JP2008062228A - Method for preparing porous membrane - Google Patents

Method for preparing porous membrane Download PDF

Info

Publication number
JP2008062228A
JP2008062228A JP2007209476A JP2007209476A JP2008062228A JP 2008062228 A JP2008062228 A JP 2008062228A JP 2007209476 A JP2007209476 A JP 2007209476A JP 2007209476 A JP2007209476 A JP 2007209476A JP 2008062228 A JP2008062228 A JP 2008062228A
Authority
JP
Japan
Prior art keywords
membrane
water
solvent
hollow fiber
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209476A
Other languages
Japanese (ja)
Inventor
Arata Ishiodori
新 石躍
Kensaku Komatsu
賢作 小松
Koji Yamada
晃司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007209476A priority Critical patent/JP2008062228A/en
Publication of JP2008062228A publication Critical patent/JP2008062228A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing porous hollow fiber membrane excellent in permeability, fractionation capability, physical strength, process controllability, cost, and good-pore formability that can be made easily at a low cost and is suitable for water treatment such as water purification, potable water preparation, industrial water preparation and waste water treatment. <P>SOLUTION: The method for preparing porous polyvinylidene fluoride membrane is characterized by comprising a coagulation step wherein an aqueous solution containing at least one kind of salt dissolved therein is used for coagulation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、浄水処理、飲料水製造、工業用水製造、排水処理などの水処理に好適な透過性能や分画性能に優れ、さらに工程制御性、コスト性、良孔形成性に優れたフッ化ビニリデン系樹脂多孔膜の製造方法に関する。   The present invention is excellent in permeation performance and fractionation performance suitable for water treatment such as water purification treatment, drinking water production, industrial water production, and wastewater treatment, and also has excellent process controllability, cost performance, and good pore formation. The present invention relates to a method for producing a vinylidene resin porous membrane.

近年、選択透過性を有する分離膜を用いた分離手段の技術がめざましく進展している。このような分離操作の技術は、例えば飲料水、超純水および医薬品の製造工程、醸造製品の除菌・仕上げにおいて、分離手段、洗浄手段および殺菌手段等を含む一連の浄化システムとして実用化されている。これらの用途分野においては、水のファイン化(高度処理)や安全性向上、精度向上などが高いレベルで要求されており分離膜の利用が進んでいる。上記のような状況を鑑み、分離膜に求められる特性はより高度化している。膜特性の中で最も重要なものは、透過性能と分画性能である。両性能に関してはそのバランスが重要であり、より高い透過速度でより小さな粒子を除去できることが望ましく、この達成には膜の孔連通性と膜表面構造が大きなポイントとなる。   In recent years, the technology of separation means using a separation membrane having selective permeability has been remarkably advanced. Such separation operation technology has been put into practical use as a series of purification systems including separation means, washing means, sterilization means, etc., for example in the manufacturing process of drinking water, ultrapure water and pharmaceuticals, and sterilization and finishing of brewed products. ing. In these application fields, water refinement (advanced treatment), safety improvement, and accuracy improvement are required at a high level, and the use of separation membranes is progressing. In view of the above situation, the characteristics required for the separation membrane are becoming more sophisticated. The most important membrane properties are permeation performance and fractionation performance. The balance is important for both performances, and it is desirable to be able to remove smaller particles at higher permeation rates, and the achievement of this is largely due to membrane pore connectivity and membrane surface structure.

このような状況のもと、様々な膜素材からなる分離膜が製造されている。分離膜の物理的強度、化学的強度の性能は膜素材の特性に由来するところが大きく、近年では、フッ化ビニリデン系樹脂樹脂を用いた多孔膜が開発され、使われている。   Under such circumstances, separation membranes made of various membrane materials are manufactured. The physical strength and chemical strength performance of the separation membrane is largely derived from the characteristics of the membrane material. In recent years, porous membranes using vinylidene fluoride resin resins have been developed and used.

一方、分離膜の透過性能や分画性能は、膜の製造方法に大きく依存する。透過性能や分画性能に優れた分離膜を製造する方法として、相分離を利用する場合が多い。そのような相分離を利用した製造方法は、非溶剤誘起相分離法と熱誘起相分離法に大きく分けることができる。   On the other hand, the permeation performance and fractionation performance of the separation membrane depend greatly on the membrane production method. Phase separation is often used as a method for producing a separation membrane having excellent permeation performance and fractionation performance. Manufacturing methods using such phase separation can be broadly divided into non-solvent induced phase separation methods and thermally induced phase separation methods.

非溶剤誘起相分離法では、ポリマーと溶剤からなる均一なポリマー溶液は、非溶剤の進入や溶剤の外部雰囲気への蒸発による濃度変化によって相分離を起こす。このような非溶剤誘起相分離法を利用した分離膜の製造方法として、フッ化ビニリデン系樹脂系樹脂を良溶媒に溶解したポリマー溶液を、フッ化ビニリデン系樹脂系樹脂の融点よりかなり低い温度で、口金から押出したり、ガラス板上にキャストしたりして成型した後、フッ化ビニリデン系樹脂系樹脂の非溶剤を含む液体に接触させて非溶剤誘起相分離により非対称多孔構造を形成させる方法が知られている(特許文献1)。しかし、一般に非溶剤誘起相分離法では、緻密な膜が形成しやすく、十分な表面細孔数と十分に大きい表面細孔径を達成するのは困難である。また、非溶剤中での相分離制御が難しく、非溶剤が必須であるため製造コストがかかり、マクロボイド(粗大孔)が発生しやすいなど、膜物性、工程制御性の面で問題がある。   In the non-solvent induced phase separation method, a uniform polymer solution composed of a polymer and a solvent undergoes phase separation due to the concentration change due to the ingress of the non-solvent or evaporation of the solvent to the external atmosphere. As a method for producing a separation membrane using such a non-solvent induced phase separation method, a polymer solution in which a vinylidene fluoride resin resin is dissolved in a good solvent is used at a temperature considerably lower than the melting point of the vinylidene fluoride resin resin. The method of forming an asymmetric porous structure by non-solvent-induced phase separation after being extruded from a die or cast on a glass plate and then brought into contact with a liquid containing a non-solvent of vinylidene fluoride resin resin Known (Patent Document 1). However, in general, a non-solvent induced phase separation method tends to form a dense film, and it is difficult to achieve a sufficient number of surface pores and a sufficiently large surface pore diameter. In addition, it is difficult to control the phase separation in a non-solvent, and since the non-solvent is essential, the production cost is high, and macrovoids (coarse pores) are likely to be generated.

一方、熱誘起相分離法は通常、以下のステップよりなる。(1)ポリマーと高い沸点を持った溶剤の混合物を高温で溶融させる。(2)相分離を誘発させるために適当な速度で冷却させ,ポリマーを凝固させる。(3)用いた溶剤を抽出する。   On the other hand, the thermally induced phase separation method usually comprises the following steps. (1) A mixture of a polymer and a solvent having a high boiling point is melted at a high temperature. (2) Allow the polymer to solidify by cooling at an appropriate rate to induce phase separation. (3) Extract the used solvent.

熱誘起相分離法では、(1)フッ化ビニリデン系樹脂系樹脂に無機微粒子と有機液状体を溶融混練し、フッ化ビニリデン系樹脂系樹脂の融点以上の温度で口金から押出したり、プレス機でプレスしたりして成型した後、冷却凝固し、その後有機液状体と無機微粒子を抽出することにより多孔構造を形成する方法がある(特許文献2)。該方法は、空孔性の制御が容易で、マクロボイドは形成せず比較的均質で高強度の膜が得られるものの、有機液状体の抽出工程において1,1,1−トリクロロエタンなどの溶剤を用いる必要があるため、製造コストが極めて高くなるといった欠点を有している製造方法である。   In the thermally induced phase separation method, (1) inorganic fine particles and an organic liquid are melt-kneaded into a vinylidene fluoride resin resin and extruded from a die at a temperature equal to or higher than the melting point of the vinylidene fluoride resin resin. There is a method of forming a porous structure by pressing and molding, cooling and solidifying, and then extracting an organic liquid and inorganic fine particles (Patent Document 2). This method is easy to control the porosity and does not form macrovoids and can obtain a relatively homogeneous and high-strength film. However, a solvent such as 1,1,1-trichloroethane is used in the organic liquid extraction process. Since it is necessary to use it, it is a manufacturing method having the disadvantage that the manufacturing cost becomes extremely high.

また、(2)フッ化ビニリデン系樹脂に親水性多孔化剤と該樹脂の貧溶媒を溶解し、濃度が60〜100重量%の貧溶媒を含有する液体からなる冷却浴に吐出し凝固させる方法がある(特許文献3)。該方法は、マクロボイドは形成せず比較的均質で高強度の膜が得られるものの、冷却浴に高い濃度の貧溶媒を含有する液体を要するため、安全面、コスト性の面で問題を有している。   (2) A method in which a hydrophilic porogen and a poor solvent of the resin are dissolved in a vinylidene fluoride resin and discharged into a cooling bath containing a poor solvent having a concentration of 60 to 100% by weight for solidification. (Patent Document 3). Although this method does not form macrovoids and a relatively homogeneous and high strength film can be obtained, there is a problem in terms of safety and cost because a liquid containing a high concentration of poor solvent is required for the cooling bath. is doing.

この発明に関連する先行技術文献としては次のものがある。
特開昭56−56202 特開平3−215535 特開2003−138422 特開昭60−97001 特開2003−138422 特開2005−146230
Prior art documents related to the present invention include the following.
JP 56-56202 A JP-A-3-215535 JP 2003-138422 A JP-A-60-97001 JP 2003-138422 A JP-A-2005-146230

本発明は、従来技術の上述した問題点に鑑み、浄水処理、飲料水製造、工業用水製造、排水処理などの水処理に好適な透過性能、分画性能、強度、さらに工程制御性、コスト性、良孔形成性に優れた多孔膜を安価かつ容易に製造することが可能になる中空糸膜の製造方法を提供することを目的とするものである。   In view of the above-mentioned problems of the prior art, the present invention is suitable for water treatment such as water purification treatment, drinking water production, industrial water production, wastewater treatment, permeation performance, fractionation performance, strength, process controllability, cost performance An object of the present invention is to provide a method for producing a hollow fiber membrane, which makes it possible to inexpensively and easily produce a porous membrane excellent in good pore forming properties.

本発明者らは、相分離に寄与する因子に着目し、鋭意検討した結果、凝固する工程に塩水溶液を用いることで、非溶剤(水)と溶剤との交換速度を制御し、多孔膜表面の緻密層形成を抑制し得ることを見出した。   As a result of intensive investigations by paying attention to factors that contribute to phase separation, the present inventors have controlled the exchange rate between a non-solvent (water) and a solvent by using a salt aqueous solution in the solidifying step, and the surface of the porous membrane It has been found that the formation of a dense layer can be suppressed.

上記課題は、下記(1)〜(3)によって解決される。
(1)少なくとも1種以上の塩を溶解させた塩水溶液を用いて凝固する工程を含むことを特徴とするフッ化ビニリデン多孔膜の製造方法。
(2)塩水溶液の塩濃度が、重量濃度30g/L以上でかつ、飽和水溶液濃度に対して10〜100%の範囲にあることを特徴とする上記のフッ化ビニリデン多孔膜の製造方法。
(3)多孔膜が中空糸膜であることを特徴とする上記のフッ化ビニリデン多孔膜の製造方法。
The above problems are solved by the following (1) to (3).
(1) A method for producing a vinylidene fluoride porous membrane comprising a step of coagulating using an aqueous salt solution in which at least one salt is dissolved.
(2) The method for producing a vinylidene fluoride porous membrane as described above, wherein the salt concentration of the salt aqueous solution is not less than 30 g / L in weight concentration and in the range of 10 to 100% with respect to the saturated aqueous solution concentration.
(3) The method for producing a vinylidene fluoride porous membrane as described above, wherein the porous membrane is a hollow fiber membrane.

本発明では、機械的強度、化学的強度の高いフッ化ビニリデン系樹脂を用いて、高透水性能、高分離性能を有し、かつ工程制御性、コスト性に優れる多孔膜の製造方法が提供される。   In the present invention, there is provided a method for producing a porous membrane having high water permeability, high separation performance and excellent process controllability and cost by using a vinylidene fluoride resin having high mechanical strength and chemical strength. The

本発明のフッ化ビニリデン系樹脂多孔膜の製造方法を示す。フッ化ビニリデン系樹脂溶液の凝固工程以外の製造方法は、公知の技術を適用することが可能であり、樹脂含有溶液の製造、凝固、抽出の各工程があり、熱処理等を適宜行ってもよい。例えば特許文献4〜6に記載の方法にてフッ化ビニリデン系樹脂多孔膜を製造することができる。   The manufacturing method of the vinylidene fluoride resin porous membrane of this invention is shown. The manufacturing method other than the coagulation step of the vinylidene fluoride resin solution can apply a known technique, and there are manufacturing, coagulation, and extraction steps of the resin-containing solution, and heat treatment and the like may be appropriately performed. . For example, a vinylidene fluoride resin porous membrane can be produced by the methods described in Patent Documents 4 to 6.

本発明において用いられる溶剤は、フッ化ビニリデン系樹脂を溶解させることができる溶剤であって水溶性のものである。例えば、シクロヘキサノン、イソホロン、γ−ブチロラクトン、ε−カプロラクトン、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジメチルアセトアミド、ジメチルホルムアミド、メチルエチルケトン、アセトン、テトラヒドロフラン、リン酸トリメチル等が挙げられる。   The solvent used in the present invention is a solvent that can dissolve the vinylidene fluoride resin and is water-soluble. Examples thereof include cyclohexanone, isophorone, γ-butyrolactone, ε-caprolactone, N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylacetamide, dimethylformamide, methyl ethyl ketone, acetone, tetrahydrofuran, and trimethyl phosphate.

本発明において用いられる塩は、ハロゲン化物、硫酸塩、硝酸塩、塩素酸塩、乳酸塩及び酢酸塩などのような1価又は多価のものであって、無水塩または含水塩を使用することができる。   The salts used in the present invention are monovalent or polyvalent ones such as halides, sulfates, nitrates, chlorates, lactates and acetates, and it is possible to use anhydrous salts or hydrated salts. it can.

本発明の塩水溶液は、少なくとも1種以上の塩を溶解させたものであり、複数の塩からなる混合液であっても構わない。凝固する工程に塩水溶液を用いることにより、水(非溶剤)と水溶性溶剤の交換速度を低下させることが可能となる。すなわち、急速な構造固定による膜表面への緻密層形成を抑制した多孔膜の成形が可能となる。塩濃度が高くなるほど、水と水溶性溶剤との交換速度は低くなり、得られる膜の表面細孔数及び表面細孔径は大きくなる。   The salt aqueous solution of the present invention is a solution in which at least one salt is dissolved, and may be a mixed solution composed of a plurality of salts. By using an aqueous salt solution in the solidifying step, the exchange rate of water (non-solvent) and water-soluble solvent can be reduced. That is, it is possible to form a porous film that suppresses formation of a dense layer on the film surface due to rapid structural fixation. The higher the salt concentration, the lower the exchange rate between water and the water-soluble solvent, and the larger the number of surface pores and the surface pore diameter of the resulting membrane.

塩水溶液の濃度は、重量濃度30g/L以上でかつ、飽和水溶液濃度に対して10〜100%の範囲にすることが好ましく、10〜60%の範囲にすることがより好ましい。飽和溶液濃度に対して60%を超えると取扱い性の面で好ましくない。   The concentration of the aqueous salt solution is preferably at least 30 g / L in weight concentration and in the range of 10 to 100%, more preferably in the range of 10 to 60% with respect to the saturated aqueous solution concentration. If it exceeds 60% with respect to the saturated solution concentration, it is not preferable in terms of handleability.

目的とする多孔膜の孔径により、製膜原液の組成、製造方法、及び凝固工程の塩濃度を適宜選択することができ、限外ろ過膜、精密濾過膜、更に大きな大孔径膜を製造することが可能となる。   The composition of the membrane forming solution, the production method, and the salt concentration in the coagulation step can be appropriately selected according to the pore size of the target porous membrane, and an ultrafiltration membrane, a microfiltration membrane, and a larger large pore membrane are produced. Is possible.

また、本発明において多孔膜の純水透過速度、強度を向上させるために延伸処理を行なうことも可能である。延伸の方法としては、熱延伸、冷延伸、熱固定などの方法を、目的とする強度に応じて適宜組み合わせて実施することができる。但し、延伸の程度が過ぎると、得られる多孔膜全体がフィブリル化を起こして微細孔がスリット状となり、分離精度が低くなったり、円周方向に対する強度が逆に低下してしまうために好ましくない。膜の濾過においては円周方向の強度も重要であるため、膜の表面がスリット状微細孔にならず円形または楕円形を保持する範囲内で延伸比率を制御する必要がある。延伸は形成後に溶剤等が存在している状態で行なう、溶剤等を抽出した後に行なうなど、任意の方法で行なって良い。   In the present invention, it is also possible to perform a stretching treatment in order to improve the pure water permeation rate and strength of the porous membrane. As the stretching method, methods such as hot stretching, cold stretching, and heat setting can be appropriately combined according to the intended strength. However, if the degree of stretching is too high, the entire porous membrane obtained is fibrillated and the micropores become slit-like, so that the separation accuracy is lowered and the strength in the circumferential direction is adversely decreased. . In the filtration of the membrane, the strength in the circumferential direction is also important. Therefore, it is necessary to control the stretching ratio within a range in which the membrane surface does not become slit-like micropores but maintains a circular or elliptical shape. Stretching may be performed by an arbitrary method such as performing in a state where a solvent or the like is present after formation, or after extracting the solvent or the like.

乾燥後の多孔膜を所定本数ずつ束ねて所定形状のケースに収納した後、ウレタン樹脂、エポキシ樹脂等で端部を固定することによって膜モジュールが得られる。例えば中空糸膜の場合、膜モジュールとしては、中空糸膜の両端が開口固定されているタイプのもの、中空糸膜の一端が開口固定されかつ他端が密封されているが固定はされていないタイプのもの等、種々の形態のものが公知である。   A membrane module is obtained by bundling a predetermined number of porous membranes after drying and storing them in a case having a predetermined shape, and then fixing the ends with urethane resin, epoxy resin or the like. For example, in the case of a hollow fiber membrane, the membrane module is of a type in which both ends of the hollow fiber membrane are fixed open, one end of the hollow fiber membrane is fixed open and the other end is sealed but not fixed Various types are known, such as types.

以下、実施例により本発明を具体的に説明する。なお、本発明はこれによってなんら限定を受けるものではない。   Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention does not receive any limitation by this.

フッ化ビニリデン系樹脂としてポリフッ化ビニリデン(以下、PVDFと略記することがある)(ソルベイアドバンストポリマーズ株式会社製、SOLEF6010)と、溶剤としてγ−ブチロラクトン(以下、γ−BLと略記することがある)と、無機粒子としてシリカと、凝集剤としてグリセリンとを、重量比でそれぞれ30:39:15:16の割合となるように混合液を調製した。この混合液の組成を表1に示す。   Polyvinylidene fluoride (hereinafter may be abbreviated as PVDF) as a vinylidene fluoride-based resin (SOLEF6010 manufactured by Solvay Advanced Polymers Co., Ltd.) and γ-butyrolactone (hereinafter abbreviated as γ-BL) as a solvent Then, a mixed solution was prepared so that silica as inorganic particles and glycerin as a flocculant were in a ratio of 30: 39: 15: 16 by weight ratio, respectively. The composition of this mixed solution is shown in Table 1.

上記した混合液を、二軸混練押出機中で加熱混練(温度150℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径1.6mm、内径0.8mmの二重環構造のノズルを装着した押出機(150℃)を用いて押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。   The above mixed solution was heated and kneaded (temperature: 150 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. This chip was extruded using an extruder (150 ° C.) equipped with a double ring nozzle having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm. At this time, tetraethylene glycol was injected into the hollow portion of the extrudate.

紡口から空気中に押し出した押出成形物を、3cmの空中走行距離を経て、重量パーセント濃度10%硫酸ナトリウム水溶液からなる水浴中(温度60℃)に入れ、約100cm水浴中を通過させて凝固させた。用いた硫酸ナトリウム水溶液は、60℃の飽和水溶液濃度に対して32%である。次いで、得られた中空糸状物を80℃の熱水中で繊維方向に原長の約2倍長となるよう延伸処理をした後に、枠に巻き、80℃の温水中で120分流水洗浄を行い、溶剤(γ-ブチロラクトン)と凝集剤(グリセリン)、さらに注入液(テトラエチレングリコール)を抽出除去した。   The extruded product extruded into the air from the spinning nozzle is placed in a water bath (temperature: 60 ° C.) consisting of a 10% aqueous solution of sodium sulfate by weight over a distance of 3 cm and solidified by passing through an approximately 100 cm water bath. I let you. The aqueous sodium sulfate solution used was 32% with respect to the saturated aqueous solution concentration of 60 ° C. Next, the obtained hollow fiber-like material was stretched in hot water at 80 ° C. so as to be about twice as long as the original length in the fiber direction, wound around a frame, and washed with running water in 80 ° C. warm water for 120 minutes. The solvent (γ-butyrolactone), the flocculant (glycerin), and the injection solution (tetraethylene glycol) were extracted and removed.

このようにして得られた中空糸状物を40℃の重量パーセント濃度5%水酸化ナトリウム水溶液中で120分浸漬して無機粒子(シリカ)を抽出除去した後に、水洗、乾燥工程を経て中空糸膜を得た。製造した中空糸膜について以下の手法に従って試験を行った。試験結果を表2に示す。また膜表面構造を観察するにあたって撮影した走査型電子顕微鏡写真を図1に示す。   The hollow fiber membrane thus obtained was immersed in an aqueous solution of sodium hydroxide at a weight percent concentration of 5% at 40 ° C. for 120 minutes to extract and remove inorganic particles (silica), followed by a water washing and drying step to obtain a hollow fiber membrane. Got. The manufactured hollow fiber membrane was tested according to the following method. The test results are shown in Table 2. A scanning electron micrograph taken for observing the film surface structure is shown in FIG.

各種の測定(分析)方法および装置
(1)分画粒子径
異なる粒子径を有する少なくとも2種類の粒子の阻止率を測定し、その測定値を元にして下記の近似式(1)において、Rが90となるSの値を求め、これを分画粒子径とした。
R=100/(1−m×exp(−a×log(S))) ・・・(1)
(1)式中、aおよびmは中空糸膜によって定まる定数であって、2種類以上の阻止率の測定値をもとに算出される。ただし、0.1μm径の粒子の阻止率が90%以上の場合の分画粒子径は、<0.1μmと表記される。
Various Measurement (Analysis) Methods and Apparatuses (1) Fractionated particle diameter The blocking rate of at least two kinds of particles having different particle diameters is measured, and R in the following approximate expression (1) based on the measured values, R Was obtained as a fractional particle size.
R = 100 / (1−m × exp (−a × log (S))) (1)
In the formula (1), a and m are constants determined by the hollow fiber membrane, and are calculated based on measured values of two or more types of rejection. However, the fractional particle size in the case where the rejection rate of 0.1 μm diameter particles is 90% or more is expressed as <0.1 μm.

(2)純水透過速度
有効長が3cmの片端開放型の中空糸膜モジュールを用いて、原水として純水を利用し、濾過圧力が50kPa、温度が25℃の条件で中空糸膜の外側から内側に濾過(外圧濾過)して時間当たりの透水量を測定し、単位膜面積、単位時間、単位圧力当たりの透水量に換算した数値で算出した。
(2) Pure water permeation rate Using a single-end open type hollow fiber membrane module with an effective length of 3 cm, pure water is used as raw water, the filtration pressure is 50 kPa, and the temperature is 25 ° C., from the outside of the hollow fiber membrane. The amount of permeation per hour was measured by filtering inside (filtering with external pressure), and calculated by a numerical value converted into the amount of permeation per unit membrane area, unit time, and unit pressure.

比較例1
押出成形物を60℃の水を用いて冷却凝固した以外は、実施例1と同様にして中空糸膜を得た。製造した中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。また膜表面構造を観察するにあたって撮影した走査型電子顕微鏡写真を図2に示す。
Comparative Example 1
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the extruded product was cooled and solidified using water at 60 ° C. Table 1 shows the composition of the mixed solution used for the production of the produced hollow fiber membrane, and Table 2 shows the test results. A scanning electron micrograph taken for observing the film surface structure is shown in FIG.

フッ化ビニリデン系樹脂としてポリフッ化ビニリデン(ソルベイアドバンストポリマーズ株式会社製、SOLEF6010)と、溶剤としてγ−ブチロラクトンと、凝集剤としてテトラエチレングリコール(以下、TEGと略記することがある)とを、重量比で35:40:25の割合となるように混合液を調製した。   Polyvinylidene fluoride (Solve Advanced Polymers, SOLEF6010) as a vinylidene fluoride resin, γ-butyrolactone as a solvent, and tetraethylene glycol (hereinafter sometimes abbreviated as TEG) as a flocculant, The mixture was prepared so that the ratio was 35:40:25.

上記した混合液を、二軸混練押出機中で加熱混練(温度150℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径1.6mm、内径0.8mmの二重環構造のノズルを装着した押出機(150℃)を用いて押出した。このときγ−ブチロラクトンを押出物の中空部内に注入した。   The above mixed solution was heated and kneaded (temperature: 150 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. This chip was extruded using an extruder (150 ° C.) equipped with a double ring nozzle having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm. At this time, γ-butyrolactone was injected into the hollow portion of the extrudate.

紡口から空気中に押し出した押出成形物を、3cmの空中走行距離を経て、重量パーセント濃度10%硫酸ナトリウム水溶液からなる水浴中(温度30℃)に入れ、約100cm水浴中を通過させて凝固させた。次いで、得られた中空糸状物を80℃の熱水中で繊維方向に原長の約2倍長となるよう延伸処理をした後に、枠に巻き、80℃の温水中で120分流水洗浄を行い、溶剤(γ-ブチロラクトン)と凝集剤(テトラエチレングリコール)、さらに注入液(γ-ブチロラクトン)を抽出除去した。製造した中空糸膜の試験結果を表2に示す。
The extruded product extruded into the air from the nozzle is placed in a water bath (temperature: 30 ° C.) consisting of a 10% sodium sulfate aqueous solution by weight over a distance of 3 cm and solidified by passing through a water bath of about 100 cm. I let you. Next, the obtained hollow fiber-like material is stretched in hot water at 80 ° C. so as to be about twice as long as the original length in the fiber direction, wound on a frame, and washed with running water in 80 ° C. warm water for 120 minutes. The solvent (γ-butyrolactone), the flocculant (tetraethylene glycol), and the injection solution (γ-butyrolactone) were extracted and removed. The test results of the manufactured hollow fiber membrane are shown in Table 2.

比較例2
押出成形物を30℃の水を用いて冷却凝固した以外は、実施例2と同様にして中空糸膜を得た。製造した中空糸膜の試験結果を表2に示す。
Comparative Example 2
A hollow fiber membrane was obtained in the same manner as in Example 2 except that the extruded product was cooled and solidified using water at 30 ° C. The test results of the manufactured hollow fiber membrane are shown in Table 2.

フッ化ビニリデン系樹脂としてポリフッ化ビニリデン(ソルベイアドバンストポリマーズ株式会社製、SOLEF6010)と、溶剤としてε−カプロラクトンと、無機粒子として無機粒子として疎水性シリカ(日本アエロジル株式会社製、R−972)シリカと、凝集剤としてグリセリンとを、重量比で35:47:10:8の割合となるように混合液を調製した。   Polyvinylidene fluoride as a vinylidene fluoride-based resin (SOLE 6010, manufactured by Solvay Advanced Polymers Co., Ltd.), ε-caprolactone as a solvent, hydrophobic silica (in Japan Aerosil Co., Ltd., R-972) silica as inorganic particles, and Then, glycerin as an aggregating agent was prepared so that the weight ratio was 35: 47: 10: 8.

上記した混合液を、二軸混練押出機中で加熱混練(温度150℃)して、押出したストランドをペレタイザーに通すことでチップ化した。このチップを、外径1.6mm、内径0.8mmの二重環構造のノズルを装着した押出機(150℃)を用いて押出した。このときテトラエチレングリコールを押出物の中空部内に注入した。   The above mixed solution was heated and kneaded (temperature: 150 ° C.) in a twin-screw kneading extruder, and the extruded strand was passed through a pelletizer to form chips. This chip was extruded using an extruder (150 ° C.) equipped with a double ring nozzle having an outer diameter of 1.6 mm and an inner diameter of 0.8 mm. At this time, tetraethylene glycol was injected into the hollow portion of the extrudate.

紡口から空気中に押し出した押出成形物を、3cmの空中走行距離を経て、重量パーセント濃度10%硫酸ナトリウム水溶液からなる水浴中(温度80℃)に入れ、約100cm水浴中を通過させて凝固させた。次いで、得られた中空糸状物を80℃の熱水中で繊維方向に原長の約2倍長となるよう延伸処理をした後に、枠に巻き、80℃の温水中で120分流水洗浄を行い、溶剤(γ-ブチロラクトン)と凝集剤(グリセリン)、さらに注入液(テトラエチレングリコール)を抽出除去した。製造した中空糸膜の試験結果を表2に示す。   The extruded product extruded into the air from the nozzle is placed in a water bath (temperature: 80 ° C.) consisting of a 10% aqueous solution of sodium sulfate by weight over a distance of 3 cm and solidified by passing through an approximately 100 cm water bath. I let you. Next, the obtained hollow fiber-like material was stretched in hot water at 80 ° C. so as to be about twice as long as the original length in the fiber direction, wound around a frame, and washed with running water in 80 ° C. warm water for 120 minutes. The solvent (γ-butyrolactone), the flocculant (glycerin), and the injection solution (tetraethylene glycol) were extracted and removed. The test results of the manufactured hollow fiber membrane are shown in Table 2.

比較例3
押出成形物を80℃の水を用いて冷却凝固した以外は、実施例1と同様にして中空糸膜を得た。製造した中空糸膜の試験結果を表2に示す。
Comparative Example 3
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the extruded product was cooled and solidified using 80 ° C. water. The test results of the manufactured hollow fiber membrane are shown in Table 2.

押出成形物を重量パーセント濃度18%硫酸ナトリウム水溶液(温度60℃)用いて冷却凝固した以外は、実施例1と同様にして中空糸膜を得た。製造した中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。   A hollow fiber membrane was obtained in the same manner as in Example 1 except that the extruded product was cooled and solidified using a sodium sulfate aqueous solution (temperature 60 ° C.) having a weight percent concentration of 18%. Table 1 shows the composition of the mixed solution used for the production of the produced hollow fiber membrane, and Table 2 shows the test results.

押出成形物を重量パーセント濃度28%硫酸ナトリウム水溶液(温度60℃)用いて冷却凝固した以外は、実施例1と同様にして中空糸膜を得た。製造した中空糸膜の製造に用いた混合液の組成を表1に、試験結果を表2に示す。   A hollow fiber membrane was obtained in the same manner as in Example 1 except that the extruded product was cooled and solidified using a 28% aqueous solution of sodium sulfate (temperature 60 ° C.). Table 1 shows the composition of the mixed solution used for the production of the produced hollow fiber membrane, and Table 2 shows the test results.

Figure 2008062228
Figure 2008062228

Figure 2008062228
Figure 2008062228

実施例1の方法により製造したフッ化ビニリデン樹脂多孔膜の外表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the outer surface of a vinylidene fluoride resin porous membrane produced by the method of Example 1. FIG. 比較例1の方法により製造したフッ化ビニリデン樹脂多孔膜の外表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the outer surface of a vinylidene fluoride resin porous membrane produced by the method of Comparative Example 1.

Claims (3)

少なくとも1種以上の塩を溶解させた塩水溶液を用いて凝固する工程を含むことを特徴とするフッ化ビニリデン多孔膜の製造方法。   A method for producing a vinylidene fluoride porous membrane, comprising a step of coagulating using an aqueous salt solution in which at least one salt is dissolved. 塩水溶液の塩濃度が、重量濃度30g/L以上でかつ、飽和水溶液濃度に対して10〜100%の範囲にあることを特徴とする請求項1に記載のフッ化ビニリデン多孔膜の製造方法。   2. The method for producing a vinylidene fluoride porous membrane according to claim 1, wherein the salt concentration of the aqueous salt solution is in the range of 10 to 100% with respect to the saturated aqueous solution concentration and having a weight concentration of 30 g / L or more. 多孔膜が中空糸膜であることを特徴とする請求項1に記載のフッ化ビニリデン多孔膜の製造方法。   2. The method for producing a vinylidene fluoride porous membrane according to claim 1, wherein the porous membrane is a hollow fiber membrane.
JP2007209476A 2006-08-10 2007-08-10 Method for preparing porous membrane Pending JP2008062228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209476A JP2008062228A (en) 2006-08-10 2007-08-10 Method for preparing porous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218397 2006-08-10
JP2007209476A JP2008062228A (en) 2006-08-10 2007-08-10 Method for preparing porous membrane

Publications (1)

Publication Number Publication Date
JP2008062228A true JP2008062228A (en) 2008-03-21

Family

ID=39285389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209476A Pending JP2008062228A (en) 2006-08-10 2007-08-10 Method for preparing porous membrane

Country Status (1)

Country Link
JP (1) JP2008062228A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119959A (en) * 2008-11-20 2010-06-03 Kuraray Co Ltd Hollow fiber membrane module
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Method for producing polyolefin composite microporous membrane having high heat resistant coating layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114701A (en) * 1984-11-09 1986-06-02 Terumo Corp Flat film type permeable membrane and preparation thereof
JPH07256064A (en) * 1994-03-25 1995-10-09 Nok Corp Production of porous membrane
JP3502661B2 (en) * 1994-06-08 2004-03-02 日本製粉株式会社 Continuous water mixing equipment
JP2004230280A (en) * 2003-01-30 2004-08-19 Toray Ind Inc Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114701A (en) * 1984-11-09 1986-06-02 Terumo Corp Flat film type permeable membrane and preparation thereof
JPH07256064A (en) * 1994-03-25 1995-10-09 Nok Corp Production of porous membrane
JP3502661B2 (en) * 1994-06-08 2004-03-02 日本製粉株式会社 Continuous water mixing equipment
JP2004230280A (en) * 2003-01-30 2004-08-19 Toray Ind Inc Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
JP2010119959A (en) * 2008-11-20 2010-06-03 Kuraray Co Ltd Hollow fiber membrane module

Similar Documents

Publication Publication Date Title
TWI355965B (en) Porous membrane made of polyvinylidene fluoride an
Gorgojo et al. Polyamide thin film composite membranes on cross-linked polyimide supports: Improvement of RO performance via activating solvent
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
KR101462939B1 (en) Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof
AU2005233004B2 (en) Porous water filtration membrane of vinylidene fluoride resin hollow fiber and process for production thereof
CA2570087A1 (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
KR20110033729A (en) Fluorinated hollow fiber membrane and method for preparing the same
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
JPWO2008117740A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
CN112657343A (en) Polyamide hollow fiber composite separation membrane and preparation method thereof
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JP2006218441A (en) Porous membrane and its production method
JP4564758B2 (en) Method for producing vinylidene fluoride resin porous membrane
KR20120059755A (en) Method for manufacturing a hollow fiber membrane for water treatment using cellulose resin
JP6184049B2 (en) Porous membrane and method for producing the same
KR20130040620A (en) Preparation method of hollow fiber membrane with high mechanical properties made of hydrophilic modified polyvinylidenefluoride for water treatment
JP2008062227A (en) Raw material solution for preparing membrane, porous membrane, and method for preparing porous membrane
JP2008062228A (en) Method for preparing porous membrane
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production
JP2005193193A (en) Semi-aromatic polyamide-based porous membrane and its production method
KR101331066B1 (en) Polyethersulfone hollow fiber membrane and method of manufacturing the same
KR20070031330A (en) Hollow-fiber porous water filtration membrane of vinylidene fluoride resin and process for producing the same
KR101347042B1 (en) Manufacturing method of asymmetric pvdf membrane and asymmetric pvdf membrane with improved properties manufactured thereby
KR101885255B1 (en) Porous Membrane and Method for Manufacturing The Same
JPS6138207B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Effective date: 20110520

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124