部の特定の経路を経て接点1に電力が供給されることを防止する。これは、接点1は構造上、外部に露出しており、外部で金属ショートによる発熱などを防止するためである。   The contact 1 of the mobile terminal 100 is a connection contact with the AC adapter 200. The diode 2 is for protecting the portable terminal 100 when a non-genuine AC adapter is mistakenly connected in reverse polarity. The diode 2 prevents power from being supplied from the battery 6 to the contact 1 through a specific path inside the charging circuit 3. This is because the contact 1 is exposed to the outside due to its structure, and prevents heat generation due to a metal short outside.

充電回路3は、ACアダプタ200から供給される定電流を制御して電池6に所定の充電を行う。充電回路3のトランジスタスイッチ4や電圧制御回路5は、制御部15の制御により充電のオン/オフ制御や、充電電圧の制御が行われる。電池6は、二次電池である。サーミスタ7は、電池6の温度測定用である。操作部8は、ユーザー操作用の入力手段である。   The charging circuit 3 controls the constant current supplied from the AC adapter 200 to perform predetermined charging of the battery 6. The transistor switch 4 and the voltage control circuit 5 of the charging circuit 3 are controlled by the control unit 15 to perform on / off control of charging and control of the charging voltage. The battery 6 is a secondary battery. The thermistor 7 is for measuring the temperature of the battery 6. The operation unit 8 is an input means for user operation.

トランジスタスイッチ9〜11は、携帯端末100が本来備える負荷である送信パワーアンプ12、LCD13、白色LED14への電源供給の断続用スイッチであり、制御部15により制御される。なお、これらのスイッチおよび負荷は、この3種類に限らず、例えば、図示しないカメラ部とその断続用のスイッチなどを更に設けてもよい。送信パワーアンプ12は、図示しない基地局などへ無線送信するパワーアンプであり、消費電流が大きい。LCD13は表示手段であり、やはり消費電流が大きい。白色LED14は、LCD13のバックライトであり、やはり消費電流が大きい。   The transistor switches 9 to 11 are on / off switches for supplying power to the transmission power amplifier 12, the LCD 13, and the white LED 14 that are loads inherent in the mobile terminal 100, and are controlled by the control unit 15. Note that these switches and loads are not limited to these three types, and, for example, a camera unit (not shown) and its intermittent switch may be further provided. The transmission power amplifier 12 is a power amplifier that wirelessly transmits to a base station (not shown) and consumes a large amount of current. The LCD 13 is a display means and still consumes a large amount of current. The white LED 14 is a backlight of the LCD 13 and still consumes a large amount of current.

制御部15は、図示しないCPU、ROM、RAM、I/O等により構成され、携帯端末100の全体の制御を行う。特に、電池6の内部抵抗測定に関する部分として、検出部16は、ADC(ADコンバータ)により電池電圧6aの検出および温度7aの検出を行う。電流記憶メモリ17は、ACアダプタ200の定電流値を予め記憶しておく。また、実験などにより予め測定した負荷電流、すなわち、送信パワーアンプ12、LCD13、白色LED14などの負荷電流を記憶しておく。内部抵抗測定用に送信パワーアンプ12を動作させる場合は、不要な高周波電力の放射を避けるような周波数をシンセサイザなどの信号源回路で発生させて送信パワーアンプに入力して動作させても良い。それにより、消費電流は発生するが同調がずれて余計な電波を出すおそれがなくなる。電池温度特性メモリ18は、電池の内部抵抗と温度との関連性を予め記憶するメモリであり、一般的には、電池メーカーなどから予め入手したデータを記憶しておく。   The control unit 15 includes a CPU, a ROM, a RAM, an I / O, and the like (not shown), and controls the entire mobile terminal 100. In particular, as a part related to the internal resistance measurement of the battery 6, the detection unit 16 detects the battery voltage 6a and the temperature 7a by an ADC (AD converter). The current storage memory 17 stores a constant current value of the AC adapter 200 in advance. In addition, load currents measured in advance by experiments or the like, that is, load currents of the transmission power amplifier 12, the LCD 13, the white LED 14, and the like are stored. When operating the transmission power amplifier 12 for internal resistance measurement, a frequency that avoids unnecessary high-frequency power emission may be generated by a signal source circuit such as a synthesizer and input to the transmission power amplifier. As a result, although there is a consumption current, there is no possibility that the radio wave is out of synchronization and an extra radio wave is emitted. The battery temperature characteristic memory 18 is a memory that stores in advance the relationship between the internal resistance of the battery and the temperature, and generally stores data obtained in advance from a battery manufacturer or the like.

測定データ記憶メモリ19は、電池6の内部抵抗などを測定して記憶するメモリである。充電回数カウンタ20は、携帯端末100がACアダプタ200に載置されて充電を行った回数をカウントする。充電回数カウンタ20のイニシャライズは、例えば、サービスマンが電池交換時などに、特殊キー操作により行うようにしてもよい。また、電池が個別ID番号を有して、自動で読み取ることができる場合は、制御部15の処理により個別ID番号が変わったことを検出して充電回数のイニシャライズを行ってもよい。   The measurement data storage memory 19 is a memory that measures and stores the internal resistance of the battery 6 and the like. The charge counter 20 counts the number of times that the mobile terminal 100 is placed on the AC adapter 200 and charged. The charge counter 20 may be initialized, for example, by a special key operation by a service person when replacing the battery. Further, when the battery has an individual ID number and can be read automatically, the number of times of charging may be initialized by detecting that the individual ID number has been changed by the processing of the control unit 15.

図2は、本発明の各実施例に係る携帯端末の電池の内部抵抗測定を説明する図であり、関連部分の電圧と電流を示す。電池の内部抵抗は、リチウムイオン電池の場合、新品の状態で例えば40〜60mΩ、劣化すると100mΩ程度の値となる。この劣化の進捗を測定するためには、10mΩステップ程度の測定精度を必要とする。
(a)は、「充電中かつ軽負荷」状態での電圧と電流を示す。ACアダプタ200の定電流を500mAとすると、充電電流500mAが供給される。この値は、予め制御部15の電流記憶メモリ17に記憶されている。充電電流値スイッチ9〜11は全てオフであり、負荷電流は、制御部15に供給されるIddのみである。従って、電池6には、500−Idd[mA]が充電される。この時、電池電圧6a=電池セル電圧V+(500−Idd)×内部抵抗61であり、制御部15によりこの電池電圧6aが測定される。
FIG. 2 is a diagram for explaining the internal resistance measurement of the battery of the portable terminal according to each embodiment of the present invention, and shows the voltage and current of the relevant part. In the case of a lithium ion battery, the internal resistance of the battery is, for example, 40 to 60 mΩ in a new state, and is about 100 mΩ when deteriorated. In order to measure the progress of this deterioration, a measurement accuracy of about 10 mΩ step is required.
(A) shows the voltage and current in the “charging and light load” state. If the constant current of the AC adapter 200 is 500 mA, a charging current of 500 mA is supplied. This value is stored in advance in the current storage memory 17 of the control unit 15. The charging current value switches 9 to 11 are all off, and the load current is only Idd supplied to the control unit 15. Therefore, the battery 6 is charged with 500-Idd [mA]. At this time, battery voltage 6a = battery cell voltage V + (500−Idd) × internal resistance 61, and the battery voltage 6a is measured by the control unit 15.

(b)は、「充電中かつ重負荷」状態での電圧と電流を示す。ACアダプタ200の定電流を500mAとすると、充電電流500mAが供給される。スイッチ9〜11は全てオンである。スイッチ9〜11側の負荷電流は予め実験等で測定されて、制御部15の電流記憶メモリ17に記憶されている。この電流を例えば600mAとする。負荷電流の合計は、600+Idd[mA]となる。充電電流は500mAなので、負荷電流に足りない分の(600+Idd−500)[mA]は、電池6から放電される。この時の電池電圧6a=電池セル電圧V−(600+Idd−500)×内部抵抗61であり、制御部15によりこの電池電圧6aが測定される。   (B) shows the voltage and current in the “charging and heavy load” state. If the constant current of the AC adapter 200 is 500 mA, a charging current of 500 mA is supplied. Switches 9-11 are all on. The load currents on the switches 9 to 11 side are measured in advance through experiments or the like and stored in the current storage memory 17 of the control unit 15. For example, this current is set to 600 mA. The total load current is 600 + Idd [mA]. Since the charging current is 500 mA, (600 + Idd−500) [mA], which is insufficient for the load current, is discharged from the battery 6. The battery voltage 6a at this time = battery cell voltage V− (600 + Idd−500) × internal resistance 61, and the battery voltage 6a is measured by the control unit 15.

この、(a)(第1状態)と(b)(第2状態)を比較すると、内部抵抗61に流れる電池電流の差分は、(500−Idd)+(600+Idd−500)=600[mA]である。また、電池電圧6aの差分も算出される。内部抵抗61は、オームの法則により、電池電圧6aの差分を電池電流の差分600[mA]で割り算すれば算出される。   When comparing (a) (first state) and (b) (second state), the difference between the battery currents flowing through the internal resistance 61 is (500−Idd) + (600 + Idd−500) = 600 [mA]. It is. Moreover, the difference of the battery voltage 6a is also calculated. The internal resistance 61 is calculated by dividing the difference of the battery voltage 6a by the difference of battery current 600 [mA] according to Ohm's law.

(c)は、「充電停止かつ軽負荷」状態での電圧と電流を示す。携帯端末100を充電中に制御部13により充電を一旦停止した状態でもよいし、携帯端末100をACアダプタ200から外した通常の使用状態でもよい。充電電流は0mAである。スイッチ9〜11は全てオフであり、負荷電流は、制御部15に供給されるIddのみである。従って、電池6からIddが放電される。   (C) shows the voltage and current in the “charge stopped and light load” state. A state in which charging is temporarily stopped by the control unit 13 while the mobile terminal 100 is being charged may be used, or a normal use state in which the mobile terminal 100 is removed from the AC adapter 200 may be used. The charging current is 0 mA. The switches 9 to 11 are all off, and the load current is only Idd supplied to the control unit 15. Therefore, Idd is discharged from the battery 6.

(d)は、「充電停止かつ重負荷」状態での電圧と電流を示す。充電電流は0mAである。スイッチ9〜11は全てオンであり、スイッチ9〜11側の負荷電流は600mAとする。負荷電流の合計は、600+Idd[mA]となる。従って、電池6から600+Idd[mA]が放電される。   (D) shows the voltage and current in the “charge stopped and heavy load” state. The charging current is 0 mA. The switches 9 to 11 are all on, and the load current on the switches 9 to 11 side is 600 mA. The total load current is 600 + Idd [mA]. Accordingly, 600 + Idd [mA] is discharged from the battery 6.

この(c)(第1状態)と(d)(第2状態)を比較すると、内部抵抗61に流れる電池電流の差分は、(600+Idd)−Idd=600[mA]である。同様に、内部抵抗61は、電池電圧6aの差分を電池電流の差分600[mA]で割り算すれば算出される。   Comparing (c) (first state) and (d) (second state), the difference between the battery currents flowing through the internal resistor 61 is (600 + Idd) −Idd = 600 [mA]. Similarly, the internal resistance 61 is calculated by dividing the difference in the battery voltage 6a by the difference in battery current 600 [mA].

また、(a)(第1状態)と(d)(第2状態)を比較すると、内部抵抗61に流れる電池電流の差分は、(500−Idd)+(600+Idd)=1100[mA]と大きい。また、電池電圧6aの差分も算出される。内部抵抗61は、電池電圧6aの差分を電池電流の差分1100[mA]で割り算すれば算出される。この場合、電池電流の差分が大きいので、電池電圧6aの差分も大きくなり、内部抵抗算出の精度を上げることができる。   Further, when (a) (first state) and (d) (second state) are compared, the difference in battery current flowing through the internal resistor 61 is as large as (500−Idd) + (600 + Idd) = 1100 [mA]. . Moreover, the difference of the battery voltage 6a is also calculated. The internal resistance 61 is calculated by dividing the difference in the battery voltage 6a by the difference in battery current 1100 [mA]. In this case, since the difference in the battery current is large, the difference in the battery voltage 6a is also large, and the accuracy of calculating the internal resistance can be increased.

なお、(a)、(b)、(c)、(d)において、制御部15に供給されるIddは、スイッチ9〜11側の負荷電流に比べて小さい場合は無視してもよい。また、(a)、(b)、(c)、(d)それぞれのIddが異なる場合は、予め実験等で測定しておき、それぞれの電流値を上記計算式に適用してもよい。また、負荷電流は、電池電圧6aの値によっても変化するので、予め実験等で測定して、電池電圧VS負荷電流のデータとして電流記憶メモリ17に記憶しておき、内部抵抗測定時の電池電圧に対応する負荷電流を上記計算式に適用してもよい。また、電池電圧が所定の電圧値の時に、内部抵抗を測定するようにすれば、負荷電流も固定できるので、抵抗値算出の精度が上がる。   In (a), (b), (c), and (d), when Idd supplied to the control unit 15 is smaller than the load current on the switches 9 to 11 side, it may be ignored. Further, when the Idds of (a), (b), (c), and (d) are different from each other, the current values may be applied to the above calculation formula by measuring in advance through experiments or the like. Further, since the load current also changes depending on the value of the battery voltage 6a, it is measured in advance through experiments or the like and stored in the current storage memory 17 as the battery voltage VS load current data, and the battery voltage at the time of measuring the internal resistance. May be applied to the above formula. Further, if the internal resistance is measured when the battery voltage is a predetermined voltage value, the load current can be fixed, so that the accuracy of the resistance value calculation is improved.

また、(a)、(b)、(c)、(d)において、充電の状態は、定電流充電を行うか充電停止かの2通りであったが、例えば、充電回路3(図1)と並列に他の充電回路を設けて、充電の状態として、大電流の定電流充電を行うか小電流の定電流充電を行うかの2通りの状態としてもよい。また、負荷の状態は、スイッチ9〜11の全てをオンにするかオフにするかの2通りであったが、負荷電流が大と小の2通りに切り替わるようにしてもよい。いずれも、充電電流の差異および負荷電流の差異が生じる組み合わせであれば、電池の内部抵抗を算出することができる。   Further, in (a), (b), (c), and (d), there are two charging states: constant current charging or charging stop. For example, charging circuit 3 (FIG. 1) In addition, another charging circuit may be provided in parallel, and the charging state may be in two states: a large current constant current charging or a small current constant current charging. Further, the load state is two ways of turning on or off all of the switches 9 to 11, but the load current may be switched between two ways of large and small. In any case, the internal resistance of the battery can be calculated as long as the charging current and the load current are different.

また、(a)−(b)間の変移、(c)−(d)間の変移、(a)−(d)間の変移について説明したが、(a)−(c)間の変移、(b)−(d)間の変移でも、電池に流れる電流の電池電流差分として、500mAが得られる。   Moreover, although the transition between (a)-(b), the transition between (c)-(d), and the transition between (a)-(d) were demonstrated, the transition between (a)-(c), Even in the transition between (b) and (d), 500 mA is obtained as the battery current difference of the current flowing through the battery.

次に、測定電圧の必要精度について説明する。電池の内部抵抗は、リチウムイオン電池の場合、新品の状態で例えば40〜60mΩ、劣化すると100mΩ程度の値となる。この劣化の進捗を測定するためには、10mΩステップ程度の測定精度を必要とする。従って、前記の電流差分が600mAの場合は、600mA×10mΩ=6mVステップ程度の電圧検出精度を必要とする。また、電流差分が1100mAの場合は、1100mA×10mΩ=11mVステップ程度の電圧検出精度を必要とする。   Next, the required accuracy of the measurement voltage will be described. In the case of a lithium ion battery, the internal resistance of the battery is, for example, 40 to 60 mΩ in a new state, and is about 100 mΩ when deteriorated. In order to measure the progress of this deterioration, a measurement accuracy of about 10 mΩ step is required. Therefore, when the current difference is 600 mA, a voltage detection accuracy of about 600 mA × 10 mΩ = 6 mV step is required. When the current difference is 1100 mA, voltage detection accuracy of about 1100 mA × 10 mΩ = 11 mV step is required.

図3は、本発明の各実施例に係る携帯端末の電池電圧の検出部の回路図である。制御部15の検出部16は、抵抗31、抵抗32、増幅器33、抵抗34〜36、トランジスタスイッチ37、レジスタ38、ADC39などによって構成される。なお、これらの構成要素は、制御部15と充電回路3に分散して配置してもよい。   FIG. 3 is a circuit diagram of a battery voltage detection unit of the mobile terminal according to each embodiment of the present invention. The detection unit 16 of the control unit 15 includes a resistor 31, a resistor 32, an amplifier 33, resistors 34 to 36, a transistor switch 37, a register 38, an ADC 39, and the like. These components may be distributed and arranged in the control unit 15 and the charging circuit 3.

ADC39は、電池電圧の検出や、図示しない電池温度の検出(サーミスタ7)などを行うが、ここでは、電池電圧の検出について説明する。ADC39は、8ビット(256ステップ)のADコンバータであり、参照電圧Vref端子には、2.6[V]が供給される。従って、ADC39のIN入力の(0〜2.6)[V]の入力に対して、電圧検出精度は、2.6[V]/256=10.15[mV]ステップである。   The ADC 39 performs battery voltage detection, battery temperature detection (thermistor 7) (not shown), and the like. Here, battery voltage detection will be described. The ADC 39 is an 8-bit (256 steps) AD converter, and 2.6 [V] is supplied to the reference voltage Vref terminal. Therefore, the voltage detection accuracy is 2.6 [V] /256=10.15 [mV] step with respect to the input of (0 to 2.6) [V] of the IN input of the ADC 39.

抵抗31、抵抗32は、電池電圧6aの検出すべき範囲を、ADC39のIN入力の(0〜2.6)[V]に合わせるためである。なお、抵抗31、抵抗32は、高抵抗であり、その電流は無視できる。増幅器33、抵抗34〜36は、帰還増幅器である。この帰還増幅器は電池電圧6aの検出すべき精度に合わせて、ADC39のIN入力に供給するためである。帰還増幅器のゲインは、トランジスタスイッチ37がオフの時は、ゲインは、(抵抗34+抵抗35+抵抗36)/抵抗34となる。トランジスタスイッチ37がオンとなって抵抗35が短絡した時のゲインは、(抵抗34+抵抗36)/抵抗34となる。   The resistors 31 and 32 are for adjusting the detection range of the battery voltage 6 a to (0 to 2.6) [V] of the IN input of the ADC 39. The resistors 31 and 32 are high resistances, and their currents can be ignored. The amplifier 33 and the resistors 34 to 36 are feedback amplifiers. This feedback amplifier is to supply the IN input of the ADC 39 in accordance with the accuracy to be detected of the battery voltage 6a. The gain of the feedback amplifier is (resistor 34 + resistor 35 + resistor 36) / resistor 34 when the transistor switch 37 is off. The gain when the transistor switch 37 is turned on and the resistor 35 is short-circuited is (resistor 34 + resistor 36) / resistor 34.

ところで、電池電圧6aの検出範囲は、通常の充電制御を行う場合には、0〜4.3[V]の電圧範囲を検出する必要があり、電池電圧6aのポイントで、4.3[V]/256=16.79[mV]ステップの検出精度となる。また、内部抵抗の測定を行う場合には、図2で説明したように、6mVステップや11mVステップの精度が必要である。従って、1つのADC39を共用して使うために、用途に応じて、前記帰還増幅器のゲインを制御する。   By the way, the detection range of the battery voltage 6a needs to detect a voltage range of 0 to 4.3 [V] when performing normal charging control, and 4.3 [V at the point of the battery voltage 6a. ] /256=16.79 [mV] step detection accuracy. Further, when measuring the internal resistance, the accuracy of 6 mV step or 11 mV step is required as described in FIG. Therefore, in order to use one ADC 39 in common, the gain of the feedback amplifier is controlled according to the application.

なお、ADコンバータが10bitや12bitの分解能が有ればゲイン制御は不要である。16bitのADコンバータも実用化されているがAD変換に時間が掛かる。携帯端末、特に携帯電話ではADコンバータはCPUなどと共に制御用LSIに集積されて通信用と兼用されるので高速性も要求されるので、逐次変換型や全並列型(フラッシュ型)が用いられる。逐次比較型の場合は抵抗の精度が低いと単調性が維持出来ないが、制御用LSIでは十分な精度を確保することはコスト上昇が大きいので分解能を8bit程度に制限して単調性を確保することが多い。全並列型(フラッシュ型)は多bitとするとコンパレータのオフセットの精度が必要となり、回路規模と消費電流も大きいので、LSIの目的に応じた現実的な分解能である8bit程度にすることが多い。よって、ゲインの制御は簡単で廉価かつ小規模な回路を集積するだけで実現出来るので有効な方法である。   If the AD converter has a resolution of 10 bits or 12 bits, gain control is not necessary. Although a 16-bit AD converter has been put into practical use, AD conversion takes time. In a mobile terminal, particularly a mobile phone, an AD converter is integrated in a control LSI together with a CPU and used for communication, so that high speed is also required. Therefore, a sequential conversion type or a fully parallel type (flash type) is used. In the case of the successive approximation type, if the resistance accuracy is low, monotonicity cannot be maintained. However, securing sufficient accuracy in the control LSI increases the cost, so the resolution is limited to about 8 bits to ensure monotonicity. There are many cases. If the all-parallel type (flash type) is multi-bit, the offset accuracy of the comparator is required, and the circuit scale and current consumption are large. Therefore, it is often set to about 8 bits, which is a realistic resolution according to the purpose of the LSI. Therefore, the gain control is an effective method because it can be realized simply by integrating a simple, inexpensive and small-scale circuit.

図4は、本発明の各実施例に係る携帯端末の電池の劣化に伴う内部抵抗の変化を説明する図である。電池6は、充放電サイクルの繰り返しなどの経年変化により劣化し、内部抵抗が増加していく。電池6は、個体バラツキがあり、新品の時点でも、電池Aと電池Bとでは、内部抵抗の初期値が異なる。しかし、どちらの電池も、使用するにつれて内部抵抗が増加していく。この内部抵抗を、新品の使用開始時点および毎充電時や、所定の頻度で測定し、初期値からの変化量を算出することにより、電池の劣化を判断し、その劣化程度を、使用者やサービスマンに報知する。使用者は特に意識することなく抵抗値は測定されて蓄積されているので、使用に制約は無く、又、使用者が抵抗値を知りたい場合は直ちに抵抗値に関わる情報を報知することが出来る。電池容量と電池内部抵抗の比は電池個体バラツキが有る。説明した方法で電池内部抵抗値を測定しても、絶対値を報知するとユーザーに電池容量について個体バラツキを含む情報を示すことになる。携帯機器と電池の製造時に、機器メーカーが電池容量を確認して保証した初期時点からの劣化値を報知することにより、使用者やサービスマンに個体バラツキの影響を受けない電池の劣化の情報を提供することが可能になる。電池内部抵抗測定回路にもバラツキが有り、電池との接続抵抗もバラツキが有るので、電池交換が行なわれにくい携帯機器の場合は初期時点からの劣化値は電池容量との相関を高くすることが容易なので有効である。   FIG. 4 is a diagram for explaining a change in internal resistance accompanying the deterioration of the battery of the mobile terminal according to each embodiment of the present invention. The battery 6 deteriorates due to aging such as repeated charge / discharge cycles, and the internal resistance increases. The battery 6 has individual variations, and the initial value of the internal resistance differs between the battery A and the battery B even when they are new. However, as both batteries are used, the internal resistance increases. This internal resistance is measured at a predetermined frequency at the start of new use and at every charge, and by calculating the amount of change from the initial value, the deterioration of the battery is judged, and the degree of deterioration is determined by the user and Notify service personnel. Since the resistance value is measured and stored without any particular attention to the user, there is no restriction on the use, and if the user wants to know the resistance value, information on the resistance value can be immediately notified. . The ratio between the battery capacity and the battery internal resistance has individual battery variations. Even if the internal resistance value of the battery is measured by the method described above, if the absolute value is notified, information including individual variations on the battery capacity is shown to the user. When manufacturing mobile devices and batteries, information on battery deterioration that is not affected by individual variations is given to users and service personnel by notifying the deterioration value from the initial point when the device manufacturer confirms and guarantees the battery capacity. It becomes possible to provide. The battery internal resistance measurement circuit also varies, and the connection resistance with the battery also varies. For portable devices that are difficult to replace, the deterioration value from the initial point may increase the correlation with the battery capacity. It is effective because it is easy.

なお、サービスマンなどが電池を交換したり、電池容量値と抵抗値を確認した時を起点として電池抵抗値の劣化を測定して表示する為に、請求項6に記載した如く充電回数をリセットし、初期の抵抗値を設定出来ることが便利である。   In addition, in order to measure and display the deterioration of the battery resistance value, starting from the time when the serviceman exchanges the battery or confirms the battery capacity value and the resistance value, the number of times of charging is reset as described in claim 6. It is convenient that the initial resistance value can be set.

しかし、電池の内部抵抗は、測定する条件により、劣化以外の要因で大きく異なり、図4に示した本来の劣化に伴う内部抵抗の変化を正確に検出する必要がある。次に、劣化以外の要因で内部抵抗が異なる場合について、説明する。   However, the internal resistance of the battery varies greatly depending on factors other than deterioration depending on the measurement conditions, and it is necessary to accurately detect the change in internal resistance accompanying the original deterioration shown in FIG. Next, a case where the internal resistance is different due to factors other than deterioration will be described.

図5は、本発明の各実施例に係る携帯端末のリチウムイオン電池の内部抵抗の劣化以外のばらつき要因を説明する図である。
(a)は、内部抵抗とSOC(満充電や完全放電等を表す充電状態)との一般的な関係、および電池電圧とSOCとの一般的な関係を示す。内部抵抗は、SOCの状態によっても変化する。横軸のSOCは、0[%]が完全放電状態、100[%]が満充電状態を表す。太い実線で示した内部抵抗[mΩ]は、SOCが小さい状態では大きく、SOCが大きくなるにつれて小さくなり、SOCの中央付近のN以上ではほぼ平坦な特性となる。従って、正確な内部抵抗を測定するためには、この抵抗値が平坦な部分で測定するのが望ましい。しかし、このSOCを検知するために充放電量をチェックするのは時間が掛かるので、電池電圧でSOC状態を把握する。
FIG. 5 is a diagram for explaining the variation factors other than the deterioration of the internal resistance of the lithium ion battery of the portable terminal according to each embodiment of the present invention.
(A) shows the general relationship between internal resistance and SOC (charged state representing full charge, complete discharge, etc.) and the general relationship between battery voltage and SOC. The internal resistance also changes depending on the SOC state. Regarding the SOC on the horizontal axis, 0 [%] represents a fully discharged state and 100 [%] represents a fully charged state. The internal resistance [mΩ] indicated by a thick solid line is large when the SOC is small, decreases as the SOC increases, and becomes substantially flat at N or more near the center of the SOC. Therefore, in order to accurately measure the internal resistance, it is desirable to measure at a portion where the resistance value is flat. However, since it takes time to check the charge / discharge amount in order to detect this SOC, the SOC state is grasped by the battery voltage.

次に、電池電圧とSOCとの一般的な関係を説明する。電池電圧の変化を点線で示す。電池電圧は、SOCが小さい状態では小さく、SOCの中央付近では電圧が略平坦な状態となり、SOCが満充電に近い部分では電圧が急峻になる。電圧のチェックにより抵抗値が平坦な部分を認識するためには、電圧が略平坦な部分の電圧チェックでは、電圧バラツキにより抵抗値が平坦な部分を認識するのはむずかしい。従って、電圧値が満充電近辺の電圧範囲にあるかをチェックして、その電圧部分において抵抗値を測定すれば、抵抗平坦な部分の内、満充電に近い部分の値を正確に測定することができる。   Next, a general relationship between the battery voltage and the SOC will be described. The change in battery voltage is indicated by a dotted line. The battery voltage is small when the SOC is small, the voltage is substantially flat near the center of the SOC, and the voltage is steep when the SOC is near full charge. In order to recognize a portion having a flat resistance value by checking the voltage, it is difficult to recognize a portion having a flat resistance value due to voltage variation in the voltage check of the portion having a substantially flat voltage. Therefore, if you check whether the voltage value is in the voltage range near full charge and measure the resistance value at that voltage part, you can accurately measure the value near the full charge in the flat part of resistance. Can do.

また、使用者による携帯端末の使われ方として、ACアダプタを携帯端末の置き台代わりにACアダプタに載置されることが多い。その場合、電池がほぼ満充電状態にあることが多い、すなわち、電池電圧は、ほぼ高い状態にある。従って、電圧値が満充電に近い部分、例えば、電池電圧4.10[V]や満充電状態にあるかをチェックして、その電圧部分において抵抗値を測定するようにしておけば、その測定頻度を上げることができる。   In addition, as a way of using a mobile terminal by a user, an AC adapter is often placed on the AC adapter instead of a stand for the mobile terminal. In that case, the battery is often almost fully charged, that is, the battery voltage is almost high. Therefore, if the voltage value is close to a full charge, for example, if the battery voltage is 4.10 [V] or the battery is fully charged, and the resistance value is measured at that voltage portion, the measurement is performed. Can increase the frequency.

以上に記載したように、抵抗値の測定は適切な電池電圧(SOC)で行なうことが肝要である。4.20Vが満充電(SOC;100%)の、コバルト酸リチウムが正極材料でグラファイトが負極材料であるようなリチウムイオン電池を例に取って説明する。例えば、電池電圧(点線)が3.6V以下で測定する設計では太い実線で示した電池の抵抗値が急峻に変わる状態で測定している可能性が高く、電池容量と相関が強い抵抗値を測定していないことが懸念されるので本特許の目的には不適切である。例えば3.8V程度で測定する設計では、通話毎に充電する「高頻度充電」又は「低放電深度充電」を行なう習慣のユーザーの場合は、常に4.00V以上であり得るので抵抗値を測定する機会が少ないことが懸念される。   As described above, it is important to measure the resistance value at an appropriate battery voltage (SOC). A description will be given by taking as an example a lithium ion battery in which lithium cobaltate is a positive electrode material and graphite is a negative electrode material, with 20V being fully charged (SOC; 100%). For example, in a design in which the battery voltage (dotted line) is measured at 3.6 V or less, there is a high possibility that measurement is performed in a state where the battery resistance value indicated by a thick solid line changes sharply, and a resistance value having a strong correlation with the battery capacity is obtained. It is unsuitable for the purposes of this patent because it is concerned that it has not been measured. For example, in a design that measures at about 3.8V, if the user is in the habit of performing "high frequency charging" or "low discharge depth charging" that charges every call, the resistance value can be measured because it can always be 4.00V or higher. There are concerns that there are few opportunities to do so.

例えば4.20Vで測定する設計では、充電電圧が4.20Vであっても電池電圧は充電電流を開放すると同時に4.10〜4.17V程度に低下する充電設計が多用されているので、測定前に充電を止めると電池電圧は4.20V未満であるので、後述する実施例1の如く充電中に電池の内部抵抗を測定する方法に限定される。4.00V〜4.10V程度で測定することにすれば、充電の途中で充電を中止しない限りは充電毎にこの電池電圧を経過するので、高い確率で高頻度で測定が可能となり、好適である。以下、所定の電池電圧とは4.20Vが満充電(SOC;100%)のリチウムイオン電池の場合は、概ねこの範囲の満充電に近い電池電圧を指す。   For example, in the design that measures at 4.20V, the charging voltage that drops to about 4.10 to 4.17V at the same time that the battery voltage is released even when the charging voltage is 4.20V is often used. If the charging is stopped before, the battery voltage is less than 4.20 V, so that the method is limited to a method of measuring the internal resistance of the battery during charging as in Example 1 described later. If the measurement is carried out at about 4.00V to 4.10V, the battery voltage will elapse for each charge unless charging is stopped in the middle of the charging. is there. Hereinafter, in the case of a lithium ion battery in which 4.20V is fully charged (SOC; 100%), the predetermined battery voltage generally indicates a battery voltage close to full charge in this range.

送信パワーアンプ12、LCD13、白色LED14などの負荷電流は、電池電圧が高い場合は消費電流が増加することが一般的である。図示しないDCDCコンバータの負荷電流は電池電圧が高い場合は消費電流が減少することが一般的である。これ等の消費電流は電池電圧に対して直線的に変化せずに複数の変曲点を持つ例も多い。よって、内部抵抗を測定する際の電池電圧を固定することは、簡単な測定で測定精度を高める為に望ましい。   In general, the load current of the transmission power amplifier 12, the LCD 13, the white LED 14, etc., increases when the battery voltage is high. In general, the load current of a DCDC converter (not shown) decreases when the battery voltage is high. In many cases, these current consumptions do not change linearly with respect to the battery voltage and have a plurality of inflection points. Therefore, fixing the battery voltage when measuring the internal resistance is desirable in order to increase the measurement accuracy with simple measurement.

4.00V近辺で抵抗値を測定する場合、もし、充電開始時に既に電池電圧が4.17Vである場合は、4.00Vの電池電圧での内部抵抗値と4.17Vの電池電圧での内部抵抗値の差は僅かであるので、4.17Vでの測定値を代用することは差し支え無い。特に厳密な測定では、4.17V等と満充電に近いリチウムイオン電池の抵抗値は4.00Vよりも大きな値を示すので、平均値や移動平均値を算出する場合は除外したり、重みを軽くする等の処置を行ってもよい。   When measuring the resistance value around 4.00V, if the battery voltage is already 4.17V at the start of charging, the internal resistance value at the battery voltage of 4.00V and the internal voltage at the battery voltage of 4.17V Since the difference in resistance value is slight, it is safe to substitute the measured value at 4.17V. In particularly rigorous measurement, the resistance value of a lithium ion battery close to a full charge such as 4.17 V is larger than 4.00 V. Therefore, when calculating an average value or a moving average value, it can be excluded or weighted. Treatment such as lightening may be performed.

(b)は、リチウムイオン電池の内部抵抗と温度との関係を示す。内部抵抗は、電池温度によっても変化する。内部抵抗は、常温以上で最低値を示し、値も安定している。低温側になるにつれて上昇する。従って、常温以上、例えばセ氏15度以上で測定した抵抗値をそのまま決定値としてもよい。または、この内部抵抗と温度との関係を補正係数として電池温度特性メモリ18(図1)に記憶しておき、例えばセ氏25度の内部抵抗値を基準の補正係数「1」として、他の温度で測定した抵抗値を、セ氏25度換算の内部抵抗値に補正して決定値としてもよい。たとえば、抵抗値を測定した時の温度がセ氏5度であれば、その時の抵抗値を補正係数1.25で割れば、セ氏25度換算の抵抗値となる。この特性は、リチウムイオン電池の一般的な代表データであり、電池の個体差はあるが、ほぼ適用できる。 (B) shows the relationship between the internal resistance and temperature of a lithium ion battery. The internal resistance also changes depending on the battery temperature. The internal resistance shows the minimum value above room temperature and the value is stable. It rises as it gets colder. Therefore, a resistance value measured at room temperature or higher, for example, 15 degrees Celsius or higher, may be used as a determined value. Alternatively, the relationship between the internal resistance and the temperature is stored in the battery temperature characteristic memory 18 (FIG. 1) as a correction coefficient, and for example, the internal resistance value of 25 degrees Celsius is set as a reference correction coefficient “1” and the other temperature. The resistance value measured in (5) may be corrected to an internal resistance value converted to 25 degrees Celsius and used as a determined value. For example, if the temperature when the resistance value is measured is 5 degrees Celsius, the resistance value at that time is divided by the correction coefficient 1.25 to obtain a resistance value converted to 25 degrees Celsius. This characteristic is general representative data of a lithium ion battery, and can be almost applied although there are individual differences of the battery.

図6は、本発明の実施例1に係る携帯端末の制御部の電池内部抵抗測定のフローチャートである。実施例1は、充電中に、充電を一旦停止して大電流の負荷をオンにして、充電中と、充電を一旦停止して大電流負荷オン時の電池電圧差分および電流差分1100mAにより、内部抵抗を算出する。すなわち、図2の(a)から(d)への変移により内部抵抗を算出する。   FIG. 6 is a flowchart of battery internal resistance measurement of the control unit of the mobile terminal according to the first embodiment of the present invention. In the first embodiment, during charging, charging is temporarily stopped and a large current load is turned on. During charging, when charging is temporarily stopped and large current load is turned on, a battery voltage difference and a current difference of 1100 mA Calculate the resistance. That is, the internal resistance is calculated by the transition from (a) to (d) in FIG.

図7は、本発明の各実施例に係る携帯端末の測定データ記憶メモリを説明する図である。測定データ記憶メモリ19の符号19a欄は充電回数、符号19b欄は測定時温度、符号19c欄は変移前の電池電圧、符号19d欄は変移後の電池電圧、符号19e欄は算出した抵抗値、符号19f欄は補正した抵抗値、符号19g欄は抵抗値変化量が記憶される。   FIG. 7 is a diagram for explaining the measurement data storage memory of the mobile terminal according to each embodiment of the present invention. In the measurement data storage memory 19, the reference numeral 19a column indicates the number of times of charging, the reference numeral 19b column indicates the measurement temperature, the reference numeral 19c column indicates the battery voltage before the change, the reference numeral 19d column indicates the battery voltage after the change, the reference numeral 19e column indicates the calculated resistance value, The reference numeral 19f column stores the corrected resistance value, and the reference numeral 19g column stores the resistance value change amount.

図6、図7により、動作を説明する。制御部15は、電池の充電処理の最中に電池内部抵抗の測定を行う。制御部15は、充電処理(ステップS1)に入ると、まず、充電回数カウンタ20をプラス1する(ステップS2)。そして、ADC入力のゲインを下げて、すなわち増幅器33(図3)のゲインを下げる(ステップS3)。これは、図3で説明したように、充電処理では電池電圧の測定範囲として、0〜4.3[V]の範囲を測定して管理する必要があるためである。そして、定電流充電処理を行いながら(ステップS4)、電池電圧6aが満充電近辺の電圧にあるかをチェックする(ステップS5)。   The operation will be described with reference to FIGS. The control unit 15 measures the battery internal resistance during the battery charging process. When entering the charging process (step S1), the control unit 15 first increments the charging number counter 20 by 1 (step S2). Then, the gain of the ADC input is lowered, that is, the gain of the amplifier 33 (FIG. 3) is lowered (step S3). This is because, as described with reference to FIG. 3, it is necessary to measure and manage the range of 0 to 4.3 [V] as the measurement range of the battery voltage in the charging process. Then, while performing the constant current charging process (step S4), it is checked whether the battery voltage 6a is at a voltage near full charge (step S5).

これが満充電近辺の電圧であれば、充電処理以外のアプリケーション、例えば、通信処理、LCD表示処理などを実行中であるかをチェックする(ステップS6)。これは、携帯端末100の本来の機能を実行しながら充電する、いわゆる「ながら充電」中であるかをチェックするものである。「ながら充電」中であれば、内部抵抗算出用の電圧測定(ステップS10)をパスして、充電処理を継続する(ステップS50)。なお、「ながら充電」中であっても、実行中のアプリケーションの種類によっては、そのアプリケーションを停止してもよい場合は、停止して、内部抵抗算出用の測定(ステップS10)に入ってもよい。   If this is a voltage near full charge, it is checked whether an application other than the charging process, for example, a communication process or an LCD display process is being executed (step S6). This is to check whether charging is performed while executing the original function of the mobile terminal 100, that is, whether it is so-called “while charging”. If “while charging”, the voltage measurement for calculating the internal resistance (step S10) is passed and the charging process is continued (step S50). Even if “while charging”, depending on the type of application being executed, if the application may be stopped, it may be stopped and the measurement for calculating the internal resistance may be entered (step S10). Good.

ステップS6で「ながら充電」中でなければ、内部抵抗算出用の電圧測定(ステップS10)に入る。まず、トランジスタスイッチ9〜11をオフにして、負荷である送信パワーアンプ12、LCD13、白色LED14への電源供給をオフにする(ステップS11)。次に、温度を測定する(ステップS12)。これは、検出部16への入力を、図示しない切り替えスイッチによりサーミスタ7側に切り替えて、温度7a(図1)の電圧検出により行う。そして、現在の充電回数カウンタ20の値に相当する測定データ記憶メモリ19の符号19aの「充電回数」欄の、「測定時温度」欄(符号19b)に、測定した温度を記録する(ステップS12)。   If it is not “while charging” in step S6, voltage measurement for calculating internal resistance (step S10) is started. First, the transistor switches 9 to 11 are turned off, and the power supply to the transmission power amplifier 12, the LCD 13, and the white LED 14 as loads is turned off (step S11). Next, the temperature is measured (step S12). This is performed by detecting the voltage at the temperature 7a (FIG. 1) by switching the input to the detection unit 16 to the thermistor 7 side with a changeover switch (not shown). Then, the measured temperature is recorded in the “measurement temperature” column (reference numeral 19 b) in the “charge count” column of the reference numeral 19 a of the measurement data storage memory 19 corresponding to the current value of the charge counter 20 (step S 12). ).

次に、検出部16への入力を再び電池電圧6a側に切り替え、更に、電圧検出の精度を上げるために、ADC入力のゲインを上げて、すなわち増幅器33のゲインを上げる(ステップS13)。これは、図3で説明したように、通常の充電制御時の検出精度より、内部抵抗測定時の検出精度の方を上げる必要があるためである。   Next, the input to the detection unit 16 is switched again to the battery voltage 6a side, and further, in order to increase the accuracy of voltage detection, the gain of the ADC input is increased, that is, the gain of the amplifier 33 is increased (step S13). This is because, as described with reference to FIG. 3, it is necessary to increase the detection accuracy at the time of measuring internal resistance rather than the detection accuracy at the time of normal charge control.

そして、定電流充電中の電池電圧6aを精度良く測定する(ステップS14)。この状態は、図2の(a)に相当する。そして、この電池電圧6aを測定データ記憶メモリ19の同じ「充電回数」欄の「変移前の電池電圧」欄(符号19c)に記録する(ステップS14)。次に、充電を一旦停止し、所定時間、例えば、0.01秒〜10秒程度待つ(ステップS15)。これは、充電を停止したことに伴う電池特性の安定待ちのためである。   Then, the battery voltage 6a during constant current charging is accurately measured (step S14). This state corresponds to (a) of FIG. Then, this battery voltage 6a is recorded in the “battery voltage before transition” column (reference numeral 19c) in the same “number of times of charging” column of the measurement data storage memory 19 (step S14). Next, the charging is temporarily stopped, and a predetermined time, for example, 0.01 seconds to 10 seconds is waited (step S15). This is because of waiting for stabilization of battery characteristics due to the stop of charging.

次に、トランジスタスイッチ9〜11をオンにして、負荷である送信パワーアンプ12、LCD13、白色LED14への電源供給をオンにし、電池電圧6aを測定する(ステップS16)。この状態は、図2の(d)に相当する。そして、この電池電圧6aを測定データ記憶メモリ19の同じ「充電回数」欄の「変移後の電池電圧」欄(符号19d)に記録する(ステップS16)。   Next, the transistor switches 9 to 11 are turned on to turn on the power supply to the transmission power amplifier 12, the LCD 13, and the white LED 14 that are loads, and the battery voltage 6a is measured (step S16). This state corresponds to (d) of FIG. Then, this battery voltage 6a is recorded in the “battery voltage after transition” column (reference numeral 19d) in the same “number of times of charging” column of the measurement data storage memory 19 (step S16).

そして、トランジスタスイッチ9〜11をオフにして、負荷への電源供給をオフにする(ステップS17)。そして、定電流充電を再開する(ステップS18)。
以上で、内部抵抗を算出するデータは揃うが、ステップS12〜S18を複数回繰り返して複数回分を測定して平均値を取ってもよい。複数回繰り返しても処理時間は短時間で済む。内部抵抗算出用の電圧測定などが終わると、次に、ADC入力のゲインを下げて通常の充電処理に入る準備をし(ステップS19)、充電処理継続に入る(ステップS50)。
Then, the transistor switches 9 to 11 are turned off, and the power supply to the load is turned off (step S17). Then, constant current charging is resumed (step S18).
Although the data for calculating the internal resistance are prepared as described above, steps S12 to S18 may be repeated a plurality of times to measure a plurality of times to obtain an average value. Even if it is repeated several times, the processing time is short. When the voltage measurement for calculating the internal resistance is completed, the ADC input gain is lowered to prepare for the normal charging process (step S19), and the charging process is continued (step S50).

次に、内部抵抗算出処理(ステップS100)について説明する。この処理は、充電処理の中で行ってもよいし、充電処理以外の任意のタイミング、例えば、携帯端末100がACアダプタから取り外されて待ち受け状態などにおいて行ってもよい。測定データ記憶メモリ19には、充電処理のステップS12〜S18で測定した電圧や温度データが記録されている。   Next, the internal resistance calculation process (step S100) will be described. This process may be performed during the charging process, or may be performed at any timing other than the charging process, for example, in a standby state after the mobile terminal 100 is detached from the AC adapter. In the measurement data storage memory 19, voltage and temperature data measured in steps S12 to S18 of the charging process are recorded.

制御部15は、測定データ記憶メモリ19を読み出す。充電回数1回目のデータについて、測定データ記憶メモリ19の「変移前の電池電圧」V1P[V]と「変移後の電池電圧」V1S[V]との電圧差分を計算する。この電圧差分を、電流記憶メモリ17に予め記憶されている電流差分1100mAで割り算した抵抗値60.5mΩを測定データ記憶メモリ19の符号19e欄の「算出した抵抗値」欄に記憶する(ステップS101)。   The control unit 15 reads the measurement data storage memory 19. The voltage difference between the “battery voltage before transition” V1P [V] and the “battery voltage after transition” V1S [V] in the measurement data storage memory 19 is calculated for the first charge count data. The resistance value 60.5 mΩ obtained by dividing this voltage difference by the current difference 1100 mA preliminarily stored in the current storage memory 17 is stored in the “calculated resistance value” column of the symbol 19e column of the measurement data storage memory 19 (step S101). ).

次に、測定データ記憶メモリ19の「測定時温度」セ氏5度と、電池温度特性メモリ18のセ氏5度の補正係数1.25(図5(b))を基に、60.5mΩ/1.25=48.4mΩの演算を行い、48.4mΩを測定データ記憶メモリ19の符号19fの「補正した抵抗値」欄に記憶する(ステップS102)。充電回数1回目であれば、測定データ記憶メモリ19の符号19gの「抵抗値変化」欄には、零を記録する。これが初期値として今後の基準となる。   Next, 60.5 mΩ / 1 based on the “measurement temperature” 5 degrees Celsius of the measurement data storage memory 19 and the correction coefficient 1.25 (FIG. 5B) of 5 degrees Celsius of the battery temperature characteristic memory 18. The calculation of .25 = 48.4 mΩ is performed, and 48.4 mΩ is stored in the “corrected resistance value” column of reference numeral 19 f of the measurement data storage memory 19 (step S 102). If the number of times of charging is the first time, zero is recorded in the “resistance change” column of the reference numeral 19 g of the measurement data storage memory 19. This is the future standard as the initial value.

測定データ記憶メモリ19の充電回数2回目と3回目は、測定時温度がセ氏70度とセ氏マイナス9度の場合の例である。この場合は、電池の通常の使用範囲外ということで、抵抗値の算出演算は行わないか、行って結果を記録しても参考値に留める。また、この温度が、電池温度特性メモリ18にも記載がない場合も同様である。   The second and third charge times of the measurement data storage memory 19 are examples when the measurement temperature is 70 degrees Celsius and minus 9 degrees Celsius. In this case, the calculation of the resistance value is not performed because it is out of the normal use range of the battery, or the result is recorded and remains as a reference value. The same applies to the case where this temperature is not described in the battery temperature characteristic memory 18.

充電回数4回目については、同様の処理を行い、「算出した抵抗値」53.4mΩ、「補正した抵抗値」48.5mΩを記録する。そして、基準となる充電回数1回目の「補正した抵抗値」48.4mΩと、今回の「補正した抵抗値」48.5mΩとの差0.1mΩを演算し、「抵抗値変化」欄に、0.1mΩを記録する(ステップS103)。   For the fourth charge, the same process is performed, and “calculated resistance value” 53.4 mΩ and “corrected resistance value” 48.5 mΩ are recorded. Then, a difference of 0.1 mΩ between the “corrected resistance value” 48.4 mΩ of the first charge number of times as a reference and the current “corrected resistance value” 48.5 mΩ is calculated, and the “resistance value change” column is calculated. 0.1 mΩ is recorded (step S103).

なお、基準となる初期値は、充電回数1回目分の「補正した抵抗値」48.4mΩのみではなく、充電回数の早い回数複数分の「補正した抵抗値」の平均を取って、「補正した抵抗値」の初期値としてもよい。特異データがあれば除いて平均値を取って、「補正した抵抗値」の初期値としてもよい。   The reference initial value is not only the “corrected resistance value” of 48.4 mΩ for the first charge, but also the average of the “corrected resistance values” for a plurality of early charge times. The initial value of the “resistance value” may be used. If there is singular data, an average value may be taken and an initial value of “corrected resistance value” may be used.

各充電回数毎に、「補正した抵抗値」の算出と抵抗値変化量の算出を行い、充電回数100回目で抵抗値変化量30.2mΩ、充電回数300回目で抵抗値変化量50.7mΩ、充電回数500回目で抵抗値変化量110mΩが記録される。   For each number of times of charging, calculation of “corrected resistance value” and calculation of the resistance value change amount, the resistance value change amount of 30.2 mΩ at the 100th charge time, the resistance value change amount of 50.7 mΩ at the 300th charge time, The resistance value change amount 110 mΩ is recorded at the 500th charge.

なお、温度による補正を行わない場合は、温度が常温以上、例えばセ氏15度〜50度の範囲であれば内部抵抗はほぼ一定なので、温度が常温以上の範囲にあるかを判断して、常温以上の範囲にある時に算出した内部抵抗値のみを有効にするようにしてもよい。
また、測定データ記憶メモリ19には、電圧[V]や抵抗値[mΩ]として記憶したが、検出部16のADC39の出力2値データをそのまま記録するようにしてもよい。多くの場合、使用者が知りたいことは電池の劣化量であるので、使用者に報知するデータも抵抗値の代わりにADC39の出力値を10進数や8進数や16進数としたものでも良い。電池劣化の程度の判断基準値をこれらの劣化表示値と共に表示することは使用者に対する利便性を上げるので好ましい。
If the temperature correction is not performed, the internal resistance is almost constant if the temperature is not less than room temperature, for example, 15 degrees to 50 degrees Celsius. Therefore, it is determined whether the temperature is in the range above room temperature. You may make it validate only the internal resistance value calculated when it exists in the above range.
Further, although the measurement data storage memory 19 stores the voltage [V] and the resistance value [mΩ], the output binary data of the ADC 39 of the detection unit 16 may be recorded as it is. In many cases, since the user wants to know the amount of deterioration of the battery, the data notified to the user may be the output value of the ADC 39 in decimal, octal or hexadecimal instead of the resistance value. Displaying the criterion value for the degree of battery deterioration together with these deterioration display values is preferable because it increases convenience for the user.

図8は、本発明の各実施例に係る携帯端末の制御部の電池劣化報知のフローチャートである。
図9は、本発明の各実施例に係る携帯端末の制御部の電池劣化報知の表示画面を説明する図であり、(a)は抵抗値の変化量表示、(b)は電池電圧差分(ADC値)の変化量表示の例である。
図8、図9の(a)により、動作を説明する。制御部15は、携帯端末100のユーザーによる電池劣化の報知操作がなされると(ステップS201でYES)、測定データ記憶メモリ19から最新の充電回数の「抵抗値変化量」を読み出す(ステップS202)。例えば、現在の充電回数が100回目が最新であれば、現在の「抵抗値変化量」は30.2mΩである。そして、この現在の「抵抗値変化量」30.2mΩを、表示画面の「初期値に対する内部抵抗値の変化量」欄に表示する。また、表示画面の「電池劣化の目安表示」欄に、「抵抗値変化量」VS電池劣化を表す文言も合わせて表示する(ステップS203)。
FIG. 8 is a flowchart of battery deterioration notification of the control unit of the mobile terminal according to each embodiment of the present invention.
FIG. 9 is a diagram for explaining a display screen of battery deterioration notification of the control unit of the mobile terminal according to each embodiment of the present invention, where (a) is a resistance value change amount display, and (b) is a battery voltage difference ( It is an example of a change amount display of (ADC value).
The operation will be described with reference to FIGS. When the user of the portable terminal 100 performs a battery deterioration notification operation (YES in step S201), the control unit 15 reads the “resistance value change amount” of the latest charge count from the measurement data storage memory 19 (step S202). . For example, if the current number of times of charging is the 100th, the current “resistance value change amount” is 30.2 mΩ. Then, the current “resistance value change amount” of 30.2 mΩ is displayed in the “change amount of internal resistance value with respect to initial value” column on the display screen. In addition, a word indicating “resistance value change amount” VS battery deterioration is also displayed in the “battery deterioration guideline display” field of the display screen (step S203).

この「抵抗値変化量」VS電池劣化は、予め、電池メーカーなどから入手した抵抗値変化量と電池容量のデータなどにより判断基準が区分けされている。それにより、「抵抗値変化量」0〜40mΩは電池が新品同様、「抵抗値変化量」40〜60mΩは電池の容量劣化が始まっている、「抵抗値変化量」100mΩ以上は電池が劣化しており電池交換を勧める、などの表示を行う。   This “resistance value change amount” VS battery deterioration is classified according to a resistance value change amount obtained from a battery manufacturer or the like and battery capacity data in advance. As a result, the “resistance change” of 0 to 40 mΩ is the same as a new battery, the “resistance change” of 40 to 60 mΩ starts to deteriorate the capacity of the battery, and the “resistance change” of 100 mΩ or more deteriorates the battery. It is recommended to replace the battery.

ユーザーはこれを見て、「抵抗値変化量」は30.2mΩであれば、電池は新品同様であることを知る。現在の充電回数が300回目が最新であれば、「抵抗値変化量」50.7mΩと表示され、電池容量の劣化が始まっていることを知る。現在の充電回数が500回目が最新であれば、「抵抗値変化量」110mΩと表示され、電池交換が必要であることを知る。なお、この表示形態に限らず、電池劣化を表す文言のみの表示であってもよい。   The user sees this and knows that the battery is the same as a new battery if the “resistance change amount” is 30.2 mΩ. If the current number of times of charging is the latest 300th, “resistance value change amount” is displayed as 50.7 mΩ, and it is known that the battery capacity has started to deteriorate. If the current number of times of charging is the latest, the “resistance value change amount” 110 mΩ is displayed, and it is known that the battery needs to be replaced. In addition, not only this display form but the display of only the language showing battery deterioration may be sufficient.

図9の(b)は、抵抗値表示ではなく、抵抗値算出の根拠となった「電池電圧差分÷電池電流差分(固定値)=電池内部抵抗値」の式の「電池電圧差分」の変化量をADC値そのままで表示してもよい。初期値を例えば100なるように定数を乗じるなどして使用者が判り易くなるように処理を加えて表示しても良い。電池電流差分が固定値なので、「電池電圧差分」のADC値は、等価的に内部抵抗を意味する。また、他の情報として、充電回数や高温遭遇回数などを表示してもよい。   FIG. 9B shows a change in “battery voltage difference” in the expression “battery voltage difference / battery current difference (fixed value) = battery internal resistance value” that is not a resistance value display but a basis for calculating the resistance value. The quantity may be displayed with the ADC value as it is. For example, the initial value may be multiplied by a constant so as to be 100, for example, and processing may be added so that the user can easily understand. Since the battery current difference is a fixed value, the ADC value of “battery voltage difference” equivalently means internal resistance. Moreover, you may display the frequency | count of charge, the high temperature encounter frequency, etc. as other information.

なお、図8、図9は、携帯端末100のユーザー用の報知例であったが、サービスマン用に、特殊キー操作がなされた時に、測定データ記憶メモリ19の内容(図7)をすべて、表示したり、図示しない外部インターフェースを介して出力するようにしてもよい。これにより、サービスマンは、電池劣化の詳細と、その原因となる使用者の携帯端末の使用温度環境や充電操作の性向等を知ることができる。また、測定データ記憶メモリ19に、充電回数と共に充電日時を記録するようにしておいてもよい。   8 and 9 are notification examples for the user of the mobile terminal 100, but when the special key operation is performed for the service person, all the contents of the measurement data storage memory 19 (FIG. 7) are It may be displayed or output via an external interface (not shown). Thereby, the service person can know the details of the battery deterioration, the operating temperature environment of the user's portable terminal, the propensity of the charging operation, and the like that cause the battery deterioration. Further, the date and time of charging may be recorded in the measurement data storage memory 19 together with the number of times of charging.

実施例1によれば、電池電圧が満充電近辺の時に内部抵抗算出用の電圧測定を行うので、内部抵抗がSOCの影響を受けないと共に、使用者が頻繁に充電する使い方で常に満充電すなわち電池電圧が常に高い状態にあっても電池の内部抵抗を測定する所定の電池電圧値が満充電に近い電圧にしているので、内部抵抗測定のタイミングを逸することがない。また、充電中に内部抵抗算出のための測定を行うので、携帯端末の通常の使用に影響を及ぼさない。また、充電電流と放電電流の大きな電流差分により検出精度を上げることができる。また、ADCの入力ゲインを通常充電中と内部抵抗測定時とで切り替えるので、内部抵抗測定用の精度を十分に上げることができる。また、放電電流は、携帯端末が本来備える負荷やトランジスタスイッチを利用するので、内部抵抗測定のためだけの放電抵抗やスイッチを別途備える必要がない。
また、内部抵抗の劣化以外によるばらつき要因であるSOCや温度の影響が取り除かれて、内部抵抗の劣化を判断するための正確な内部抵抗測定が可能になる。
According to the first embodiment, since the voltage measurement for calculating the internal resistance is performed when the battery voltage is in the vicinity of the full charge, the internal resistance is not affected by the SOC and is always fully charged in the usage in which the user frequently charges. Even when the battery voltage is always high, the predetermined battery voltage value for measuring the internal resistance of the battery is set to a voltage close to full charge, so that the timing of measuring the internal resistance is not lost. In addition, since the measurement for calculating the internal resistance is performed during charging, it does not affect the normal use of the mobile terminal. Also, the detection accuracy can be increased by a large current difference between the charging current and the discharging current. Further, since the ADC input gain is switched between normal charging and internal resistance measurement, the accuracy for measuring internal resistance can be sufficiently increased. In addition, since the discharge current uses a load or a transistor switch that is originally provided in the mobile terminal, it is not necessary to separately provide a discharge resistor or switch only for measuring the internal resistance.
In addition, the influence of SOC and temperature, which is a variation factor other than internal resistance deterioration, is removed, and accurate internal resistance measurement for determining internal resistance deterioration becomes possible.

図10は、本発明の実施例2に係る携帯端末の制御部の電池内部抵抗測定のフローチャートである。実施例2は、充電中に、充電を一旦停止し、大電流の負荷をオン/オフして、大電流負荷のオン/オフ時の電池電圧差分および電流差分600mAにより、内部抵抗を算出する。つまり、充電電流は考慮しない。すなわち、図2の(c)から(d)への変移により内部抵抗を算出する。図7、図8、図9については、実施例1と同様であり、詳細な説明は省略する。   FIG. 10 is a flowchart of the battery internal resistance measurement of the control unit of the mobile terminal according to the second embodiment of the present invention. In the second embodiment, during charging, charging is temporarily stopped, a large current load is turned on / off, and the internal resistance is calculated based on the battery voltage difference and the current difference 600 mA when the large current load is turned on / off. That is, the charging current is not considered. That is, the internal resistance is calculated by the transition from (c) to (d) in FIG. 7, 8, and 9 are the same as those in the first embodiment, and detailed description thereof is omitted.

また、図10は、実施例1の図6と同じ箇所は同じステップ番号を付して、相違点を主に説明する。制御部15は、充電処理(ステップS1)に入り、電池電圧6aが満充電近辺の電圧にあれば(ステップS4でYES)、内部抵抗算出用の電圧測定(ステップS20)に入る。まず、負荷への電源供給をオフにし(ステップS21)、温度測定し(ステップS22)、ADC入力ゲインを高く設定し(ステップS23)、充電を一旦停止して所定時間待つ(ステップS24)。   In FIG. 10, the same parts as those in FIG. 6 of the first embodiment are denoted by the same step numbers, and the differences will be mainly described. The control unit 15 enters the charging process (step S1), and enters the voltage measurement for calculating the internal resistance (step S20) if the battery voltage 6a is near the full charge (YES in step S4). First, the power supply to the load is turned off (step S21), the temperature is measured (step S22), the ADC input gain is set high (step S23), charging is temporarily stopped and a predetermined time is waited (step S24).

次に、負荷への電源供給をオフにして電池電圧6aを測定し、測定データ記憶メモリ19の「変移前の電池電圧」欄(符号19c)に記録する(ステップS25)。この状態は、図2の(c)に相当する。次に、負荷への電源供給をオンにして電池電圧6aを測定し、測定データ記憶メモリ19の「変移後の電池電圧」欄(符号19d)に記録する(ステップS26)。この状態は、図2の(d)に相当する。   Next, the power supply to the load is turned off, and the battery voltage 6a is measured and recorded in the “battery voltage before transition” column (reference numeral 19c) of the measurement data storage memory 19 (step S25). This state corresponds to (c) of FIG. Next, the power supply to the load is turned on, the battery voltage 6a is measured, and recorded in the “battery voltage after transition” column (reference numeral 19d) of the measurement data storage memory 19 (step S26). This state corresponds to (d) of FIG.

以上で、内部抵抗を算出するデータは揃うが、ステップS25、S26を複数回繰り返して複数回分の平均値を取ってもよい。また、このステップ中に、温度測定を入れて複数回測定してもよい。複数回繰り返しても処理時間は、数10[mS]で済む。内部抵抗算出用の電圧測定などが終わると、次に、ADC入力のゲインを下げて通常の充電処理に入る準備をし(ステップS28)、充電処理継続に入る(ステップS50)。   Although the data for calculating the internal resistance is prepared as described above, steps S25 and S26 may be repeated a plurality of times to obtain an average value for a plurality of times. Further, during this step, temperature measurement may be included and measurement may be performed a plurality of times. Even if it is repeated a plurality of times, the processing time is only several tens [mS]. When the voltage measurement for calculating the internal resistance is completed, the ADC input gain is lowered to prepare for the normal charging process (step S28), and the charging process is continued (step S50).

内部抵抗算出処理(図6のステップS100相当)については、電流差分1100mA(実施例1)ではなく、電流差分600mAで内部抵抗を演算する点が異なるが、他は同様であり、説明を省略する。   The internal resistance calculation process (corresponding to step S100 in FIG. 6) is different in that the internal resistance is calculated not with the current difference of 1100 mA (Example 1) but with the current difference of 600 mA, but the rest is the same and the description is omitted. .

実施例2によれば、電池電圧が満充電近辺の時に内部抵抗算出用の電圧測定を行うので、内部抵抗がSOCの影響を受けないと共に、使用者が頻繁に充電する使い方で常に満充電すなわち電池電圧が常に高い状態にあっても内部抵抗算出のタイミングを逸することがない。また、充電中に内部抵抗算出のための測定を行うので、携帯端末の通常の使用に影響を及ぼさない。また、ADCの入力ゲインを通常充電中と内部抵抗測定時とで切り替えるので、内部抵抗測定用の精度を出すことができる。また、放電電流は、携帯端末が本来備える負荷やトランジスタスイッチを利用するので、内部抵抗算出のためだけの放電抵抗やスイッチを別途備える必要がない。
また、内部抵抗の劣化以外によるばらつき要因であるSOCや温度の影響が取り除かれて、内部抵抗の劣化を判断するための正確な内部抵抗測定が可能になる。
According to the second embodiment, since the voltage measurement for calculating the internal resistance is performed when the battery voltage is in the vicinity of the full charge, the internal resistance is not affected by the SOC and is always fully charged in the usage that the user frequently charges. Even when the battery voltage is constantly high, the timing for calculating the internal resistance is not missed. In addition, since the measurement for calculating the internal resistance is performed during charging, it does not affect the normal use of the mobile terminal. Further, since the ADC input gain is switched between normal charging and internal resistance measurement, the accuracy for measuring the internal resistance can be obtained. In addition, since the discharge current uses a load or transistor switch that is originally provided in the mobile terminal, it is not necessary to separately provide a discharge resistor or switch only for calculating the internal resistance.
In addition, the influence of SOC and temperature, which is a variation factor other than internal resistance deterioration, is removed, and accurate internal resistance measurement for determining internal resistance deterioration becomes possible.

図11は、本発明の実施例3に係る携帯端末の制御部の電池内部抵抗測定のフローチャートである。実施例3は、充電中に充電を停止することなく、大電流の負荷をオン/オフして、大電流負荷のオン/オフ時の電池電圧差分および電流差分600mAにより、内部抵抗を算出する。すなわち、図2の(a)から(b)への変移により内部抵抗を算出する。図7、図8、図9については、実施例1と同様であり、詳細な説明は省略する。   FIG. 11 is a flowchart of battery internal resistance measurement of the control unit of the mobile terminal according to the third embodiment of the present invention. In the third embodiment, a large current load is turned on / off without stopping charging during charging, and the internal resistance is calculated from the battery voltage difference and the current difference 600 mA when the large current load is turned on / off. That is, the internal resistance is calculated by the transition from (a) to (b) in FIG. 7, 8, and 9 are the same as those in the first embodiment, and detailed description thereof is omitted.

また、図11は、実施例1の図6と同じ箇所は同じステップ番号を付して、相違点を主に説明する。相違点は、図6(実施例1)の充電一旦停止処理(ステップS15)および定電流充電再開(ステップS18)を削除した点である。これは、実施例3は、充電中に充電を停止することなく行うために、この部分が不要となる。他の部分は同じであり、負荷のオン/オフ時の電池電圧および温度を測定して、測定データ記憶メモリ19に記録する。   In FIG. 11, the same parts as those in FIG. 6 of the first embodiment are denoted by the same step numbers, and the differences will be mainly described. The difference is that the charging temporary stop process (step S15) and the constant current charging restart (step S18) in FIG. 6 (Example 1) are deleted. This is not necessary because the third embodiment performs charging without stopping during charging. The other parts are the same, and the battery voltage and temperature when the load is turned on / off are measured and recorded in the measurement data storage memory 19.

内部抵抗算出処理(図6のステップS100相当)については、電流差分1100mA(実施例1)ではなく、電流差分600mAで内部抵抗を演算する点が異なるが、他は同様であり、説明を省略する。   The internal resistance calculation process (corresponding to step S100 in FIG. 6) is different in that the internal resistance is calculated not with the current difference of 1100 mA (Example 1) but with the current difference of 600 mA, but the rest is the same and the description is omitted. .

実施例3によれば、電池電圧が満充電近辺の時に内部抵抗算出用の電圧測定を行うので、内部抵抗がSOCの影響を受けないと共に、使用者が頻繁に充電する使い方で常に満充電すなわち電池電圧が常に高い状態にあっても内部抵抗算出のタイミングを逸することがない。また、充電中に内部抵抗算出のための測定を行うので、携帯端末の通常の使用に影響を及ぼさない。特に、充電の一旦停止も行わないので、充電制御への影響を完全になくすことができる。また、ADCの入力ゲインを通常充電中と内部抵抗測定時とで切り替えるので、内部抵抗測定用の精度を出すことができる。また、放電電流は、携帯端末が本来備える負荷やトランジスタスイッチを利用するので、内部抵抗算出のためだけの放電抵抗やスイッチを別途備える必要がない。
また、内部抵抗の劣化以外によるばらつき要因であるSOCや温度の影響が取り除かれて、内部抵抗の劣化を判断するための正確な内部抵抗測定が可能になる。
なお、各実施例の携帯端末は、携帯電話機、PDA、カメラ、ノートパソコンなどに適用することができる。
According to the third embodiment, since the voltage measurement for calculating the internal resistance is performed when the battery voltage is in the vicinity of the full charge, the internal resistance is not affected by the SOC and is always fully charged in the usage in which the user frequently charges. Even when the battery voltage is constantly high, the timing for calculating the internal resistance is not missed. In addition, since the measurement for calculating the internal resistance is performed during charging, it does not affect the normal use of the mobile terminal. In particular, since charging is not temporarily stopped, the influence on charging control can be completely eliminated. Further, since the ADC input gain is switched between normal charging and internal resistance measurement, the accuracy for measuring the internal resistance can be obtained. In addition, since the discharge current uses a load or transistor switch that is originally provided in the mobile terminal, it is not necessary to separately provide a discharge resistor or switch only for calculating the internal resistance.
In addition, the influence of SOC and temperature, which is a variation factor other than internal resistance deterioration, is removed, and accurate internal resistance measurement for determining internal resistance deterioration becomes possible.
Note that the mobile terminal of each embodiment can be applied to a mobile phone, a PDA, a camera, a notebook computer, and the like.

本発明の各実施例に係る携帯端末の関連部分のブロック図。The block diagram of the relevant part of the portable terminal which concerns on each Example of this invention. 本発明の各実施例に係る携帯端末の電池の内部抵抗測定を説明する図。The figure explaining the internal resistance measurement of the battery of the portable terminal which concerns on each Example of this invention. 本発明の各実施例に係る携帯端末の電池電圧の検出部の回路図。The circuit diagram of the detection part of the battery voltage of the portable terminal which concerns on each Example of this invention. 本発明の各実施例に係る携帯端末の電池の劣化に伴う内部抵抗の変化を説明する図。The figure explaining the change of internal resistance accompanying deterioration of the battery of the portable terminal which concerns on each Example of this invention. 本発明の各実施例に係る携帯端末のリチウムイオン電池の内部抵抗の劣化以外のばらつき要因を説明する図。The figure explaining the dispersion | variation factors other than deterioration of the internal resistance of the lithium ion battery of the portable terminal which concerns on each Example of this invention. 本発明の実施例1に係る携帯端末の制御部の電池内部抵抗測定のフローチャート。The flowchart of the battery internal resistance measurement of the control part of the portable terminal which concerns on Example 1 of this invention. 本発明の各実施例に係る携帯端末の測定データ記憶メモリを説明する図。The figure explaining the measurement data storage memory of the portable terminal which concerns on each Example of this invention. 本発明の各実施例に係る携帯端末の制御部の電池劣化報知のフローチャート。The flowchart of the battery deterioration alerting | reporting of the control part of the portable terminal which concerns on each Example of this invention. 本発明の各実施例に係る携帯端末の制御部の電池劣化報知の表示画面を説明する図。The figure explaining the display screen of the battery degradation alerting | reporting of the control part of the portable terminal which concerns on each Example of this invention. 本発明の実施例2に係る携帯端末の制御部の電池内部抵抗測定のフローチャート。The flowchart of the battery internal resistance measurement of the control part of the portable terminal which concerns on Example 2 of this invention. 本発明の実施例3に係る携帯端末の制御部の電池内部抵抗測定のフローチャート。The flowchart of the battery internal resistance measurement of the control part of the portable terminal which concerns on Example 3 of this invention.

符号の説明Explanation of symbols

1 接点
2 ダイオード
3 充電回路
4 トランジスタスイッチ
5 電圧制御回路
6 電池
61 内部抵抗
7 サーミスタ
8 操作部
9、10、11 トランジスタスイッチ
12 送信パワーアンプ
13 LCD
14 白色LED
15 制御部
16 検出部
17 電流記憶メモリ
18 電池温度特性メモリ
19 測定データ記憶メモリ
20 充電回数カウンタ
31、32 抵抗
33 増幅器
34、35、36 抵抗
37 トランジスタスイッチ
38 レジスタ
39 ADC
100 携帯端末
200 ACアダプタ
DESCRIPTION OF SYMBOLS 1 Contact 2 Diode 3 Charging circuit 4 Transistor switch 5 Voltage control circuit 6 Battery 61 Internal resistance 7 Thermistor 8 Operation part 9, 10, 11 Transistor switch 12 Transmission power amplifier 13 LCD
14 White LED
15 Control Unit 16 Detection Unit 17 Current Storage Memory 18 Battery Temperature Characteristic Memory 19 Measurement Data Storage Memory 20 Charge Count Counter 31, 32 Resistor 33 Amplifier 34, 35, 36 Resistor 37 Transistor Switch 38 Register 39 ADC
100 Mobile terminal 200 AC adapter

Claims (6)

充電可能な電池と、
前記電池から電流を供給される負荷部と、
前記電池電圧が所定の満充電近辺の電圧のとき、前記負荷部に第1負荷電流を流す第1状態と当該第1負荷電流より多い第2負荷電流を流す第2状態とを切り替え、前記第1状態と第2状態の電池電圧を測定して当該電池電圧の差分を算出、又は、当該電池電圧差分を前記第1状態と第2状態の電池電流差分で除算して前記電池の内部抵抗を算出し、更に、前記電池電圧差分の変化量又は前記内部抵抗の変化量を算出し、前記電池電圧差分の変化量又は前記内部抵抗の変化量に対応して前記電池の特性に関する情報を報知する制御手段とを
具備することを特徴とする携帯端末。
Rechargeable batteries,
A load unit supplied with current from the battery;
When the battery voltage is a voltage in the vicinity of a predetermined full charge, switching between a first state in which a first load current is passed through the load section and a second state in which a second load current greater than the first load current is passed, The battery voltage difference between the first state and the second state is calculated by measuring the battery voltage between the first state and the second state, or the battery voltage difference is divided by the battery current difference between the first state and the second state to determine the internal resistance of the battery. And further calculating the amount of change in the battery voltage difference or the amount of change in the internal resistance, and reporting information on the battery characteristics corresponding to the amount of change in the battery voltage difference or the amount of change in the internal resistance. A portable terminal comprising a control means.
外部から充電電力の供給を受ける携帯端末であって、
充電可能な電池と、
前記電池から電流を供給される負荷部と、
第1充電電流の定電流充電中に前記負荷部に第1負荷電流を流す第1状態と、前記第1充電電流より少ない第2充電電流の定電流充電中又は定電流充電停止中に前記負荷部に前記第1負荷電流より多い第2負荷電流を流す第2状態とを切り替え、前記第1状態と第2状態の電池電圧を測定して当該電池電圧の差分を算出、又は、当該電池電圧差分を前記第1状態と第2状態の電池電流差分で除算して前記電池の内部抵抗を算出し、更に、前記電池電圧差分の変化量又は前記内部抵抗の変化量を算出し、前記電池電圧差分の変化量又は前記内部抵抗の変化量に対応して前記電池の特性に関する情報を報知する制御手段とを
具備することを特徴とする携帯端末。
A mobile terminal that receives charging power from outside,
Rechargeable batteries,
A load unit supplied with current from the battery;
A first state in which a first load current flows through the load unit during constant current charging of the first charging current; and the load during constant current charging of a second charging current less than the first charging current or during constant current charging stop. Switching a second state in which a second load current greater than the first load current is passed through the unit, measuring a battery voltage between the first state and the second state, and calculating a difference between the battery voltages, or the battery voltage Dividing the difference by the battery current difference between the first state and the second state to calculate the internal resistance of the battery, further calculating the change amount of the battery voltage difference or the change amount of the internal resistance, and the battery voltage A portable terminal comprising: control means for notifying information relating to the characteristics of the battery corresponding to a change amount of the difference or a change amount of the internal resistance.
外部から充電電力の供給を受ける携帯端末であって、
充電可能な電池と、
前記電池から電流を供給される負荷部と、
定電流充電中に前記負荷部に第1負荷電流を流す第1状態と、定電流充電中に前記負荷部に前記第1負荷電流より多い第2負荷電流を流す第2状態とを切り替え、前記第1状態と第2状態の電池電圧を測定して当該電池電圧の差分を算出、又は、当該電池電圧差分を前記第1状態と第2状態の電池電流差分で除算して前記電池の内部抵抗を算出し、更に、前記電池電圧差分の変化量又は前記内部抵抗の変化量を算出し、前記電池電圧差分の変化量又は前記内部抵抗の変化量に対応して前記電池の特性に関する情報を報知する制御手段とを
具備することを特徴とする携帯端末。
A mobile terminal that receives charging power from outside,
Rechargeable batteries,
A load unit supplied with current from the battery;
Switching between a first state in which a first load current flows through the load unit during constant current charging and a second state in which a second load current greater than the first load current flows through the load unit during constant current charging; The battery voltage difference between the first state and the second state is calculated by calculating the battery voltage between the first state and the second state, or the battery resistance difference is divided by the battery current difference between the first state and the second state. Further, the amount of change in the battery voltage difference or the amount of change in the internal resistance is calculated, and information on the battery characteristics corresponding to the amount of change in the battery voltage difference or the amount of change in the internal resistance is reported. And a control means.
外部から充電電力の供給を受ける携帯端末であって、
充電可能な電池と、
前記電池から電流を供給される負荷部と、
定電流充電中に充電を一旦停止し、前記負荷部に第1負荷電流を流す第1状態と前記負荷部に前記第1負荷電流より多い第2負荷電流を流す第2状態とを切り替え、前記第1状態と第2状態の電池電圧を測定して当該電池電圧の差分を算出、又は、当該電池電圧差分を前記第1状態と第2状態の電池電流差分で除算して前記電池の内部抵抗を算出し、更に、前記電池電圧差分の変化量又は前記内部抵抗の変化量を算出し、前記電池電圧差分の変化量又は前記内部抵抗の変化量に対応して前記電池の特性に関する情報を報知する制御手段とを
具備することを特徴とする携帯端末。
A mobile terminal that receives charging power from outside,
Rechargeable batteries,
A load unit supplied with current from the battery;
During the constant current charging, charging is temporarily stopped, and a first state in which a first load current flows through the load unit and a second state in which a second load current greater than the first load current flows through the load unit are switched, The battery voltage difference between the first state and the second state is calculated by calculating the battery voltage between the first state and the second state, or the battery resistance difference is divided by the battery current difference between the first state and the second state. Further, the amount of change in the battery voltage difference or the amount of change in the internal resistance is calculated, and information on the battery characteristics corresponding to the amount of change in the battery voltage difference or the amount of change in the internal resistance is reported. And a control means.
前記制御手段は、前記第1状態と第2状態の電池電圧を測定する場合、他の場合の電池電圧測定に比べて測定精度を上げることを特徴とする請求項1乃至請求項4のいずれか1項に記載の携帯端末。   5. The control unit according to claim 1, wherein when the battery voltage in the first state and the second state is measured, the control means increases the measurement accuracy as compared with the battery voltage measurement in other cases. The mobile terminal according to item 1. 更に、
前記電池の充電回数をカウントする充電回数カウント手段と、
前記充電回数カウント手段をリセットするリセット手段とを備え、
前記制御手段は、
前記電池電圧差分の変化量又は前記内部抵抗の変化量の算出は、前記充電回数が初期のときに算出した前記電池電圧差分又は前記内部抵抗を基準として、前記変化量を算出することを特徴とする請求項1乃至請求項4のいずれか1項に記載の携帯端末。
Furthermore,
Charging number counting means for counting the number of times the battery is charged;
Resetting means for resetting the charging number counting means,
The control means includes
The change amount of the battery voltage difference or the change amount of the internal resistance is calculated based on the battery voltage difference or the internal resistance calculated when the number of times of charging is initial. The portable terminal according to any one of claims 1 to 4.
JP2006243409A 2006-09-07 2006-09-07 Mobile device Expired - Fee Related JP4783700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243409A JP4783700B2 (en) 2006-09-07 2006-09-07 Mobile device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243409A JP4783700B2 (en) 2006-09-07 2006-09-07 Mobile device

Publications (2)

Publication Number Publication Date
JP2008067523A true JP2008067523A (en) 2008-03-21
JP4783700B2 JP4783700B2 (en) 2011-09-28

Family

ID=39289713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243409A Expired - Fee Related JP4783700B2 (en) 2006-09-07 2006-09-07 Mobile device

Country Status (1)

Country Link
JP (1) JP4783700B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300318A (en) * 2008-06-16 2009-12-24 Sumitomo Heavy Ind Ltd Internal resistance measuring method for capacitor and internal resistance measuring instrument
WO2010035567A1 (en) * 2008-09-29 2010-04-01 ミツミ電機株式会社 Mobile device, battery pack, display control method, and display control program
JP2011015522A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Battery control system and vehicle
KR101016899B1 (en) 2008-06-03 2011-02-22 삼성에스디아이 주식회사 Battery pack and method of charge thereof
JP2011047918A (en) * 2009-03-31 2011-03-10 Primearth Ev Energy Co Ltd Control device of secondary battery, and correction method of map
JP2013033414A (en) * 2011-08-03 2013-02-14 Nohmi Bosai Ltd Alarm
JP2013539320A (en) * 2010-09-29 2013-10-17 クアルコム,インコーポレイテッド Emergency override for battery discharge protection (EmergencyOverride)
JP2014149165A (en) * 2013-01-31 2014-08-21 Shindengen Electric Mfg Co Ltd Dc power supply apparatus, degradation determination method of storage battery in dc power supply apparatus, storage battery degradation determination apparatus
JP2015014563A (en) * 2013-07-08 2015-01-22 矢崎総業株式会社 Battery state detector
JP2015111071A (en) * 2013-12-06 2015-06-18 Kddi株式会社 Battery deterioration determination device, battery deterioration determination method, and battery deterioration determination program
JP2017083268A (en) * 2015-10-27 2017-05-18 本田技研工業株式会社 Power storage device, transport machine, and control method
US9759782B2 (en) 2014-04-03 2017-09-12 Nokia Technologies Oy Impedance-based battery state estimation method
JP2018044928A (en) * 2016-09-16 2018-03-22 日本電気株式会社 Detection device, detection method, power storage system, and program
JP2019092071A (en) * 2017-11-15 2019-06-13 キヤノン株式会社 Imaging apparatus and control method
US10908223B2 (en) 2018-03-20 2021-02-02 Kabushiki Kaisha Toshiba Battery safety evaluation apparatus, battery safety evaluation method, non-transitory storage medium, control circuit, and power storage system
JP2022510870A (en) * 2018-12-21 2022-01-28 ジェイティー インターナショナル エス.エイ. Charger with battery health estimation
JP7311184B1 (en) 2022-03-07 2023-07-19 Necプラットフォームズ株式会社 BATTERY MANAGEMENT DEVICE, BATTERY MANAGEMENT METHOD, AND PROGRAM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033693B (en) * 2011-09-29 2015-08-26 比亚迪股份有限公司 A kind of mobile terminal charging measurement system and method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240876A (en) * 1986-04-14 1987-10-21 Hitachi Ltd Life diagnosing apparatus for automotive battery
JPH0279732A (en) * 1988-09-14 1990-03-20 Toshiba Corp Uninterruptible power supply
JPH0883628A (en) * 1994-09-09 1996-03-26 Mitsubishi Electric Corp Residual battery capacity detecting device
JPH11109004A (en) * 1997-09-30 1999-04-23 Fuji Heavy Ind Ltd Residual capacity meter for battery and method for measuring residual capacity of a plurality of batteries
JP2000012104A (en) * 1998-06-24 2000-01-14 Matsushita Electric Ind Co Ltd Method and device for displaying residual capacity of battery
JP2000021455A (en) * 1998-07-03 2000-01-21 Nissan Motor Co Ltd Method for detecting internal resistance of battery for hybrid vehicle
JP2000121710A (en) * 1998-10-15 2000-04-28 Matsushita Electric Ind Co Ltd Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JP2000215923A (en) * 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd Battery degradation judging device
JP2002330547A (en) * 2001-04-27 2002-11-15 Internatl Business Mach Corp <Ibm> Electric apparatus for determining battery life, computer device, battery life determination system, battery, and battery life detection method
JP2003057321A (en) * 2001-08-08 2003-02-26 Nissan Motor Co Ltd Arithmetic unit and method for output deterioration of secondary battery
JP2006138750A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Battery monitoring device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240876A (en) * 1986-04-14 1987-10-21 Hitachi Ltd Life diagnosing apparatus for automotive battery
JPH0279732A (en) * 1988-09-14 1990-03-20 Toshiba Corp Uninterruptible power supply
JPH0883628A (en) * 1994-09-09 1996-03-26 Mitsubishi Electric Corp Residual battery capacity detecting device
JPH11109004A (en) * 1997-09-30 1999-04-23 Fuji Heavy Ind Ltd Residual capacity meter for battery and method for measuring residual capacity of a plurality of batteries
JP2000012104A (en) * 1998-06-24 2000-01-14 Matsushita Electric Ind Co Ltd Method and device for displaying residual capacity of battery
JP2000021455A (en) * 1998-07-03 2000-01-21 Nissan Motor Co Ltd Method for detecting internal resistance of battery for hybrid vehicle
JP2000121710A (en) * 1998-10-15 2000-04-28 Matsushita Electric Ind Co Ltd Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JP2000215923A (en) * 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd Battery degradation judging device
JP2002330547A (en) * 2001-04-27 2002-11-15 Internatl Business Mach Corp <Ibm> Electric apparatus for determining battery life, computer device, battery life determination system, battery, and battery life detection method
JP2003057321A (en) * 2001-08-08 2003-02-26 Nissan Motor Co Ltd Arithmetic unit and method for output deterioration of secondary battery
JP2006138750A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Battery monitoring device

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016899B1 (en) 2008-06-03 2011-02-22 삼성에스디아이 주식회사 Battery pack and method of charge thereof
US8138721B2 (en) 2008-06-03 2012-03-20 Samsung Sdi Co., Ltd. Battery pack and charging method for the same
JP2009300318A (en) * 2008-06-16 2009-12-24 Sumitomo Heavy Ind Ltd Internal resistance measuring method for capacitor and internal resistance measuring instrument
WO2010035567A1 (en) * 2008-09-29 2010-04-01 ミツミ電機株式会社 Mobile device, battery pack, display control method, and display control program
JPWO2010035567A1 (en) * 2008-09-29 2012-02-23 ミツミ電機株式会社 Mobile device, battery pack, display control method, display control program
US9031801B2 (en) 2008-09-29 2015-05-12 Mitsumi Electric Co., Ltd. Portable device, battery pack, display controlling method, and display controlling program
JP2011047918A (en) * 2009-03-31 2011-03-10 Primearth Ev Energy Co Ltd Control device of secondary battery, and correction method of map
US8629655B2 (en) 2009-07-01 2014-01-14 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
JP2011015522A (en) * 2009-07-01 2011-01-20 Toyota Motor Corp Battery control system and vehicle
JP2011250688A (en) * 2009-07-01 2011-12-08 Toyota Motor Corp Battery control system and vehicle
JP2011250687A (en) * 2009-07-01 2011-12-08 Toyota Motor Corp Battery control system and vehicle
US8390253B2 (en) 2009-07-01 2013-03-05 Toyota Jidosha Kabushiki Kaisha Battery control system and vehicle
US8886152B2 (en) 2010-09-29 2014-11-11 Qualcomm Incorporated Emergency override of battery discharge protection
JP2013539320A (en) * 2010-09-29 2013-10-17 クアルコム,インコーポレイテッド Emergency override for battery discharge protection (EmergencyOverride)
JP2013033414A (en) * 2011-08-03 2013-02-14 Nohmi Bosai Ltd Alarm
JP2014149165A (en) * 2013-01-31 2014-08-21 Shindengen Electric Mfg Co Ltd Dc power supply apparatus, degradation determination method of storage battery in dc power supply apparatus, storage battery degradation determination apparatus
JP2015014563A (en) * 2013-07-08 2015-01-22 矢崎総業株式会社 Battery state detector
JP2015111071A (en) * 2013-12-06 2015-06-18 Kddi株式会社 Battery deterioration determination device, battery deterioration determination method, and battery deterioration determination program
US9759782B2 (en) 2014-04-03 2017-09-12 Nokia Technologies Oy Impedance-based battery state estimation method
US10406932B2 (en) 2015-10-27 2019-09-10 Honda Motor Co., Ltd. Energy storage apparatus, vehicle apparatus, and control method
JP2017083268A (en) * 2015-10-27 2017-05-18 本田技研工業株式会社 Power storage device, transport machine, and control method
JP2018044928A (en) * 2016-09-16 2018-03-22 日本電気株式会社 Detection device, detection method, power storage system, and program
JP2019092071A (en) * 2017-11-15 2019-06-13 キヤノン株式会社 Imaging apparatus and control method
US10827119B2 (en) 2017-11-15 2020-11-03 Canon Kabushiki Kaisha Image capture apparatus and control method
US10908223B2 (en) 2018-03-20 2021-02-02 Kabushiki Kaisha Toshiba Battery safety evaluation apparatus, battery safety evaluation method, non-transitory storage medium, control circuit, and power storage system
JP2022510870A (en) * 2018-12-21 2022-01-28 ジェイティー インターナショナル エス.エイ. Charger with battery health estimation
JP7365413B2 (en) 2018-12-21 2023-10-19 ジェイティー インターナショナル エスエイ Charger with battery health estimation
JP7311184B1 (en) 2022-03-07 2023-07-19 Necプラットフォームズ株式会社 BATTERY MANAGEMENT DEVICE, BATTERY MANAGEMENT METHOD, AND PROGRAM
JP2023129981A (en) * 2022-03-07 2023-09-20 Necプラットフォームズ株式会社 Battery management device, battery management method, and program

Also Published As

Publication number Publication date
JP4783700B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
JP4783700B2 (en) Mobile device
JP5368038B2 (en) Battery state detection device and battery pack incorporating the same
JP5561916B2 (en) Battery status monitoring device
US7531989B2 (en) Battery fuel gauge circuit
CN100568013C (en) A kind of method and system of measuring battery dump energy by the detection open-circuit voltage
US20090289603A1 (en) Method and apparatus for maintaining a battery in a partially charged state
US20080290839A1 (en) Battery charger and control method therefor
US20110112782A1 (en) Battery status detection device
JP2010223768A (en) Battery defect detection circuit, and power supply device
KR20110088720A (en) Apparatus and method for displaying capacity and charging/discharging state of battery in poertable device
JP2007330097A (en) Charging control method and power-supply control method
US9261567B2 (en) Method for determining a power level of a battery and circuit therefor
JP2007078506A (en) Lifetime determination device for secondary battery
JP2023101509A (en) Semiconductor device and method for detecting remaining amount of battery
JP2010019653A (en) Battery residual capacity calculating system
JP4770916B2 (en) Electronic price tag system
JP2007322398A (en) Battery pack and method for detecting fully-charge capacity
KR101216569B1 (en) measuring apparatus of battery current and calculation method of battery remaining amount and battery available time
JP2004193003A (en) Charge control device and portable terminal apparatus
JP2004170231A (en) Battery equipment system indicating degradation of battery
JP2010038775A (en) Electronic device
JP2005108491A (en) Electronic apparatus
JP2003151645A (en) Battery residual power detecting method and electric apparatus
JP4732830B2 (en) Low battery judgment voltage setting method
JP4769227B2 (en) Charging circuit and portable electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

LAPS Cancellation because of no payment of annual fees