JP2008066298A - Conductive hollow object and manufacturing method thereof - Google Patents

Conductive hollow object and manufacturing method thereof Download PDF

Info

Publication number
JP2008066298A
JP2008066298A JP2007209778A JP2007209778A JP2008066298A JP 2008066298 A JP2008066298 A JP 2008066298A JP 2007209778 A JP2007209778 A JP 2007209778A JP 2007209778 A JP2007209778 A JP 2007209778A JP 2008066298 A JP2008066298 A JP 2008066298A
Authority
JP
Japan
Prior art keywords
hollow body
conductive
outer shell
specific gravity
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007209778A
Other languages
Japanese (ja)
Other versions
JP5294588B2 (en
Inventor
Ichiro Takahara
一郎 高原
Kenichi Kitano
健一 北野
Hiroaki Shigeta
啓彰 重田
Katsushi Miki
勝志 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Priority to JP2007209778A priority Critical patent/JP5294588B2/en
Publication of JP2008066298A publication Critical patent/JP2008066298A/en
Application granted granted Critical
Publication of JP5294588B2 publication Critical patent/JP5294588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive hollow object having small hardness and true specific gravity, and improved dispersibility to resin, and to provide a manufacturing method of the conductive hollow object. <P>SOLUTION: The conductive hollow object comprises: a hollow object body comprising an outer shell section made of a thermoplastic resin, and a hollow section surrounded by the outer shell section; and a conductive particle adhering to the outer surface of the outer shell section, or a conductive metal layer for covering the outer surface of the outer shell section. The true specific gravity is 0.01-0.65 g/cc. The manufacturing method of the conductive hollow object includes a process for covering the outer surface of the hollow object body that comprises the outer shell section made of a thermoplastic resin and the hollow section surrounded by the outer shell section and has a true specific gravity of 0.005-0.30 g/cc with a conductive metal layer by an electroless plating method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性中空体およびその製造方法に関する。さらに詳しくは弾力性に優れ、真比重が小さい導電性中空体およびその製造方法に関する。   The present invention relates to a conductive hollow body and a method for producing the same. More specifically, the present invention relates to a conductive hollow body having excellent elasticity and a small true specific gravity, and a method for producing the same.

異方導電性フィルム、導電性ペースト、導電性接着剤、導電性粘着材等の異方性導電材料の主要な構成材料は、たとえば、導電性粒子をバインダー樹脂等と混合して得られる。
導電性粒子に求められる重要な特性は、異方性導電材料に用いる場合では導電性が高いことであり、導電性粒子としては金属粒子(特に金属超微粒子)が好ましく、なかでも銀超微粒子は耐酸化性にも優れているため汎用されている。しかしながら、銀超微粒子は硬度が高いので基板の損傷が問題となる。また、銀超微粒子は比重も高いので樹脂への分散性に劣る点が問題である。
Main constituent materials of anisotropic conductive materials such as anisotropic conductive films, conductive pastes, conductive adhesives, conductive adhesives, and the like can be obtained by mixing conductive particles with a binder resin or the like, for example.
An important characteristic required for conductive particles is high conductivity when used in anisotropic conductive materials, and metal particles (especially ultrafine metal particles) are preferred as conductive particles. Widely used because of its excellent oxidation resistance. However, since silver ultrafine particles have a high hardness, damage to the substrate becomes a problem. Further, silver ultrafine particles have a high specific gravity, so that the problem is that they are inferior in dispersibility in resins.

従来、硬度および比重が小さい導電性粒子としては、アクリル系微粒子の表面に金属層を有したものが知られている(特許文献1参照)。しかしながら、このアクリル系微粒子は、基板に対する損傷性、樹脂への分散性が十分に満足できるものではないという欠点がある。
基板に対する損傷性や樹脂への分散性に優れた樹脂材料として、通常、塩化ビニリデン系共重合体、アクリロニトリル系共重合体、アクリル系共重合体等の熱可塑性樹脂を外殻とし、その内部にイソブタンやイソペンタン等の炭化水素系発泡剤が封入された構造を有する熱膨張性微小球(一般には熱膨張性マイクロカプセルと呼ばれている。)を膨張して得られる中空粒子が知られている(特許文献2参照)。
特公平7−97717号公報 米国特許第3615972号明細書
Conventionally, as conductive particles having a small hardness and specific gravity, those having a metal layer on the surface of acrylic fine particles are known (see Patent Document 1). However, the acrylic fine particles have a drawback that they are not satisfactory in terms of damage to the substrate and dispersibility in the resin.
As a resin material with excellent damage to the substrate and dispersibility in the resin, the outer shell is usually a thermoplastic resin such as vinylidene chloride copolymer, acrylonitrile copolymer, and acrylic copolymer. Hollow particles obtained by expanding thermally expandable microspheres (generally called thermally expandable microcapsules) having a structure in which a hydrocarbon-based blowing agent such as isobutane or isopentane is enclosed are known. (See Patent Document 2).
Japanese Patent Publication No. 7-97717 US Pat. No. 3,615,972

本発明の目的は、硬度および真比重が小さく、樹脂への分散性に優れた導電性中空体およびその製造方法を提供することである。   An object of the present invention is to provide a conductive hollow body having small hardness and true specific gravity and excellent dispersibility in a resin, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意検討した結果、熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部からなる中空体本体に導電性粒子を付着させた構造の導電性中空体や、熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部から構成される中空体に導電性金属層で被覆された導電性中空体であって、しかもその真比重が特定範囲にあれば、上記課題が一挙に解決するという知見を得て、本発明に到達した。
すなわち、本発明にかかる導電性中空体は、熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部から構成された中空体本体と、前記外殻部の外表面に付着した導電性粒子または前記外殻部の外表面を被覆する導電性金属層とからなり、真比重が0.01〜0.65g/ccである。
As a result of diligent studies to solve the above problems, the present inventors have found that the conductive particles have a structure in which conductive particles are attached to a hollow body body composed of an outer shell portion made of a thermoplastic resin and a hollow portion surrounded by the outer shell portion. A hollow hollow body, a hollow hollow body made of a thermoplastic resin, and a hollow hollow body composed of a hollow portion surrounded by the hollow hollow body and covered with a conductive metal layer, and its true specific gravity falls within a specific range. If it exists, the knowledge that the said subject will be solved at once will be acquired, and this invention will be reached | attained.
That is, the conductive hollow body according to the present invention includes a hollow body body composed of an outer shell part made of a thermoplastic resin and a hollow part surrounded by the outer shell part, and conductive particles attached to the outer surface of the outer shell part or It consists of a conductive metal layer covering the outer surface of the outer shell, and has a true specific gravity of 0.01 to 0.65 g / cc.

導電性中空体の平均粒子径が0.1〜1000μmであると好ましい。また、導電性中空体の粒度分布の変動係数CV値が30%以下であると好ましい。
圧縮時変形率が70%以上であり、且つ除圧後復元率が40%以下であると好ましい。
前記導電性粒子が、銀、金、白金、ニッケル、銅、カーボンブラック、酸化亜鉛および酸化チタンからなる群より選ばれた少なくとも1種を含む粒子であると好ましい。一方、前記前記導電性金属層が、銀、金、白金、ニッケルおよび銅からなる群より選ばれた少なくとも1種の金属を含有すると好ましい。
The average particle diameter of the conductive hollow body is preferably 0.1 to 1000 μm. The coefficient of variation CV value of the particle size distribution of the conductive hollow body is preferably 30% or less.
It is preferable that the deformation rate during compression is 70% or more and the restoration rate after decompression is 40% or less.
The conductive particles are preferably particles containing at least one selected from the group consisting of silver, gold, platinum, nickel, copper, carbon black, zinc oxide and titanium oxide. On the other hand, it is preferable that the conductive metal layer contains at least one metal selected from the group consisting of silver, gold, platinum, nickel and copper.

本発明にかかる導電性中空体の製造方法は、熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部から構成され、真比重が0.005〜0.30g/ccである中空体本体の外表面を、無電解メッキ法によって導電性金属層で被覆する工程を含む製造方法である。
本発明にかかる別の導電性中空体の製造方法は、熱可塑性樹脂からなる外殻に内包され且つ前記熱可塑性樹脂の軟化点以下の沸点を有する発泡剤とから構成された熱膨張性微小球と、導電性粒子とを混合する工程と、前記混合工程で得られた混合物を前記軟化点超の温度に加熱して、前記熱膨張性微小球を膨張させるとともに、得られる中空体本体の外表面に前記導電性粒子を付着させる工程を含む製造方法である。
The method for producing a conductive hollow body according to the present invention comprises an outer shell portion made of a thermoplastic resin and a hollow portion surrounded by the outer shell portion, and has a true specific gravity of 0.005 to 0.30 g / cc. It is a manufacturing method including the process of coat | covering an outer surface with an electroconductive metal layer by the electroless-plating method.
Another method for producing a conductive hollow body according to the present invention includes a thermally expandable microsphere that is comprised of a foaming agent encapsulated in an outer shell made of a thermoplastic resin and having a boiling point equal to or lower than the softening point of the thermoplastic resin. And the step of mixing the conductive particles, the mixture obtained in the mixing step is heated to a temperature above the softening point to expand the thermally expandable microspheres, and the outside of the obtained hollow body main body It is a manufacturing method including the process of attaching the said electroconductive particle to the surface.

本発明の導電性中空体は、硬度および真比重が小さく、樹脂への分散性に優れる。
本発明の導電性中空体の製造方法は、いずれも、硬度および真比重が小さく、樹脂への分散性に優れる導電性中空体を効率よく製造できる。
The conductive hollow body of the present invention has low hardness and true specific gravity, and is excellent in dispersibility in a resin.
All of the methods for producing a conductive hollow body of the present invention can efficiently produce a conductive hollow body having low hardness and true specific gravity and excellent dispersibility in a resin.

〔導電性中空体〕
本発明の導電性中空体は、中空体本体と導電性粒子または導電性金属層とからなる。中空体本体は、後述するように熱可塑性樹脂からなるので、硬度および真比重が小さく、樹脂への分散性に優れる。また、導電性中空体の導電性は、導電性粒子または導電性金属層によって発揮される。
導電性中空体の真比重は、0.01〜0.65g/ccであり、好ましくは0.02〜0.55g/cc、さらに好ましくは0.03〜0.45g/cc、特に好ましくは0.04〜0.40g/cc、最も好ましくは0.05〜0.35g/ccである。真比重が0.01g/ccより小さい場合は、導電性材料として使用する際に、均一分散性が低くなる場合があり好ましくない。一方、真比重が0.65g/ccより大きい場合は、導電性材料として使用する際に、低比重化効果が低くなるため、導電性中空体の添加量が大きくなり、非経済的である。
[Conductive hollow body]
The conductive hollow body of the present invention comprises a hollow body body and conductive particles or a conductive metal layer. Since the hollow body is made of a thermoplastic resin as will be described later, the hardness and the true specific gravity are small and the dispersibility in the resin is excellent. The conductivity of the conductive hollow body is exhibited by the conductive particles or the conductive metal layer.
The true specific gravity of the conductive hollow body is 0.01 to 0.65 g / cc, preferably 0.02 to 0.55 g / cc, more preferably 0.03 to 0.45 g / cc, and particularly preferably 0. 0.04 to 0.40 g / cc, most preferably 0.05 to 0.35 g / cc. When the true specific gravity is smaller than 0.01 g / cc, the uniform dispersibility may be lowered when used as a conductive material, which is not preferable. On the other hand, when the true specific gravity is larger than 0.65 g / cc, the effect of lowering the specific gravity is lowered when used as a conductive material, so that the amount of the conductive hollow body added becomes large, which is uneconomical.

導電性中空体の平均粒子径(体積平均粒子径)については、用途に応じて自由に設計することができるために特に限定されないが、通常0.1〜1000μm、好ましくは0.3〜500μm、さらに好ましくは0.5〜300μm、特に好ましくは0.8〜200μmである。
導電性中空体の粒度分布の変動係数CVは、特に限定されないが、好ましくは30%以下、さらに好ましくは25%以下、特に好ましくは20%以下である。変動係数CVは、以下に示す計算式(1)および(2)で算出される。
The average particle size (volume average particle size) of the conductive hollow body is not particularly limited because it can be freely designed according to the use, but is usually 0.1 to 1000 μm, preferably 0.3 to 500 μm, More preferably, it is 0.5-300 micrometers, Most preferably, it is 0.8-200 micrometers.
The coefficient of variation CV of the particle size distribution of the conductive hollow body is not particularly limited, but is preferably 30% or less, more preferably 25% or less, and particularly preferably 20% or less. The variation coefficient CV is calculated by the following calculation formulas (1) and (2).

Figure 2008066298
(式中、sは粒子径の標準偏差、<x>は平均粒子径、xi
はi番目の粒子径、nは粒子の数である。)
Figure 2008066298
(In the formula, s is the standard deviation of the particle diameter, <x> is the average particle diameter, x i
Is the i-th particle diameter, and n is the number of particles. )

本発明の導電性中空体では、その圧縮時変形率および除圧後復元率が特定の範囲であると、硬度が小さく、弾力性に富む。
導電性中空体の圧縮時変形率については、70%以上であれば特に限定されないが、好ましくは70〜99.6%、さらに好ましくは72〜95%、特に好ましくは75〜90%である。圧縮時変形率が70%未満の場合、導電性中空体に弾力性が無く、すなわち硬度が高くなり好ましくないことがある。一方、圧縮時変形率が99.6%超の場合、中空体外殻部の熱可塑性樹脂の破壊が発生することがある。
導電性中空体の除圧後復元率については、40%以下であれば特に限定されないが、好ましくは0.01〜40%、さらに好ましくは0.01〜35%、特に好ましくは0.01〜30%である。除圧後復元率が40%超の場合、導電性中空体に弾力性が無く、すなわち脆くなり好ましくないことがある。一方、除圧後復元率が0.01%未満は、すなわち除圧後ほぼ圧縮前の形状に戻っているということと同義である。
In the conductive hollow body of the present invention, when the compression deformation rate and the decompression restoration rate are within a specific range, the hardness is small and the elasticity is high.
Although it will not specifically limit if the deformation rate at the time of compression of an electroconductive hollow body is 70% or more, Preferably it is 70 to 99.6%, More preferably, it is 72 to 95%, Most preferably, it is 75 to 90%. When the deformation rate during compression is less than 70%, the conductive hollow body may not be elastic, that is, the hardness may be increased, which may be undesirable. On the other hand, when the deformation rate at the time of compression exceeds 99.6%, the thermoplastic resin in the outer shell portion of the hollow body may be broken.
The restoration rate after decompression of the conductive hollow body is not particularly limited as long as it is 40% or less, but is preferably 0.01 to 40%, more preferably 0.01 to 35%, and particularly preferably 0.01 to 35%. 30%. When the restoration rate after decompression is more than 40%, the conductive hollow body does not have elasticity, that is, becomes brittle, which is not preferable. On the other hand, the restoration rate after decompression of less than 0.01% is synonymous with the fact that the shape is almost restored to the shape before compression after decompression.

以下、中空体本体、導電性粒子、導電性金属層を詳しく説明する。
(中空体本体)
本発明の導電性中空体を構成する中空体本体は、外殻部およびそれに囲まれた中空部からなる。中空体本体は、(ほぼ)球状で、内部に大きな空洞に相当する中空部を有している。中空体本体の形状を身近な物品で例えるならば、たとえば、軟式テニスボールを挙げることができる。中空体本体は、その硬度および真比重が小さいので、本発明の導電性中空体に同物性を付与する。
Hereinafter, the hollow body main body, the conductive particles, and the conductive metal layer will be described in detail.
(Hollow body)
The hollow body main body constituting the conductive hollow body of the present invention includes an outer shell portion and a hollow portion surrounded by the outer shell portion. The hollow body is (substantially) spherical and has a hollow portion corresponding to a large cavity inside. If the shape of the hollow body is compared with familiar articles, for example, a soft tennis ball can be mentioned. Since the hollow body has a small hardness and true specific gravity, it imparts the same physical properties to the conductive hollow body of the present invention.

中空体本体の平均粒径については、特に限定はないが、好ましく0.1〜1000μm、さらに好ましくは0.3〜500μm、特に好ましくは0.5〜300μmであり、最も好ましくは0.8〜200μmである。
中空体本体の真比重については、特に限定はないが、通常、0.005〜0.30g/ccであり、好ましくは0.010〜0.25g/cc、さらに好ましくは0.015〜0.20g/ccである。中空体本体の真比重が0.005g/ccより小さい場合は、耐久性が低くなることがある。一方、中空体本体の真比重が0.30g/ccより大きい場合は、低比重化効果が低くなるため、導電性中空体の添加量が大きくなり、非経済的であることがある。
The average particle size of the hollow body is not particularly limited, but is preferably 0.1 to 1000 μm, more preferably 0.3 to 500 μm, particularly preferably 0.5 to 300 μm, and most preferably 0.8 to 200 μm.
The true specific gravity of the hollow body is not particularly limited, but is usually 0.005 to 0.30 g / cc, preferably 0.010 to 0.25 g / cc, more preferably 0.015 to 0. 20 g / cc. When the true specific gravity of the hollow body is less than 0.005 g / cc, the durability may be lowered. On the other hand, when the true specific gravity of the hollow body is larger than 0.30 g / cc, the effect of lowering the specific gravity is lowered, so that the amount of the conductive hollow body is increased, which may be uneconomical.

中空体本体を構成する外殻部は、以下で詳しく説明する熱膨張性微小球の外殻を構成する熱可塑性樹脂からなる。外殻部は、その外表面と内表面とで囲まれ、端部はなく、連続した形状を有する。外殻部の厚み、すなわち外表面と内表面と間の距離については、均一であることが好ましいが、不均一であってもよい。
外殻部の平均厚みについては、特に限定はないが、好ましくは0.01〜10μm、さらに好ましくは0.1〜5μm、特に好ましくは0.2〜1μmである。外殻部の平均厚みが0.01μmより小さい場合は、耐久性が低くなることがある。一方、外殻部の平均厚みが10μmより大きい場合は、弾性が低下することがある。なお、外殻部の平均厚みとは、熱膨張性微小球全体としての平均粒子径から算出される外殻部の平均厚みであり、実施例に示す計算式で算出される。
The outer shell portion constituting the hollow body is made of a thermoplastic resin constituting the outer shell of the thermally expandable microsphere described in detail below. The outer shell portion is surrounded by the outer surface and the inner surface, has no end portion, and has a continuous shape. The thickness of the outer shell, that is, the distance between the outer surface and the inner surface is preferably uniform, but may be non-uniform.
The average thickness of the outer shell portion is not particularly limited, but is preferably 0.01 to 10 μm, more preferably 0.1 to 5 μm, and particularly preferably 0.2 to 1 μm. When the average thickness of the outer shell is smaller than 0.01 μm, the durability may be lowered. On the other hand, when the average thickness of the outer shell is larger than 10 μm, the elasticity may be lowered. The average thickness of the outer shell is an average thickness of the outer shell calculated from the average particle diameter of the entire thermally expandable microsphere, and is calculated by the calculation formula shown in the examples.

中空体本体の平均粒子径に対する外殻部の平均厚みの割合(外殻部の平均厚み/中空体本体の平均粒子径)については、特に限定はないが、好ましくは0.0005〜0.1、さらに好ましくは0.0010〜0.7、特に好ましくは0.0015〜0.5である。外殻部の平均厚み/中空体本体の平均粒子径が、0.0005〜0.1の範囲外では中空体が弾性を示さないおそれがある。
中空体本体を構成する中空部は、(ほぼ)球状であり、外殻部の内表面と接している。中空部は、基本的には以下で詳しく説明する発泡剤が気化した気体で満たされており、発泡剤は液化した状態であってもよい。発泡剤の全部または一部は空気等の他の気体で置換されていてもよい。
The ratio of the average thickness of the outer shell part to the average particle diameter of the hollow body body (average thickness of the outer shell part / average particle diameter of the hollow body body) is not particularly limited, but is preferably 0.0005 to 0.1. More preferably, it is 0.0010 to 0.7, and particularly preferably 0.0015 to 0.5. If the average thickness of the outer shell / the average particle diameter of the hollow body is outside the range of 0.0005 to 0.1, the hollow body may not exhibit elasticity.
The hollow part constituting the hollow body is (substantially) spherical and is in contact with the inner surface of the outer shell part. The hollow portion is basically filled with a gas obtained by vaporizing the foaming agent described in detail below, and the foaming agent may be in a liquefied state. All or part of the blowing agent may be replaced with another gas such as air.

中空部は、中空体本体中に複数あってもよいが、通常は、大きな中空部が1つであることが多い。
(導電性粒子)
導電性粒子は、外殻部の外表面に付着している。ここでいう付着とは、単に中空体本体の外表面に導電性粒子が吸着された状態であってもよく、中空体本体の外表面近傍の熱可塑性樹脂が加熱によって融解し、中空体本体の外表面に導電性粒子がめり込み、固定された状態であってもよいという意味である。
There may be a plurality of hollow portions in the hollow body, but usually there is often one large hollow portion.
(Conductive particles)
The conductive particles are attached to the outer surface of the outer shell. The adhesion referred to here may be simply a state in which conductive particles are adsorbed on the outer surface of the hollow body, and the thermoplastic resin near the outer surface of the hollow body is melted by heating, This means that the conductive particles may sink into the outer surface and be fixed.

導電性粒子の粒子形状は不定形であっても球状であってもよいが、常温下での粉体流動性の観点からは球状の粒子を全体の50%以上含有するのが好ましい。ここで、球状とは粒子の長径/短径の比が1.0〜1.5の範囲にあるものを意味する。
導電性粒子を構成する材料としては、たとえば、クロム、鉄、銅、コバルト、ニッケル、チタン、パラジウム、亜鉛、錫、金、白金、銀、アルミニウム、インジウム等の金属;酸化亜鉛、酸化チタン、酸化インジウム、酸化スズ等の金属酸化物;カーボンブラック等を挙げることができる。導電性粒子はこれらの金属の合金からなる粒子であってもよく、上記金属からなる粒子、上記金属酸化物からなる粒子、カーボンブラックからなる粒子の1種または2種以上から構成されていてもよい。
The particle shape of the conductive particles may be indefinite or spherical, but it is preferable to contain 50% or more of spherical particles from the viewpoint of powder fluidity at room temperature. Here, the spherical shape means that the ratio of the major axis / minor axis of the particles is in the range of 1.0 to 1.5.
Examples of the material constituting the conductive particles include chromium, iron, copper, cobalt, nickel, titanium, palladium, zinc, tin, gold, platinum, silver, aluminum, indium, and the like; zinc oxide, titanium oxide, and oxide. Examples thereof include metal oxides such as indium and tin oxide; carbon black and the like. The conductive particles may be particles made of an alloy of these metals, and may be composed of one or more of particles made of the metal, particles made of the metal oxide, and particles made of carbon black. Good.

導電性粒子が、銀、金、白金、ニッケル、銅、カーボンブラック、酸化亜鉛および酸化チタンからなる群より選ばれた少なくとも1種を含む粒子であると、導電性が良好であるため好ましく、酸化性の観点からは、銀を含む粒子であるとさらに好ましい。
導電性粒子の平均粒子径については、用いる中空体本体により適宜選択され、特に限定はないが、導電性の観点からは、好ましくは0.001〜10μm、さらに好ましくは0.005〜5μm、特に好ましくは0.01〜3μmである。
The conductive particles are preferably particles containing at least one selected from the group consisting of silver, gold, platinum, nickel, copper, carbon black, zinc oxide and titanium oxide, because the conductivity is good, and oxidation is preferable. From the viewpoint of properties, it is more preferable that the particles contain silver.
The average particle diameter of the conductive particles is appropriately selected depending on the hollow body body to be used, and is not particularly limited. However, from the viewpoint of conductivity, it is preferably 0.001 to 10 μm, more preferably 0.005 to 5 μm, particularly Preferably it is 0.01-3 micrometers.

導電性粒子の平均粒子径と中空体本体の平均粒子径との比率(導電性粒子の平均粒子径/中空体本体の平均粒子径)は、中空体表面への付着性の観点から好ましくは0.20以下、さらに好ましくは0.15以下、特に好ましくは0.01以下である。
導電性粒子と中空体本体との重量比率(導電性粒子/中空体本体)については、特に限定はないが、好ましくは99.5/0.5〜50/50、さらに好ましくは99/1〜55/45、特に好ましくは97/3〜60/40である。導電性粒子/中空体本体(重量比率)が、99.5/0.5より大きい場合、導電性中空体の真比重が大きくなり低比重化効果が発揮されなくなることがある。一方、導電性粒子/中空体本体(重量比率)が、50/50より小さい場合、導電性粒子の表面被覆が不十分になり、導電性の悪化や製造時に融着体が発生することがある。
(導電性金属層)
The ratio of the average particle diameter of the conductive particles to the average particle diameter of the hollow body main body (average particle diameter of the conductive particles / average particle diameter of the hollow body main body) is preferably 0 from the viewpoint of adhesion to the hollow body surface. .20 or less, more preferably 0.15 or less, and particularly preferably 0.01 or less.
The weight ratio of the conductive particles and the hollow body (conductive particles / hollow body) is not particularly limited, but is preferably 99.5 / 0.5 to 50/50, more preferably 99/1. 55/45, particularly preferably 97/3 to 60/40. When the conductive particles / hollow body main body (weight ratio) is larger than 99.5 / 0.5, the true specific gravity of the conductive hollow body may increase and the effect of reducing the specific gravity may not be exhibited. On the other hand, when the conductive particle / hollow body main body (weight ratio) is smaller than 50/50, the surface coating of the conductive particles may be insufficient, resulting in deterioration of conductivity or generation of a fused body during production. .
(Conductive metal layer)

導電性金属層は、外殻部の外表面を被覆する。
導電性金属層としては、たとえば、上記導電性粒子の説明で述べた金属を挙げることができ、これらの金属の合金からなっていてもよい。
The conductive metal layer covers the outer surface of the outer shell portion.
Examples of the conductive metal layer may include the metals described in the description of the conductive particles, and may be made of an alloy of these metals.

導電性金属層が、銀、金、白金、ニッケルおよび銅からなる群より選ばれた少なくとも1種の金属を含有すると、導電性が良好であるため好ましく、酸化性の観点からは、銀を含む粒子であるとさらに好ましい。
導電性金属層の平均厚みについては、特に限定はないが、導電性中空体の比重の観点からは、好ましくは0.01μm〜10μm、さらに好ましくは0.05〜2μm、特に好ましくは0.1〜1μmである。導電性金属層の平均厚みが0.01μmより小さい場合は、導電性が低下することがある。一方、導電性金属層の平均厚みが10μmより大きい場合は、導電性中空体の真比重が大きくなり、低比重化効果が低下することがある。
(導電性中空体の製造方法)
When the conductive metal layer contains at least one metal selected from the group consisting of silver, gold, platinum, nickel and copper, it is preferable because the conductivity is good, and from the viewpoint of oxidizing properties, it contains silver. More preferably, it is a particle.
The average thickness of the conductive metal layer is not particularly limited, but is preferably 0.01 μm to 10 μm, more preferably 0.05 to 2 μm, and particularly preferably 0.1 from the viewpoint of the specific gravity of the conductive hollow body. ˜1 μm. When the average thickness of the conductive metal layer is smaller than 0.01 μm, the conductivity may be lowered. On the other hand, when the average thickness of the conductive metal layer is larger than 10 μm, the true specific gravity of the conductive hollow body is increased, and the effect of lowering the specific gravity may be reduced.
(Method for producing conductive hollow body)

導電性中空体の製造方法については、特に限定はないが、たとえば、無電解メッキ、電気メッキ、真空蒸着、イオンプレーティング、イオンスパッタリング等によって、導電性金属層で中空体本体の外表面を被覆する方法;導電性粒子を中空体本体の外表面に付着させる方法等で製造される。これらの製造方法のうちでも、後述する無電解メッキを利用する方法や、導電性粒子を付着させる方法が、中空体本体への圧力変化、温度変化等の負荷が少ないという点で好ましい。
〔導電性中空体の製造方法(その1)〕
本発明の導電性中空体の製造方法は、中空体本体の外表面を無電解メッキ法によって導電性金属層で被覆する工程を含む製造方法である。
The method for producing the conductive hollow body is not particularly limited. For example, the outer surface of the hollow body is covered with a conductive metal layer by electroless plating, electroplating, vacuum deposition, ion plating, ion sputtering, or the like. The method of manufacturing; It manufactures by the method etc. which adhere electroconductive particle to the outer surface of a hollow body main body. Among these production methods, the method using electroless plating described later and the method of attaching conductive particles are preferable in that the load on the hollow body main body is small in load such as pressure change and temperature change.
[Method for producing conductive hollow body (1)]
The manufacturing method of the electroconductive hollow body of this invention is a manufacturing method including the process of coat | covering the outer surface of a hollow body main body with an electroconductive metal layer by the electroless-plating method.

中空体本体は、熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部から構成され、真比重が0.005〜0.30g/ccである。中空体本体については、上記で説明したとおりである。
中空体本体の外表面を導電性金属層で被覆する無電解メッキ法は、一般には、順にエッチング工程、活性化工程および無電解メッキ工程の各工程に分けられる。
The hollow body main body is composed of an outer shell portion made of a thermoplastic resin and a hollow portion surrounded by the outer shell portion, and has a true specific gravity of 0.005 to 0.30 g / cc. The hollow body main body is as described above.
The electroless plating method for coating the outer surface of the hollow body with a conductive metal layer is generally divided into an etching process, an activation process, and an electroless plating process in order.

エッチング工程は、エッチング液を使用して中空体本体の外表面に凹凸を形成して、外表面を被覆する導電性金属層の密着性を高める工程である。エッチング液としては、特に限定はないが、たとえば、苛性ソーダ水溶液などのアルカリ水溶液や無水クロム酸水溶液などの酸水溶液等が挙げられる。これらのエッチング液は、単独で用いられても良いし、2種類以上が併用されても良い。なお、エッチング工程は必ずしも必須ではなく、高い密着性の導電性金属層が形成される場合は無くてもよい。
次に、活性化工程は、(エッチング工程を経た)中空体本体の外表面に触媒からなる層(触媒層)を形成させるとともに、この触媒層を活性化させる工程である。触媒層の活性化により、次の無電解メッキ工程における金属の析出が促進される。活性化工程で使用する触媒としては、特に限定はないが、たとえば、アミン錯塩系触媒等のアルカリ触媒(アルカリキャタリスト)等が挙げられる。これらの触媒は、単独で用いられても良いし、2種類以上が併用されても良い。
An etching process is a process of forming the unevenness | corrugation in the outer surface of a hollow body main body using etching liquid, and improving the adhesiveness of the electroconductive metal layer which coat | covers an outer surface. The etching solution is not particularly limited, and examples thereof include an alkaline aqueous solution such as a caustic soda aqueous solution and an acid aqueous solution such as a chromic anhydride aqueous solution. These etching liquids may be used independently and 2 or more types may be used together. Note that the etching step is not necessarily required, and may be omitted when a highly adhesive conductive metal layer is formed.
Next, the activation step is a step of activating the catalyst layer while forming a layer (catalyst layer) made of the catalyst on the outer surface of the hollow body main body (after the etching step). The activation of the catalyst layer promotes metal deposition in the next electroless plating step. Although there is no limitation in particular as a catalyst used at an activation process, For example, alkali catalysts (alkali catalyst), such as an amine complex type catalyst, etc. are mentioned. These catalysts may be used independently and 2 or more types may be used together.

最後に、無電解メッキ工程は、上記触媒層が形成された中空体本体の外表面を、導電性金属層で被覆する工程である。無電解メッキ工程では、触媒層が形成された中空体本体を無電解金属メッキ液に浸漬することにより、中空体本体の外表面に導電性金属層が形成される。中空体本体の外表面に銀メッキ層を形成させる場合、中空体本体の触媒層をジメチルアミノボラン等の還元剤により還元した後、無電解銀メッキ液に浸漬するか、または、触媒層が形成された中空体本体を無電解銀メッキ液に浸漬した後、還元剤を添加して還元することにより、中空体本体の外表面に銀メッキ層を形成させることができる。
〔導電性中空体の製造方法(その2)〕
本発明の別の導電性中空体の製造方法は、熱膨張性微小球と導電性粒子とを混合する工程(混合工程)と、前記混合工程で得られた混合物を前記軟化点超の温度に加熱して、前記熱膨張性微小球を膨張させるとともに、得られる中空体本体の外表面に前記導電性粒子を付着させる工程(付着工程)を含む製造方法である。
(混合工程)
Finally, the electroless plating step is a step of coating the outer surface of the hollow body main body on which the catalyst layer is formed with a conductive metal layer. In the electroless plating step, a conductive metal layer is formed on the outer surface of the hollow body by immersing the hollow body in which the catalyst layer is formed in an electroless metal plating solution. When a silver plating layer is formed on the outer surface of the hollow body, the catalyst layer of the hollow body is reduced with a reducing agent such as dimethylaminoborane and then immersed in an electroless silver plating solution or a catalyst layer is formed. A silver plating layer can be formed on the outer surface of the hollow body main body by immersing the hollow body main body in an electroless silver plating solution and then adding a reducing agent for reduction.
[Method for producing conductive hollow body (2)]
Another method for producing a conductive hollow body according to the present invention includes a step of mixing thermally expandable microspheres and conductive particles (mixing step), and the mixture obtained in the mixing step is brought to a temperature above the softening point. It is a manufacturing method including a step (attachment step) of heating and expanding the thermally expandable microspheres and attaching the conductive particles to the outer surface of the obtained hollow body main body.
(Mixing process)

混合工程は、熱膨張性微小球と導電性粒子とを混合する工程である。
混合工程で使用する導電性粒子は、上記で説明したとおりである。また、熱膨張性微小球は、熱可塑性樹脂からなる外殻に内包され且つ前記熱可塑性樹脂の軟化点以下の沸点を有する発泡剤とから構成される。熱膨張性微小球は、熱可塑性樹脂の軟化点超の温度で加熱することによって膨張し、上記中空体本体が得られる。
The mixing step is a step of mixing thermally expandable microspheres and conductive particles.
The conductive particles used in the mixing step are as described above. The heat-expandable microspheres are composed of a foaming agent that is encapsulated in an outer shell made of a thermoplastic resin and has a boiling point equal to or lower than the softening point of the thermoplastic resin. The thermally expandable microspheres expand by heating at a temperature above the softening point of the thermoplastic resin, and the hollow body body is obtained.

混合工程における熱膨張性微小球と導電性粒子との重量比率(導電性粒子/熱膨張性微小球)については、特に限定はないが、好ましくは99.5/0.5〜50/50、さらに好ましくは99/1〜55/45、特に好ましくは97/3〜60/40である。導電性粒子/熱膨張性微小球(重量比率)が99.5/0.5より大きい場合は、導電性中空体の真比重が大きくなり、低比重化効果が小さくなる。一方、導電性粒子/熱膨張性微小球(重量比率)が50/50より小さい場合は、表面被覆が不十分になり、導電性の悪化や製造時に融着体が発生することがある。
熱膨張性微小球は、熱可塑性樹脂からなる外殻とそれに内包され且つ前記熱可塑性樹脂の軟化点以下の沸点を有する発泡剤とから構成されており、熱膨張性微小球は微小球全体として熱膨張性(微小球全体が加熱により膨らむ性質)を示す。以下の説明において、内包物質と発泡剤とを同義に用いることがある。
The weight ratio of the heat-expandable microspheres and the conductive particles (conductive particles / heat-expandable microspheres) in the mixing step is not particularly limited, but is preferably 99.5 / 0.5 to 50/50, More preferably, it is 99 / 1-55 / 45, Most preferably, it is 97 / 3-60 / 40. When the conductive particle / thermally expandable microsphere (weight ratio) is larger than 99.5 / 0.5, the true specific gravity of the conductive hollow body is increased, and the effect of reducing the specific gravity is decreased. On the other hand, when the conductive particles / heat-expandable microspheres (weight ratio) is smaller than 50/50, the surface coating becomes insufficient, resulting in deterioration of conductivity and occurrence of a fused product during production.
The thermally expandable microsphere is composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and having a boiling point equal to or lower than the softening point of the thermoplastic resin. It exhibits thermal expansibility (property that the entire microsphere expands by heating). In the following description, the inclusion substance and the foaming agent may be used synonymously.

発泡剤は、熱可塑性樹脂の軟化点以下の沸点を有する物質であれば特に限定はなく、たとえば、炭素数1〜12の炭化水素及びそれらのハロゲン化物;含弗素化合物;テトラアルキルシラン;アゾジカルボンアミド等の加熱により熱分解してガスを生成する化合物等を挙げることができる。これらの発泡剤は、1種または2種以上を併用してもよい。
炭素数1〜12の炭化水素としては、たとえば、プロパン、シクロプロパン、プロピレン、ブタン、ノルマルブタン、イソブタン、シクロブタン、ノルマルペンタン、シクロペンタン、イソペンタン、ネオペンタン、ノルマルヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、シクロヘプタン、オクタン、イソオクタン、シクロオクタン、2−メチルペンタン、2,2−ジメチルブタン、石油エーテル等の炭化水素が挙げられる。これらの炭化水素は、直鎖状、分岐状、脂環状のいずれでもよく、脂肪族であるものが好ましい。
炭素数1〜12の炭化水素のハロゲン化物としては、塩化メチル、塩化メチレン、クロロホルム、四塩化炭素等が挙げられる。これらのハロゲン化物は、上述した炭化水素のハロゲン化物(フッ化物、塩化物、臭化物、ヨウ化物等)であることが好ましい。
The foaming agent is not particularly limited as long as it has a boiling point equal to or lower than the softening point of the thermoplastic resin. For example, hydrocarbons having 1 to 12 carbon atoms and their halides; fluorine-containing compounds; tetraalkylsilanes; Examples thereof include a compound that thermally decomposes by heating amide or the like to generate a gas. These foaming agents may be used alone or in combination of two or more.
Examples of the hydrocarbon having 1 to 12 carbon atoms include propane, cyclopropane, propylene, butane, normal butane, isobutane, cyclobutane, normal pentane, cyclopentane, isopentane, neopentane, normal hexane, isohexane, cyclohexane, heptane, and cycloheptane. , Hydrocarbons such as octane, isooctane, cyclooctane, 2-methylpentane, 2,2-dimethylbutane, and petroleum ether. These hydrocarbons may be linear, branched or alicyclic, and are preferably aliphatic.
Examples of the hydrocarbon halide having 1 to 12 carbon atoms include methyl chloride, methylene chloride, chloroform and carbon tetrachloride. These halides are preferably the above-described hydrocarbon halides (fluoride, chloride, bromide, iodide, etc.).

含弗素化合物としては、特に限定されず、たとえば、エーテル構造を有し、塩素原子および臭素原子を含まず、炭素数2〜10の化合物が好ましい。具体的には、COCFH、CHFOCH、CHFOC、COC、CHFOCH、COC、CHFOC、COCHF、CHFOC、COCHF、COCHF、CHFOC、COCH、COCH、COC、C715OC等のハイドロフルオロエーテルが挙げられる。ハイドロフルオロエーテルの(フルオロ)アルキル基は直鎖状でも分岐状でもよい。
熱膨張性微小球は、たとえば、ラジカル重合性単量体を含む単量体混合物を重合して得られる熱可塑性樹脂から構成され、単量体混合物に重合開始剤を適宜配合、重合することにより、熱膨張性微小球の外殻を形成することができる。
The fluorine-containing compound is not particularly limited, and for example, a compound having an ether structure, not containing a chlorine atom and a bromine atom, and having 2 to 10 carbon atoms is preferable. Specifically, C 3 H 2 F 7 OCF 2 H, C 3 HF 6 OCH 3 , C 2 HF 4 OC 2 H 2 F 3 , C 2 H 2 F 3 OC 2 H 2 F 3 , C 4 HF 8 OCH 3 , C 3 H 2 F 5 OC 2 H 3 F 2 , C 3 HF 6 OC 2 H 2 F 3 , C 3 H 3 F 4 OCHF 2 , C 3 HF 6 OC 3 H 2 F 5 , C 4 H 3 F 6 OCHF 2, C 3 H 3 F 4 OC 2 HF 4, C 3 HF 6 OC 3 H 3 F 4, C 3 F 7 OCH 3, C 4 F 9 OCH 3, C 4 F 9 OC 2 H 5 And hydrofluoroethers such as C 7 F 15 OC 2 H 5 . The (fluoro) alkyl group of the hydrofluoroether may be linear or branched.
The heat-expandable microsphere is composed of, for example, a thermoplastic resin obtained by polymerizing a monomer mixture containing a radical polymerizable monomer, and by appropriately blending and polymerizing a polymerization initiator in the monomer mixture. The outer shell of the thermally expandable microsphere can be formed.

ラジカル重合性単量体としては、特に限定はないが、たとえば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル等のニトリル系単量体;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸等のカルボキシル基含有単量体;塩化ビニリデン;酢酸ビニル;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t‐ブチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、β−カルボキシエチルアクリレート等の(メタ)アクリル酸エステル系単量体;スチレン、α−メチルスチレン、クロロスチレン等のスチレン系単量体;アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等のアクリルアミド系単量体;N−フェニルマレイミド、N−(2−クロロフェニル)マレイミド、N−シクロヘキシルマレイミド、N−ラウリルマレイミド等のマレイミド系単量体等を挙げることができる。カルボキシル基含有単量体については、一部または全部のカルボキシル基が重合時に中和されていてもよい。
これらのラジカル重合性単量体は、1種または2種以上を併用してもよい。これらの内でも、単量体混合物が、ニトリル系単量体、(メタ)アクリル酸エステル系単量体、カルボキシル基含有単量体、スチレン系単量体、酢酸ビニルおよび塩化ビニリデンから選ばれた少なくとも1種のラジカル重合性単量体を含む単量体混合物であると好ましい。特に、単量体混合物が、ニトリル系単量体を必須成分として含む単量体混合物であると、耐熱性を付与できるため、好ましい。ニトリル系単量体の重量割合は、単量体混合物に対して、耐熱性を考慮すると、好ましくは80重量%以上であり、さらに好ましくは90重量%以上であり、特に好ましくは95重量%以上である。
The radical polymerizable monomer is not particularly limited. For example, nitrile monomers such as acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile; acrylic acid, methacrylic acid, itaconic acid Carboxyl group-containing monomers such as maleic acid, fumaric acid and citraconic acid; vinylidene chloride; vinyl acetate; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, (Meth) acrylate monomers such as t-butyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, β-carboxyethyl acrylate; styrene, α-methylstyrene , Chlorostyrene etc. Tylene monomers; acrylamide monomers such as acrylamide, substituted acrylamide, methacrylamide, substituted methacrylamide; N-phenylmaleimide, N- (2-chlorophenyl) maleimide, N-cyclohexylmaleimide, N-laurylmaleimide, etc. And maleimide monomers. As for the carboxyl group-containing monomer, some or all of the carboxyl groups may be neutralized during polymerization.
These radically polymerizable monomers may be used alone or in combination of two or more. Among these, the monomer mixture was selected from a nitrile monomer, a (meth) acrylic acid ester monomer, a carboxyl group-containing monomer, a styrene monomer, vinyl acetate, and vinylidene chloride. A monomer mixture containing at least one radically polymerizable monomer is preferred. In particular, the monomer mixture is preferably a monomer mixture containing a nitrile monomer as an essential component because heat resistance can be imparted. The weight ratio of the nitrile monomer is preferably 80% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more, considering heat resistance with respect to the monomer mixture. It is.

また、単量体混合物が、ニトリル系単量体とともにカルボキシル基含有単量体を必須成分として含む単量体混合物であると、耐熱性を付与できるとともに、熱膨張性微小球を膨張させることによって得られる熱膨張した微小球について、再膨張できる余力を有するように製造することができ、かつ90℃以上(好ましくは100℃以上、さらに好ましくは120℃以上)の温度で、再膨張を開始させるように設定することができるため、さらに好ましい。ニトリル系単量体の重量割合は、内包された発泡剤の内包保持率及び発泡性、さらには熱膨張した微小球の再膨張開始温度を調節すること等を考慮すると、単量体混合物に対して、好ましくは20〜95重量%であり、より好ましくは20〜80重量%であり、さらに好ましくは20〜60重量%であり、特に好ましくは20〜50重量%であり、最も好ましくは20〜40重量%である。また、カルボキシル基含有単量体の重量割合は、熱膨張した微小球の再膨張開始温度を調節すること、さらには内包された発泡剤の内包保持率及び発泡性等を考慮すると、単量体混合物に対して、好ましくは5〜80重量%であり、より好ましくは20〜80重量%であり、さらに好ましくは40〜80重量%であり、特に好ましくは50〜80重量%であり、最も好ましくは60〜80重量%である。   In addition, when the monomer mixture is a monomer mixture containing a nitrile monomer and a carboxyl group-containing monomer as an essential component, heat resistance can be imparted, and the thermally expandable microspheres can be expanded. The resulting thermally expanded microspheres can be manufactured to have a re-expandable capacity, and re-expansion is initiated at a temperature of 90 ° C. or higher (preferably 100 ° C. or higher, more preferably 120 ° C. or higher). Therefore, it is more preferable. The weight ratio of the nitrile monomer is based on the monomer mixture considering the retention rate and foamability of the encapsulated foaming agent, as well as adjusting the re-expansion start temperature of the thermally expanded microspheres. And preferably 20 to 95% by weight, more preferably 20 to 80% by weight, still more preferably 20 to 60% by weight, particularly preferably 20 to 50% by weight, most preferably 20 to 40% by weight. In addition, the weight ratio of the carboxyl group-containing monomer is determined by adjusting the re-expansion start temperature of the thermally expanded microspheres, and further considering the inclusion retention rate and foamability of the encapsulated foaming agent. Preferably it is 5 to 80 weight% with respect to a mixture, More preferably, it is 20 to 80 weight%, More preferably, it is 40 to 80 weight%, Most preferably, it is 50 to 80 weight%, Most preferably Is 60 to 80% by weight.

単量体混合物がカルボキシル基含有単量体を必須成分として含む場合、単量体成分に含まれるカルボキシル基含有単量体以外の単量体として、カルボキシル基含有単量体のカルボキシル基と反応する単量体を含有していてもよい。カルボキシル基含有単量体のカルボキシル基と反応する単量体としては、たとえば、N−メチロール(メタ)アクリルアミド、N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジメチルアミノプロピル(メタ)アクリレート、マグネシウムモノ(メタ)アクリレート、ジンクモノ(メタ)アクリレート、ビニルグリシジルエーテル、プロペニルグリシジルエーテル、グリシジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート等を挙げることができる。カルボキシル基含有単量体のカルボキシル基と反応する単量体の重量割合は、単量体混合物に対して、好ましくは0.1〜10重量%であり、より好ましくは1〜8重量%であり、最も好ましくは3〜5重量%である。
単量体混合物は、上記ラジカル重合性単量体以外に、重合性二重結合を2個以上有する重合性単量体(架橋剤)を含んでいてもよい。架橋剤を用いて重合させることにより、本製造方法で得られた熱膨張した微小球に含まれる凝集微小球の含有率が小さくなり、熱膨張後の内包された発泡剤の保持率(内包保持率)の低下が抑制され、効果的に熱膨張させることができる。
When the monomer mixture contains a carboxyl group-containing monomer as an essential component, it reacts with the carboxyl group of the carboxyl group-containing monomer as a monomer other than the carboxyl group-containing monomer contained in the monomer component A monomer may be contained. Examples of the monomer that reacts with the carboxyl group of the carboxyl group-containing monomer include, for example, N-methylol (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth). Acrylate, magnesium mono (meth) acrylate, zinc mono (meth) acrylate, vinyl glycidyl ether, propenyl glycidyl ether, glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy Examples thereof include butyl (meth) acrylate and 2-hydroxy-3-phenoxypropyl (meth) acrylate. The weight ratio of the monomer that reacts with the carboxyl group of the carboxyl group-containing monomer is preferably 0.1 to 10% by weight, more preferably 1 to 8% by weight, based on the monomer mixture. Most preferably, it is 3 to 5% by weight.
The monomer mixture may contain a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds in addition to the radical polymerizable monomer. By polymerizing using a crosslinking agent, the content of aggregated microspheres contained in the thermally expanded microspheres obtained by this production method is reduced, and the retention rate of the encapsulated foaming agent after thermal expansion (encapsulation retention) Rate) is suppressed, and effective thermal expansion can be achieved.

架橋剤の重量割合については、特に限定はないが、架橋の程度、外殻に内包された発泡剤の内包保持率、耐熱性及び熱膨張性を考慮すると、単量体混合物に対して、好ましくは0.01〜5重量%であり、さらに好ましくは0.05〜3重量%である。
重合開始剤については、特に限定はなく、公知の重合開始剤を用いることができる。重合開始剤は、ラジカル重合性単量体に対して可溶な油溶性の重合開始剤が好ましい。
The weight ratio of the crosslinking agent is not particularly limited, but it is preferable for the monomer mixture in consideration of the degree of crosslinking, the retention rate of the foaming agent encapsulated in the outer shell, heat resistance and thermal expansion. Is 0.01 to 5% by weight, more preferably 0.05 to 3% by weight.
There is no limitation in particular about a polymerization initiator, A well-known polymerization initiator can be used. The polymerization initiator is preferably an oil-soluble polymerization initiator that is soluble in the radical polymerizable monomer.

熱膨張性微小球は、従来公知の熱膨張性マイクロカプセルの製造方法で使用される種々の手法を用いて製造することができる。
すなわち、ラジカル重合性単量体を必須とし任意に架橋剤を含む単量体混合物と、重合開始剤と、発泡剤とを混合し、得られた混合物を適当な分散安定剤等を含む水系懸濁液中で懸濁重合させる方法等である。
Thermally expansible microspheres can be manufactured using various methods used in a conventionally known method for manufacturing thermally expandable microcapsules.
That is, a monomer mixture containing a radically polymerizable monomer and optionally containing a crosslinking agent, a polymerization initiator, and a foaming agent are mixed, and the resulting mixture is mixed with an aqueous suspension containing an appropriate dispersion stabilizer and the like. For example, suspension polymerization in a suspension.

重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは40〜100℃、さらに好ましくは45〜90℃、特に好ましくは50〜85℃の範囲で制御される。重合初期圧力についてはゲージ圧で0〜5.0MPa、さらに好ましくは0.1〜3.0MPa、特に好ましくは0.2〜2.0MPaの範囲である。
熱膨張性微小球の平均粒子径については、用途に応じて自由に設計することができるために特に限定されず、好ましくは1〜100μm、さらに好ましくは2〜80μm、特に好ましくは5〜60μmである。
Although superposition | polymerization temperature is freely set by the kind of polymerization initiator, Preferably it is 40-100 degreeC, More preferably, it is 45-90 degreeC, Most preferably, it controls in the range of 50-85 degreeC. The initial polymerization pressure is 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa, and particularly preferably 0.2 to 2.0 MPa in terms of gauge pressure.
The average particle diameter of the heat-expandable microsphere is not particularly limited because it can be designed freely according to the use, and is preferably 1 to 100 μm, more preferably 2 to 80 μm, and particularly preferably 5 to 60 μm. is there.

また、熱膨張性微小球の粒度分布の変動係数CVは、特に限定されないが、好ましくは30%以下、さらに好ましくは25%以下、特に好ましくは20%以下である。
混合工程において、熱膨張性微小球と導電性粒子とを混合するのに用いられる装置としては、特に限定はなく、容器と攪拌羽根といった極めて簡単な機構を備えた装置を用いて行うことができる。また、一般的な揺動または攪拌を行える粉体混合機を用いてもよい。粉体混合機としては、たとえば、リボン型混合機、垂直スクリュー型混合機等の揺動攪拌または攪拌を行える粉体混合機を挙げることができる。また、近年、攪拌装置を組み合わせたことにより効率のよい多機能な粉体混合機であるスーパーミキサー(株式会社カワタ製)およびハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、SVミキサー(株式会社神鋼環境ソリューション社製)等を用いてもよい。
(付着工程)
Further, the coefficient of variation CV of the particle size distribution of the thermally expandable microspheres is not particularly limited, but is preferably 30% or less, more preferably 25% or less, and particularly preferably 20% or less.
In the mixing step, the apparatus used for mixing the thermally expandable microspheres and the conductive particles is not particularly limited, and can be performed using an apparatus having a very simple mechanism such as a container and a stirring blade. . Moreover, you may use the powder mixer which can perform a general rocking | swiveling or stirring. Examples of the powder mixer include a powder mixer that can perform rocking stirring or stirring, such as a ribbon mixer and a vertical screw mixer. In recent years, super mixers (manufactured by Kawata Co., Ltd.), high-speed mixers (manufactured by Fukae Co., Ltd.), and Newgram Machines (Seishin Co., Ltd.), which are efficient and multifunctional powder mixers by combining stirring devices Product), SV mixer (manufactured by Shinko Environmental Solution Co., Ltd.), and the like.
(Adhesion process)

付着工程は、前記混合工程で得られた、熱膨張性微小球と導電性粒子とを含む混合物を、熱膨張性微小球の外殻を構成する熱可塑性樹脂の軟化点超の温度に加熱する工程である。付着工程では、熱膨張性微小球を膨張させるとともに、得られる中空体本体の外表面に導電性粒子を付着させる。ここでいう付着とは、単に中空体本体の外表面に導電性粒子が吸着にされた状態であってもよく、中空体本体の外表面近傍の熱可塑性樹脂が加熱によって融解し、中空体本体の外表面に導電性粒子がめり込み、固定された状態であってもよい。
加熱は、一般的な接触伝熱型または直接加熱型の混合式乾燥装置を用いて行えばよい。混合式乾燥装置の機能については、特に限定はないが、温度調節可能で原料を分散混合する能力や、場合により乾燥を早めるための減圧装置や冷却装置を備えたものが好ましい。加熱に使用する装置としては、特に限定はないが、たとえば、レーディゲミキサー(株式会社マツボー製)、ソリッドエアー(株式会社ホソカワミクロン)等を挙げることができる。
In the attaching step, the mixture containing the heat-expandable microspheres and the conductive particles obtained in the mixing step is heated to a temperature above the softening point of the thermoplastic resin constituting the outer shell of the heat-expandable microsphere. It is a process. In the attaching step, the thermally expandable microspheres are expanded, and the conductive particles are attached to the outer surface of the obtained hollow body. The term “adhesion” as used herein may be a state in which conductive particles are simply adsorbed on the outer surface of the hollow body main body, and the thermoplastic resin near the outer surface of the hollow body main body is melted by heating, and the hollow body main body. The conductive particles may sink into the outer surface of the substrate and be fixed.
Heating may be performed using a general contact heat transfer type or direct heating type mixed drying apparatus. The function of the mixing type drying apparatus is not particularly limited, but it is preferable to be able to adjust the temperature and disperse and mix the raw materials, and optionally equipped with a decompression device and a cooling device for speeding up drying. Although there is no limitation in particular as an apparatus used for a heating, For example, a Ladige mixer (made by Matsubo Co., Ltd.), solid air (Hosokawa Micron Co., Ltd.), etc. can be mentioned.

加熱の温度条件については、熱膨張性微小球の種類にもよるが最適膨張温度とするのが良く、好ましくは約60〜250℃、より好ましくは70〜230℃、さらに好ましくは80〜220℃である。
〔導電性中空体の利用〕
本発明の導電性中空体は種々応用することができる。たとえば、本発明の導電性中空体を樹脂中に分散させることによって導電性組成物が得られる。
The heating temperature condition depends on the type of thermally expandable microspheres, but it is preferable to set the optimum expansion temperature, preferably about 60 to 250 ° C, more preferably 70 to 230 ° C, and still more preferably 80 to 220 ° C. It is.
[Use of conductive hollow bodies]
The conductive hollow body of the present invention can be applied in various ways. For example, a conductive composition can be obtained by dispersing the conductive hollow body of the present invention in a resin.

樹脂としては、公知のゴム類や熱硬化性樹脂や熱可塑性樹脂が使用できる。
ゴム類としては、たとえば、天然ゴム、ブチルゴム、シリコンゴム等が挙げられる。
As the resin, known rubbers, thermosetting resins and thermoplastic resins can be used.
Examples of rubbers include natural rubber, butyl rubber, and silicon rubber.

熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂、メラミン樹脂等が挙げられる。
熱可塑性樹脂としては、たとえば、ポリエチレン、エチレン−酢酸ビニル共重合体およびエチレン−(メタ)アクリル酸エステル共重合体等のポリオレフィン系樹脂;ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレートおよびポリブチル(メタ)アクリレート等のアクリレート系樹脂;ポリスチレン、スチレン− アクリル酸エステル共重合体、SB型スチレン−ブタジエンブロック共重合体、スチレン−イソプレンブロック共重合体およびこれらの水添加物等のブロックポリマー等ポリスチレン系樹脂が挙げられる。
Examples of the thermosetting resin include an epoxy resin, a phenol resin, and a melamine resin.
Examples of the thermoplastic resin include polyolefin resins such as polyethylene, ethylene-vinyl acetate copolymer and ethylene- (meth) acrylic acid ester copolymer; polymethyl (meth) acrylate, polyethyl (meth) acrylate and polybutyl (meta ) Acrylate resins such as acrylates; polystyrene resins such as polystyrene, styrene-acrylic acid ester copolymers, SB type styrene-butadiene block copolymers, styrene-isoprene block copolymers and their water additives Is mentioned.

以下に、本発明の実施例を具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施例および比較例で製造した熱膨張性微小球について、次に示す要領で物性を測定し、さらに性能を評価した。
Examples of the present invention will be specifically described below. The present invention is not limited to these examples.
About the thermally expansible microsphere manufactured by the Example and the comparative example, the physical property was measured in the way shown below, and also the performance was evaluated.

〔平均粒子径と粒度分布の測定〕
レーザー回折式粒度分布測定装置(SYMPATEC社製 HEROS&RODOS)を使用した。乾式分散ユニットの分散圧は5.0bar、真空度は5.0mbarで乾式測定法により測定し、D50値を平均粒子径とした。
〔真比重の測定〕
真比重は温度25℃においてイソプロピルアルコールを用いた液置換法(アルキメデス法)により測定した。
[Measurement of average particle size and particle size distribution]
A laser diffraction particle size distribution analyzer (HEROS & RODOS manufactured by SYMPATEC) was used. The dispersion pressure of the dry dispersion unit was 5.0 bar and the degree of vacuum was 5.0 mbar, measured by a dry measurement method, and the D50 value was taken as the average particle size.
[Measurement of true specific gravity]
The true specific gravity was measured by a liquid displacement method (Archimedes method) using isopropyl alcohol at a temperature of 25 ° C.

〔熱膨張性微小球の真比重の測定〕
真比重dは環境温度25℃、相対湿度50%の雰囲気下においてイソプロピルアルコールを用いた液浸法(アルキメデス法)により測定した。
具体的には、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WB)を秤量した。秤量したメスフラスコにイソプロピルアルコールをメニスカスまで正確に満たした後、イソプロピルアルコール100ccの充満されたメスフラスコの重量(WB)を秤量した。
また、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WS)を秤量した。秤量したメスフラスコに約50ccの熱膨張性微小球を充填し、熱膨張性微小球の充填されたメスフラスコの重量(WS)を秤量した。そして、熱膨張性微小球の充填されたメスフラスコに、イソプロピルアルコールを気泡が入らないようにメニスカスまで正確に満たした後の重量(WS)を秤量した。そして、得られたWB、WB、WS、WSおよびWSを下式に導入して、熱膨張性微小球の真比重dを計算した。
真比重d={(WS−WS)×(WB−WB)/100}/{(WB−WB)−(WS−WS)}
なお、熱膨張した微小球の真比重も上記と同様に計算した。
(Measurement of true specific gravity of thermally expandable microspheres)
True specific gravity d c is the ambient temperature 25 ° C., as measured by 50% relative humidity immersion method using isopropyl alcohol in an atmosphere of (Archimedes method).
Specifically, the volumetric flask having a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (WB 1 ) was weighed. After the weighed volumetric flask was accurately filled with isopropyl alcohol to the meniscus, the weight (WB 2 ) of the volumetric flask filled with 100 cc of isopropyl alcohol was weighed.
Further, the volumetric flask with a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (WS 1 ) was weighed. The weighed volumetric flask was filled with about 50 cc of thermally expandable microspheres, and the weight (WS 2 ) of the volumetric flask filled with thermally expandable microspheres was weighed. Then, the weight (WS 3 ) after accurately filling the meniscus with isopropyl alcohol so that bubbles do not enter the volumetric flask filled with thermally expandable microspheres was weighed. Then, the WB 1, WB 2, WS 1 , WS 2 and WS 3 obtained by introducing the following formula was calculated the true specific gravity d c of the heat-expandable microspheres.
True specific gravity d c = {(WS 2 −WS 1 ) × (WB 2 −WB 1 ) / 100} / {(WB 2 −WB 1 ) − (WS 3 −WS 2 )}
The true specific gravity of the thermally expanded microsphere was also calculated in the same manner as described above.

〔微小球の外殻樹脂の真比重測定〕
外殻樹脂(外殻を構成する熱可塑性樹脂)の真比重dの測定は、熱膨張性微小球30gをアセトニトリル900mlに分散させた後に超音波分散機30分間で処理し、室温で3時間放置した後、120℃で5時間加熱乾燥した。得られた乾燥微小球を真空ポンプでさらに2時間減圧乾燥し、質量変化が無いことを確認し、上記真比重の測定方法と同様にして外殻樹脂の真比重を測定した。
[Measurement of true specific gravity of outer shell resin of microsphere]
The true specific gravity d p of the outer shell resin (thermoplastic resin constituting the outer shell) was measured by dispersing 30 g of thermally expandable microspheres in 900 ml of acetonitrile and then treating with ultrasonic disperser for 30 minutes, and at room temperature for 3 hours. After leaving it to stand, it was dried by heating at 120 ° C. for 5 hours. The obtained dried microspheres were further dried under reduced pressure with a vacuum pump for 2 hours, and it was confirmed that there was no mass change, and the true specific gravity of the outer shell resin was measured in the same manner as in the true specific gravity measurement method.

〔熱膨張性微小球の含水率の測定〕
測定装置として、カールフィッシャー水分計(MKA−510N型、京都電子工業株式会社製)を用いて測定した。
〔熱膨張性微小球に封入された発泡剤の内包率の測定〕
熱膨張性微小球1.0gを直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W)を測定した。アセトニトリル30mlを加え均一に分散させ、3時間室温で放置した後に、120℃で2時間加熱し乾燥後の重量(W)を測定した。発泡剤の内包率は、下記の式により計算される。
内包率(重量%)=(W−W)(g)/1.0(g)×100−(含水率)(重量%)
(式中、含水率は、上記方法で測定される。)
[Measurement of moisture content of thermally expandable microspheres]
As a measuring apparatus, a Karl Fischer moisture meter (MKA-510N type, manufactured by Kyoto Electronics Industry Co., Ltd.) was used for measurement.
[Measurement of encapsulation rate of foaming agent enclosed in thermally expandable microspheres]
1.0 g of thermally expandable microspheres were placed in a stainless steel evaporation dish having a diameter of 80 mm and a depth of 15 mm, and the weight (W 1 ) was measured. 30 ml of acetonitrile was added and dispersed uniformly, left at room temperature for 3 hours, then heated at 120 ° C. for 2 hours, and the weight (W 2 ) after drying was measured. The encapsulation rate of the foaming agent is calculated by the following formula.
Inclusion rate (% by weight) = (W 1 −W 2 ) (g) /1.0 (g) × 100− (water content) (% by weight)
(In the formula, the moisture content is measured by the above method.)

〔外殻部平均厚みの計算〕
外殻部平均厚みを下式にしたがって算出する。
外殻部平均厚み=<x>/2〔1−{1−d(1−G/100)/d}1/3
<x>:熱膨張性微小球全体としての平均粒子径(μm)
:微小球の平均真比重(g/cc)
:外殻を構成する熱可塑性樹脂の平均真比重(g/cc)
G:内包率(重量%)
(Calculation of outer shell average thickness)
The outer shell average thickness is calculated according to the following formula.
Outer shell average thickness = <x> / 2 [1- {1-d c (1 -G / 100) / d p} 1/3 ]
<X>: Average particle diameter (μm) of the whole thermally expandable microsphere
d c : average true specific gravity of microsphere (g / cc)
d p : Average true specific gravity (g / cc) of the thermoplastic resin constituting the outer shell
G: Inclusion rate (% by weight)

〔圧縮時変形率及び除圧後復元率の測定〕
導電性中空体を直径6mm(内径5.65mm)および深さ4.8mmのアルミカップに約4mmの高さまで入れ、導電性中空体層の上部に直径5.6mmおよび厚み0.1mmのアルミ蓋を載せたものを試料とした。次いで、DMA(DMAQ800型、TA instruments社製)を使用し、この試料に25℃の環境下で加圧子によりアルミ蓋の上部から0.01Nの力を加えた状態での導電性中空体層の高さLを測定した。その後、導電性中空体層を0.01Nから18Nまで10N/minの速度で加圧後の導電性中空体層の高さLを測定した。18Nから0.01Nまで10N/minの速度で除圧した後の導電性中空体層の高さLを測定した。そして、次式に示すように、測定した導電性中空体層の高さLとLとの比から圧縮時変形率を定義する。また、測定した導電性中空体層の高さLとLとの比から除圧後復元率を定義する。
圧縮時変形率(%)=(1−L/L)×100
除圧後復元率(%)=(1−L/L)×100
[Measurement of deformation rate during compression and restoration rate after decompression]
The conductive hollow body is put in an aluminum cup having a diameter of 6 mm (inner diameter 5.65 mm) and a depth of 4.8 mm to a height of about 4 mm, and an aluminum lid having a diameter of 5.6 mm and a thickness of 0.1 mm is formed on the upper part of the conductive hollow body layer. A sample was placed as a sample. Then, using a DMA (DMAQ800 type, manufactured by TA instruments), a conductive hollow body layer in a state where a force of 0.01 N was applied to the sample from the top of the aluminum lid with a pressurizer under an environment of 25 ° C. to measure the height L 1. Thereafter, it was measured the height L 2 of the conductive hollow body layer of an electrically conductive hollow body layer from 0.01N to 18N at a rate of 10 N / min after pressing. The height L 3 of the conductive hollow body layer after depressurized at a rate of 10 N / min from 18N to 0.01N were measured. Then, as shown in the following equation, the deformation rate during compression is defined from the ratio of the measured height L 1 and L 2 of the conductive hollow body layer. Further, the restoration rate after decompression is defined from the ratio of the measured height L 1 and L 3 of the conductive hollow body layer.
Deformation rate during compression (%) = (1−L 2 / L 1 ) × 100
Restoration rate after decompression (%) = (1−L 3 / L 1 ) × 100

〔金属層平均被覆膜厚の測定〕
導電性中空体0.5gを精秤し、30%硝酸水溶液10mlに溶かした後、溶解液を濾紙で濾過しながら正確に200mlにメスアップし、銀含有率WAg及びニッケル含有率WNiについては弱酸性下Cu−PAN(金属指示薬、同仁化学製)、銅含有率WCuについては弱塩基性下Cu−PAN(金属指示薬、同仁化学製)を指示薬として、0.01MのEDTA標準液を使用しキレート滴定により、それぞれ測定した。下記式にて、それぞれの金属メッキ層厚を算出する。
銀メッキ層厚(μm)=(ρ×WAg×D)/{6×ρAg×(100−WAg)}
ニッケルメッキ層厚(μm)=(ρ×WNi×D)/{6×ρNi×(100−WNi)}
銅メッキ層厚(μm)=(ρ×WCu×D)/{6×ρCu×(100−WCu)}
ρ:中空体本体の比重
ρAg:銀の比重
ρNi:ニッケルの比重
ρCu:銅の比重
Ag:銀含有率(%)
Ni:ニッケル含有率(%)
Cu:銅含有率(%)
D:中空体本体の平均粒子径(μm)
[Measurement of average coating thickness of metal layer]
About 0.5 g of conductive hollow body is precisely weighed and dissolved in 10 ml of 30% nitric acid aqueous solution. Then, the solution is accurately measured to 200 ml while being filtered through a filter paper. About silver content WA Ag and nickel content W Ni Is Cu-PAN (metal indicator, manufactured by Dojin Chemical Co., Ltd.) under weak acidity, and copper content W Cu is a 0.01M EDTA standard solution using Cu-PAN (metal indicator, manufactured by Dojin Chemical Co., Ltd.) as an indicator under weak basicity. Each was measured by chelate titration. The thickness of each metal plating layer is calculated by the following formula.
Silver plating layer thickness (μm) = (ρ P × W Ag × D) / {6 × ρ Ag × (100−W Ag )}
Nickel plating layer thickness (μm) = (ρ P × W Ni × D) / {6 × ρ Ni × (100−W Ni )}
Copper plating layer thickness (μm) = (ρ P × W Cu × D) / {6 × ρ Cu × (100−W Cu )}
ρ P : Specific gravity of the hollow body ρ Ag : Specific gravity of silver ρ Ni : Specific gravity of nickel ρ Cu : Specific gravity of copper W Ag : Silver content (%)
W Ni : Nickel content (%)
W Cu : copper content (%)
D: Average particle diameter of the hollow body (μm)

〔導電性中空体の分散性の評価〕
エポキシ樹脂(エポキシ系接着剤:アラルダイトラピッド、ハンツマン・アドバンスド・マテリアルズ社製)100重量部に導電性中空体2.5重量部を分散し、20〜25℃にて24時間かけて硬化させた。その後に、得られた硬化物をミクロトーム(Leica、RM2235)でスライスした。次いで、スライスされた断面を電子顕微鏡(倍率50倍)にて観察し、導電性中空体の分散性を目視で判断した。
[Evaluation of Dispersibility of Conductive Hollow Body]
2.5 parts by weight of a conductive hollow body was dispersed in 100 parts by weight of an epoxy resin (epoxy adhesive: Araldai Rapid, manufactured by Huntsman Advanced Materials) and cured at 20 to 25 ° C. for 24 hours. . Thereafter, the resulting cured product was sliced with a microtome (Leica, RM2235). Next, the sliced cross section was observed with an electron microscope (50 times magnification), and the dispersibility of the conductive hollow body was visually determined.

〔実施例1〕
中空体本体としてマツモトマイクロスフェアF−80ED(松本油脂製薬株式会社製、平均粒子径:100.0μm、真比重:0.022g/cc、外殻部平均厚み:0.30μm、CV:29%)を1g秤量し、粉末メッキ用プレディップ液(奥野製薬社製)に分散させ、30℃で30分間攪拌することによりエッチングを行った。エッチング後の中空体本体を水洗後、硫酸パラジウムを1重量%含有するPd触媒化液100mlに添加し、30℃で30間攪拌させてパラジウムイオンを粒子に吸着させた。この粒子を濾取、水洗した後、0.5重量%のジメチルアミンボラン液(pH6.0に調整)に添加し、Pdを活性化させた中空体本体を得た。
得られたPd活性化中空体本体に蒸留水500mlを加え、超音波処理機を用いて充分に分散させることにより懸濁液を得た。この懸濁液を50℃で攪拌しながら、硫酸銀50g/L、次亜リン酸ナトリウム40g/L、クエン酸50g/Lからなる無電解メッキ液(pH7.5に調整)を徐々に添加し無電解銀メッキを行った。金属被覆層がおおよそ0.10μmになった時点で無電解メッキ液の添加をやめ、アルコール置換した後、真空乾燥させることにより、銀が被覆した導電性中空体を得た(Agメッキ層厚:0.15μm、真比重:0.138g/cc、平均粒子径:100.4μm、圧縮時変形率81%、除圧後復元率30%)。得られた導電性中空体は導電性を示した。SEMによる分散性の評価は良好であった。
[Example 1]
Matsumoto Microsphere F-80ED (manufactured by Matsumoto Yushi Seiyaku Co., Ltd., average particle size: 100.0 μm, true specific gravity: 0.022 g / cc, outer shell average thickness: 0.30 μm, CV: 29%) as a hollow body 1g was weighed, dispersed in a pre-dip solution for powder plating (Okuno Pharmaceutical Co., Ltd.), and etched by stirring at 30 ° C. for 30 minutes. The etched hollow body was washed with water, added to 100 ml of a Pd-catalyzed solution containing 1% by weight of palladium sulfate, and stirred at 30 ° C. for 30 hours to adsorb palladium ions to the particles. The particles were collected by filtration and washed with water, and then added to a 0.5% by weight dimethylamine borane solution (adjusted to pH 6.0) to obtain a hollow body main body in which Pd was activated.
A suspension was obtained by adding 500 ml of distilled water to the obtained Pd-activated hollow body main body and sufficiently dispersing using an ultrasonic treatment machine. While stirring this suspension at 50 ° C., an electroless plating solution (adjusted to pH 7.5) composed of 50 g / L silver sulfate, 40 g / L sodium hypophosphite, and 50 g / L citric acid was gradually added. Electroless silver plating was performed. When the metal coating layer became approximately 0.10 μm, the addition of the electroless plating solution was stopped, and after substitution with alcohol, vacuum drying was performed to obtain a conductive hollow body coated with silver (Ag plating layer thickness: 0.15 μm, true specific gravity: 0.138 g / cc, average particle size: 100.4 μm, deformation rate during compression 81%, restoration rate after decompression 30%). The obtained conductive hollow body showed conductivity. The evaluation of dispersibility by SEM was good.

〔比較例1〕
<中空体本体の調製>
イオン交換水340gにコロイダルシリカ20重量%水溶液25g、ポリスチレンスルホン酸10重量%水溶液10gを均一に混合して、これを水相とした。次に、アクリロニトリル80g、メタクリル酸10g、ヒドロキシエチルメタクリレート0.8g、エチレングリコールジメタクリレート1.5g、メタクリル酸メチル10g、アゾビスイソブチロニトリル0.5gおよびn−ヘキサン62gを混合して均一に溶解して、これを油相とした。上記で調製した水相と油相とを混合し、ホモミキサーで16000rpmにて1分間撹拌し、油相/水相の懸濁液を得た。この懸濁液をオートクレーブに仕込み、60℃にて20時間かけて重合を行った。得られた分散液を濾紙濾過し、40℃の循風乾燥機にて乾燥し、熱膨張性微小球を得た(平均粒子径:2.1μm)。
[Comparative Example 1]
<Preparation of hollow body>
To 340 g of ion-exchanged water, 25 g of a 20% by weight aqueous solution of colloidal silica and 10 g of a 10% by weight aqueous solution of polystyrene sulfonic acid were uniformly mixed to obtain an aqueous phase. Next, 80 g of acrylonitrile, 10 g of methacrylic acid, 0.8 g of hydroxyethyl methacrylate, 1.5 g of ethylene glycol dimethacrylate, 10 g of methyl methacrylate, 0.5 g of azobisisobutyronitrile and 62 g of n-hexane were mixed uniformly. This was dissolved to obtain an oil phase. The aqueous phase and oil phase prepared above were mixed and stirred for 1 minute at 16000 rpm with a homomixer to obtain an oil phase / water phase suspension. This suspension was charged into an autoclave and polymerized at 60 ° C. for 20 hours. The obtained dispersion was filtered through filter paper and dried with a circulating dryer at 40 ° C. to obtain thermally expandable microspheres (average particle size: 2.1 μm).

上記で得られた熱膨張性微小球100gを離型紙上に約100cmの面積に拡げ、180℃の循風乾燥機で15分間加熱処理し膨張させ、中空体本体を得た(平均粒子径:5.1μm、真比重:0.34g/cc、外殻部平均厚み:0.30μm、CV:36%、)。
<銀被覆の導電性中空体の製造>
上記<中空体本体の調製>で得られた中空体本体を用いる他は、実施例1と全く同様の操作より銀被覆の導電性中空体を得た(Agメッキ層厚:0.18μm、真比重:0.69g/cc、平均粒子径:5.5μm、圧縮時変形率54%、除圧後復元率42%)。この導電性中空体を使用して実施例1の導電性中空体と同様の導電性を出すためには、2.5倍量(重量比)必要であった。SEMによる分散性の評価は均一ではなく、偏りが見られた。
100 g of the heat-expandable microspheres obtained above were spread on a release paper to an area of about 100 cm 2 , expanded by heat treatment for 15 minutes in a circulating air dryer at 180 ° C. (average particle diameter) : 5.1 μm, true specific gravity: 0.34 g / cc, outer shell average thickness: 0.30 μm, CV: 36%).
<Production of silver-coated conductive hollow body>
A silver-coated conductive hollow body was obtained by the same operation as in Example 1 except that the hollow body body obtained in <Preparation of hollow body body> was used (Ag plating layer thickness: 0.18 μm, true Specific gravity: 0.69 g / cc, average particle size: 5.5 μm, deformation rate at compression 54%, restoration rate after decompression 42%). In order to obtain the same conductivity as the conductive hollow body of Example 1 using this conductive hollow body, 2.5 times the amount (weight ratio) was necessary. The evaluation of dispersibility by SEM was not uniform, and a bias was observed.

〔実施例2〕
パゼットCK(ハクスイテック株式会社製の導電性酸化亜鉛、平均粒子径:2.5μm)9kgとマツモトマイクロスフェアーF−100D(松本油脂製薬株式会社製、平均粒子径:25μm、真比重:1.02g/cc)1kgとをSVミキサー(神鋼環境ソリューション株式会社製、内容量:30L)に投入し、10分間混合した。その後、得られた混合物をレーディゲミキサー(株式会社マツボー製)に投入し、ジャケット温度230℃で10分間加熱し、混合物の温度が170℃に到達した時点で冷却し、導電性中空体を得た(平均粒子径:87μm、真比重:0.28g/cc、圧縮時変形率83%、除圧後復元率24%)。得られた導電性中空体は導電性を示した。SEMによる分散性の評価は良好であった。
[Example 2]
Passet CK (conductive zinc oxide manufactured by Hakusui Tech Co., Ltd., average particle size: 2.5 μm) 9 kg and Matsumoto Microsphere F-100D (Matsumoto Yushi Seiyaku Co., Ltd., average particle size: 25 μm, true specific gravity: 1.02 g) / Cc) 1 kg was charged into an SV mixer (manufactured by Shinko Environmental Solution Co., Ltd., internal volume: 30 L) and mixed for 10 minutes. Thereafter, the obtained mixture is put into a Laedige mixer (manufactured by Matsubo Co., Ltd.), heated at a jacket temperature of 230 ° C. for 10 minutes, cooled when the temperature of the mixture reaches 170 ° C., and the conductive hollow body is removed. Obtained (average particle size: 87 μm, true specific gravity: 0.28 g / cc, deformation rate during compression 83%, restoration rate after decompression 24%). The obtained conductive hollow body showed conductivity. The evaluation of dispersibility by SEM was good.

〔実施例3〕
ニッケルメッキをするために、実施例1における無電解メッキ液をニムデンNPR−4(上村工業株式会社製)に置きかえて、80℃で攪拌、添加すること以外は実施例1と同様の操作により、ニッケル被覆の導電性中空体を得た(Niメッキ層厚:0.13μm、真比重:0.120g/cc、平均粒子径:100.3μm、圧縮時変形率78%、除圧後復元率34%)。得られた導電性中空体は導電性を示した。SEMによる分散性の評価は良好であった。
Example 3
In order to perform nickel plating, the electroless plating solution in Example 1 was replaced with Nimden NPR-4 (manufactured by Uemura Kogyo Co., Ltd.), and stirred and added at 80 ° C. in the same manner as in Example 1, A nickel-coated conductive hollow body was obtained (Ni plating layer thickness: 0.13 μm, true specific gravity: 0.120 g / cc, average particle size: 100.3 μm, deformation rate during compression 78%, restoration rate after decompression 34 %). The obtained conductive hollow body showed conductivity. The evaluation of dispersibility by SEM was good.

〔実施例4〕
銅メッキをするために、実施例1における無電解メッキ液をスルカップPEA(上村工業株式会社製)に置きかえて、35℃で攪拌、添加すること以外は実施例1と同様の操作により、銅被覆の導電性中空体を得た(Cuメッキ層厚:0.14μm、真比重:0.121g/cc、平均粒子径:100.3μm、圧縮時変形率79%、除圧後復元率31%)。得られた導電性中空体は導電性を示した。SEMによる分散性の評価は良好であった。
Example 4
In order to carry out copper plating, the electroless plating solution in Example 1 was replaced with Sulcup PEA (manufactured by Uemura Kogyo Co., Ltd.), and the same procedure as in Example 1 was followed except for stirring and adding at 35 ° C. (Cu plating layer thickness: 0.14 μm, true specific gravity: 0.121 g / cc, average particle diameter: 100.3 μm, deformation rate during compression 79%, restoration rate after decompression 31%) . The obtained conductive hollow body showed conductivity. The evaluation of dispersibility by SEM was good.

Claims (8)

熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部から構成された中空体本体と、前記外殻部の外表面に付着した導電性粒子または前記外殻部の外表面を被覆する導電性金属層とからなり、真比重が0.01〜0.65g/ccである、導電性中空体。   A hollow body body composed of an outer shell portion made of a thermoplastic resin and a hollow portion surrounded by the outer shell portion, and conductive particles adhering to the outer surface of the outer shell portion or the conductivity covering the outer surface of the outer shell portion A conductive hollow body comprising a metal layer and having a true specific gravity of 0.01 to 0.65 g / cc. 平均粒子径が0.1〜1000μmである、請求項1に記載の導電性中空体。   The conductive hollow body according to claim 1, wherein the average particle diameter is 0.1 to 1000 μm. 粒度分布の変動係数CV値が30%以下である、請求項1または2に記載の導電性中空体。   The conductive hollow body according to claim 1 or 2, wherein the coefficient of variation CV value of the particle size distribution is 30% or less. 圧縮時変形率が70%以上であり、且つ除圧後復元率が40%以下である、請求項1〜3のいずれかに記載の導電性中空体。   The conductive hollow body according to any one of claims 1 to 3, wherein a deformation rate during compression is 70% or more and a restoration rate after decompression is 40% or less. 前記導電性粒子が、銀、金、白金、ニッケル、銅、カーボンブラック、酸化亜鉛および酸化チタンからなる群より選ばれた少なくとも1種を含む粒子である、請求項1〜4のいずれかに記載の導電性中空体。   The said electroconductive particle is a particle | grain containing at least 1 sort (s) chosen from the group which consists of silver, gold | metal | money, platinum, nickel, copper, carbon black, zinc oxide, and titanium oxide in any one of Claims 1-4. Conductive hollow body. 前記前記導電性金属層が、銀、金、白金、ニッケルおよび銅からなる群より選ばれた少なくとも1種の金属を含有する、請求項1〜4のいずれかに記載の導電性中空体。   The conductive hollow body according to any one of claims 1 to 4, wherein the conductive metal layer contains at least one metal selected from the group consisting of silver, gold, platinum, nickel, and copper. 熱可塑性樹脂からなる外殻部およびそれに囲まれた中空部から構成され、真比重が0.005〜0.30g/ccである中空体本体の外表面を、無電解メッキ法によって導電性金属層で被覆する工程を含む、導電性中空体の製造方法。   A conductive metal layer is formed by electroless plating on the outer surface of the hollow body body which is composed of an outer shell portion made of a thermoplastic resin and a hollow portion surrounded by the outer shell portion and whose true specific gravity is 0.005 to 0.30 g / cc. The manufacturing method of an electroconductive hollow body including the process coat | covered with. 熱可塑性樹脂からなる外殻に内包され且つ前記熱可塑性樹脂の軟化点以下の沸点を有する発泡剤とから構成された熱膨張性微小球と、導電性粒子とを混合する工程と、
前記混合工程で得られた混合物を前記軟化点超の温度で加熱して、前記熱膨張性微小球を膨張させるとともに、前記導電性粒子を得られる中空体本体の外表面に付着させる工程を含む、導電性中空体の製造方法。
Mixing thermally expandable microspheres composed of a foaming agent encapsulated in an outer shell made of a thermoplastic resin and having a boiling point not higher than the softening point of the thermoplastic resin, and conductive particles;
Heating the mixture obtained in the mixing step at a temperature above the softening point to expand the thermally expandable microspheres, and attaching the conductive particles to the outer surface of the hollow body body from which the conductive particles can be obtained. The manufacturing method of a conductive hollow body.
JP2007209778A 2006-08-11 2007-08-10 Conductive hollow body and method for producing the same Active JP5294588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209778A JP5294588B2 (en) 2006-08-11 2007-08-10 Conductive hollow body and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006243423 2006-08-11
JP2006243423 2006-08-11
JP2007209778A JP5294588B2 (en) 2006-08-11 2007-08-10 Conductive hollow body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008066298A true JP2008066298A (en) 2008-03-21
JP5294588B2 JP5294588B2 (en) 2013-09-18

Family

ID=39288781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209778A Active JP5294588B2 (en) 2006-08-11 2007-08-10 Conductive hollow body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5294588B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128004A (en) * 2010-12-13 2012-07-05 Canon Inc Conductive roller and method for manufacturing the same
JP2019536890A (en) * 2016-11-21 2019-12-19 エルジー・ケム・リミテッド Composition for 3D printing
CN110785009A (en) * 2018-07-25 2020-02-11 卡西欧计算机株式会社 Microcapsule, sheet, circuit board, method for manufacturing circuit board, and computer-readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2004165123A (en) * 2002-09-24 2004-06-10 Sekisui Chem Co Ltd Conductive particulate, its manufacturing method, and conductive material
JP2006040546A (en) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd Conductive particulate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2004165123A (en) * 2002-09-24 2004-06-10 Sekisui Chem Co Ltd Conductive particulate, its manufacturing method, and conductive material
JP2006040546A (en) * 2004-07-22 2006-02-09 Sanyo Chem Ind Ltd Conductive particulate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128004A (en) * 2010-12-13 2012-07-05 Canon Inc Conductive roller and method for manufacturing the same
JP2019536890A (en) * 2016-11-21 2019-12-19 エルジー・ケム・リミテッド Composition for 3D printing
US11232891B2 (en) 2016-11-21 2022-01-25 Lg Chem, Ltd. Composition for 3 dimensional printing
CN110785009A (en) * 2018-07-25 2020-02-11 卡西欧计算机株式会社 Microcapsule, sheet, circuit board, method for manufacturing circuit board, and computer-readable storage medium
US10893607B2 (en) 2018-07-25 2021-01-12 Casio Computer Co., Ltd. Microcapsule, sheet material, circuit board, method for manufacturing circuit board, and computer readable storage medium

Also Published As

Publication number Publication date
JP5294588B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5331237B2 (en) Thermally expanded microsphere and method for producing the same
JP5107718B2 (en) Thermally expandable microsphere and method for producing the same
EP2808348B1 (en) Process for producing heat-expandable microspheres
JP5759194B2 (en) Thermally expandable microspheres, hollow microparticles, production method and use thereof
WO2014036681A1 (en) Heat-expandable microspheres, preparation method and use thereof
TWI323333B (en) Heat pipe type heat transfer device
JP2005044773A (en) Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure
JPWO2007058379A1 (en) Thermally expansible microspheres, production method and use thereof
JP5294588B2 (en) Conductive hollow body and method for producing the same
JP2015034269A (en) Easily deformable aggregate and method for producing the same, thermal conductive resin composition, thermal conductive member and method for producing the same, and thermal conductive adhesive sheet
CN109897611A (en) High heat capacity liquid metal for conducting heat material and preparation method thereof, phase change composite material
JP2006269296A (en) Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
Álvarez-Bermúdez et al. Magnetic polyurethane microcarriers from nanoparticle-stabilized emulsions for thermal energy storage
JP6151983B2 (en) Thermally expansible microspheres, production method and use thereof
EP2814609B1 (en) Product and method for making uniform, spherical, acrylic polymeric beads
KR101478031B1 (en) Latent heat regenerative materials with microcapsule structure using phase change materials
Zhang et al. Roughening of hollow glass microspheres by NaF for Ni electroless plating
JP5629641B2 (en) Conductive fine particles and method for producing the same
JP5495846B2 (en) POLYMER FINE PARTICLE, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF
CN115845754A (en) Expanded composite microsphere and preparation method and application thereof
JP6668067B2 (en) Microsphere, thermofoamable resin composition containing the same, structural member, and molded article
JP6014438B2 (en) Conductive fine particles and anisotropic conductive material using the same
Yu et al. Highly porous copper with hollow microsphere structure from polystyrene templates via electroless plating
JP6462326B2 (en) Adhesive composition modifier and adhesive composition containing the same
Sajid et al. Yolk–shell smart polymer microgels and their hybrids: fundamentals and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5294588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250