JP2008064654A - Color measuring apparatus and method - Google Patents

Color measuring apparatus and method Download PDF

Info

Publication number
JP2008064654A
JP2008064654A JP2006243991A JP2006243991A JP2008064654A JP 2008064654 A JP2008064654 A JP 2008064654A JP 2006243991 A JP2006243991 A JP 2006243991A JP 2006243991 A JP2006243991 A JP 2006243991A JP 2008064654 A JP2008064654 A JP 2008064654A
Authority
JP
Japan
Prior art keywords
degrees
light
angle
reflected
object surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006243991A
Other languages
Japanese (ja)
Inventor
Junya Ogawa
淳也 小川
Takahiro Tsubouchi
隆浩 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006243991A priority Critical patent/JP2008064654A/en
Publication of JP2008064654A publication Critical patent/JP2008064654A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately grasp an optical reflectance in a direction coinciding with an incidence direction of illuminating light. <P>SOLUTION: A color measuring apparatus includes: an illuminating means for making the illuminating light incident at an incidence angle of 45 degrees on to the surface of an object; a light receiving means for receiving reflection light reflected by the surface of the object at a bending angle of 25 degrees; a light receiving means for receiving reflection light reflected by the surface of the object at a bending angle of 45 degrees; a light receiving means for receiving reflection light reflected by the surface of the object at a bending angle of 75 degrees; an arithmetic means for computing respective optical reflectance values in directions of the bending angles of 25 degrees, 45 degrees and 75 degrees at the object surface, based on the intensity of reflection light received by each light receiving means; and an estimating means for computing an estimation value R90 of the optical reflectance in the direction of the bending angle of 90 degrees at the object surface by using the optical reflectance values R25, R45 and R75 in the directions of the bending angles of 25 degrees, 45 degrees and 75 degrees which are computed respectively. The estimation value R90 satisfies the following equation: R90=3×R25/4-7×R45/4+2×R75. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物体の色彩を測定する技術に関する。   The present invention relates to a technique for measuring the color of an object.

自動車ボディ用の塗料には、着色顔料を主成分とするソリッド塗料と、着色顔料と光輝材を主成分とするメタリック塗料に大別される。ソリッド塗料を塗布した塗装面は、光源位置や視点位置の変化にかかわらず、ほぼ一様の色彩に見える。一方、メタリック塗料を塗布した塗装面は、光源位置や視点位置によって見える色彩が変化する。
メタリック塗料を塗布した塗装面の色彩のように、光源位置や視点位置によって変化する色彩の表現には、光源と視点の位置関係を変角によって定義し、物体表面の色彩を変角毎に記述することが行われている。変角は、光源からの照明光が物体表面で正反射する正反射方向と、物体表面からの反射光を視点で観測する観測方向とがなす角である。
Paints for automobile bodies are roughly classified into solid paints mainly composed of color pigments and metallic paints mainly composed of color pigments and glittering materials. The painted surface on which the solid paint is applied looks almost uniform regardless of changes in the light source position and the viewpoint position. On the other hand, the color of the painted surface to which the metallic paint is applied changes depending on the light source position and the viewpoint position.
For the expression of colors that change according to the position of the light source or the viewpoint, such as the color of the painted surface with metallic paint applied, the positional relationship between the light source and the viewpoint is defined by the variable angle, and the color of the object surface is described for each variable angle. To be done. The variable angle is an angle formed by a regular reflection direction in which illumination light from a light source is regularly reflected on an object surface and an observation direction in which reflected light from the object surface is observed from a viewpoint.

物体表面の色彩を変角毎に記述するためには、物体表面の光反射率を変角毎に測定する必要がある。図4は、自動車ボディ用の塗装を施した試料100の光反射率を変角毎に測定する様子を示している。試料100では、基材106上に、着色顔料や光輝材を含む塗料層104や、無色透明のクリア層102等が形成されている。光反射率の測定では、試料表面(塗装面)100aを光源2によって照明し、試料表面100aで反射された反射光8を受光器9によって受光する。そして、照明光4と反射光8との間の強度変化から、試料表面100aの光反射率が計算される。図中、Daは照明光4の入射方向を示しており、Dbは試料表面100aの法線方向を示しており、Dcは照明光4の正反射方向を示しており、Dbは受光器9による受光方向を示している。入射方向Daと法線方向Dbとがなす角(ここでは45度)は照明光4の入射角を示し、正反射方向Dcと受光方向Dbとがなす角αが変角を示している。光反射率を変角毎に測定するには、受光器9の位置を変化させながら、あるいは、複数の受光器9を配置することによって、各変角α方向への反射光8を受光する必要がある。
図4に示す測定において、変角90度方向への光反射率を測定するためには、変角90度方向への反射光8aの強度を測定する必要があり、受光器9を照明光4の入射方向Da上に配置する必要がある。受光器9を照明光4の入射方向Da上に配置すると、光源器2と試料100との間に受光器9が介在するか、受光器9と試料100との間に光源器2が介在することとなる。光源器2と試料100との間に受光器9が介在すれば、光源器2からの照明光4が受光器9によって遮られてしまい、光源器2は試料表面100aを照明することができない。あるいは、受光器9と試料100との間に光源器2が介在すれば、試料表面100aからの反射光8aが光源器2によって遮られてしまい、受光器9は試料表面100aからの反射光8aを受光することができない。このように、照明光4の入射方向Daに一致する変角(ここでは90度)の方向への光反射率は、物理的に測定することができない。
In order to describe the color of the object surface for each angle change, it is necessary to measure the light reflectance of the object surface for each angle change. FIG. 4 shows a state in which the light reflectance of the sample 100 that has been painted for an automobile body is measured at each change angle. In the sample 100, a coating layer 104 including a color pigment and a bright material, a colorless and transparent clear layer 102, and the like are formed on a base 106. In the measurement of the light reflectance, the sample surface (painted surface) 100a is illuminated by the light source 2, and the reflected light 8 reflected by the sample surface 100a is received by the light receiver 9. Then, from the intensity change between the illumination light 4 and the reflected light 8, the light reflectance of the sample surface 100a is calculated. In the figure, Da indicates the incident direction of the illumination light 4, Db indicates the normal direction of the sample surface 100a, Dc indicates the regular reflection direction of the illumination light 4, and Db is obtained by the light receiver 9. The light receiving direction is shown. The angle formed by the incident direction Da and the normal direction Db (here 45 degrees) indicates the incident angle of the illumination light 4, and the angle α formed by the regular reflection direction Dc and the light receiving direction Db indicates a variable angle. In order to measure the light reflectivity for each variable angle, it is necessary to receive the reflected light 8 in each variable angle α direction while changing the position of the light receiver 9 or arranging a plurality of light receivers 9. There is.
In the measurement shown in FIG. 4, in order to measure the light reflectivity in the direction of 90 degrees of change, it is necessary to measure the intensity of the reflected light 8 a in the direction of 90 degrees of change, and the light receiver 9 is connected to the illumination light 4. It is necessary to arrange in the incident direction Da. When the light receiver 9 is arranged in the incident direction Da of the illumination light 4, the light receiver 9 is interposed between the light source 2 and the sample 100 or the light source 2 is interposed between the light receiver 9 and the sample 100. It will be. If the light receiver 9 is interposed between the light source 2 and the sample 100, the illumination light 4 from the light source 2 is blocked by the light receiver 9, and the light source 2 cannot illuminate the sample surface 100a. Alternatively, if the light source 2 is interposed between the light receiver 9 and the sample 100, the reflected light 8a from the sample surface 100a is blocked by the light source 2, and the light receiver 9 reflects the reflected light 8a from the sample surface 100a. Cannot be received. Thus, the light reflectivity in the direction of the variable angle (90 degrees here) coinciding with the incident direction Da of the illumination light 4 cannot be physically measured.

特許文献1には、メタリック塗膜の光反射率を推定する技術が記載されている。この技術では、先ず、入射角45度の照明光でメタリック塗膜を照明し、変角が15度、25度、45度、75度、110度となる5方向への光反射率をそれぞれ計測する。そして、計測した5方向への光反射率を用いて、変角と光反射率との関係を記述する回帰式を求める。この回帰式を用いることによって、変角が10度から110度までとなる任意の方向への光反射率を算出することができるという。この技術によれば、照明光の入射方向に一致する変角90度方向への光反射率を推定することもできることになる。
特開平10−010045号公報
Patent Document 1 describes a technique for estimating the light reflectance of a metallic coating film. In this technology, first, the metallic coating film is illuminated with illumination light with an incident angle of 45 degrees, and the light reflectances in five directions with varying angles of 15 degrees, 25 degrees, 45 degrees, 75 degrees, and 110 degrees are measured. To do. Then, a regression equation describing the relationship between the angle change and the light reflectance is obtained using the measured light reflectance in the five directions. By using this regression equation, it is possible to calculate the light reflectivity in an arbitrary direction in which the deflection angle is 10 degrees to 110 degrees. According to this technique, it is also possible to estimate the light reflectivity in the direction of the variable angle of 90 degrees that coincides with the incident direction of the illumination light.
Japanese Patent Laid-Open No. 10-010045

特許文献1の技術では、変角が80度から110度となる範囲において、光反射率が直線的に変化すると仮定している。そのことから、変角が80度から110度となる範囲では、変角と光反射率との間の関係を、単一の一次式によって近似している。特許文献1の技術では、変角と光反射率との間の関係を単純化しすぎており、変角が90度となる方向への光反射率を精度よく推定することができない。
本発明は、上記の問題を解決する。本発明は、照明光の入射方向に一致する方向への光反射率を正確に把握することを可能にする技術を提供する。
In the technique of Patent Document 1, it is assumed that the light reflectance changes linearly in the range where the angle of change is 80 degrees to 110 degrees. Therefore, in the range where the angle change is 80 degrees to 110 degrees, the relationship between the angle change and the light reflectance is approximated by a single linear expression. In the technique of Patent Document 1, the relationship between the angle change and the light reflectance is simplified too much, and the light reflectance in the direction in which the angle change becomes 90 degrees cannot be accurately estimated.
The present invention solves the above problems. The present invention provides a technique that makes it possible to accurately grasp the light reflectance in a direction that coincides with the incident direction of illumination light.

本発明の技術は、物体表面の色彩を測定する測色装置に具現化することができる。この測色装置は、物体表面に入射角45度方向から照明光を入射する照明手段と、物体表面で変角25度方向へ反射した反射光を受光する受光手段と、物体表面で変角45度方向へ反射した反射光を受光する受光手段と、物体表面で変角75度方向へ反射した反射光を受光する受光手段と、各受光手段で受光した反射光の強度に基づいて、物体表面の変角25度方向と変角45度方向と変角75度方向への光反射率をそれぞれ計算する計算手段と、計算された変角25度方向への光反射率R25と変角45度方向への光反射率R45と変角75度方向への光反射率R75を用いて、物体表面の変角90度方向への光反射率の推定値R90を計算する推定手段を備えている。そして、前記推定値R90が、実質的に、R90=3・R25/4−7・R45/4+2・R75を満たすことを特徴とする。   The technique of the present invention can be embodied in a colorimetric apparatus that measures the color of an object surface. This color measuring device includes an illuminating unit that makes illumination light incident on an object surface from a direction with an incident angle of 45 degrees, a light receiving unit that receives reflected light reflected on the object surface in a direction with an angle of variation of 25 degrees, and an angle of change 45 on the object surface. A light receiving means for receiving the reflected light reflected in the direction of the angle, a light receiving means for receiving the reflected light reflected in the direction of the variable angle of 75 degrees on the object surface, and the surface of the object based on the intensity of the reflected light received by each light receiving means Means for calculating the light reflectance in the direction of 25 degrees, 45 degrees and 75 degrees, and the light reflectance R25 and 45 degrees in the calculated direction of 25 degrees. There is provided an estimation means for calculating an estimated value R90 of the light reflectivity in the direction of 90 ° change of the object surface using the light reflectivity R45 in the direction and the light reflectivity R75 in the direction of change of 75 °. The estimated value R90 substantially satisfies R90 = 3 · R25 / 4-7 · R45 / 4 + 2 · R75.

図3は、物体表面に入射角45度方向から照明光を入射させ、物体表面の光反射率R(λ)を変角α毎に測定した結果を模式的に示すグラフである。本発明者は、物体表面の光反射率R(λ)が変角αに応じて変化するときの挙動について、下記する関係が成立することを見出した。即ち、変角が25度から45度へと変化するときの光反射率R(λ)の変化率をA1とし、変角が45度から75度へと変化するときの光反射率R(λ)の変化率をA2とし、変角が75度から90度へと変化するときの光反射率R(λ)の変化率をA3とすると、変化率A1と変化率A2との間の変化量A2−A1と、変化率A2と変化率A3との間の変化量が略等しくなることを見出した。この関係は、任意の波長λについて有効に成立することが確認されている。以上をまとめると、下記の式が成立する。
A1=(R45(λ)−R25(λ))/(45−25)・・・(1);
A2=(R45(λ)−R75(λ))/(75−45)・・・(2);
A3−A2=A2−A1・・・(3);
従って、変角90度方向への光反射率は、変角25度方向への光反射率R25(λ)と、変角45度方向への光反射率R45(λ)と、変角75度方向への光反射率R75(λ)から、その推定値R90(λ)を下記式によって計算することができる。
R90(λ)=R75(λ)+A3・(90−75)
=R75(λ)+(2・A2−A1)・15
=3・R25(λ)/4−7・R45(λ)/4+2・R75(λ);
この測色装置によると、物体表面に入射角45度方向から照明光を入射させ、物体表面の変角90度方向への光反射率を正確に推定することができる。この測色装置を用いることによって、照明光の入射方向に一致する方向への光反射率を正確に把握することができる。
FIG. 3 is a graph schematically showing the result of measuring the light reflectance R (λ) of the object surface for each variable angle α by making illumination light incident on the object surface from the direction of an incident angle of 45 degrees. The present inventor has found that the following relationship holds for the behavior when the light reflectance R (λ) of the object surface changes in accordance with the angle of change α. That is, the change rate of the light reflectivity R (λ) when the variable angle changes from 25 ° to 45 ° is A1, and the light reflectivity R (λ (λ) when the variable angle changes from 45 ° to 75 °. ) Is A2, and the change rate of the light reflectance R (λ) when the change angle is changed from 75 degrees to 90 degrees is A3, the change amount between the change ratio A1 and the change ratio A2 It has been found that the amount of change between A2-A1 and the rate of change A2 and rate of change A3 is substantially equal. It has been confirmed that this relationship is effectively established for an arbitrary wavelength λ. In summary, the following formula is established.
A1 = (R45 (λ) −R25 (λ)) / (45-25) (1);
A2 = (R45 (λ) −R75 (λ)) / (75−45) (2);
A3-A2 = A2-A1 (3);
Therefore, the light reflectivity in the direction of 90 ° change is the light reflectivity R25 (λ) in the direction of 25 ° change, the light reflectivity R45 (λ) in the direction of 45 ° change, and 75 ° change. From the light reflectance R75 (λ) in the direction, the estimated value R90 (λ) can be calculated by the following equation.
R90 (λ) = R75 (λ) + A3 · (90−75)
= R75 (λ) + (2 · A2-A1) · 15
= 3 · R25 (λ) / 4-7 · R45 (λ) / 4 + 2 · R75 (λ);
According to this color measuring device, illumination light can be incident on the object surface from the direction of the incident angle of 45 degrees, and the light reflectance in the direction of the angle of change of 90 degrees on the object surface can be accurately estimated. By using this color measuring device, it is possible to accurately grasp the light reflectance in the direction that coincides with the incident direction of the illumination light.

上記の測色装置において、受光手段のそれぞれは、前記反射光を複数の波長域毎に受光することが好ましい。この場合、前記計算手段は前記各変角方向への光反射率を前記複数の波長域毎に計算し、前記推定手段は前記推定値を前記複数の波長域毎に計算することが好ましい。
受光手段が物体表面の反射光を複数の波長域毎に受光し、反射光の強度を複数の波長域毎に測定することができると、物体表面の光反射率を複数の波長域毎に計算することができる。即ち、物体表面の分光反射率を計算することができる。変角25、45、75度方向への光反射率が複数の波長域毎に判明すれば、上記した式(1)、(2)、(3)の関係を用いて、変角90度方向への光反射率を複数の波長域毎に推定することができる。即ち、物体表面の変角90度方向への分光反射率を推定することができる。分光反射率が推定できれば、物体表面を変角90度方向から見たときの明度や彩度や色相を定量的に推定することができる。
なお、物体表面の光反射率を波長域毎に区別しない方式であっても、少なくとも物体表面の変角90度方向への明度を定量的に推定することが可能となる。
In the above colorimetric apparatus, each of the light receiving means preferably receives the reflected light for each of a plurality of wavelength ranges. In this case, it is preferable that the calculation unit calculates a light reflectance in each of the variable angle directions for each of the plurality of wavelength regions, and the estimation unit calculates the estimated value for each of the plurality of wavelength regions.
When the light receiving means receives the reflected light from the object surface in multiple wavelength ranges and can measure the intensity of the reflected light in multiple wavelength ranges, it calculates the light reflectivity of the object surface in multiple wavelength ranges. can do. That is, the spectral reflectance of the object surface can be calculated. If the light reflectance in the direction of the angle of deviation 25, 45, 75 degrees is found for each of a plurality of wavelength ranges, the direction of the angle of deviation of 90 degrees is obtained by using the relationship of the above formulas (1), (2), (3). Can be estimated for each of a plurality of wavelength regions. That is, it is possible to estimate the spectral reflectance of the object surface in the direction of 90 ° change. If the spectral reflectance can be estimated, it is possible to quantitatively estimate the brightness, saturation, and hue when the object surface is viewed from the direction of the angle of 90 degrees.
Even when the light reflectance of the object surface is not distinguished for each wavelength range, it is possible to quantitatively estimate at least the lightness of the object surface in the direction of the 90-degree deflection.

本発明の技術は、物体表面の色彩を測定する方法に具現化することもできる。この測色方法は、物体表面に入射角45度方向から照明光を入射する工程と、物体表面で変角25度方向へ反射した反射光を受光する工程と、物体表面で変角45度方向へ反射した反射光を受光する工程と、物体表面で変角75度方向へ反射した反射光を受光する工程と、各受光工程で受光した反射光の強度に基づいて、物体表面の変角25度方向と変角45度方向と変角75度方向への光反射率をそれぞれ計算する工程と、計算した変角25度方向への光反射率R25と変角45度方向への光反射率R45と変角75度方向への光反射率R75を用いて、物体表面の変角90度方向への光反射率の推定値R90を計算する工程を備えている。そして、前記推定値R90が、実質的に、R90=3・R25/4−7・R45/4+2・R75を満たすことを特徴とする。
この測色方法によると、物体表面に入射角45度方向から照明光を入射させ、物体表面の変角90度方向への光反射率を正確に推定することができる。この測色方法を用いることによって、照明光の入射方向に一致する方向への光反射率を正確に把握することができる。
The technique of the present invention can also be embodied in a method for measuring the color of an object surface. In this color measurement method, the illumination light is incident on the object surface from the direction of the incident angle of 45 degrees, the reflected light reflected from the object surface in the direction of the variation angle of 25 degrees is received, and the variation angle of the object surface is the direction of 45 degrees The step of receiving the reflected light reflected to the object surface, the step of receiving the reflected light reflected in the direction of the angle of deviation of 75 degrees on the object surface, and the variable angle 25 of the object surface based on the intensity of the reflected light received in each light receiving step. The step of calculating the light reflectance in the direction of 45 degrees, the direction of 45 degrees, and the direction of 75 degrees, the light reflectance R25 in the direction of 25 degrees and the light reflectance in the direction of 45 degrees A step of calculating an estimated value R90 of the light reflectivity in the direction of 90 ° change of the object surface using R45 and the light reflectivity R75 in the direction of change of 75 ° is provided. The estimated value R90 substantially satisfies R90 = 3 · R25 / 4-7 · R45 / 4 + 2 · R75.
According to this color measurement method, illumination light can be incident on the object surface from the direction of an incident angle of 45 degrees, and the light reflectance in the direction of the 90-degree change angle of the object surface can be accurately estimated. By using this color measurement method, it is possible to accurately grasp the light reflectance in the direction that coincides with the incident direction of the illumination light.

本発明によって、光源位置や視点位置によって変化する色彩をより正確に把握することが可能となる。   According to the present invention, it is possible to more accurately grasp the color that changes depending on the light source position and the viewpoint position.

最初に、以下に説明する実施例の主要な特徴を列記する。
(特徴1) 測色装置は、物体表面を照明するハロゲンランプを備えている。
(特徴2) 測色装置は、5つの受光器を備えている。第1の受光器は、物体表面で変角15度方向へ反射された反射光を受光する位置に設けられている。第2の受光器は、物体表面で変角25度方向へ反射された反射光を受光する位置に設けられている。第3の受光器は、物体表面で変角45度方向へ反射された反射光を受光する位置に設けられている。第4の受光器は、物体表面で変角75度方向へ反射された反射光を受光する位置に設けられている。第5の受光器は、物体表面で変角110度方向へ反射された反射光を受光する位置に設けられている。各受光器は、受光した反射光の強度に対応する信号を出力する。
(特徴3) 測色装置は、物体表面の各変角方向への光反射率の測定値と、物体表面の変角90度方向への光反射率の推定値を表示する表示器を備えている。
First, the main features of the embodiments described below are listed.
(Feature 1) The color measurement device includes a halogen lamp that illuminates the object surface.
(Characteristic 2) The color measurement device includes five light receivers. The first light receiver is provided at a position for receiving the reflected light reflected in the direction of the variable angle of 15 degrees on the object surface. The second light receiver is provided at a position for receiving the reflected light reflected in the direction of the variable angle of 25 degrees on the object surface. The third light receiver is provided at a position for receiving the reflected light reflected in the direction of the variable angle of 45 degrees on the object surface. The fourth light receiver is provided at a position for receiving the reflected light reflected in the direction of the variable angle of 75 degrees on the object surface. The fifth light receiver is provided at a position for receiving the reflected light reflected in the direction of the variable angle of 110 degrees on the object surface. Each light receiver outputs a signal corresponding to the intensity of the received reflected light.
(Characteristic 3) The color measurement device includes a display for displaying a measured value of light reflectance in each direction of change of the object surface and an estimated value of light reflectivity in the direction of 90 degrees of change of the object surface. Yes.

本発明を実施した測色装置について図面を参照しながら説明する。図1は、測色装置10の構成を示す一部断面図である。図1に示すように、測色装置10は、利用者が携帯可能な携帯型の測色装置であり、測色対象である試料表面100a上に載置された状態で、試料表面100aの分光反射率を測定する装置である。
測色装置10は、利用者が携帯可能な大きさのハウジング12を備えている。ハウジング12には、利用者が操作する操作ボタン14や、測色装置10の動作状態や測定結果等を表示する表示部16等が設けられている。
A color measuring device embodying the present invention will be described with reference to the drawings. FIG. 1 is a partial cross-sectional view showing the configuration of the color measuring device 10. As shown in FIG. 1, the color measurement device 10 is a portable color measurement device that can be carried by a user, and is placed on the sample surface 100 a that is a color measurement target, and the spectrum of the sample surface 100 a. This is a device for measuring reflectance.
The color measuring device 10 includes a housing 12 having a size that can be carried by a user. The housing 12 is provided with an operation button 14 that is operated by a user, a display unit 16 that displays an operation state, a measurement result, and the like of the color measurement device 10.

ハウジング12の内部には、ドーム状の測定室20が設けられている。測定室20の下方は外部に向けて開放しており、測色装置10が試料表面100a上に載置されたときに、測定室20が試料表面100aと対向するようになっている。測定室20には、光源器28と、第1受光器21と、第2受光器22と、第3受光器23と、第4受光器24と、第5受光器25が設けられている。
光源器28は、試料表面100aを照明するための光源である。光源器28が照射する照明光(図中の実線矢印)4は、測定室20に対向している測定面100aへ入射するようになっている。光源器28には、例えばハロゲンランプを用いることができる。
各受光器21〜25は、試料表面100aの測定点Pで反射された反射光(図中の破線矢印)8を受光し、反射光8の強度に対応する信号を出力する。各受光器21〜25は、複数の受光素子を備えている。複数の受光素子のそれぞれには、異なる色のカラーフィルタが設けられている。各受光器21〜25は、複数の受光素子によって、反射光8を複数の波長域毎に受光し、反射光8の強度に対応する信号を波長域毎に出力する。各受光器21〜25は、互いに異なる位置に配置されている。各受光器21〜25は、試料表面100aの測定点Pで反射された反射光8を、互いに異なる方向で受光する。
A dome-shaped measurement chamber 20 is provided inside the housing 12. The lower part of the measurement chamber 20 is open to the outside, and the measurement chamber 20 faces the sample surface 100a when the color measuring device 10 is placed on the sample surface 100a. The measurement chamber 20 is provided with a light source 28, a first light receiver 21, a second light receiver 22, a third light receiver 23, a fourth light receiver 24, and a fifth light receiver 25.
The light source device 28 is a light source for illuminating the sample surface 100a. Illumination light (solid arrow in the figure) 4 irradiated by the light source device 28 enters the measurement surface 100 a facing the measurement chamber 20. For the light source device 28, for example, a halogen lamp can be used.
Each of the light receivers 21 to 25 receives the reflected light (broken arrow in the figure) 8 reflected at the measurement point P on the sample surface 100 a and outputs a signal corresponding to the intensity of the reflected light 8. Each of the light receivers 21 to 25 includes a plurality of light receiving elements. Each of the plurality of light receiving elements is provided with a color filter of a different color. Each of the light receivers 21 to 25 receives the reflected light 8 for each of a plurality of wavelength ranges by a plurality of light receiving elements, and outputs a signal corresponding to the intensity of the reflected light 8 for each wavelength range. Each light receiver 21-25 is arrange | positioned in a mutually different position. Each of the light receivers 21 to 25 receives the reflected light 8 reflected at the measurement point P on the sample surface 100a in different directions.

図2を参照して、光源器28と各受光器21〜25の位置関係について説明する。図2に示すように、光源器28と試料表面100a上の測定点Pを結ぶ入射軸Daは、試料表面100aの法線方向Dbに対して、45度の角度をなしている。即ち、光源器28が発した照明光2は、試料表面100a上の測定点Pに入射角45度の方向から入射する。図中のDcは、試料表面100a上の測定点Pにおける照明光2の正反射方向を示している。正反射方向Dcは、試料表面100aの法線方向Dbに対して、反入射軸Da側に45度の角度をなしている。
第1受光器21は、試料表面100aの測定点Pから見て、正反射方向Dcから法線方向Dbに向けて15度の角度をなす方向に位置している。即ち、第1受光器21は、変角15度方向に配置されている。第1受光器21によって、試料表面100aの測定点Pで変角15度方向へ反射された反射光8が受光される。
第2受光器22は、試料表面100aの測定点Pから見て、正反射方向Dcから法線方向Dbに向けて25度の角度をなす方向に位置している。即ち、第2受光器22は、変角25度方向に配置されている。第2受光器22によって、試料表面100aの測定点Pで変角25度方向に反射された反射光8が受光される。
第3受光器23は、試料表面100aの測定点Pから見て、正反射方向Dcから法線方向Dbに向けて45度の角度をなす方向に位置しており、試料表面100aの測定点Pにおける法線方向Db上に位置している。即ち、第3受光器23は、変角45度方向に配置されている。第3受光器23によって、試料表面100aの測定点Pで変角45度方向に反射された反射光8が受光される。
第4受光器24は、試料表面100aの測定点Pから見て、正反射方向Dcから法線方向Dbに向けて75度の角度をなす方向に位置している。即ち、第4受光器24は、変角75度方向に配置されている。第4受光器24によって、試料表面100aの測定点Pで変角75度方向へ反射された反射光8が受光される。
第5受光器110は、試料表面100aの測定点Pからみて、正反射方向Dcから法線方向Dbに向けて110度の角度をなす方向に位置している。即ち、第5受光器25は、変角110度方向に配置されている。第5受光器25によって、試料表面100aの測定点Pで変角110度方向に反射された反射光8が受光される。
With reference to FIG. 2, the positional relationship of the light source device 28 and each light receiver 21-25 is demonstrated. As shown in FIG. 2, the incident axis Da connecting the light source device 28 and the measurement point P on the sample surface 100a forms an angle of 45 degrees with respect to the normal direction Db of the sample surface 100a. That is, the illumination light 2 emitted from the light source device 28 is incident on the measurement point P on the sample surface 100a from a direction having an incident angle of 45 degrees. Dc in the figure indicates the regular reflection direction of the illumination light 2 at the measurement point P on the sample surface 100a. The regular reflection direction Dc forms an angle of 45 degrees on the side opposite to the incident axis Da with respect to the normal direction Db of the sample surface 100a.
The first light receiver 21 is located in a direction that forms an angle of 15 degrees from the regular reflection direction Dc toward the normal direction Db when viewed from the measurement point P on the sample surface 100a. In other words, the first light receiver 21 is arranged in the direction of the variable angle of 15 degrees. The first light receiver 21 receives the reflected light 8 reflected in the direction of the variable angle of 15 degrees at the measurement point P on the sample surface 100a.
The second light receiver 22 is positioned in a direction that forms an angle of 25 degrees from the regular reflection direction Dc toward the normal direction Db when viewed from the measurement point P on the sample surface 100a. That is, the second light receiver 22 is disposed in the direction of the variable angle of 25 degrees. The second light receiver 22 receives the reflected light 8 reflected at the measurement point P on the sample surface 100a in the direction of the variable angle of 25 degrees.
The third light receiver 23 is located in a direction that forms an angle of 45 degrees from the specular reflection direction Dc toward the normal direction Db when viewed from the measurement point P on the sample surface 100a, and the measurement point P on the sample surface 100a. It is located on the normal line direction Db. In other words, the third light receiver 23 is arranged in the direction of the variable angle 45 degrees. The third light receiver 23 receives the reflected light 8 reflected at the measurement point P on the sample surface 100a in the direction of 45 degrees.
The fourth light receiver 24 is located in a direction that forms an angle of 75 degrees from the regular reflection direction Dc toward the normal direction Db when viewed from the measurement point P on the sample surface 100a. That is, the fourth light receiver 24 is disposed in the direction of the variable angle of 75 degrees. The fourth light receiver 24 receives the reflected light 8 reflected at the measurement point P on the sample surface 100a in the direction of the variable angle of 75 degrees.
The fifth light receiver 110 is located in a direction that forms an angle of 110 degrees from the regular reflection direction Dc toward the normal direction Db when viewed from the measurement point P on the sample surface 100a. That is, the fifth light receiver 25 is arranged in the direction of the variable angle 110 degrees. The fifth light receiver 25 receives the reflected light 8 reflected in the direction of the variable angle of 110 degrees at the measurement point P on the sample surface 100a.

図1に示すように、測色装置10は、処理回路34を備えている。処理回路34は、各受光器21〜25の出力信号を入力し、試料表面100aの分光反射率(波長λ毎の反射率)R(λ)を変角毎に計算する。詳しくは、第1受光器21の出力信号を用いて、試料表面100aの変角15度方向への分光反射率R15(λ)を計算する。また、第2受光器22の出力信号を用いて、試料表面100aの変角25度方向への分光反射率R25(λ)を計算する。また、第3受光器23の出力信号を用いて、試料表面100aの変角45方向への光反射率R45(λ)を計算する。また、第4受光器24の出力信号を用いて、試料表面100aの変角75度方向への分光反射率R75(λ)を計算する。また、第5受光器25の出力信号を用いて、試料表面100aの変角110方向への光反射率R110(λ)を計算する。
処理回路34は、計算した分光反射率R(λ)を用いて、色を記述する各種の指標を算出することができる。例えば、計算した分光反射率R(λ)を用いて、国際照明委員会(CIE)が規定するCIE1976(L,a,b)表色系の各指標値L,a,bを算出することができる。ここで、L値は色の明度を記述する指標である。L値が大きいほど色が明るいことを示す。a値は色の赤と緑の色相に対する強度を記述する指標である。a値が大きいほど(正の値)赤の色相を示し、a値が小さいほど(負の値)緑の色相を示す。b値は黄と青の色相に対する強度を記述する指標である。b値が大きいほど(正の値)黄の色相を示し、b値が小さいほど(負の値)青の色相を示す。各指標値L,a,bは変角毎に異なる値となり、例えば自動車ボディの塗装面等ではその差異が顕著に現れる。測色装置10で得られた変角毎のL値とa値とb値は、コンピュータグラフィクス(CG)装置等に教示して、自動車ボディの塗装面等を再現表示するのに用いることができる。
As shown in FIG. 1, the color measurement device 10 includes a processing circuit 34. The processing circuit 34 receives the output signals of the light receivers 21 to 25 and calculates the spectral reflectance (reflectance for each wavelength λ) R (λ) of the sample surface 100a for each variable angle. Specifically, using the output signal of the first light receiver 21, the spectral reflectance R15 (λ) of the sample surface 100a in the direction of the 15-degree variation is calculated. Further, using the output signal of the second light receiver 22, the spectral reflectance R25 (λ) of the sample surface 100a in the direction of the variable angle of 25 degrees is calculated. Further, using the output signal of the third light receiver 23, the light reflectance R45 (λ) in the direction of the angle 45 of the sample surface 100a is calculated. Further, using the output signal of the fourth light receiver 24, the spectral reflectance R75 (λ) of the sample surface 100a in the direction of the variable angle of 75 degrees is calculated. Further, using the output signal of the fifth light receiver 25, the light reflectivity R110 (λ) in the direction of the variable angle 110 of the sample surface 100a is calculated.
The processing circuit 34 can calculate various indices describing the color using the calculated spectral reflectance R (λ). For example, using the calculated spectral reflectance R (λ), each index value L * , a * , b of the CIE 1976 (L * , a * , b * ) color system defined by the International Commission on Illumination (CIE) * Can be calculated. Here, the L * value is an index describing the brightness of the color. The larger the L * value, the brighter the color. The a * value is an index that describes the intensity of the color with respect to the red and green hues. A larger a * value (positive value) indicates a red hue, and a smaller a * value (negative value) indicates a green hue. The b * value is an index that describes the intensity for yellow and blue hues. A larger b * value (positive value) indicates a yellow hue, and a smaller b * value (negative value) indicates a blue hue. Each index value L * , a * , b * varies depending on the angle of change. For example, the difference appears remarkably on the painted surface of the automobile body. The L * value, a * value, and b * value for each inflection obtained by the colorimetric device 10 are taught to a computer graphics (CG) device or the like, and used to reproduce and display the painted surface of an automobile body. be able to.

処理回路34は、計算した変角25、45、75度の分光反射率R25(λ)、R45(λ)、R75(λ)を用いて、試料表面100aの変角90度方向への分光反射率R90を推定計算することができる。また、計算した変角25、45、75度の明度指標L25、L45、L75を用いて、試料表面100aの変角90度方向の明度指標L90を推定計算することができる。
図3を参照して、処理回路34が、変角25、45、75度方向への分光反射率R25(λ)、R45(λ)、R75(λ)を用いて、変角90度方向への分光反射率R90(λ)を推定計算する手法について説明する。本発明者は、変角に応じて分光反射率が変化するときの挙動を研究し、変角と分光反射率との間に図3に示す関係が成立していることを見出した。即ち、図3に示すように、変角が25度から45度へと変化するときの分光反射率R(λ)の変化率をA1とし、変角が45度から75度へと変化するときの分光反射率R(λ)の変化率をA2とし、変角が75度から90度へと変化するときの分光反射率R(λ)の変化率をA3とする。すると、変化率A1と変化率A2との間の変化量と、変化率A2と変化率A3との変化量が略等しくなることを見出した。この関係は、任意の波長λについて有効に成立することが確認されている。従って、変角90度方向への分光反射率R90(λ)は、変角25度方向への分光反射率R25(λ)と、変角45度方向への分光反射率R45(λ)と、変角75度方向への分光反射率R75(λ)を用いて推定計算することができる。以上をまとめると、以下の式が成立する。
A1=(R45(λ)−R25(λ))/(45−25)・・(1);
A2=(R75(λ)−R45(λ))/(75−45)・・(2);
A3−A2=A2−A1 ・・(3);
従って、変角90度方向への分光反射率R90(λ)は、
R90(λ)=R75(λ)+A3・(90−75)
=R75(λ)+(2・A2−A1)・15
=3・R25(λ)/4−7・R45(λ)/4+2・R75(λ);
と推定値を計算することができる。
処理回路34は、上記の関係を利用して、変角25、45、75度方向への分光反射率の測定値R25(λ)、R45(λ)、R75(λ)から、変角90度方向への分光反射率の推定値を計算する。
The processing circuit 34 uses the calculated spectral reflectances R25 (λ), R45 (λ), and R75 (λ) with the variable angles of 25, 45, and 75 degrees to reflect the spectral reflection of the sample surface 100a toward the variable angle of 90 degrees. The rate R90 can be estimated and calculated. Further, by using the calculated brightness indexes L25, L45, and L75 of the variable angles of 25, 45, and 75 degrees, the brightness index L90 of the sample surface 100a in the direction of the variable angle of 90 degrees can be estimated and calculated.
Referring to FIG. 3, the processing circuit 34 uses the spectral reflectances R25 (λ), R45 (λ), and R75 (λ) in the directions of the variable angles 25, 45, and 75 degrees to change the variable angle in the direction of 90 degrees. A method for estimating and calculating the spectral reflectance R90 (λ) of the above will be described. The inventor has studied the behavior when the spectral reflectance changes according to the angle change, and found that the relationship shown in FIG. 3 is established between the angle change and the spectral reflectance. That is, as shown in FIG. 3, when the change rate of the spectral reflectance R (λ) when the variable angle changes from 25 degrees to 45 degrees is A1, and the variable angle changes from 45 degrees to 75 degrees. The change rate of the spectral reflectance R (λ) is A2, and the change rate of the spectral reflectance R (λ) when the angle of change changes from 75 degrees to 90 degrees is A3. Then, it discovered that the variation | change_quantity between change rate A1 and change rate A2 and the variation | change_quantity of change rate A2 and change rate A3 became substantially equal. It has been confirmed that this relationship is effectively established for an arbitrary wavelength λ. Therefore, the spectral reflectance R90 (λ) in the direction of 90 degrees of variation is the spectral reflectance R25 (λ) in the direction of 25 degrees of variation, the spectral reflectance R45 (λ) in the direction of 45 degrees of variation, It is possible to estimate and calculate using the spectral reflectance R75 (λ) in the direction of the variable angle of 75 degrees. In summary, the following equation is established.
A1 = (R45 (λ) −R25 (λ)) / (45-25) (1);
A2 = (R75 (λ) −R45 (λ)) / (75−45) (2);
A3-A2 = A2-A1 (3);
Therefore, the spectral reflectance R90 (λ) in the direction of 90 degrees of deflection is
R90 (λ) = R75 (λ) + A3 · (90−75)
= R75 (λ) + (2 · A2-A1) · 15
= 3 · R25 (λ) / 4-7 · R45 (λ) / 4 + 2 · R75 (λ);
And an estimate can be calculated.
Using the above relationship, the processing circuit 34 uses the measured values R25 (λ), R45 (λ), and R75 (λ) of the spectral reflectances in the directions of the variable angles 25, 45, and 75 degrees to change the variable angle to 90 degrees. Calculate an estimate of the spectral reflectance in the direction.

図2から明らかなように、照明光4の入射角が45度の場合、変角が90度となる方向、即ち、正反射方向Dcから法線方向Dbに向けて90度の角度をなす方向は、照明光4の入射軸Daに一致する。従って、変角90度方向への分光反射率R90(λ)を測定するためには、受光器を照明光4の入射軸Da上に配置することが必要となる。この場合、光源器28と受光器と測定点Pが同一直線上(入射軸Da上)に並び、光源器28と測定点Pとの間に受光器が介在するか、受光器と測定点Pとの間に光源器28が介在することとなる。前者の位置関係であれば受光器が測定点Pからの反射光を受光することができず、後者の位置関係であれば光源器28が測定点Pを照明することができない。いずれにしても、変角90度方向への分光反射率R90(λ)は、物理的に測定することができない。
本実施例の測色装置10は、物理的に測定できない変角90度方向への分光反射率R90(λ)を、測定した変角25、45、75度方向への分光反射率R25(λ)、R45(λ)、R75(λ)を用いて推定することができる。本実施例の測色装置10によれば、試料表面100aの変角15、25、45、75、90、110度方向への分光反射率をそれぞれ把握することができる。
As is apparent from FIG. 2, when the incident angle of the illumination light 4 is 45 degrees, the direction in which the variable angle becomes 90 degrees, that is, the direction that forms an angle of 90 degrees from the regular reflection direction Dc toward the normal direction Db. Corresponds to the incident axis Da of the illumination light 4. Therefore, in order to measure the spectral reflectance R90 (λ) in the direction of the variable angle of 90 degrees, it is necessary to arrange the light receiver on the incident axis Da of the illumination light 4. In this case, the light source 28, the light receiver, and the measurement point P are aligned on the same straight line (on the incident axis Da), and the light receiver is interposed between the light source 28 and the measurement point P, or the light receiver and the measurement point P. The light source device 28 is interposed between the two. In the former positional relationship, the light receiver cannot receive the reflected light from the measurement point P, and in the latter positional relationship, the light source device 28 cannot illuminate the measurement point P. In any case, the spectral reflectance R90 (λ) in the direction of the 90-degree deflection cannot be physically measured.
The colorimetric device 10 of the present embodiment uses the spectral reflectance R90 (λ) in the direction of 90 degrees of variation that cannot be physically measured, and the spectral reflectance R25 (λ) in the directions of 25, 45, and 75 degrees of variation measured. ), R45 (λ), R75 (λ). According to the color measurement device 10 of the present embodiment, it is possible to grasp the spectral reflectances of the sample surface 100a in the directions 15, 25, 45, 75, 90, and 110 degrees.

処理回路34によって計算された変角15、25、45、75、90、110度方向への各分光反射率R(λ)は、表示器16に表示される。このとき、処理回路34は、計算した分光反射率R(λ)に基づいてCIE1976(L,a,b)表色系の各指標値L,a,bを計算し、表示器16に表示させることもできる。 Each spectral reflectance R (λ) in the direction of variable angles 15, 25, 45, 75, 90, and 110 degrees calculated by the processing circuit 34 is displayed on the display 16. At this time, the processing circuit 34 calculates each index value L * , a * , b * of the CIE 1976 (L * , a * , b * ) color system based on the calculated spectral reflectance R (λ). It can also be displayed on the display 16.

上記した数式(1)〜(3)は、CIE1976(L,a,b)表色系において色の明度を記述するL値についても成立する。即ち、
B1=(L45−L25)/(45−25) ・・(4);
B2=(L75−L45)/(75−45) ・・(5);
B3−B2=B2−B1 ・・(6);
が成立する。上式において、L25は試料表面100aを変角25度方向から見たときのL値を示し、L45は試料表面100aを変角45度方向から見たときのL値を示し、L75は試料表面100aを変角75度方向から見たときのL値を示す。B1は変角が25度から45度へと変化するときのL値の変化率を示し、B2は変角が45度から75度へと変化するときのL値の変化率を示し、B3は変角が75度から90度へと変化するときのL値の変化率を示している。従って、試料表面100aを変角90度方向から見たときの明度L90は、
L90=L75+B3・(90−75)
=L75+(2・B2−B1)・15
=L75+(2・A2−A1)・15
=3・L25/4−7・L45/4+2・L75;
と推定値を計算することができる。
The above formulas (1) to (3) also hold for the L * value describing the lightness of the color in the CIE 1976 (L * , a * , b * ) color system. That is,
B1 = (L45−L25) / (45−25) (4);
B2 = (L75-L45) / (75-45) (5);
B3-B2 = B2-B1 (6);
Is established. In the above equation, L25 represents the L * value as viewed from the bending 25 degree direction to the sample surface 100a, L45 represents the L * value as viewed from the bending 45 degree direction to the sample surface 100a, the L75 The L * value when the sample surface 100a is viewed from the direction of the bending angle of 75 degrees is shown. B1 represents the rate of change of the L * value when the bending is changed to 45 degrees from 25 degrees, B2 represents the rate of change of the L * value when the variable angle changes from 45 degrees to 75 degrees, B3 indicates the rate of change of the L * value when the angle of change changes from 75 degrees to 90 degrees. Therefore, the lightness L90 when the sample surface 100a is viewed from the direction of the angle change of 90 degrees is
L90 = L75 + B3. (90-75)
= L75 + (2.B2-B1) .15
= L75 + (2.A2-A1) .15
= 3 · L25 / 4-7 · L45 / 4 + 2 · L75;
And an estimate can be calculated.

以上の構成によって、測色装置10は、測定対象となる自動車ボディ等の試料表面100a上に載置され、試料表面100aの色を測定することができる。測色装置10は、光源器28によって試料表面100aを照明し、試料表面100aの測定点Pで反射された反射光8を5の受光器21〜25によって受光し、5角度の変角方向への光反射率を測定する。このとき、測色装置10は、計測した各変角方向の反射率のそれぞれから、試料表面100aを各変角方向から見たときの明度を記述するL値を算出することもできる。そして、測色装置10は、変角25、45、75度方向への試料表面100aの光反射率を用いて、試料表面100aの変角90度方向への光反射率を推定計算することができる。また、試料表面100aを変角25、45、75度方向から見たときの各明度指標L値を用いて、試料表面100aを変角90度方向から見たときの明度指標L値を推定計算することができる。測色装置10によると、試料表面100aの変角90度方向への光反射率や、試料表面100aを変角90度方向から見たときの明度を把握することができる。 With the above configuration, the color measurement device 10 is placed on the sample surface 100a such as an automobile body to be measured, and can measure the color of the sample surface 100a. The colorimetric device 10 illuminates the sample surface 100a by the light source device 28, receives the reflected light 8 reflected at the measurement point P on the sample surface 100a by the five light receivers 21 to 25, and changes the angle of change to five angles. Measure the light reflectance. At this time, the colorimetric device 10 can also calculate an L * value that describes the lightness when the sample surface 100a is viewed from each angle change direction, from each of the measured reflectances in each angle change direction. The colorimetric device 10 can estimate and calculate the light reflectance of the sample surface 100a in the 90-degree change direction using the light reflectance of the sample surface 100a in the directions of 25, 45, and 75 degrees. it can. Further, using each lightness index L * value when viewed sample surface 100a from bending 25,45,75 degree direction, a lightness index L * value when viewed sample surface 100a from bending 90 degree direction Estimate can be calculated. According to the colorimetric device 10, it is possible to grasp the light reflectivity of the sample surface 100a in the direction of 90 ° change and the brightness when the sample surface 100a is viewed from the direction of 90 ° change.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

実施例の測色装置の構成を示す一部断面図。FIG. 2 is a partial cross-sectional view illustrating a configuration of a color measurement device according to an embodiment. 光源器と各受光器の位置関係を示す図。The figure which shows the positional relationship of a light source device and each light receiver. 変角90度方向への光反射率を推定する手法を説明する図。The figure explaining the method of estimating the light reflectivity to 90 degrees of variable angles. 変角毎に光反射率を測定する様子を示す図。The figure which shows a mode that a light reflectivity is measured for every variable angle.

符号の説明Explanation of symbols

10:測色装置
12:ハウジング
14:操作ボタン
16:表示部
20:測定室
21,22,23,24,25:受光器
28:光源器
34:処理回路
100:試料
100a:試料表面
10: Color measuring device 12: Housing 14: Operation button 16: Display unit 20: Measurement chamber 21, 22, 23, 24, 25: Light receiver 28: Light source 34: Processing circuit 100: Sample 100a: Sample surface

Claims (3)

物体表面に入射角45度方向から照明光を入射する照明手段と、
物体表面で変角25度方向へ反射した反射光を受光する受光手段と、
物体表面で変角45度方向へ反射した反射光を受光する受光手段と、
物体表面で変角75度方向へ反射した反射光を受光する受光手段と、
各受光手段で受光した反射光の強度に基づいて、物体表面の変角25度方向と変角45度方向と変角75度方向への光反射率をそれぞれ計算する計算手段と、
計算された変角25度方向への光反射率R25と変角45度方向への光反射率R45と変角75度方向への光反射率R75を用いて、物体表面の変角90度方向への光反射率の推定値R90を計算する推定手段を備え、
前記推定値R90が、実質的に次式、即ち、
R90=3・R25/4−7・R45/4+2・R75
を満たすことを特徴とする測色装置。
Illuminating means for making illumination light incident on the object surface from an incident angle direction of 45 degrees;
A light receiving means for receiving the reflected light reflected from the object surface in the direction of a variable angle of 25 degrees;
A light receiving means for receiving the reflected light reflected from the object surface in the direction of the angle of 45 degrees;
A light receiving means for receiving the reflected light reflected from the object surface in the direction of the variable angle of 75 degrees;
Calculation means for calculating the light reflectances in the direction of 25 degrees, 45 degrees and 75 degrees of the object surface based on the intensity of the reflected light received by each light receiving means;
Using the calculated light reflectivity R25 in the direction of the variable angle of 25 degrees, the light reflectivity R45 in the direction of the variable angle of 45 degrees, and the light reflectivity R75 in the direction of the variable angle of 75 degrees, the direction of the variable angle of 90 degrees An estimation means for calculating an estimated value R90 of light reflectance to
The estimated value R90 is substantially the following equation:
R90 = 3 ・ R25 / 4-7 ・ R45 / 4 + 2 ・ R75
A colorimetric device characterized by satisfying
前記受光手段のそれぞれは、前記反射光を複数の波長域毎に受光し、
前記計算手段は、前記各変角方向への光反射率を前記複数の波長域毎に計算し、
前記推定手段は、前記推定値を前記複数の波長域毎に計算することを特徴とする請求項1の測色装置。
Each of the light receiving means receives the reflected light for each of a plurality of wavelength ranges,
The calculation means calculates the light reflectance in each of the variable angle directions for each of the plurality of wavelength ranges,
The colorimetric apparatus according to claim 1, wherein the estimation unit calculates the estimated value for each of the plurality of wavelength ranges.
物体表面の測色方法であって、
物体表面に入射角45度方向から照明光を入射する工程と、
物体表面で変角25度方向へ反射した反射光を受光する工程と、
物体表面で変角45度方向へ反射した反射光を受光する工程と、
物体表面で変角75度方向へ反射した反射光を受光する工程と、
各受光工程で受光した反射光の強度に基づいて、物体表面の変角25度方向と変角45度方向と変角75度方向への光反射率をそれぞれ計算する工程と、
計算した変角25度方向への光反射率R25と変角45度方向への光反射率R45と変角75度方向への光反射率R75を用いて、物体表面の変角90度方向への光反射率の推定値R90を計算する工程を備え、
前記推定値R90が、実質的に次式、即ち、
R90=3・R25/4−7・R45/4+2・R75
を満たすことを特徴とする測色方法。
A color measurement method for an object surface,
A step of making illumination light incident on the object surface from a direction of an incident angle of 45 degrees;
Receiving reflected light reflected from the object surface in the direction of a variable angle of 25 degrees;
Receiving the reflected light reflected from the object surface in the direction of the angle of 45 degrees;
Receiving the reflected light reflected from the object surface in the direction of the variable angle of 75 degrees;
A step of calculating light reflectances in the direction of 25 degrees, 45 degrees and 75 degrees of the object surface based on the intensity of the reflected light received in each light receiving step;
Using the calculated light reflectivity R25 in the direction of the variable angle of 25 degrees, light reflectivity R45 in the direction of the variable angle of 45 degrees, and light reflectivity R75 in the direction of the variable angle of 75 degrees, the direction of the variable angle of the object surface is changed to 90 degrees. Calculating an estimated value R90 of the light reflectance of
The estimated value R90 is substantially the following equation:
R90 = 3 ・ R25 / 4-7 ・ R45 / 4 + 2 ・ R75
A colorimetric method characterized by satisfying the above.
JP2006243991A 2006-09-08 2006-09-08 Color measuring apparatus and method Pending JP2008064654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006243991A JP2008064654A (en) 2006-09-08 2006-09-08 Color measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006243991A JP2008064654A (en) 2006-09-08 2006-09-08 Color measuring apparatus and method

Publications (1)

Publication Number Publication Date
JP2008064654A true JP2008064654A (en) 2008-03-21

Family

ID=39287488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006243991A Pending JP2008064654A (en) 2006-09-08 2006-09-08 Color measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP2008064654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016437A (en) * 2007-07-02 2009-01-22 Nitto Denko Corp Method of detecting defect position of semiconductor wafer
JP2017223831A (en) * 2016-06-15 2017-12-21 住友金属鉱山株式会社 Electrode substrate film and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016437A (en) * 2007-07-02 2009-01-22 Nitto Denko Corp Method of detecting defect position of semiconductor wafer
JP2017223831A (en) * 2016-06-15 2017-12-21 住友金属鉱山株式会社 Electrode substrate film and manufacturing method of the same

Similar Documents

Publication Publication Date Title
WO2019097825A1 (en) Multi-angle colorimeter
JPH1010045A (en) Method of determining optical property of metallic paint film
US10724901B2 (en) Colour measurement method and colour measurement device
JP2008064654A (en) Color measuring apparatus and method
US7027165B2 (en) Method and device for surface evaluation
US11199450B2 (en) Optical sensor and method for detecting electromagnetic radiation
JP3933581B2 (en) Method and apparatus for surface evaluation
JP4629554B2 (en) Method for optical inspection of inspection surface properties and apparatus for carrying out the method
WO2017094559A1 (en) Reflection-characteristic measurement system
AU2002338353A1 (en) Method and device for surface evaluation
JP2007333726A (en) Device and method for supporting operation for evaluating paint color
JP4701986B2 (en) Color measuring device and light reflectance and brightness estimation method
CN109073466B (en) Optical analysis device and optical analysis method
CN103575673A (en) Spectrophotometer capable of measuring color emotion
US11009451B2 (en) Multi-angle colorimeter
JP2005326389A (en) Method for determining optical properties of metallic coating
Leloup et al. Characterization of gonio-apparent colours
Pospíšil et al. Basic methods for measuring the reflectance color of iron oxides
JP2007303993A (en) Method for determining optical characteristic of interference-coloring paint
US11953431B2 (en) Measuring a color of a target coating
Cramer Description and characterization of interference pigments
Nofi The color determination of optically variable flake pigments
JP2005091172A (en) Color measuring instrument
JPH03282335A (en) Colorimetric device for cylindrical surface
Marszalec et al. Non-destructive testing of the quality of naturally white food products