JP2008063871A - Soil improving method and soil improving equipment - Google Patents

Soil improving method and soil improving equipment Download PDF

Info

Publication number
JP2008063871A
JP2008063871A JP2006244145A JP2006244145A JP2008063871A JP 2008063871 A JP2008063871 A JP 2008063871A JP 2006244145 A JP2006244145 A JP 2006244145A JP 2006244145 A JP2006244145 A JP 2006244145A JP 2008063871 A JP2008063871 A JP 2008063871A
Authority
JP
Japan
Prior art keywords
ground
pipe
supply pipe
fluid
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244145A
Other languages
Japanese (ja)
Other versions
JP4966613B2 (en
Inventor
Toshihisa Taniguchi
利久 谷口
Makoto Otsuka
誠 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudo Tetra Corp
Original Assignee
Fudo Tetra Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudo Tetra Corp filed Critical Fudo Tetra Corp
Priority to JP2006244145A priority Critical patent/JP4966613B2/en
Priority to US11/614,232 priority patent/US7651301B2/en
Publication of JP2008063871A publication Critical patent/JP2008063871A/en
Application granted granted Critical
Publication of JP4966613B2 publication Critical patent/JP4966613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce excavation resistance during penetration into ground, while suppressing an increase in cost. <P>SOLUTION: A rotating shaft penetrates the ground by excavating the ground by means of an excavating head 120 at the leading end of the rotating shaft 101. During the penetration of the rotating shaft, pressure water and compressed air are supplied from a pressure-water supply device 213 and an compressed-air supply device 223 on the ground; an air feed pipe 220 is connected to an insertion opening 215 of a water pipe 210, so that the pressure water and the compressed air are merged together on this side of the inlet of a supply pipeline; and merged fluids are sent into the excavating head through the supply pipeline, and jetted toward excavated soil from an ejection port of a jet box 130 which is provided on the backside of a spiral blade 121. A check valve 224 for inhibiting the flow of the fluid from the side of a confluence, and a safety valve 225 for releasing pressure equal to/exceeding specified pressure are provided on the air feed pipe 220. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転軸の先端に装備した掘削ヘッドで地盤を掘削しながら回転軸を地盤に貫入する際の抵抗を小さくして、施工を容易にすることのできる地盤改良工法および地盤改良装置に関するものである。   The present invention relates to a ground improvement method and a ground improvement device capable of facilitating construction by reducing resistance when penetrating the rotary shaft into the ground while excavating the ground with an excavation head equipped at the tip of the rotary shaft. Is.

地盤改良工法においては、地盤に貫入される回転軸の先端に地上から流体を送り込み、その流体を、回転軸の先端の攪拌翼や掘削ヘッドに設けた吐出口から掘削地盤中に噴射することが一般的に行われている。   In the ground improvement method, a fluid is sent from the ground to the tip of the rotating shaft penetrating into the ground, and the fluid is injected into the excavated ground from a stirring blade at the tip of the rotating shaft or a discharge port provided in the drilling head. Generally done.

特許文献1や特許文献2には、地上の供給手段から圧縮空気と液状物を、回転軸中の別経路を通して回転軸の先端に送り込み、攪拌翼に付設した混合エジェクターにより、圧縮空気に液状物を同伴させて噴射するものが開示されている。   In Patent Document 1 and Patent Document 2, compressed air and liquid material are sent from the ground supply means to the tip of the rotating shaft through another path in the rotating shaft, and liquid material is added to the compressed air by a mixing ejector attached to the stirring blade. Is disclosed that is jetted in the presence of a gas.

図11は一例として、特許文献1に記載された地盤改良装置の構成を示している。   FIG. 11 shows the configuration of the ground improvement device described in Patent Document 1 as an example.

この図11において、地盤に貫入される回転軸501の内部には、圧縮空気用の供給管路502と液状物用の供給管路503とが設けられており、各供給管路502、503の上端入口502a、503aには、圧縮空気供給装置504および液状物供給装置505からの配管504a、505aがそれぞれ接続されている。   In FIG. 11, a supply pipe 502 for compressed air and a supply pipe 503 for liquid material are provided inside a rotary shaft 501 penetrating into the ground. Pipes 504a and 505a from the compressed air supply device 504 and the liquid material supply device 505 are connected to the upper end inlets 502a and 503a, respectively.

また、各供給管路502、503の下端出口502b、503bは、回転軸501の下端の攪拌翼506に設けられた混合エジェクター507に接続されている。そして、混合エジェクター507により、供給管路502を通して送られて来た圧縮空気に、供給管路503を通して送られて来た液状物を同伴させて噴射するようになっている。
特許第3416774号公報 特開2003−74049号公報
Further, the lower end outlets 502 b and 503 b of the supply pipe lines 502 and 503 are connected to a mixing ejector 507 provided on the stirring blade 506 at the lower end of the rotating shaft 501. Then, the mixed ejector 507 jets the compressed air sent through the supply pipe 502 together with the liquid material sent through the supply pipe 503.
Japanese Patent No. 3416774 JP 2003-74049 A

ところで、各流体種類毎に回転軸501の内部に供給管路(経路)502、503を設けて、最終的に土壌に向けて噴射する直前に流体を混合エジェクター507で混合して噴射する方式は、回転軸501の内部に多数の供給管路502、503を確保しなくてはならず、スイベルジョイントや軸内配管が複雑になるため、設備コストが嵩むという問題がある。   By the way, there is a method in which supply pipes (paths) 502 and 503 are provided inside the rotary shaft 501 for each fluid type, and the fluid is mixed and ejected by the mixing ejector 507 immediately before being finally ejected toward the soil. In addition, a large number of supply pipes 502 and 503 must be secured inside the rotating shaft 501, and the swivel joint and the in-shaft piping are complicated, resulting in a problem that the equipment cost increases.

通常の施工装置では、回転軸内に供給管路を1〜2本だけ設けているのが一般的であり、そのような設備に、上記の特許文献1あるいは特許文献2に記載の技術を適用することは、コスト的に非常に難しい。   In a normal construction apparatus, it is common to provide only one or two supply pipelines in the rotating shaft, and the technology described in Patent Document 1 or Patent Document 2 is applied to such equipment. It is very difficult to do.

本発明は、上記事情を考慮し、コストの上昇を抑えつつ、地盤への貫入時の掘削抵抗を軽減して、施工能率を向上させることのできる地盤改良工法および同工法に使用する地盤改良装置を提供することを目的とする。   In consideration of the above circumstances, the present invention reduces the excavation resistance when penetrating into the ground while suppressing an increase in cost, and improves the construction efficiency and the ground improvement device used in the construction method The purpose is to provide.

請求項1の発明の地盤改良工法は、地盤改良に際し、回転軸の先端に装備した掘削ヘッドで地盤を掘削して地盤中に回転軸を貫入し、その貫入時に、前記回転軸に沿って配した供給管路を通して地上から流体を送り込み、その流体を前記掘削ヘッドに設けた吐出口から掘削土壌に向けて噴射する地盤改良工法において、前記流体の供給装置として、地上に、圧水供給装置と圧縮空気供給装置とを備え、これら両供給装置から供給される圧水と圧縮空気を、前記供給管路の入口に導入する手前で合流させた上で、供給管路を通して前記掘削ヘッドに送り込み、前記吐出口から掘削土壌に向けて噴射することを特徴とする。   In the ground improvement method of the invention of claim 1, the ground is improved by excavating the ground with an excavation head equipped at the tip of the rotating shaft and penetrating the rotating shaft into the ground. In the ground improvement method in which a fluid is sent from the ground through the supplied supply line, and the fluid is jetted from the discharge port provided in the excavation head toward the excavated soil, as the fluid supply device, A compressed air supply device, and the compressed water and compressed air supplied from both supply devices are merged before being introduced into the inlet of the supply pipeline, and then fed to the excavation head through the supply pipeline, It sprays toward excavation soil from the said discharge outlet, It is characterized by the above-mentioned.

請求項2の発明は、請求項1に記載の地盤改良工法であって、前記圧水供給装置から延ばした送水管に前記圧縮空気供給装置から延ばした送気管を合流させることで、圧水の流れに圧縮空気の流れを合流させ、その合流点の手前の、前記圧縮空気供給装置から延ばした送気管上に、前記合流点側からの流体の流れを阻止する逆止弁と、規定圧以上の圧力を逃がす安全弁と、を設けたことを特徴とする。   Invention of Claim 2 is the ground improvement construction method of Claim 1, Comprising: The water supply pipe extended from the said pressurized water supply apparatus is made to join the air supply pipe extended from the said compressed air supply apparatus, and pressurized water is combined. A check valve that prevents the flow of fluid from the merging point side on the air supply pipe extending from the compressed air supply device before the merging point is joined to the flow, and a specified pressure or more. And a safety valve for relieving the pressure.

請求項3の発明は、請求項1に記載の地盤改良工法であって、前記掘削ヘッドに、下端縁に掘削爪を有した螺旋翼を設け、その螺旋翼の回転方向の背面側に流体の噴射ボックスを設け、その噴射ボックスに、前記螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口、後方へ向けて流体を吐出する吐出口、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口、の少なくとも1つを設けたことを特徴とする。   A third aspect of the invention is the ground improvement method according to the first aspect, wherein the excavation head is provided with a spiral wing having a digging claw at a lower end edge, and a fluid is disposed on a back side in a rotation direction of the spiral wing. An ejection box is provided, and in the ejection box, a discharge port that discharges fluid toward the front in the rotational direction of the spiral blade, a discharge port that discharges fluid toward the rear, and outward in the rotational radial direction of the spiral blade At least one of discharge ports for discharging fluid is provided.

請求項4の発明は、請求項3に記載の地盤改良工法であって、前記噴射ボックスに、螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口と、後方へ向けて流体を吐出する吐出口と、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口と、の3種の吐出口を設け、掘削地盤の状況に応じて、いずれか1つの吐出口を選択的に開放して流体を吐出させ、他を塞ぐことを特徴とする。   Invention of Claim 4 is the ground improvement construction method of Claim 3, Comprising: The discharge outlet which discharges the fluid toward the front of the rotation direction of a spiral wing | blade to the said injection box, and discharges the fluid toward back There are three types of discharge ports, a discharge port that discharges fluid toward the outside in the rotational radius direction of the spiral wing, and one of the discharge ports is selectively selected according to the conditions of the excavation ground It is characterized in that the fluid is discharged to discharge the fluid and the others are blocked.

請求項5の発明は、鉛直に支持され、先端に装備した掘削ヘッドで地盤を掘削して地盤中に貫入される回転軸と、該回転軸を回転させつつ昇降させる駆動装置と、前記回転軸に沿って配された第1の供給管路と、前記掘削ヘッドに設けられ、前記第1の供給管路を通して送り込まれてきた流体を掘削土壌に向けて吐出する吐出口と、地上に設けられた圧水供給装置および圧縮空気供給装置と、前記圧水供給装置から供給される圧水を前記第1の供給管路の入口に送り込む送水管と、前記第1の供給管路の入口の手前の前記送水管上に設けられた挿入口と、前記圧縮空気供給装置から供給される圧縮空気を前記挿入口に合流させる送気管と、前記送気管上に装備され、前記挿入口側からの流体の逆流を阻止する逆止弁と、該逆止弁の上流側の送気管上に装備され、規定圧以上の圧力を逃がす安全弁と、を備えたことを特徴とする。   According to a fifth aspect of the present invention, there is provided a rotary shaft that is vertically supported and drilled into the ground by a drilling head equipped at a tip, a drive device that moves up and down while rotating the rotary shaft, and the rotary shaft A first supply pipe arranged along the excavation head, a discharge port provided in the excavation head, for discharging the fluid fed through the first supply pipe toward the excavation soil, and provided on the ground The pressurized water supply device and the compressed air supply device, the water supply pipe for feeding the pressurized water supplied from the pressurized water supply device to the inlet of the first supply pipe, and the front of the inlet of the first supply pipe An insertion port provided on the water supply pipe, an air supply pipe for joining the compressed air supplied from the compressed air supply device to the insertion port, a fluid provided on the air supply pipe, and a fluid from the insertion port side A check valve that prevents the backflow of the check valve, and a feed upstream of the check valve. It is equipped on the tube, characterized by comprising a safety valve for releasing the pressure of more than the specified pressure.

請求項6の発明は、請求項5に記載の地盤改良装置であって、前記掘削ヘッドに、下端縁に掘削爪を有した螺旋翼が設けられ、その螺旋翼の回転方向の背面側に流体の噴射ボックスが設けられ、その噴射ボックスに、螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口、後方へ向けて流体を吐出する吐出口、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口、のいずれか1つが設けられていることを特徴とする。   A sixth aspect of the present invention is the ground improvement device according to the fifth aspect, wherein the excavation head is provided with a spiral wing having a digging claw at a lower end edge, and a fluid is provided on the back side in the rotational direction of the spiral wing. The ejection box is provided with a discharge port that discharges fluid toward the front in the rotational direction of the spiral blade, a discharge port that discharges fluid toward the rear, and outward in the rotational radial direction of the spiral blade. Any one of discharge ports for discharging fluid is provided.

請求項7の発明は、請求項6に記載の地盤改良装置であって、前記噴射ボックスに、螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口と、後方へ向けて流体を吐出する吐出口と、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口と、の3種の吐出口が、そのうちの1つのみを選択的に開放できるように設けられていることを特徴とする。   A seventh aspect of the invention is the ground improvement device according to the sixth aspect of the invention, wherein the ejection box discharges fluid toward the front in the rotational direction of the spiral wing and discharges fluid toward the rear. There are three types of discharge ports, a discharge port for discharging fluid and a discharge port for discharging fluid toward the outside in the rotational radius direction of the spiral wing, so that only one of them can be selectively opened. It is characterized by.

請求項8の発明は、請求項5〜7のいずれか1項に記載の地盤改良装置であって、前記掘削ヘッドの上側に位置させて前記回転軸の先端に設けられた攪拌翼と、前記第1の供給管路とは別に前記回転軸に沿って配された第2の供給管路と、該第2の供給管路を通して地上から送られてきた安定材を前記攪拌翼の回転高さにおいて掘削土壌中に吐出する安定材の吐出口と、地上に設けられた安定材の圧送供給装置と、前記回転軸に沿って配された第2の供給管路の入口に、前記圧送供給装置から圧送された安定材を導入する安定材用の圧送管と、前記安定材の圧送供給装置から送られてくる安定材を、必要に応じて、前記第1の供給管路の入口に導入する流路変更手段と、を具備することを特徴とする。   Invention of Claim 8 is the ground improvement apparatus of any one of Claims 5-7, Comprising: The stirring blade located in the upper side of the said excavation head, and was provided in the front-end | tip of the said rotating shaft, Separately from the first supply pipeline, a second supply pipeline arranged along the rotation axis, and a stabilizer sent from the ground through the second supply pipeline, the rotational height of the stirring blades The stabilizer supply port for discharging into the excavated soil, the stabilizer supply pumping device provided on the ground, and the inlet of the second supply pipe arranged along the rotation axis, the pump supply device A stabilizer feed pipe for introducing a stabilizer fed by pressure and a stabilizer sent from the stabilizer feed feeder are introduced into the inlet of the first supply pipe as necessary. And a flow path changing means.

請求項9の発明は、請求項8に記載の地盤改良装置であって、前記流路変更手段が、前記圧送管と送水管とを連絡する連絡管と、該連絡管を開閉する第1のバルブと、該第1のバルブが開のときに前記連絡管の接続点よりも前記送水管の上流側への流体の逆流を阻止するために閉じられる第2のバルブと、前記連絡管の接続点よりも下流側の前記圧送管上に設けられ、前記第1のバルブと連動して逆に開閉制御される第3のバルブと、から構成されいることを特徴とする。   Invention of Claim 9 is the ground improvement apparatus of Claim 8, Comprising: The said flow-path change means is a 1st which opens and closes the connection pipe which connects the said pressure feed pipe and a water feed pipe, and this communication pipe A valve, a second valve that is closed to prevent backflow of fluid upstream of the connecting pipe connection point upstream of the connecting pipe connection point when the first valve is open, and the connecting pipe connection A third valve is provided on the pumping pipe downstream from the point and is controlled to open and close in conjunction with the first valve.

請求項10の発明は、請求項5〜9のいずれか1項に記載の地盤改良装置であって、前記掘削ヘッドの上側に位置させて前記回転軸の先端に設けられた攪拌翼と、前記第1の供給管路とは別に前記回転軸に沿って配された第2の供給管路と、該第2の供給管路を通して地上から送られてきた安定材を前記攪拌翼の回転高さにおいて掘削土壌中に吐出する安定材の吐出口と、地上に設けられた安定材の圧送供給装置と、前記回転軸に沿って配された第2の供給管路の入口に、前記圧送供給装置から圧送された安定材を導入する安定材用の圧送管と、前記圧送管上に設けられた空気導入口と、前記圧縮空気供給手段より供給される圧縮空気を前記圧送管上の空気導入口に導入し、圧送管内を圧送される安定材の中に圧縮空気を混入させる空気導入管と、を具備することを特徴とする。   Invention of Claim 10 is the ground improvement apparatus of any one of Claim 5-9, Comprising: The stirring blade located in the upper side of the said excavation head, and was provided in the front-end | tip of the said rotating shaft, Separately from the first supply pipeline, a second supply pipeline arranged along the rotation axis, and a stabilizer sent from the ground through the second supply pipeline, the rotational height of the stirring blades The stabilizer supply port for discharging into the excavated soil, the stabilizer supply pumping device provided on the ground, and the inlet of the second supply pipe arranged along the rotation axis, the pump supply device A stabilizer feed pipe for introducing the stabilizer fed by pressure, an air inlet provided on the pump feed pipe, and an air inlet on the pump feed pipe for compressed air supplied from the compressed air supply means. Introducing compressed air into a stabilizer that is pumped through the pumping pipe Characterized by comprising the, the.

請求項11の発明は、請求項10に記載の地盤改良装置であって、前記逆止弁の下流の送気管上に分岐点を設けてその分岐点より前記空気導入管を分岐して設けると共に、前記送気管を通して供給される圧縮空気の導入先を、前記送水管上の挿入口にするか圧送管上の空気導入口にするかを切り換える切換バルブ手段を設けたことを特徴とする。   The invention of claim 11 is the ground improvement device of claim 10, wherein a branch point is provided on the air supply pipe downstream of the check valve, and the air introduction pipe is branched from the branch point. Further, the present invention is characterized in that there is provided a switching valve means for switching the introduction destination of the compressed air supplied through the air feeding pipe to the insertion port on the water feeding pipe or the air inlet on the pressure feeding pipe.

請求項1の発明によれば、掘削ヘッドに設けた流体の吐出口から、掘削土壌に向かって圧水と圧縮空気の混合流体を噴射するので、掘削ヘッドと土砂の間の摩擦を効率良く減らすことができ、掘削抵抗を小さくすることができる。また、圧水と圧縮空気は、供給管路の入口に導入する手前で合流させた上で、供給管路を通して掘削ヘッドに送り込むので、回転軸に沿って設ける供給経路の数を増やさずにすみ、余分なコストアップを抑制することができる。   According to the first aspect of the present invention, since the mixed fluid of the pressurized water and the compressed air is ejected from the fluid discharge port provided in the excavation head toward the excavation soil, the friction between the excavation head and the earth and sand is efficiently reduced. And excavation resistance can be reduced. In addition, since the pressurized water and compressed air are merged before being introduced to the inlet of the supply pipe and then sent to the excavation head through the supply pipe, it is possible to avoid increasing the number of supply paths provided along the rotation axis. , Excess cost increase can be suppressed.

請求項2の発明によれば、圧水を送り込む送水管に圧縮空気を送り込む送気管を合流させることにより、圧水に圧縮空気を混ぜるので、簡単な構成で混合2流体を1本の供給管路の入口に導入することができる。また、合流点の手前の送気管上に逆止弁と安全弁を設けているので、何かの拍子に急激に送水管内の圧力が上昇した場合にも、逆止弁の作動により、圧水が圧縮空気供給装置側に侵入するのを確実に防止できる。また、何らかの原因で送気管内の圧力が急上昇するような場合にも、安全弁が働くことにより、規定以上の圧力上昇を抑えることができる。その結果、圧縮空気供給装置を安全に保護することができる。   According to the second aspect of the present invention, the compressed air is mixed with the pressurized water by joining the air feeding pipe for feeding the compressed air to the water feeding pipe for feeding the pressurized water. It can be introduced at the entrance of the road. In addition, since a check valve and a safety valve are provided on the air supply pipe before the confluence, even if the pressure in the water supply pipe suddenly rises due to a certain moment, the check valve operates to generate pressurized water. Intrusion into the compressed air supply device can be reliably prevented. In addition, even when the pressure in the air supply pipe suddenly rises for some reason, the safety valve can be used to suppress a pressure rise above a specified level. As a result, the compressed air supply device can be safely protected.

請求項3の発明によれば、掘削ヘッドの螺旋翼の背面側に流体の噴射ボックスを設け、その噴射ボックスに流体の噴射方向を定める吐出口を設けているので、予め定めた方向に向かって圧水と圧縮空気の混合流体を噴射することができる。また、噴射ボックスに吐出口を設けていることから、無理のないレイアウトで必要な方向の吐出口を配置することができる。   According to the invention of claim 3, since the fluid injection box is provided on the back side of the spiral blade of the excavation head, and the discharge port for determining the fluid injection direction is provided in the injection box, the direction toward the predetermined direction. A mixed fluid of pressurized water and compressed air can be injected. Moreover, since the ejection port is provided in the injection box, the ejection port in the necessary direction can be arranged with a reasonable layout.

請求項4の発明によれば、開放する吐出口と閉鎖する吐出口を予め決めることで、螺旋翼の回転方向の前方、または後方、あるいは螺旋翼の回転半径方向外方へ向けて流体を吐出することができる。従って、砂質系等の粘着力の小さい地盤を掘削する場合は、螺旋翼の回転方向の前方へ向けて圧水と圧縮空気の混合流体を吐出することにより、螺旋翼の前方での掘削抵抗を減らすことができる。また、粘性の強い地盤を掘削する場合は、螺旋翼の回転方向の後方へ向けて圧水と圧縮空気の混合流体を吐出することにより、螺旋翼の背面に沿って移動する土砂との抵抗を減らすことができ、それにより掘削抵抗を減らすことができる。また、接合杭を施工するための掘削を行う場合は、螺旋翼の径方向外方へ向けて水と空気の混合流体を吐出することにより、螺旋翼の外周の回転抵抗を減らすことができる。   According to the fourth aspect of the present invention, the discharge port to be opened and the discharge port to be closed are determined in advance, so that the fluid is discharged forward or backward in the rotational direction of the spiral blade or outward in the rotational radial direction of the spiral blade. can do. Therefore, when excavating ground with low adhesive strength such as sandy system, the excavation resistance in front of the spiral wing is discharged by discharging the mixed fluid of pressurized water and compressed air toward the front in the rotation direction of the spiral wing. Can be reduced. In addition, when excavating highly viscous ground, by discharging the mixed fluid of pressurized water and compressed air toward the rear in the rotational direction of the spiral wing, the resistance to the earth and sand moving along the back of the spiral wing is reduced. Can reduce the excavation resistance. Moreover, when excavating for constructing a joint pile, the rotational resistance of the outer periphery of a spiral blade can be reduced by discharging the fluid mixture of water and air toward the radial direction outward of the spiral blade.

請求項5の発明によれば、掘削ロッドに設けた流体の吐出口から、掘削土壌に向かって、圧水と圧縮空気の混合流体を噴射することができるので、掘削ヘッドと土砂の間の摩擦を効率良く減らすことができ、掘削抵抗を小さくすることができる。また、圧水と圧縮空気は、第1の供給管路の入口に導入する手前で合流させた上で、第1の供給管路を通して掘削ヘッドに送り込むことができるので、回転軸に沿って設ける供給経路の数を増やさずにすみ、余分なコストアップを抑制することができる。   According to the invention of claim 5, since the mixed fluid of pressurized water and compressed air can be ejected from the fluid discharge port provided in the excavation rod toward the excavation soil, the friction between the excavation head and the earth and sand Can be efficiently reduced, and excavation resistance can be reduced. Further, the pressurized water and the compressed air can be fed to the excavation head through the first supply pipe after being merged before being introduced into the inlet of the first supply pipe, and thus provided along the rotation axis. It is not necessary to increase the number of supply paths, and an extra cost increase can be suppressed.

また、送水管と合流する手前の送気管上に逆止弁と安全弁を設けているので、何かの拍子に急激に送水管内の圧力が上昇した場合にも、逆止弁の作動により、圧水が圧縮空気供給装置側に侵入するのを確実に防止できるし、何らかの原因で送気管内の圧力が急上昇するような場合にも、安全弁が働くことにより、規定以上の圧力上昇を抑えることができ、その結果、圧縮空気供給装置を安全に保護することができる。   In addition, since a check valve and a safety valve are provided on the air supply pipe before joining the water supply pipe, even if the pressure in the water supply pipe suddenly rises due to any moment, the check valve operates to Water can be reliably prevented from entering the compressed air supply device, and even if the pressure in the air supply pipe suddenly rises for some reason, the safety valve works to suppress the pressure rise above the specified level. As a result, the compressed air supply device can be safely protected.

請求項6の発明によれば、掘削ヘッドの螺旋翼の背面側に流体の噴射ボックスを設け、その噴射ボックスに流体の噴射方向を定める吐出口を設けているので、予め定めた方向に向かって圧水と圧縮空気の混合流体を噴射することができる。また、噴射ボックスに吐出口を設けているので、無理のないレイアウトで、必要な方向の吐出口を配置することができる。   According to the sixth aspect of the present invention, the fluid injection box is provided on the back side of the spiral blade of the excavation head, and the discharge port for determining the fluid injection direction is provided in the injection box. A mixed fluid of pressurized water and compressed air can be injected. Moreover, since the ejection port is provided in the injection box, the ejection port in a necessary direction can be arranged with a reasonable layout.

請求項7の発明によれば、開放する吐出口と閉鎖する吐出口を決めておくことで、螺旋翼の回転方向の前方、または後方、あるいは螺旋翼の回転半径方向外方へ向けて流体を吐出することができる。従って、砂質系等の粘着力の小さい地盤を掘削する場合は、螺旋翼の回転方向の前方へ向けて圧水と圧縮空気の混合流体を吐出することにより、螺旋翼の前方での掘削抵抗を減らすことができる。また、粘性の強い地盤を掘削する場合は、螺旋翼の回転方向の後方へ向けて圧水と圧縮空気の混合流体を吐出することにより、螺旋翼の背面に沿って移動する土砂の抵抗を減らすことができ、それにより掘削抵抗を減らすことができる。また、接合杭を施工するための掘削を行う場合は、螺旋翼の径方向外方へ向けて水と空気の混合流体を吐出することにより、螺旋翼の外周の回転抵抗を減らすことができる。   According to the invention of claim 7, by determining the discharge port to be opened and the discharge port to be closed, the fluid is directed forward or backward in the rotational direction of the spiral blades or outward in the rotational radial direction of the spiral blades. It can be discharged. Therefore, when excavating ground with low adhesive strength such as sandy system, the excavation resistance in front of the spiral wing is discharged by discharging the mixed fluid of pressurized water and compressed air toward the front in the rotation direction of the spiral wing. Can be reduced. In addition, when excavating highly viscous ground, the mixed fluid of pressurized water and compressed air is discharged toward the rear in the rotational direction of the spiral wing, thereby reducing the resistance of the earth and sand moving along the back of the spiral wing. And thereby reduce excavation resistance. Moreover, when excavating for constructing a joint pile, the rotational resistance of the outer periphery of a spiral blade can be reduced by discharging the fluid mixture of water and air toward the radial direction outward of the spiral blade.

請求項8の発明によれば、攪拌翼の回転高さに設けた吐出口から安定材を吐出して現地土と混合するという通常の使い方の他に、流路変更手段を設けたことにより、必要時に、掘削ヘッドの吐出口からも、安定材を吐出することができる。従って、掘削ヘッドの深さにおいても、地盤中に安定材を供給することができ、例えば、軟らかい地盤の場合は、回転軸の貫入時において、圧水の供給と安定材の供給を切り換えながら、掘削ヘッドの吐出口から交替で圧水と安定材を吐出することにより、貫入の時点で、掘削土に安定材を混合させることができる。また、硬い地盤の場合は、掘削ヘッドの吐出口から圧水を吐出しながら、地盤中に回転軸を貫入させ、貫入後の回転軸の引き抜き時に、攪拌翼の回転高さにおいて安定材を吐出し、また、圧水の代わりに掘削ヘッドの吐出口からも安定材を吐出し、それにより、安定材を現地土と混合させることができる。   According to the invention of claim 8, in addition to the normal usage of discharging the stabilizer from the discharge port provided at the rotational height of the stirring blade and mixing with the local soil, by providing the flow path changing means, When necessary, the stabilizer can be discharged from the discharge port of the excavation head. Therefore, even at the depth of the excavation head, the stabilizer can be supplied into the ground.For example, in the case of a soft ground, the supply of the pressurized water and the supply of the stabilizer are switched at the time of penetration of the rotating shaft. By alternately discharging the pressure water and the stabilizing material from the discharge port of the excavating head, the stabilizing material can be mixed into the excavated soil at the time of penetration. In the case of hard ground, the rotary shaft is inserted into the ground while discharging the pressure water from the discharge port of the excavation head, and when the rotary shaft is pulled out after the penetration, the stabilizer is discharged at the rotational height of the stirring blade. In addition, the stabilizing material can be discharged from the discharge port of the excavation head instead of the pressurized water, so that the stabilizing material can be mixed with the local soil.

請求項9の発明によれば、圧送管と送水管よりなる配管系に、連絡管と3つのバルブを設けるだけで流路変更手段を簡単に構成することができ、バルブの制御により、流路を適宜変更して、安定材を第2の供給管路ばかりでなく、第1の供給管路にも導入することができる。   According to the ninth aspect of the present invention, the flow path changing means can be configured simply by providing the connecting pipe and the three valves in the piping system composed of the pressure feed pipe and the water feed pipe. The stabilizer can be appropriately changed to introduce not only the second supply pipe but also the first supply pipe.

請求項10の発明によれば、攪拌翼の回転高さにおいて吐出する安定材の圧送管上に空気導入口を設け、その空気導入口から圧縮空気を安定材中に混入させることができるようにしたので、その圧縮空気の混入によって安定材の流動性を調整することができ、攪拌性能を向上させることができる。   According to the invention of claim 10, an air introduction port is provided on the pressure feeding pipe of the stabilizing material discharged at the rotational height of the stirring blade, and compressed air can be mixed into the stabilizing material from the air introduction port. Therefore, the fluidity of the stabilizer can be adjusted by mixing the compressed air, and the stirring performance can be improved.

請求項11の発明によれば、安定材の圧送管上に設けた空気導入口に圧縮空気を導入する空気導入管を、逆止弁の下流の送気管上に分岐して設け、切換バルブ手段により圧縮空気の導入先を切り換えられるようにしたので、設備コストを抑えながら、掘削時と攪拌時の両方に有効に圧縮空気を役立てることができる。   According to the eleventh aspect of the present invention, the air introduction pipe for introducing the compressed air into the air introduction port provided on the pressure feed pipe of the stabilizer is provided on the air feed pipe downstream from the check valve, and the switching valve means is provided. Since the introduction destination of the compressed air can be switched by this, the compressed air can be effectively used for both the excavation and the agitation while suppressing the equipment cost.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に全体構成を示すように、本実施形態の地盤改良工法を実施する地盤改良装置は、ベースマシン102のリーダー103のガイド103aに沿って鉛直方向に昇降自在に支持された回転軸101と、該回転軸101を昇降させるワイヤー吊り下げ式の昇降駆動装置104と、該昇降駆動装置104の昇降部に装備された回転駆動装置105とを有し、昇降駆動装置104によって回転軸101を昇降させながら、回転駆動装置105で回転軸101を回転駆動することにより、回転軸101の先端に取り付けた掘削攪拌手段110により地盤を掘削し、その掘削土壌中に安定材を注入し、攪拌混合して地盤を改良するものである。回転軸101は、リーダー103の下部に設けた下部振れ止め機構150によって掘削と貫入を案内される。   As shown in FIG. 1, the ground improvement device that performs the ground improvement method of the present embodiment includes a rotating shaft 101 that is supported so as to be vertically movable along a guide 103 a of a leader 103 of a base machine 102. , A wire suspension type lifting drive device 104 that lifts and lowers the rotary shaft 101, and a rotary drive device 105 that is installed in the lifting unit of the lift drive device 104. While rotating the rotary shaft 101 with the rotary drive device 105, the ground is excavated by the excavating and stirring means 110 attached to the tip of the rotary shaft 101, and a stabilizer is injected into the excavated soil and stirred and mixed. To improve the ground. The rotary shaft 101 is guided for excavation and penetration by a lower steadying mechanism 150 provided under the leader 103.

図2は地盤改良装置の要部のシステム構成を示す図、図3は回転軸101の先端に設けた掘削攪拌手段110の構成を示す図である。   FIG. 2 is a diagram showing the system configuration of the main part of the ground improvement device, and FIG. 3 is a diagram showing the configuration of the excavation stirring means 110 provided at the tip of the rotating shaft 101.

回転軸101の内部には、図示しないが、回転軸101に沿って、圧水と圧縮空気を混合した摩擦軽減用の流体を流通させる第1の供給管路と、それと別系統で安定材を流通させる安定材用の第2の供給管路と、が設けられている。   Although not shown in the figure, a first supply pipe for distributing a friction reducing fluid mixed with pressurized water and compressed air is provided along the rotary shaft 101, and a stabilizer in a separate system. And a second supply line for stabilizing material to be circulated.

また、地上には、安定材の圧送供給装置205として、ミルクプラント圧送ポンプ202および流量計203が設けられており、ミルクプラント圧送ポンプ202から流量計203を経て送り出される安定材を、安定材圧送管201およびスイベルジョイント108を介して、回転軸101内に配設した安定材用の第2の供給管路の上端入口に導入するようになっている。   On the ground, a milk plant pumping pump 202 and a flow meter 203 are provided as a stabilizer feed pump 205, and the stabilizer fed from the milk plant pump 202 via the flow meter 203 is supplied to the stabilizer. Via the pipe 201 and the swivel joint 108, the gas is introduced into the upper end inlet of the second supply pipe for the stabilizer disposed in the rotary shaft 101.

また、地上には、圧水供給装置213および圧縮空気供給装置223が設けられている。圧水供給装置213は、加圧ポンプよりなる加水圧送装置211と、その圧力や流量を制御する加水制御装置212とから構成され、圧水を送水管210およびスイベルジョイント108を介して、回転軸101内に配設した主に摩擦軽減用流体の流通路である第1の供給管路の上端入口に導入するようになっている。   In addition, a pressurized water supply device 213 and a compressed air supply device 223 are provided on the ground. The pressurized water supply device 213 is composed of a hydropumping device 211 composed of a pressurizing pump and a hydration control device 212 that controls the pressure and flow rate of the pressurized water via the waterpipe 210 and the swivel joint 108, and the rotating shaft 101 is introduced into the upper end inlet of the first supply pipe which is mainly a flow path for the friction reducing fluid.

前記送水管210のスイベルジョイント108への導入部の直前には、挿入口215が設けられており、その挿入口215に、圧縮空気供給装置223から延ばした送気管220の先端が接続されている。   An insertion port 215 is provided immediately before the introduction portion of the water supply pipe 210 to the swivel joint 108, and the distal end of the air supply pipe 220 extending from the compressed air supply device 223 is connected to the insertion port 215. .

圧縮空気供給装置223は、空気圧縮機221と、その圧力や流量を制御する空気制御装置212とから構成されており、送気管220を通して送り込んだ圧縮空気を、挿入口215から送水管210内を流れる圧水に合流させるようになっている。   The compressed air supply device 223 includes an air compressor 221 and an air control device 212 that controls the pressure and flow rate of the air compressor 221, and the compressed air sent through the air supply pipe 220 passes through the water supply pipe 210 from the insertion port 215. It is designed to merge with flowing pressure water.

また、送水管210の圧力と送気管220の圧力は大きく違う可能性があることから、送気管220上には、挿入口215側からの流体の逆流を阻止する逆止弁224が設けられると共に、逆止弁224の上流側の送気管220上には、規定圧以上の圧力を逃がす安全弁225が設けられている。   Further, since there is a possibility that the pressure of the water supply pipe 210 and the pressure of the air supply pipe 220 may be greatly different from each other, a check valve 224 for preventing the backflow of fluid from the insertion port 215 side is provided on the air supply pipe 220. A safety valve 225 is provided on the air supply pipe 220 on the upstream side of the check valve 224 to release a pressure higher than a specified pressure.

また、圧送管201と送水管210の間には、安定材の圧送供給装置205から送られてくる安定材を、必要に応じて、通常は圧水の流通路である第1の供給管路の入口に導入する流路変更手段300が設けられている。この場合の流路変更手段300は、圧送管201上の分岐点204と送水管210上の分岐点214とを接続する連絡管301と、該連絡管301を開閉する第1のバルブ311と、該第1のバルブ311が開のときに連絡管301の接続点(分岐点214)よりも送水管210の上流側への流体の逆流を阻止するために閉じられる第2のバルブ312と、連絡管301の接続点(分岐点204)よりも下流側の圧送管201上に設けられ、第1のバルブ311と連動して逆に開閉制御される第3のバルブ313と、から構成されいる。なお、第1〜第3のバルブ311〜313はいずれも電磁バルブよりなり、図示しない制御装置により、互いに関連を持って制御される。   Further, between the pressure feeding pipe 201 and the water feeding pipe 210, the first feeding pipe, which is usually a pressurized water flow path, is connected to the stabilizing material sent from the stabilizing material pressure feeding device 205 as necessary. There is provided a flow path changing means 300 to be introduced at the inlet. The flow path changing means 300 in this case includes a connecting pipe 301 that connects the branch point 204 on the pressure feed pipe 201 and a branch point 214 on the water feed pipe 210, a first valve 311 that opens and closes the connecting pipe 301, When the first valve 311 is open, it communicates with the second valve 312 that is closed to prevent the backflow of the fluid upstream of the connection point (branch point 214) of the communication pipe 301 to the upstream side of the water supply pipe 210. A third valve 313 is provided on the pressure-feeding pipe 201 on the downstream side of the connection point (branch point 204) of the pipe 301 and is controlled to open and close in reverse with the first valve 311. The first to third valves 311 to 313 are all electromagnetic valves and are controlled in association with each other by a control device (not shown).

一方、掘削攪拌手段110としては、図3に示すように、回転軸101の最先端に掘削ヘッド120が設けられると共に、その上側に、攪拌翼112と共回り板113とが、上下方向に複数段に交互に設けられている。本実施形態では、掘削ヘッド120の回転半径は、攪拌翼112の回転半径よりも小さく設定されている。   On the other hand, as shown in FIG. 3, the excavation stirring means 110 is provided with an excavation head 120 at the forefront of the rotating shaft 101, and a plurality of stirring blades 112 and co-rotating plates 113 on the upper side. It is provided alternately in the stage. In the present embodiment, the rotation radius of the excavation head 120 is set smaller than the rotation radius of the stirring blade 112.

攪拌翼112は、回転軸101から半径方向に直線的に延びるバー状のもので、回転軸101の軸線に対して傾斜した羽根板よりなる。最下段の攪拌翼112は、下端に掘削爪114を有しており、攪拌ばかりでなく掘削機能も果たせるようになっている。また、上段の攪拌翼112の回転方向の背面には、回転軸101内の供給管路を通して送られてくる安定材の吐出ボックス(吐出口)115が設けられている。この吐出ボックス115からの安定材の吐出は、主に回転軸101の引き上げのときに行われる。   The stirring blade 112 is a bar-shaped member that extends linearly from the rotation shaft 101 in the radial direction, and includes a blade plate that is inclined with respect to the axis of the rotation shaft 101. The lowermost stirring blade 112 has an excavation claw 114 at its lower end so that it can perform not only agitation but also an excavation function. In addition, on the back surface in the rotational direction of the upper stirring blade 112, a discharge box (discharge port) 115 for a stabilizing material sent through a supply pipe line in the rotary shaft 101 is provided. The discharge of the stabilizing material from the discharge box 115 is performed mainly when the rotary shaft 101 is pulled up.

また、掘削ヘッド120としては、下端縁121aに多数の掘削爪122を有した2条の螺旋翼121が設けられている。この2条の螺旋翼121は、回転軸101を中心に180°対称に配置されており、それぞれが180°の角度範囲で巻いている。つまり、各螺旋翼121は半ピッチ分だけ設けられている。   In addition, as the excavation head 120, two spiral blades 121 having a large number of excavation claws 122 at the lower end edge 121a are provided. The two spiral wings 121 are arranged 180 degrees symmetrically around the rotation axis 101, and each is wound in an angle range of 180 degrees. That is, each spiral blade 121 is provided for a half pitch.

また、各螺旋翼121の下端縁121aは、外周端から内周端に向かって上り傾斜した直線状になっており、2つの螺旋翼121の下端縁121aで構成される掘削ヘッド120の先端が、中心部が凹み、周縁部が突出した下向きの凹形状になっている。   In addition, the lower end edge 121a of each spiral blade 121 is linearly inclined upward from the outer peripheral end toward the inner peripheral end, and the tip of the excavation head 120 configured by the lower end edges 121a of the two spiral blades 121 is The center portion is recessed and the peripheral portion protrudes downward.

そして、一方の螺旋翼121の回転方向の背面側に、図4に示すように、摩擦軽減用の流体の噴射ボックス130が設けられている。この噴射ボックス130は、図5に示すように、長方形ブロック状のボックス本体131と、その外面の必要箇所にボルトで固定されたカバー141、142、143とからなる。   Further, as shown in FIG. 4, a fluid ejection box 130 for reducing friction is provided on the back side in the rotational direction of one spiral blade 121. As shown in FIG. 5, the spray box 130 includes a rectangular block-shaped box body 131 and covers 141, 142, and 143 that are fixed to necessary portions of the outer surface with bolts.

ボックス本体131は、長手方向の一方の端面に流体の入口132、内部にその入口132に連なる分岐通路133を有し、短手方向の両端面と長手方向の他端面に、前記分岐通路133に連なる吐出口135、136、137を有しており、螺旋翼121の背面に取り付けられた状態で、吐出口135は螺旋翼121の回転方向の前方へ向き、吐出口136は螺旋翼121の回転方向の後方へ向き、吐出口137は螺旋翼121の回転半径方向外方へ向いている。また、ボックス本体131の入口132に、回転軸101を通して配設した摩擦軽減用の流体の供給管路の先端の配管118が接続されている。   The box body 131 has a fluid inlet 132 on one end face in the longitudinal direction and a branch passage 133 connected to the inlet 132 inside, and the branch passage 133 is connected to both end faces in the short side direction and the other end face in the longitudinal direction. The discharge port 135 has a series of discharge ports 135, 136, and 137 attached to the back surface of the spiral blade 121, the discharge port 135 faces forward in the rotational direction of the spiral blade 121, and the discharge port 136 rotates the spiral blade 121. The discharge port 137 is directed outward in the rotational radial direction of the spiral blade 121. In addition, a pipe 118 at the tip of a supply line for a fluid for reducing friction disposed through the rotary shaft 101 is connected to the inlet 132 of the box body 131.

カバー141、142、143は、各吐出口137に合わせて設けられており、任意に取り付けできるようになっている。図示例では、このうち1つのカバー141だけが、噴射口141aを有する開放用となっており、他のカバー142、143は閉鎖用となっている。開放用のカバー141を取り付けた場合は、その吐出口135を開放でき、閉鎖用のカバー142、143を取り付けた場合は、その吐出口136、137を閉鎖できるようになっている。つまり、カバー141〜143の付け替えにより、3種の吐出口のうちの1つのみを選択的に開放できるようになっている。   The covers 141, 142, and 143 are provided in accordance with the respective discharge ports 137, and can be attached arbitrarily. In the illustrated example, only one of the covers 141 is for opening having the injection port 141a, and the other covers 142 and 143 are for closing. When the opening cover 141 is attached, the discharge port 135 can be opened, and when the closing covers 142 and 143 are attached, the discharge ports 136 and 137 can be closed. That is, by replacing the covers 141 to 143, only one of the three types of discharge ports can be selectively opened.

次に上記構成の地盤改良装置を用いた地盤改良工法について説明する。   Next, a ground improvement method using the ground improvement device having the above-described configuration will be described.

地盤改良に際しては、まず、昇降駆動装置104および回転駆動装置105により回転軸101を回転させつつ、掘削ヘッド120を地盤に向けて下降させる。それにより、回転軸101の先端に装備した掘削ヘッド120で地盤を掘削し、地盤中に回転軸101を貫入していく。   In improving the ground, first, the excavation head 120 is lowered toward the ground while rotating the rotary shaft 101 by the lift drive device 104 and the rotary drive device 105. Accordingly, the ground is excavated by the excavation head 120 provided at the tip of the rotary shaft 101, and the rotary shaft 101 penetrates into the ground.

その貫入時には、圧水供給装置213から圧水を供給し、圧縮空気供給装置223から圧縮空気を供給する。そうすると、供給された圧水と圧縮空気が挿入口215を通過する時点で合流し、スイベルジョイント108を介して回転軸101内の第1の供給管路の上端入口に導入される。   At the time of penetration, pressurized water is supplied from the pressurized water supply device 213 and compressed air is supplied from the compressed air supply device 223. Then, when the supplied pressurized water and compressed air pass through the insertion port 215, they merge and are introduced into the upper end inlet of the first supply pipe line in the rotating shaft 101 via the swivel joint.

そして、第1の供給管路を通して掘削ヘッド120に送り込まれた圧水と圧縮空気の混合流体は、噴射ボックス130の開放された吐出口135、136、137から掘削土壌に向けて噴射される。図示例では、吐出口135が開放されているので、その吐出口135およびカバー141の噴射口141aを通して、螺旋翼121の回転方向の前方へ向けて混合流体が吐出される。   Then, the mixed fluid of compressed water and compressed air sent to the excavation head 120 through the first supply pipe is ejected toward the excavated soil from the discharge ports 135, 136, and 137 opened in the ejection box 130. In the illustrated example, since the discharge port 135 is open, the mixed fluid is discharged toward the front in the rotation direction of the spiral blade 121 through the discharge port 135 and the injection port 141a of the cover 141.

このように、掘削ヘッド120に設けた流体の吐出口135〜137から、掘削土壌に向かって圧水と圧縮空気の混合流体を噴射するので、掘削ヘッド120と土砂の間の摩擦を効率良く減らすことができ、掘削抵抗を小さくすることができる。その結果、図1に示すような掘削抵抗の偏り等による回転軸101の振れθ(軸ずれ)を減らす効果も期待できる。   Thus, since the fluid mixture of pressurized water and compressed air is ejected toward the excavation soil from the fluid discharge ports 135 to 137 provided in the excavation head 120, the friction between the excavation head 120 and the earth and sand is efficiently reduced. And excavation resistance can be reduced. As a result, an effect of reducing the deflection θ (axial deviation) of the rotating shaft 101 due to excavation resistance bias as shown in FIG. 1 can be expected.

また、圧水と圧縮空気は、第1の供給管路の入口に導入する手前で合流させた上で、第1の供給管路を通して掘削ヘッド120に送り込むので、回転軸101に沿って設ける供給経路の数を増やさずにすみ、余分なコストアップを回避できる。   Further, since the pressurized water and the compressed air are merged before being introduced into the inlet of the first supply pipe, and sent to the excavation head 120 through the first supply pipe, the supply provided along the rotary shaft 101 It is not necessary to increase the number of routes, and an extra cost increase can be avoided.

また、圧水を送り込む送水管210の途中に挿入口215を設け、その挿入口215に圧縮空気を送り込む送気管220の先端を接続するだけで、圧水に圧縮空気を混ぜることができるので、簡単な構成で混合2流体を1本の供給管路の入口に導入することができる。   In addition, since the insertion port 215 is provided in the middle of the water supply pipe 210 for sending the pressurized water, and the compressed air can be mixed with the pressure water simply by connecting the tip of the air supply pipe 220 for sending the compressed air to the insertion port 215, The mixed two fluids can be introduced into the inlet of one supply line with a simple configuration.

また、合流点の手前の送気管220上に逆止弁224と安全弁225を設けているので、何かの拍子に急激に送水管210内の圧力が上昇した場合にも、逆止弁214の作動により、圧水が圧縮空気供給装置223側に侵入するのを確実に防止できる。また、何らかの原因で送気管220内の圧力が急上昇するような場合にも、安全弁225が働くことにより、規定以上の圧力上昇を抑えることができるので、圧縮空気供給装置223を安全に保護することができる。   In addition, since the check valve 224 and the safety valve 225 are provided on the air supply pipe 220 in front of the merging point, even when the pressure in the water supply pipe 210 suddenly rises due to something, the check valve 214 The operation can reliably prevent the pressurized water from entering the compressed air supply device 223 side. In addition, even when the pressure in the air supply pipe 220 suddenly increases for some reason, the safety valve 225 works to suppress a pressure increase beyond a specified level, so that the compressed air supply device 223 can be safely protected. Can do.

また、掘削ヘッド120の螺旋翼121の背面側に流体の噴射ボックス130を設け、その噴射ボックス130に流体の噴射方向を定める吐出口135〜137を設けているので、予め定めた方向に向かって圧水と圧縮空気の混合流体を噴射することができる。また、噴射ボックス130に吐出口135〜137を設けていることから、無理のないレイアウトで必要な方向を向いた吐出口135〜137を配置することができる。   Moreover, since the fluid injection box 130 is provided on the back side of the spiral blade 121 of the excavation head 120 and the discharge ports 135 to 137 for determining the fluid injection direction are provided in the injection box 130, the direction toward a predetermined direction. A mixed fluid of pressurized water and compressed air can be injected. In addition, since the ejection ports 135 to 137 are provided in the ejection box 130, the ejection ports 135 to 137 facing in a necessary direction can be arranged with a reasonable layout.

また、開放する吐出口と閉鎖する吐出口を決め、開放する吐出口には噴射口のついた開放用のカバーを取り付け、閉鎖する吐出口には閉鎖用のカバーを取り付けることで、螺旋翼121の回転方向の前方、または後方、あるいは、螺旋翼121の回転半径方向外方へ向けて、選択的に流体を吐出することができる。   Further, by determining a discharge port to be opened and a discharge port to be closed, an opening cover with an injection port is attached to the discharge port to be opened, and a cover for closing is attached to the discharge port to be closed. The fluid can be selectively discharged toward the front or rear in the rotational direction, or outward in the rotational radial direction of the spiral blade 121.

従って、砂質系等の粘着力の小さい地盤を掘削する場合は、螺旋翼121の回転方向の前方へ向けて圧水と圧縮空気の混合流体を吐出することにより、螺旋翼121の前方での掘削抵抗を減らすことができる。また、粘性の強い地盤を掘削する場合は、螺旋翼121の回転方向の後方へ向けて圧水と圧縮空気の混合流体を吐出することにより、螺旋翼121の背面に沿って移動する土砂との抵抗を減らすことができ、それにより掘削抵抗を減らすことができる。さらに、接合杭を施工するための掘削を行う場合は、螺旋翼121の径方向外方へ向けて水と空気の混合流体を吐出することにより、螺旋翼121の外周の回転抵抗を減らすことができる。   Therefore, when excavating a ground having a low adhesive force such as a sandy system, by discharging a fluid mixture of pressurized water and compressed air toward the front in the rotational direction of the spiral blade 121, Drilling resistance can be reduced. Further, when excavating a highly viscous ground, by discharging a mixed fluid of pressurized water and compressed air toward the rear in the rotational direction of the spiral blade 121, the earth and sand moving along the back surface of the spiral blade 121 Resistance can be reduced, thereby reducing excavation resistance. Furthermore, when performing excavation for constructing the joint pile, the rotational resistance of the outer periphery of the spiral blade 121 can be reduced by discharging a mixed fluid of water and air toward the radially outward direction of the spiral blade 121. it can.

所定深度までの回転軸101の貫入が終了したら、次に、ミルクプラント圧送ポンプ202を運転し、圧送管201及び第2の供給管路を経由して、攪拌翼112の吐出ボックス115から安定材を吐出しながら、回転軸101を引き上げていき、現地土と安定材を攪拌・混合し、円柱状に改良体(杭体)を構築していく。以上により、効率良く地盤改良を行うことができる。   When the penetration of the rotary shaft 101 to a predetermined depth is completed, the milk plant pressure feed pump 202 is operated, and the stabilizer is discharged from the discharge box 115 of the stirring blade 112 via the pressure feed pipe 201 and the second supply line. Rotating the rotating shaft 101 while discharging, the local soil and the stabilizer are stirred and mixed, and an improved body (pile body) is constructed in a cylindrical shape. As described above, the ground can be improved efficiently.

なお、図6に示すように、攪拌翼112よりも掘削ヘッド120の回転半径が小さい場合は、掘削した孔底部MAの径D1が改良体(杭体が構築される孔を符号MBで示す)の径D2よりも小さくなるので、所定径・所定深度の杭体を構築する場合は、掘削ヘッド120の高さ分だけ仕様外となり、そのため、その分だけ深さを余分に掘削しておく必要があるが、図7、図8に示す掘削攪拌手段110Bのように、攪拌翼112と掘削ヘッド120Bの回転半径をほぼ等しく設定しておけば、掘削した孔底部MAの径D1が改良体(杭体が構築される孔を符号MBで示す)の径D2と等しくなるので、孔内全長を有効径を有する杭体として構成することができる。従って、掘削抵抗が大きくなることを考慮しない場合は、その方が有利である。   In addition, as shown in FIG. 6, when the rotation radius of the excavation head 120 is smaller than that of the stirring blade 112, the diameter D1 of the excavated hole bottom MA is an improved body (a hole in which a pile body is constructed is indicated by a symbol MB). Therefore, when constructing a pile body with a predetermined diameter and a predetermined depth, it is out of specification by the height of the excavation head 120, and therefore it is necessary to excavate an extra depth by that amount. However, if the rotational radii of the agitating blade 112 and the excavation head 120B are set to be approximately equal as in the excavation stirring means 110B shown in FIGS. 7 and 8, the diameter D1 of the excavated hole bottom MA is improved ( Since the hole in which the pile body is constructed is equal to the diameter D2), the entire length in the hole can be configured as a pile body having an effective diameter. Therefore, it is more advantageous when the increase in excavation resistance is not taken into consideration.

また、上述したような、攪拌翼112の回転高さに設けた吐出ボックス115から安定材を吐出して現地土と混合するという通常の使い方の他に、流路変更手段300を設けたことにより、必要時には、送水管210及び第1の供給管路を経由し、掘削ヘッド120の噴射ボックス130からも、安定材を吐出することができ、掘削ヘッド120の深さにおいて地盤中に安定材を供給することもできる。   In addition to the normal usage of discharging the stabilizer from the discharge box 115 provided at the rotational height of the stirring blade 112 and mixing it with the local soil as described above, the flow path changing means 300 is provided. When necessary, the stabilizer can be discharged from the injection box 130 of the excavation head 120 via the water supply pipe 210 and the first supply conduit, and the stabilizer can be discharged into the ground at the depth of the excavation head 120. It can also be supplied.

例えば、掘削ヘッド120の噴射ボックス130および攪拌翼112の吐出ボックス115の両方から適当な比率(10:0〜0:10まで自由に比率を変更できる)で安定材を吐出する場合は、第2のバルブ312を閉じ、第1のバルブ311と第3のバルブ313の開閉割合を適当に設定する。そうすることにより、圧送管201及び第2の供給管路を通して攪拌翼112の吐出ボックス115から安定材を土中に吐出できると共に、送水管210及び第1の供給管路を通して掘削ヘッド120の噴射ボックス130から安定材を土中に吐出できる。   For example, when the stabilizer is discharged from both the jet box 130 of the excavation head 120 and the discharge box 115 of the stirring blade 112 at an appropriate ratio (the ratio can be freely changed from 10: 0 to 0:10), the second is used. The valve 312 is closed and the open / close ratio of the first valve 311 and the third valve 313 is set appropriately. By doing so, the stabilizer can be discharged into the soil from the discharge box 115 of the stirring blade 112 through the pressure feed pipe 201 and the second supply pipe, and the injection of the excavation head 120 through the water feed pipe 210 and the first supply pipe. A stabilizer can be discharged from the box 130 into the soil.

従って、例えば、軟らかい地盤の場合は、回転軸101の貫入時において、圧水の供給と安定材の供給を切り換えながら、掘削ヘッド120の噴射ボックス130から交替で圧水と安定材を吐出することにより、貫入の時点で、掘削土に安定材を混合させることができる。   Therefore, for example, in the case of soft ground, when the rotary shaft 101 penetrates, the pressure water and the stabilizing material are alternately discharged from the injection box 130 of the excavation head 120 while switching the supply of the pressurized water and the supply of the stabilizing material. Thus, at the time of penetration, the stabilizer can be mixed with the excavated soil.

また、硬い地盤の場合は、掘削ヘッド120の噴射ボックス130から圧水を吐出しながら、地盤中に回転軸101を貫入させ、貫入後の回転軸101の引き抜き時に、攪拌翼112の回転高さにおいて安定材を吐出し、また、圧水の代わりに掘削ヘッド120の噴射ボックス130からも安定材を吐出し、それにより、安定材を現地土と混合させることができる。   In the case of hard ground, the rotating shaft 101 penetrates into the ground while discharging the pressurized water from the jet box 130 of the excavation head 120, and the rotational height of the stirring blade 112 is pulled out when the rotating shaft 101 is pulled out. In addition, the stabilizing material is discharged from the spray box 130 of the excavation head 120 instead of the pressurized water, so that the stabilizing material can be mixed with the local soil.

なお、流路変更手段300は、圧送管201と送水管210よりなる配管系に、連絡管301と3つのバルブ311〜313を設けるだけで簡単に構成することができる。   In addition, the flow path changing means 300 can be easily configured only by providing the connecting pipe 301 and the three valves 311 to 313 in the piping system including the pressure feeding pipe 201 and the water feeding pipe 210.

図9は、本発明の他の実施形態の要部構成を示す図である。   FIG. 9 is a diagram showing a main configuration of another embodiment of the present invention.

この実施形態の地盤改良装置では、安定材の圧送管201上に空気導入口206を設け、その空気導入口206に、逆止弁224の下流の送気管220上に設けた分岐点226から分岐して設けた空気導入管220Aの先端を接続し、圧送管201内を圧送される安定材の中に圧縮空気を混入させることができるようにしている。また、送気管220を通して供給される圧縮空気の導入先を、送水管210上の挿入口215にするか圧送管201上の空気導入口206にするかを切り換える切換バルブ手段として、分岐点226の下流側に、2つのバルブ227、228を設けている。   In the ground improvement device of this embodiment, an air introduction port 206 is provided on the pressure-feed pipe 201 of the stabilizer, and the air introduction port 206 branches from a branch point 226 provided on the air supply pipe 220 downstream of the check valve 224. The tip of the air introduction pipe 220A provided in this way is connected so that the compressed air can be mixed into the stabilizer fed through the pressure feed pipe 201. In addition, as a switching valve means for switching the introduction destination of the compressed air supplied through the air supply pipe 220 to the insertion port 215 on the water supply pipe 210 or the air introduction port 206 on the pressure supply pipe 201, the branch point 226 is provided. Two valves 227 and 228 are provided on the downstream side.

このような構成を採用することにより、地盤掘削時には、バルブ227を開いてバルブ228を閉じることにより、圧縮空気を圧水に混入させることができ、その混合流体を掘削ヘッド120に送り込むことができ、上述の効果を発揮することができる。また、攪拌時には、バルブ227を閉じバルブ228を開くことにより、圧縮空気を安定材に混入させることができ、圧縮空気の混入した安定材を攪拌状態の掘削土壌中に吐出することができる。従って、圧縮空気の混入によって安定材の流動性を調整することができ、攪拌性能を向上させることができる。   By adopting such a configuration, when excavating the ground, by opening the valve 227 and closing the valve 228, compressed air can be mixed into the pressurized water, and the mixed fluid can be fed into the excavation head 120. The above-described effects can be exhibited. Further, during agitation, by closing the valve 227 and opening the valve 228, the compressed air can be mixed into the stabilizing material, and the stabilizing material mixed with the compressed air can be discharged into the agitated excavated soil. Therefore, the fluidity of the stabilizer can be adjusted by mixing compressed air, and the stirring performance can be improved.

また、そのために用意する空気導入管220Aは、逆止弁224の下流の送気管220上に分岐して設け、バルブ227、228で圧縮空気の導入先を切り換えるようにしているので、設備コストを抑えながら、掘削時と攪拌時の両方に有効に圧縮空気を役立てることができる。   In addition, the air introduction pipe 220A prepared for that purpose is branched on the air supply pipe 220 downstream of the check valve 224, and the introduction destination of the compressed air is switched by the valves 227 and 228. While being suppressed, the compressed air can be effectively used for both excavation and stirring.

図10は、本発明の更に別の実施形態の要部構成を示す図である。   FIG. 10 is a diagram showing a configuration of main parts of still another embodiment of the present invention.

この実施形態の地盤改良装置では、空気制御装置222と逆止弁224の間の管路上に、図2に示すように直接安全弁225を設けるのではなく、同管路上にタンク229を設け、そのタンク229に安全弁225を取り付けている。その他の構成は、図9の実施形態と同様である。   In the ground improvement device of this embodiment, a safety valve 225 is not directly provided on the pipeline between the air control device 222 and the check valve 224 as shown in FIG. 2, but a tank 229 is provided on the pipeline, A safety valve 225 is attached to the tank 229. Other configurations are the same as those of the embodiment of FIG.

このように構成した場合は、逆流流体(水やミルク)がもし逆止弁224を潜り抜けてしまった場合も、タンク229を介して安全弁225により外部に放出することができ、空気制御装置への水やミルクの逆流を確実に防止することができる。   In such a configuration, even if the backflow fluid (water or milk) has penetrated the check valve 224, it can be discharged to the outside by the safety valve 225 via the tank 229, to the air control device. Water and milk backflow can be reliably prevented.

本発明の実施形態の地盤改良工法を実施する地盤改良装置の全体構成の概要を示す側面図である。It is a side view which shows the outline | summary of the whole structure of the ground improvement apparatus which implements the ground improvement construction method of embodiment of this invention. 地盤改良装置の要部のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the principal part of a ground improvement apparatus. 地盤改良装置の回転軸の先端に設けた掘削攪拌手段の構成を示す側面図である。It is a side view which shows the structure of the excavation stirring means provided in the front-end | tip of the rotating shaft of a ground improvement apparatus. 前記掘削攪拌手段を構成する掘削ヘッドの、上下逆にして見た斜視図である。It is the perspective view seen upside down of the excavation head which comprises the said excavation stirring means. 前記掘削ヘッドの螺旋翼の背面に設けられる噴射ボックスの構成図で、(a)は断面図、(b)は側面図である。It is a block diagram of the injection box provided in the back surface of the spiral blade of the said excavation head, (a) is sectional drawing, (b) is a side view. 本発明の実施形態の地盤改良装置の掘削攪拌手段により地盤に孔掘削を行っている状態を示す断面図である。It is sectional drawing which shows the state which is excavating a hole in the ground by the excavation stirring means of the ground improvement apparatus of embodiment of this invention. 本発明の他の実施形態の地盤改良装置の要部を拡大して示す側面図である。It is a side view which expands and shows the principal part of the ground improvement apparatus of other embodiment of this invention. 図7の地盤改良装置の掘削攪拌手段により地盤に孔掘削を行っている状態を示す断面図である。It is sectional drawing which shows the state which is excavating a hole in the ground by the excavation stirring means of the ground improvement apparatus of FIG. 本発明の更に他の実施形態の地盤改良装置の要部のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the principal part of the ground improvement apparatus of further another embodiment of this invention. 本発明の更に別の実施形態の地盤改良装置の要部のシステム構成を示す図である。It is a figure which shows the system configuration | structure of the principal part of the ground improvement apparatus of another embodiment of this invention. 従来の地盤改良装置の構成を示す側面図である。It is a side view which shows the structure of the conventional ground improvement apparatus.

符号の説明Explanation of symbols

101 回転軸
104 昇降駆動装置
105 回転駆動装置
110,110B 掘削攪拌手段
112 攪拌翼
115 安定材の吐出ボックス(吐出口)
120,120B 掘削ヘッド
121 螺旋翼
121a 下端縁
122 掘削爪
130 噴射ボックス(吐出口)
135〜137 吐出口
201 圧送管
204 分岐点(接続点)
205 安定材の圧送供給装置
206 空気導入口
210 送水管
213 圧水供給装置
214 分岐点(接続点)
215 挿入口(合流点)
220 送気管
223 圧縮空気供給装置
224 逆止弁
225 安全弁
220A 空気導入管
226 分岐点
227 バルブ(切換バルブ)
228 バルブ(切換バルブ)
229 タンク
300 流路変更手段
301 連絡管
311 第1のバルブ
312 第2のバルブ
313 第3のバルブ
DESCRIPTION OF SYMBOLS 101 Rotating shaft 104 Lifting drive device 105 Rotation drive device 110,110B Excavation stirring means 112 Stirring blade 115 Stabilizer discharge box (discharge port)
120, 120B Excavation head 121 Spiral blade 121a Lower end edge 122 Excavation claw 130 Injection box (discharge port)
135 to 137 Discharge port 201 Pressure feed pipe 204 Branch point (connection point)
205 Stabilizer Pressure Supply Device 206 Air Inlet 210 Water Supply Pipe 213 Pressure Water Supply Device 214 Branch Point (Connection Point)
215 Insertion (confluence)
220 Air supply pipe 223 Compressed air supply device 224 Check valve 225 Safety valve 220A Air introduction pipe 226 Branch point 227 Valve (switching valve)
228 Valve (Switching valve)
229 Tank 300 Channel changing means 301 Connecting pipe 311 First valve 312 Second valve 313 Third valve

Claims (11)

地盤改良に際し、回転軸の先端に装備した掘削ヘッドで地盤を掘削して地盤中に回転軸を貫入し、その貫入時に、前記回転軸に沿って配した供給管路を通して地上から流体を送り込み、その流体を前記掘削ヘッドに設けた吐出口から掘削土壌に向けて噴射する地盤改良工法において、
前記流体の供給装置として、地上に、圧水供給装置と圧縮空気供給装置とを備え、これら両供給装置から供給される圧水と圧縮空気を、前記供給管路の入口に導入する手前で合流させた上で、供給管路を通して前記掘削ヘッドに送り込み、前記吐出口から掘削土壌に向けて噴射することを特徴とする地盤改良工法。
When the ground is improved, the ground is excavated by the excavation head equipped at the tip of the rotating shaft, the rotating shaft is penetrated into the ground, and when penetrating, the fluid is sent from the ground through the supply pipe line arranged along the rotating shaft, In the ground improvement method of spraying the fluid from the discharge port provided in the excavation head toward the excavation soil,
As the fluid supply device, a pressure water supply device and a compressed air supply device are provided on the ground, and the compressed water and compressed air supplied from both supply devices are joined before being introduced to the inlet of the supply pipe line. Then, the ground improvement method is characterized in that it is fed to the excavation head through a supply pipe and sprayed from the discharge port toward the excavated soil.
請求項1に記載の地盤改良工法であって、
前記圧水供給装置から延ばした送水管に前記圧縮空気供給装置から延ばした送気管を合流させることで、圧水の流れに圧縮空気の流れを合流させ、その合流点の手前の、前記圧縮空気供給装置から延ばした送気管上に、前記合流点側からの流体の流れを阻止する逆止弁と、規定圧以上の圧力を逃がす安全弁と、を設けたことを特徴とする地盤改良工法。
The ground improvement method according to claim 1,
By combining the air supply pipe extended from the compressed air supply apparatus with the water supply pipe extended from the pressurized water supply apparatus, the flow of compressed air is merged with the flow of compressed water, and the compressed air before the junction A ground improvement construction method comprising: a check valve for preventing a fluid flow from the merging point side and a safety valve for releasing a pressure higher than a specified pressure on an air supply pipe extending from a supply device.
請求項1に記載の地盤改良工法であって、
前記掘削ヘッドに、下端縁に掘削爪を有した螺旋翼を設け、その螺旋翼の回転方向の背面側に流体の噴射ボックスを設け、その噴射ボックスに、前記螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口、後方へ向けて流体を吐出する吐出口、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口、の少なくとも1つを設けたことを特徴とする地盤改良工法。
The ground improvement method according to claim 1,
The excavation head is provided with a spiral blade having an excavation claw at the lower end edge, a fluid injection box is provided on the back side in the rotation direction of the spiral blade, and the rotation direction of the spiral blade is directed to the injection box. The ground is provided with at least one of a discharge port that discharges fluid, a discharge port that discharges fluid backward, and a discharge port that discharges fluid outward in the rotational radial direction of the spiral blade Improvement method.
請求項3に記載の地盤改良工法であって、
前記噴射ボックスに、螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口と、後方へ向けて流体を吐出する吐出口と、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口と、の3種の吐出口を設け、掘削地盤の状況に応じて、いずれか1つの吐出口を選択的に開放して流体を吐出させ、他を塞ぐことを特徴とする地盤改良工法。
The ground improvement method according to claim 3,
A discharge port that discharges fluid toward the front in the rotational direction of the spiral wing, a discharge port that discharges fluid toward the rear, and a fluid toward the outer side in the radial direction of rotation of the spiral wing to the jet box. A ground improvement method characterized by providing three types of discharge ports, the discharge port, and selectively opening one of the discharge ports to discharge the fluid and closing the other according to the conditions of the excavated ground. .
鉛直に支持され、先端に装備した掘削ヘッドで地盤を掘削して地盤中に貫入される回転軸と、
該回転軸を回転させつつ昇降させる駆動装置と、
前記回転軸に沿って配された第1の供給管路と、
前記掘削ヘッドに設けられ、前記第1の供給管路を通して送り込まれてきた流体を掘削土壌に向けて吐出する吐出口と、
地上に設けられた圧水供給装置および圧縮空気供給装置と、
前記圧水供給装置から供給される圧水を前記第1の供給管路の入口に送り込む送水管と、
前記第1の供給管路の入口の手前の前記送水管上に設けられた挿入口と、
前記圧縮空気供給装置から供給される圧縮空気を前記挿入口に合流させる送気管と、
前記送気管上に装備され、前記挿入口側からの流体の逆流を阻止する逆止弁と、
該逆止弁の上流側の送気管上に装備され、規定圧以上の圧力を逃がす安全弁と、
を備えたことを特徴とする地盤改良装置。
A rotating shaft that is vertically supported and drilled into the ground with a drilling head equipped at the tip;
A drive device that moves up and down while rotating the rotating shaft;
A first supply line arranged along the rotation axis;
A discharge port that is provided in the excavation head and discharges the fluid that has been fed through the first supply pipe toward the excavation soil;
A pressurized water supply device and a compressed air supply device provided on the ground;
A water supply pipe for sending pressurized water supplied from the pressurized water supply device to an inlet of the first supply pipe;
An insertion port provided on the water supply pipe before the inlet of the first supply pipe line;
An air supply pipe for joining the compressed air supplied from the compressed air supply device to the insertion port;
A check valve that is provided on the air supply pipe and prevents a reverse flow of fluid from the insertion port side;
A safety valve that is provided on the air supply pipe upstream of the check valve and that releases a pressure higher than a specified pressure;
A ground improvement device characterized by comprising:
請求項5に記載の地盤改良装置であって、
前記掘削ヘッドに、下端縁に掘削爪を有した螺旋翼が設けられ、その螺旋翼の回転方向の背面側に流体の噴射ボックスが設けられ、その噴射ボックスに、螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口、後方へ向けて流体を吐出する吐出口、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口、のいずれか1つが設けられていることを特徴とする地盤改良装置。
The ground improvement device according to claim 5,
The excavation head is provided with a spiral blade having an excavation claw at the lower end edge, a fluid injection box is provided on the back side in the rotation direction of the spiral blade, and the injection box has a forward direction in the rotation direction of the spiral blade. One of a discharge port that discharges fluid toward the discharge port, a discharge port that discharges fluid toward the rear, and a discharge port that discharges fluid toward the outer side in the rotational radial direction of the spiral blade is provided. Ground improvement device.
請求項6に記載の地盤改良装置であって、
前記噴射ボックスに、螺旋翼の回転方向の前方へ向けて流体を吐出する吐出口と、後方へ向けて流体を吐出する吐出口と、螺旋翼の回転半径方向外方へ向けて流体を吐出する吐出口と、の3種の吐出口が、そのうちの1つのみを選択的に開放できるように設けられていることを特徴とする地盤改良装置。
The ground improvement device according to claim 6,
A discharge port that discharges fluid toward the front in the rotational direction of the spiral wing, a discharge port that discharges fluid toward the rear, and a fluid toward the outer side in the radial direction of rotation of the spiral wing to the jet box. A ground improvement device characterized in that three types of discharge ports, the discharge ports, are provided so that only one of them can be selectively opened.
請求項5〜7のいずれか1項に記載の地盤改良装置であって、
前記掘削ヘッドの上側に位置させて前記回転軸の先端に設けられた攪拌翼と、
前記第1の供給管路とは別に前記回転軸に沿って配された第2の供給管路と、
該第2の供給管路を通して地上から送られてきた安定材を前記攪拌翼の回転高さにおいて掘削土壌中に吐出する安定材の吐出口と、
地上に設けられた安定材の圧送供給装置と、
前記回転軸に沿って配された第2の供給管路の入口に、前記圧送供給装置から圧送された安定材を導入する安定材用の圧送管と、
前記安定材の圧送供給装置から送られてくる安定材を、必要に応じて、前記第1の供給管路の入口に導入する流路変更手段と、
を具備することを特徴とする地盤改良装置。
The ground improvement device according to any one of claims 5 to 7,
An agitating blade provided at the tip of the rotating shaft and positioned above the excavation head;
A second supply line arranged along the rotation axis separately from the first supply line;
A stabilizer outlet for discharging the stabilizer sent from the ground through the second supply pipe into the excavated soil at the rotational height of the stirring blade;
A pressure supply device for stabilizing material provided on the ground;
A stabilizing material pumping pipe for introducing the stabilizing material pumped from the pumping supply device into an inlet of a second supply pipe line arranged along the rotation axis;
A flow path changing means for introducing the stabilizing material sent from the pressure feeding device of the stabilizing material into the inlet of the first supply pipe as necessary;
The ground improvement apparatus characterized by comprising.
請求項8に記載の地盤改良装置であって、
前記流路変更手段が、
前記圧送管と送水管とを連絡する連絡管と、
該連絡管を開閉する第1のバルブと、
該第1のバルブが開のときに前記連絡管の接続点よりも前記送水管の上流側への流体の逆流を阻止するために閉じられる第2のバルブと、前記連絡管の接続点よりも下流側の前記圧送管上に設けられ、前記第1のバルブと連動して逆に開閉制御される第3のバルブと、
から構成されいることを特徴とする地盤改良装置。
The ground improvement device according to claim 8,
The flow path changing means is
A communication pipe connecting the pressure feed pipe and the water feed pipe;
A first valve for opening and closing the connecting pipe;
A second valve that is closed to prevent back flow of fluid upstream of the connecting pipe connection point when the first valve is open, and more than the connecting pipe connection point; A third valve provided on the downstream side of the pressure feed pipe and controlled to open and close in conjunction with the first valve;
A ground improvement device characterized by comprising:
請求項5〜9のいずれか1項に記載の地盤改良装置であって、
前記掘削ヘッドの上側に位置させて前記回転軸の先端に設けられた攪拌翼と、
前記第1の供給管路とは別に前記回転軸に沿って配された第2の供給管路と、
該第2の供給管路を通して地上から送られてきた安定材を前記攪拌翼の回転高さにおいて掘削土壌中に吐出する安定材の吐出口と、
地上に設けられた安定材の圧送供給装置と、
前記回転軸に沿って配された第2の供給管路の入口に、前記圧送供給装置から圧送された安定材を導入する安定材用の圧送管と、
前記圧送管上に設けられた空気導入口と、
前記圧縮空気供給手段より供給される圧縮空気を前記圧送管上の空気導入口に導入し、圧送管内を圧送される安定材の中に圧縮空気を混入させる空気導入管と、
を具備することを特徴とする地盤改良装置。
It is the ground improvement apparatus of any one of Claims 5-9,
An agitating blade provided at the tip of the rotating shaft and positioned above the excavation head;
A second supply line arranged along the rotation axis separately from the first supply line;
A stabilizer outlet for discharging the stabilizer sent from the ground through the second supply pipe into the excavated soil at the rotational height of the stirring blade;
A pressure supply device for stabilizing material provided on the ground;
A stabilizing material pumping pipe for introducing the stabilizing material pumped from the pumping supply device into an inlet of a second supply pipe line arranged along the rotation axis;
An air inlet provided on the pumping pipe;
An air introduction pipe that introduces compressed air supplied from the compressed air supply means into an air introduction port on the pressure feed pipe, and mixes the compressed air into a stabilizer that is pumped in the pressure feed pipe;
The ground improvement apparatus characterized by comprising.
請求項10に記載の地盤改良装置であって、
前記逆止弁の下流の送気管上に分岐点を設けてその分岐点より前記空気導入管を分岐して設けると共に、前記送気管を通して供給される圧縮空気の導入先を、前記送水管上の挿入口にするか圧送管上の空気導入口にするかを切り換える切換バルブ手段を設けたことを特徴とする地盤改良装置。
The ground improvement device according to claim 10,
A branch point is provided on the air supply pipe downstream of the check valve, the air introduction pipe is branched from the branch point, and the introduction destination of the compressed air supplied through the air supply pipe is set on the water supply pipe. A ground improvement device provided with switching valve means for switching between an insertion port and an air introduction port on a pressure feed pipe.
JP2006244145A 2006-09-08 2006-09-08 Ground improvement method and ground improvement equipment Active JP4966613B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006244145A JP4966613B2 (en) 2006-09-08 2006-09-08 Ground improvement method and ground improvement equipment
US11/614,232 US7651301B2 (en) 2006-09-08 2006-12-21 Drilling head, method of soil improvement work and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244145A JP4966613B2 (en) 2006-09-08 2006-09-08 Ground improvement method and ground improvement equipment

Publications (2)

Publication Number Publication Date
JP2008063871A true JP2008063871A (en) 2008-03-21
JP4966613B2 JP4966613B2 (en) 2012-07-04

Family

ID=39286818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244145A Active JP4966613B2 (en) 2006-09-08 2006-09-08 Ground improvement method and ground improvement equipment

Country Status (1)

Country Link
JP (1) JP4966613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285788A (en) * 2009-06-11 2010-12-24 Flowtechno Corp Ground hardening layer formation method and apparatus therefor
JP2016108824A (en) * 2014-12-05 2016-06-20 株式会社セリタ建設 Slurry injection device
JP2018131774A (en) * 2017-02-14 2018-08-23 ライト工業株式会社 Method and system for construction management of a high pressure injection agitation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193042A (en) * 1992-12-22 1994-07-12 Nichiboo:Kk Stirring method for improvement of weak ground and device therefor
JPH11280054A (en) * 1998-03-30 1999-10-12 Toyo Constr Co Ltd Ground improving construction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193042A (en) * 1992-12-22 1994-07-12 Nichiboo:Kk Stirring method for improvement of weak ground and device therefor
JPH11280054A (en) * 1998-03-30 1999-10-12 Toyo Constr Co Ltd Ground improving construction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285788A (en) * 2009-06-11 2010-12-24 Flowtechno Corp Ground hardening layer formation method and apparatus therefor
JP2016108824A (en) * 2014-12-05 2016-06-20 株式会社セリタ建設 Slurry injection device
JP2018131774A (en) * 2017-02-14 2018-08-23 ライト工業株式会社 Method and system for construction management of a high pressure injection agitation method

Also Published As

Publication number Publication date
JP4966613B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4966613B2 (en) Ground improvement method and ground improvement equipment
JP6764691B2 (en) Caisson skeleton subsidence device
US7651301B2 (en) Drilling head, method of soil improvement work and apparatus thereof
KR101028218B1 (en) Jet-propelled rotational tube for grouting and jet-propelled rotational device for the same
JP2013133638A (en) High pressure swivel and high pressure injection agitating method
JP4637047B2 (en) Bubble mixed earth method and bubble mixed soil treatment equipment
JP2008095442A (en) Self-boring type monitor
JP2008063870A (en) Excavating head and soil improving equipment
WO2024124846A1 (en) Air slag-carrying-type slurry discharging device
JP6271240B2 (en) Ground improvement method and apparatus
JP2018111158A (en) Waterjet hole-drilling nozzle
JP2018150712A (en) Sludge processing equipment to be used for high-pressure injecting agitation method
JP6227344B2 (en) Fluid supply switching device and switching method, and high-pressure jet stirring device
JP2008285811A (en) Method of injecting ground hardener and device therefor
JPH03132515A (en) Excavator
JP2007016534A (en) Ground hardening material injecting rod
JPH0978566A (en) Soil improving device
JP6307049B2 (en) Ground hardening layer construction method and its equipment
JP6912152B2 (en) Spray system
KR100226592B1 (en) Method and apparatus for injecting the stiffening material of two component system
JPH0931967A (en) Mixing and agitating device using mechanical agitation and high pressure jet combinedly
JP7302585B2 (en) Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile
JP4431702B2 (en) Underwater drilling equipment
JP7356530B2 (en) High pressure injection stirring mixing device
JP2979068B2 (en) Crack injection equipment for structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120402

R150 Certificate of patent or registration of utility model

Ref document number: 4966613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250