JP2008061364A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2008061364A
JP2008061364A JP2006234749A JP2006234749A JP2008061364A JP 2008061364 A JP2008061364 A JP 2008061364A JP 2006234749 A JP2006234749 A JP 2006234749A JP 2006234749 A JP2006234749 A JP 2006234749A JP 2008061364 A JP2008061364 A JP 2008061364A
Authority
JP
Japan
Prior art keywords
storage battery
edlc
charging
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006234749A
Other languages
Japanese (ja)
Inventor
Tadashi Kamimura
正 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006234749A priority Critical patent/JP2008061364A/en
Publication of JP2008061364A publication Critical patent/JP2008061364A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a charging capacity at charging, to make an electric double-layer capacitor hardly brought into a fully charged state, to make regeneration operation hardly limited, and to facilitate control. <P>SOLUTION: The electric double-layer capacitor 2 and an accumulator 6 are connected to a power supply by using two changeover switches 3, 5, the electric double-layer capacitor 2 and the accumulator 6 are connected in series to each other at discharging, and a series circuit formed by connecting a diode 4 in series to the accumulator 6 in a charging current direction is connected to the electric double-layer capacitor 2 in parallel therewith at charging. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、電気自動車、鉄道等において蓄電池と電気二重層キャパシタとを組み合わせて用いる電力貯蔵装置に関するものである。   The present invention relates to a power storage device that uses a combination of a storage battery and an electric double layer capacitor in an electric vehicle, a railway, and the like.

従来の電力貯蔵装置としては、特許文献1があり、これは放電時はコンデンサと蓄電池を直列に接続し、充電時は蓄電池を切り離し、コンデンサにのみ充電を行い、コンデンサがフル充電(端子電圧が設定した最高電圧になった状態をいう。)になったら蓄電池への充電に切り換えるものであった。即ち、従来においては、蓄電池とコンデンサを並列接続した状態で充電を行うと、蓄電池端子電圧よりもコンデンサの端子電圧が低い場合、蓄電池からコンデンサに充電電流が流れ、蓄電池端子電圧まで充電が行われる。このため、コンデンサへの充電が高い電圧範囲となり、電力回生時に回生電力によるコンデンサの充電量が制限されてしまい、回生運転も制限されることとなった。また、蓄電池とコンデンサを並列接続した状態で放電を行うと、コンデンサの端子電圧は電圧変動の少ない蓄電池の端子電圧と等しいため、コンデンサの放電が高い電圧範囲となり、放電量が制限されるので、コンデンサの蓄積エネルギが有効利用されなかった。そこで、特許文献1では、充電時(回生時)には蓄電池を切り離し、コンデンサのみを回生電力により充電するようにするとともに、コンデンサがフル充電になった場合にはコンデンサを切り放し、蓄電池のみを接続して回生電力により充電するようにしていた。
また、放電時には蓄電池とコンデンサを直列接続し、コンデンサの使用電圧範囲を広くすることで、蓄積エネルギを有効利用するようにしていた。
特開2000−354303号公報
As a conventional power storage device, there is Patent Document 1, which connects a capacitor and a storage battery in series at the time of discharging, disconnects the storage battery at the time of charging, charges only the capacitor, and the capacitor is fully charged (the terminal voltage is It means switching to charging the storage battery when the maximum voltage is set. That is, conventionally, when charging is performed in a state where the storage battery and the capacitor are connected in parallel, when the terminal voltage of the capacitor is lower than the storage battery terminal voltage, a charging current flows from the storage battery to the capacitor, and charging is performed up to the storage battery terminal voltage. . For this reason, the charge to the capacitor is in a high voltage range, and the amount of charge of the capacitor by the regenerative power is restricted at the time of power regeneration, and the regenerative operation is also restricted. In addition, when discharging in a state where the storage battery and the capacitor are connected in parallel, the capacitor terminal voltage is equal to the terminal voltage of the storage battery with little voltage fluctuation, so the capacitor discharge becomes a high voltage range, and the discharge amount is limited. The stored energy of the capacitor was not used effectively. Therefore, in Patent Document 1, when charging (regeneration), the storage battery is disconnected and only the capacitor is charged with regenerative power. When the capacitor is fully charged, the capacitor is disconnected and only the storage battery is connected. Then, it was charged with regenerative power.
Further, at the time of discharging, a storage battery and a capacitor are connected in series, and the use voltage range of the capacitor is widened to effectively use the stored energy.
JP 2000-354303 A

しかしながら、上記した特許文献1の技術では、回生時の初期にはコンデンサに充電し、コンデンサがフル充電になった後に蓄電池に充電しており、コンデンサの充電量の管理が必要になるとともに、急速充電及び大容量充電を同時に行うことができなかった。又、このような充電時の切換を行うためには、電力変換器を2台必要とし、制御が複雑になるとともに、装置のコストアップに繋がった。   However, in the technique of Patent Document 1 described above, the capacitor is charged in the initial stage of regeneration, and the storage battery is charged after the capacitor is fully charged. Charging and large-capacity charging could not be performed simultaneously. Further, in order to perform such switching at the time of charging, two power converters are required, which makes the control complicated and increases the cost of the apparatus.

この発明は上記のような課題を解決するために成されたものであり、充電時の充電容量を増大することができ、コンデンサがフル充電状態になり難く、回生運転を制限され難くするとともに、コンデンサの充電量の管理が必要でなく、制御が容易であるとともに、制御装置が小形安価である電力貯蔵装置を得ることを目的とする。   This invention has been made to solve the above problems, can increase the charging capacity during charging, the capacitor is less likely to be in a fully charged state, making it difficult to limit the regenerative operation, It is an object of the present invention to obtain a power storage device that does not require management of the amount of charge of a capacitor, is easy to control, and has a small and inexpensive control device.

この発明の請求項1に係る電力貯蔵装置は、電源に対して電気二重層キャパシタと蓄電池とを二つの切換スイッチを用いて接続し、放電時には電気二重層キャパシタと蓄電池とを直列に接続するとともに、充電時には蓄電池にダイオードを充電電流方向に順方向となるように直列に接続した直列回路と電気二重層キャパシタとを並列に接続したものである。   An electric power storage device according to claim 1 of the present invention connects an electric double layer capacitor and a storage battery to a power source using two changeover switches, and connects the electric double layer capacitor and the storage battery in series during discharge. When charging, a series circuit in which a diode is connected to the storage battery in series so as to be in the forward direction in the charging current direction and an electric double layer capacitor are connected in parallel.

請求降2に係る電力貯蔵装置は、電源に対して電気二重層キャパシタと蓄電池とを三つの半導体スイッチを用いて接続し、充電時には電気二重層キャパシタと蓄電池とを並列に接続するとともに、放電時には電気二重層キャパシタと蓄電池とを直列に接続し、かつ放電時の電気二重層キャパシタまたは蓄電池の端子電圧低下時には半導体スイッチの制御により電気二重層キャパシタまたは蓄電池の出力電圧を昇圧させ、電気二重層キャパシタまたは蓄電池の放電を行わせるものである。   The power storage device according to claim 2 connects an electric double layer capacitor and a storage battery to a power source using three semiconductor switches, connects the electric double layer capacitor and the storage battery in parallel at the time of charging, and at the time of discharging. The electric double layer capacitor and the storage battery are connected in series, and when the terminal voltage of the electric double layer capacitor or the storage battery drops during discharging, the output voltage of the electric double layer capacitor or the storage battery is boosted by controlling the semiconductor switch. Alternatively, the storage battery is discharged.

以上のようにこの発明の請求項1によれば、充電時に電気二重層キャパシタと蓄電池とを電源に対して並列に接続しており、電気二重層キャパシタと蓄電池の充電を同時に行うことができ、大容量充電ができるとともに、急速充電も可能となり、電気二重層キャパシタの充電が進むことで端子電圧が上昇して蓄電池の端子電圧以上になると、電気二重層キャパシタから蓄電池の充電が行われ、電気二重層キャパシタの端子電圧より蓄電池の端子電圧が高い時はダイオードを設けたことにより蓄電池による電気二重層キャパシタの充電は行われず、電気二重層キャパシタはフル充電状態になり難く、回生運転の制限がされ難くなる。また、放電時は電気二重層キャパシタと蓄電池とを直列接続することで、電気二重層キャパシタの使用電圧範囲を広げることができ、蓄積エネルギを有効利用できる。さらに、二つの切換スイッチとダイオードを設けるだけで制御可能であり、電気二重層キャパシタの充電量の管理も必要でなく、制御が容易で制御装置を小形安価にすることができる。   As described above, according to the first aspect of the present invention, the electric double layer capacitor and the storage battery are connected in parallel to the power source during charging, and the electric double layer capacitor and the storage battery can be charged simultaneously. In addition to being able to charge a large capacity, rapid charging is also possible.When the charging of the electric double layer capacitor proceeds and the terminal voltage rises and exceeds the terminal voltage of the storage battery, the electric battery is charged from the electric double layer capacitor. When the terminal voltage of the storage battery is higher than the terminal voltage of the double layer capacitor, the electric double layer capacitor is not charged by the storage battery due to the provision of the diode, and the electric double layer capacitor is unlikely to be fully charged, and regenerative operation is limited. It becomes difficult to be done. Further, by connecting the electric double layer capacitor and the storage battery in series at the time of discharging, the operating voltage range of the electric double layer capacitor can be expanded, and the stored energy can be used effectively. Furthermore, the control can be performed only by providing two changeover switches and diodes, and it is not necessary to manage the charge amount of the electric double layer capacitor, so that the control is easy and the control device can be made small and inexpensive.

請求項2によれば、充電時に電気二重層キャパシタと蓄電池とを電源に対して並列に接続しており、電気二重層キャパシタと蓄電池の充電を同時に行うことができ、電気二重層キャパシタから蓄電池へ充電は行われるが、蓄電池から電気二重層キャパシタへ充電が行われず、急速充電及び大容量充電が可能となり、電気二重層キャパシタはフル充電状態になり難く、電気二重層キャパシタの充電量が制御されないことにより、回生運転の制限がされ難くなる。又、放電時は電気二重層キャパシタと蓄電池を直列に接続しており、使用電圧範囲を広げることができ、しかも電気二重層キャパシタ又は蓄電池の端子電圧低下時にはこれらの昇圧放電を行っており、蓄積エネルギの最大限の放電が可能となる。さらに、三つの半導体スイッチを設けるだけで制御可能であり、電気二重層キャパシタの充電量の管理も必要でなく、制御が容易で制御装置を小形安価にすることができる。   According to the second aspect, the electric double layer capacitor and the storage battery are connected in parallel to the power source during charging, and the electric double layer capacitor and the storage battery can be charged at the same time, from the electric double layer capacitor to the storage battery. Although charging is performed, charging from the storage battery to the electric double layer capacitor is not performed, and rapid charging and large-capacity charging are possible. The electric double layer capacitor is unlikely to be fully charged, and the amount of charge of the electric double layer capacitor is not controlled. This makes it difficult to limit the regenerative operation. In addition, the electric double layer capacitor and the storage battery are connected in series at the time of discharge, so that the operating voltage range can be expanded, and when the terminal voltage of the electric double layer capacitor or the storage battery drops, these boosting discharges are performed. A maximum discharge of energy is possible. Further, the control can be performed only by providing three semiconductor switches, the charge amount of the electric double layer capacitor is not required to be controlled, the control is easy, and the control device can be reduced in size and cost.

実施最良形態1
以下、この発明を実施するための最良の形態を図面とともに説明する。図1(a)〜(c)はこの発明の実施最良形態1による電力貯蔵装置の回路構成図、充電時の電圧特性図及び充電時の電流特性図を示し、電源としては、電気自動車または電車の直流モータ、もしくはき電変電所等が考えられ、昇降圧チョッパ1の正負の端子(以下、g端子、h端子)には直流モータの正側(+)端子(以下、モータ正側端子)と負側(−)端子(以下、モータ負側端子)またはき電変電所の出力側外線(以下、外線)と帰線が接続される。なお、外線とは、き電変電所の出力側であって、き電線、架線、トロリ線の総称をいい、外線電圧とはその電圧をいう。モータ正側と負側端子間または外線と帰線間には変換器である昇降圧チョッパ1のg端子とh端子を並列に接続し、昇降圧チョッパ1の上下アーム間に一端を接続するリクトルLの他端(以下、i端子)と帰線またはモータの負側端子との間には、電気二重層キャパシタ(以下、EDLCと略する。)2の一端を前記昇降圧チョッパ1のi端子に接続するとともに、EDLC2の他端とトランスファ接点を有する第1の切換スイッチ3の共有接点cを接続し、前記第1の切換スイッチ3を端子bに選択してEDLC2の他端側を蓄電池6の正側(+)端子に接続する直列回路と、端子aに選択して帰線またはモータの負側端子と接続する回路、及びダイオード4のアノードを前記昇降圧チョッパ1のi端子に接続するとともに、ダイオード4のカソードとトランスファ接点を有する第2の切換スイッチ5の共有接点fを接続し、前記第2の切換スイッチ5を端子eに選択してダイオード4のカソード側を蓄電池6の正側(+)端子に接続して、充電電流方向に順方向となるダイオード4と蓄電池6との直列回路と、端子dに選択して前記ダイオード4のカソード側を開放する回路を備える。
Best Embodiment 1
The best mode for carrying out the present invention will be described below with reference to the drawings. 1 (a) to 1 (c) show a circuit configuration diagram, a voltage characteristic diagram during charging, and a current characteristic diagram during charging, according to Embodiment 1 of the present invention. DC motors or feeder substations are considered, and the positive and negative terminals (hereinafter referred to as g terminal and h terminal) of the buck-boost chopper 1 are the positive side (+) terminal (hereinafter referred to as motor positive side terminal) of the DC motor. And the negative side (−) terminal (hereinafter referred to as motor negative side terminal) or the output side external line (hereinafter referred to as external line) of the feeder substation and the return line are connected. The external line is an output side of the feeder substation and is a general term for feeders, overhead lines, and trolley lines, and the external line voltage is the voltage. A reactor in which the g terminal and the h terminal of the buck-boost chopper 1 which is a converter are connected in parallel between the motor positive side and the negative terminal or between the external line and the return line, and one end is connected between the upper and lower arms of the buck-boost chopper 1. One end of an electric double layer capacitor (hereinafter abbreviated as EDLC) 2 is connected between the other end of L (hereinafter referred to as i terminal) and the negative terminal of the return line or motor. Is connected to the other end of the EDLC 2 and the common contact c of the first changeover switch 3 having a transfer contact, the first changeover switch 3 is selected as a terminal b, and the other end of the EDLC 2 is connected to the storage battery 6. A series circuit connected to the positive side (+) terminal of the circuit, a circuit selected as the terminal a and connected to the return line or the negative side terminal of the motor, and the anode of the diode 4 are connected to the i terminal of the step-up / down chopper 1. Along with the diode 4 The common contact f of the second changeover switch 5 having the cathode and the transfer contact is connected, the second changeover switch 5 is selected as the terminal e, and the cathode side of the diode 4 is made the positive side (+) terminal of the storage battery 6. A series circuit of a diode 4 and a storage battery 6 that are connected in the forward direction in the charging current direction and a circuit that is selected as the terminal d and opens the cathode side of the diode 4 are provided.

上記構成において、EDLC2及び蓄電池6の放電時(モータまたは外線への力行電力供給時)には、切換スイッチ3の端子b,c間を接続するとともに、切換スイッチ5の端子d、f間を接続し、昇降圧チョッパ1のi端子と帰線またはモータの負側端子との間にEDLC2と蓄電池6を直列に接続する。この状態において、EDLC2及び蓄電池6から昇降圧チョッパ1を介してモータまたは外線に対して放電が行われ、力行電力が供給される。この時、図1(a)に示す昇降圧チョッパ1の例では、半導体スイッチSW2をスイッチング制御して昇圧放電を行う。また、図2(a)に示す昇降圧チョッパ1の変形例では、EDLC2と蓄電池6との直列回路の電圧が外線電圧またはモータ正側端子電圧より高い場合は半導体スイッチSW3をスイッチング制御して降圧放電を行い、降圧放電の継続により前記直列回路電圧が低下して直列回路の電圧が外線電圧またはモータ正側端子電圧より低くなった場合は、半導体スイッチSW3をオン制御とし(昇圧放電時、オンのまま)、半導体スイッチSW2をスイッチング制御して昇圧放電を行う。なお、図2(a)の場合、半導体スイッチSW3とダイオードD3とを昇降圧チョッパ1に設けた以外の部分は図1(a)と同じである。   In the above configuration, when the EDLC 2 and the storage battery 6 are discharged (when powering power is supplied to the motor or the external line), the terminals b and c of the changeover switch 3 are connected and the terminals d and f of the changeover switch 5 are connected. Then, the EDLC 2 and the storage battery 6 are connected in series between the i terminal of the step-up / down chopper 1 and the return line or the negative terminal of the motor. In this state, the EDLC 2 and the storage battery 6 are discharged to the motor or the external line via the step-up / step-down chopper 1 and power running power is supplied. At this time, in the example of the step-up / step-down chopper 1 shown in FIG. 1A, the semiconductor switch SW2 is controlled to perform boosting discharge. In addition, in the modified example of the step-up / step-down chopper 1 shown in FIG. 2A, when the voltage of the series circuit of the EDLC 2 and the storage battery 6 is higher than the external line voltage or the motor positive terminal voltage, the semiconductor switch SW3 is controlled to be stepped down. When the discharge is performed and the series circuit voltage decreases due to the continuation of the step-down discharge and the voltage of the series circuit becomes lower than the external line voltage or the motor positive terminal voltage, the semiconductor switch SW3 is controlled to be on (at the time of the boost discharge, As is, the semiconductor switch SW2 is subjected to switching control to perform boost discharge. In the case of FIG. 2A, the part other than the semiconductor switch SW3 and the diode D3 provided in the step-up / step-down chopper 1 is the same as FIG.

次に、充電時(モータまたは外線からの回生時)には、図1(a)または図2(a)において、切換スイッチ3,5を切り換え、切換スイッチ3の端子a,c間を接続するとともに、切換スイッチ5の端子e,f間を接続し、昇降圧チョッパ1のi端子と帰線またはモータ負側端子との間に蓄電池6にダイオード4を充電電流方向に順方向となるように直列に接続した直列回路をEDLC2と並列に接続し、モータまたは外線の回生電力をEDLC2と蓄電池6の両方に充電する。蓄電池6に直列に接続されたダイオード4は蓄電池6の充電電流方向に順方向となるように接続されており、蓄電池6からEDLC2への充電は行われない。又、EDLC2や蓄電池6の充電電流は、EDLC2の端子電圧、蓄電池6の端子電圧及びそれぞれの内部抵抗により決定される分流比で流れ、双方の充電電流を合わせた合計充電電流は、半導体スイッチSW1より制御される。なお、図2(b)は図1(a)において、切換スイッチ3とEDLC2との接続、及び蓄電池6、切換スイッチ5及びダイオード4の接続を変更した変形例を示し、放電時にEDLC2と蓄電池6を直列接続し、充電時に蓄電池6と充電電流方向に順方向となるダイオード4との直列回路とEDLC2を並列接続すれば、図1(a)と同様な効果を奏する。   Next, when charging (when regenerating from a motor or an external line), the selector switches 3 and 5 are switched in FIG. 1A or FIG. 2A to connect the terminals a and c of the selector switch 3. At the same time, the terminals e and f of the changeover switch 5 are connected so that the diode 4 of the storage battery 6 is forward in the charging current direction between the i terminal of the buck-boost chopper 1 and the return or motor negative terminal. A series circuit connected in series is connected in parallel with the EDLC 2, and the regenerative power of the motor or the external line is charged to both the EDLC 2 and the storage battery 6. The diode 4 connected in series to the storage battery 6 is connected so as to be forward in the charging current direction of the storage battery 6, and charging from the storage battery 6 to the EDLC 2 is not performed. Further, the charging current of the EDLC 2 and the storage battery 6 flows at a shunt ratio determined by the terminal voltage of the EDLC 2, the terminal voltage of the storage battery 6 and the respective internal resistances. The total charging current of both charging currents is the semiconductor switch SW1. More controlled. 2B shows a modification in which the connection between the changeover switch 3 and the EDLC 2 and the connection between the storage battery 6, the changeover switch 5 and the diode 4 are changed in FIG. 1A, and the EDLC 2 and the storage battery 6 are discharged at the time of discharging. Are connected in series, and when the EDLC 2 is connected in parallel with the series circuit of the storage battery 6 and the diode 4 that is forward in the charging current direction during charging, the same effect as in FIG.

EDLC2の端子電圧は、図1(b)に示すように、放電により充電初期は蓄電池6より低い状態にあり、大量の充電が行われるが、充電が進むに従い、端子電圧が上昇し、フル充電に近づくと、EDLC2の充電電流は図1(c)に示すように減少する。そして、EDLC2の端子電圧が蓄電池6の端子電圧以上になった時点から、蓄電池6にはEDLC2とモータあるいはEDLC2と外線から充電が行われ、これ以降はEDLC2の端子電圧と蓄電池6の端子電圧が等しい状態で充電が行われる。   As shown in FIG. 1B, the terminal voltage of the EDLC 2 is lower than that of the storage battery 6 at the initial stage of charging due to discharging, and a large amount of charging is performed. When approaching, the charging current of the EDLC 2 decreases as shown in FIG. When the terminal voltage of the EDLC 2 becomes equal to or higher than the terminal voltage of the storage battery 6, the storage battery 6 is charged from the EDLC 2 and the motor or the EDLC 2 and the external line. Thereafter, the terminal voltage of the EDLC 2 and the terminal voltage of the storage battery 6 are Charging is performed in the same state.

上記した実施最良形態1においては、充電時(モータまたは外線からの回生電力吸収時)にEDLC2と蓄電池6とを並列に接続し、EDLC2と蓄電池6の両方の充電を同時に行うことができ、各々の単体充電に比べて充電容量を大きくとることができるとともに、EDLC2がフル充電状態になり難いので、急速充電も可能となる。又、EDLC2及び蓄電池6の充電量はEDLC2の端子電圧(充電状態)により決定され、EDLC2の充電が進むと、EDLC2から蓄電池6の充電も行われ、また蓄電池6に対してダイオード4を充電方向に接続しているので、蓄電池6がEDLC2を充電することはなく、大容量充電が可能となったことと相俟って、EDLC2は蓄電池6と並列に充電されるため、蓄電池6の充電電圧がEDLC2の定格上限電圧より低くなるようにしておけば、EDLC2はフル充電状態になり難く、回生運転が制限され難くなった。又、二つの切換スイッチ3,5とダイオード4を設けるだけで制御可能であるとともに、EDLC2の充電量の管理も必要でなく、複雑な制御回路も必要でなく、制御が容易で制御装置を安価で小形にすることができる。   In the first embodiment described above, the EDLC 2 and the storage battery 6 can be connected in parallel at the time of charging (at the time of regenerative power absorption from the motor or outside line), and both the EDLC 2 and the storage battery 6 can be charged simultaneously. Compared to the single charging of the battery, the charging capacity can be increased, and the EDLC 2 is unlikely to be in a fully charged state, so that rapid charging is also possible. In addition, the amount of charge of the EDLC 2 and the storage battery 6 is determined by the terminal voltage (charging state) of the EDLC 2. Since the EDLC 2 is charged in parallel with the storage battery 6 in combination with the fact that the storage battery 6 does not charge the EDLC 2 and that large capacity charging is possible, the charging voltage of the storage battery 6 If the voltage is lower than the rated upper limit voltage of the EDLC2, the EDLC2 is unlikely to be in a fully charged state, and the regenerative operation is hardly restricted. In addition, control is possible simply by providing the two changeover switches 3 and 5 and the diode 4, and it is not necessary to manage the charge amount of the EDLC 2, no complicated control circuit is required, control is easy, and the control device is inexpensive. You can make it small.

実施最良形態2
図3(a)はこの発明の実施最良形態2による電力貯蔵装置の回路構成図であり、電源としては実施最良形態1と同様に、電気自動車または電車の直流モータ、もしくはき電変電所が考えられ、外線またはモータ正側端子には第1の半導体スイッチSW11と第1のリアクトルLb1との第1の直列回路の一端が接続されるとともに、EDLC7の一端が接続され、第1の直列回路の他端とEDLC7の他端間には第2の半導体スイッチSW12と第2のリアクトルLb2との第2の直列回路が接続され、前記第1の直列回路の他端と第2の直列回路の一端との接続点と帰線またはモータ負側端子との間には蓄電池8が接続され、また第2の直列回路の他端ととの接続点と帰線またはモータ負側端子との間には第3のリアクトルLb3と第3の半導体スイッチSW13との第3の直列回路が接続される。又、第1の半導体スイッチSW11と第1のリアクトルLb1との接続点には第1の環流ダイオードFD1のカソード側が接続され、環流ダイオードFD1のアノード側は帰線またはモータ負側端子に接続される。又、外線またはモータ正側端子に第2の環流ダイオードFD2のカソード側が接続され、環流ダイオードFD2のアノード側は第3のリアクトルLb3と第3の半導体スイッチSW13との接続点に接続され、第2の半導体スイッチSW12と第2のリアクトルLb2との接続点には第3の環流ダイオードFD3のカソード側が接続され、環流ダイオードFD3のアノード側は帰線またはモータ負側端子に接続される。なお、蓄電池8及びEDLC7の各々の端子電圧は電源電圧(モータ電圧または外線電圧)変動の下限値以下とする。
Embodiment 2
FIG. 3A is a circuit configuration diagram of the power storage device according to the second embodiment of the present invention. As the power source, as in the first embodiment, a DC motor of an electric vehicle or a train or a feeder substation is considered. One end of the first series circuit of the first semiconductor switch SW11 and the first reactor Lb1 is connected to the outside line or the motor positive side terminal, and one end of the EDLC 7 is connected to the external line or the motor positive side terminal. A second series circuit of the second semiconductor switch SW12 and the second reactor Lb2 is connected between the other end and the other end of the EDLC 7, and the other end of the first series circuit and one end of the second series circuit. A storage battery 8 is connected between the connection point to the return line or the motor negative side terminal, and between the connection point to the other end of the second series circuit and the return line or the motor negative side terminal. 3rd reactor Lb3 and 3rd Third series circuit of a semiconductor switch SW13 is connected. The cathode side of the first free-wheeling diode FD1 is connected to the connection point between the first semiconductor switch SW11 and the first reactor Lb1, and the anode side of the free-wheeling diode FD1 is connected to the return line or the motor negative side terminal. . The cathode side of the second freewheeling diode FD2 is connected to the external line or the motor positive side terminal, and the anode side of the freewheeling diode FD2 is connected to the connection point between the third reactor Lb3 and the third semiconductor switch SW13. The cathode side of the third free-wheeling diode FD3 is connected to the connection point between the semiconductor switch SW12 and the second reactor Lb2, and the anode side of the free-wheeling diode FD3 is connected to the return line or the motor negative side terminal. Note that the terminal voltage of each of the storage battery 8 and the EDLC 7 is set to be equal to or lower than the lower limit value of the fluctuation of the power supply voltage (motor voltage or external line voltage).

次に、動作について説明すると、まず、充電時には、図3(b)に示すように、半導体スイッチSW11,SW13をスイッチング制御するとともに、半導体スイッチSW12をオフ制御(充電時、オフのまま)とする。これにより、外線またはモータ正側端子から充電電流i1が矢印に示すように半導体スイッチSW11を通ってリアクトルLb1及び蓄電池8に流れ、外線電圧またはモータ正側端子電圧を半導体スイッチSW11のスイッチング制御により降圧して蓄電池8を充電する。前記スイッチング制御により半導体スイッチSW11がオフ動作時は、リアクトルLb1に蓄えられたエネルギによりリアクトルLb1、蓄電池8及び環流ダイオードFD1を介して電流i2が流れ、蓄電池8が充電される。又、充電電流i3が半導体スイッチSW13を通ってEDLC7及びリアクトルLb3に流れ、外線電圧またはモータの正側端子電圧を半導体スイッチSW13のスイッチング制御により降圧してEDLC7に充電する。スイッチング制御により半導体スイッチSW13がオフ動作時は、リアクトルLb3に蓄えられたエネルギにより環流ダイオードFD2、EDLC7及びリアクトルLb3に電流i4が流れ、EDLC7が充電される。なお、この時も半導体スイッチSW11により、蓄電池8からEDLC7に充電されることはない。   Next, the operation will be described. First, at the time of charging, as shown in FIG. 3B, the semiconductor switches SW11 and SW13 are subjected to switching control, and the semiconductor switch SW12 is controlled to be off (it remains off at the time of charging). . As a result, the charging current i1 flows from the external line or the motor positive terminal through the semiconductor switch SW11 to the reactor Lb1 and the storage battery 8 as indicated by the arrow, and the external line voltage or the motor positive terminal voltage is stepped down by switching control of the semiconductor switch SW11. Then, the storage battery 8 is charged. When the semiconductor switch SW11 is turned off by the switching control, the current i2 flows through the reactor Lb1, the storage battery 8, and the freewheeling diode FD1 by the energy stored in the reactor Lb1, and the storage battery 8 is charged. Further, the charging current i3 flows through the semiconductor switch SW13 to the EDLC 7 and the reactor Lb3, and the external line voltage or the positive terminal voltage of the motor is stepped down by the switching control of the semiconductor switch SW13 to charge the EDLC 7. When the semiconductor switch SW13 is turned off by switching control, the current i4 flows through the freewheeling diodes FD2, EDLC7, and the reactor Lb3 by the energy stored in the reactor Lb3, and the EDLC 7 is charged. At this time, the EDLC 7 is not charged from the storage battery 8 by the semiconductor switch SW11.

次に、放電時においては、EDLC7及び蓄電池8の出力電圧により制御が変化する。まず、直列に接続された蓄電池8とEDLC7との加算された電圧が外線電圧またはモータ正側端子電圧以上の場合、図4(a)に示すように、半導体スイッチSW11,SW13をオフ制御(降圧放電時、オフのまま)とし、半導体スイッチSW12のスイッチング制御により目標電圧となるように制御を行う。前記スイッチング制御により半導体スイッチSW12がオン動作時は、放電電流i5が矢印に示すようにEDLC7及び蓄電池8に蓄えられたエネルギにより帰線またはモータ負側端子から蓄電池8、半導体スイッチSW12、リアクトルLb2、EDLC7及び外線またはモータ正側端子に流れ、半導体スイッチSW12がオフ動作時は、EDLC7とリアクトルLb2に蓄えられたエネルギにより放電電流i6が環流ダイオードFD3を介して図示のように流れることで、降圧放電が行われる。そして、このような放電を継続すると、EDLC7と蓄電池8との容量比にもよるが、EDLC7の電圧変化が大きいので、EDLC7の電圧が低下し、加算電圧が外線電圧またはモータ正側端子電圧以下となり、降圧放電が継続できなくなる。この場合に放電を継続させるために、図4(b)に示すように半導体スイッチSW12をオン制御(EDLC7の昇圧放電時、オンのまま)するとともに、半導体スイッチSW11をスイッチング制御し、半導体スイッチSW11がオン動作時はEDLC7を短絡させて、半導体スイッチSW11,リアクトルLb1、半導体スイッチSW12及びリアクトルLb2を通ってEDLC7に環流i7を生じさせる。半導体スイッチSW11がオフ動作時は、リアクトルLb2に蓄えられたエネルギによりEDLC7の出力電圧を昇圧させて、リアクトルLb1に蓄えられたエネルギで放電電流i8が流れ、蓄電池8に蓄えられたエネルギで放電電流i5が流れる。EDLC7を昇圧させて放電を継続することで、EDLC7の使用電圧範囲を広げ、放電量を増加させる。このようなEDLC7の昇圧放電を継続すると、EDLC7の端子電圧がさらに低下し、最終的には昇圧できない(または効率的でない)状態となる。このように、所要の放電量が確保できない場合には、図4(c)に示すように、半導体スイッチSW11をオフ制御(蓄電池8の昇圧放電時、オフのまま)するとともに、半導体スイッチSW12をオン制御(蓄電池8の昇圧放電時、オンのまま)する。また、半導体スイッチSW13をスイッチング制御し、半導体スイッチSW13がオン動作時は蓄電池8を短絡させて、半導体スイッチSW12,リアクトルLb2,Lb3,半導体スイッチSW13を通って蓄電池8に環流i9を生じさせる。半導体スイッチSW13がオフ動作時は、リアクトルLb2,Lb3に蓄えられたエネルギにより蓄電池8の出力電圧を昇圧させて流れる放電電流i10と、リアクトルLb2に蓄えられたエネルギのみにより蓄電池8の出力電圧を昇圧して流れる放電電流i11があり、蓄電池8を昇圧させて放電を継続する。   Next, at the time of discharging, the control changes depending on the output voltages of the EDLC 7 and the storage battery 8. First, when the added voltage between the storage battery 8 and the EDLC 7 connected in series is equal to or higher than the external line voltage or the motor positive terminal voltage, the semiconductor switches SW11 and SW13 are turned off (step-down) as shown in FIG. Control is performed so that the target voltage is reached by switching control of the semiconductor switch SW12. When the semiconductor switch SW12 is turned on by the switching control, the storage current 8, the semiconductor switch SW12, the reactor Lb2, the discharge current i5 from the return line or the motor negative terminal by the energy stored in the EDLC 7 and the storage battery 8 as shown by the arrow, When the semiconductor switch SW12 is turned off, the discharge current i6 flows as shown in the figure via the freewheeling diode FD3 due to the energy stored in the EDLC7 and the reactor Lb2 when the semiconductor switch SW12 is turned off. Is done. If such discharge is continued, depending on the capacity ratio between the EDLC 7 and the storage battery 8, the voltage change of the EDLC 7 is large, so the voltage of the EDLC 7 decreases, and the added voltage is less than the external line voltage or the motor positive terminal voltage. Thus, the step-down discharge cannot be continued. In order to continue the discharge in this case, as shown in FIG. 4B, the semiconductor switch SW12 is turned on (it remains on at the time of step-up discharge of the EDLC 7), and the semiconductor switch SW11 is controlled to switch. Is turned on, the EDLC 7 is short-circuited, and a circulation i7 is generated in the EDLC 7 through the semiconductor switch SW11, the reactor Lb1, the semiconductor switch SW12, and the reactor Lb2. When the semiconductor switch SW11 is turned off, the output voltage of the EDLC 7 is boosted by the energy stored in the reactor Lb2, the discharge current i8 flows with the energy stored in the reactor Lb1, and the discharge current with the energy stored in the storage battery 8 i5 flows. By increasing the pressure of the EDLC 7 and continuing the discharge, the operating voltage range of the EDLC 7 is expanded and the discharge amount is increased. If such boosting discharge of the EDLC 7 is continued, the terminal voltage of the EDLC 7 further decreases, and eventually the boosting cannot be performed (or is not efficient). As described above, when the required amount of discharge cannot be ensured, as shown in FIG. 4C, the semiconductor switch SW11 is controlled to be off (it remains off when the storage battery 8 is boosted), and the semiconductor switch SW12 is turned on. ON control is performed (when the battery 8 is boosted and discharged, it remains ON). Further, the semiconductor switch SW13 is subjected to switching control. When the semiconductor switch SW13 is turned on, the storage battery 8 is short-circuited, and the recirculation current i9 is generated in the storage battery 8 through the semiconductor switch SW12, the reactors Lb2, Lb3, and the semiconductor switch SW13. When the semiconductor switch SW13 is turned off, the discharge current i10 that flows by boosting the output voltage of the storage battery 8 by the energy stored in the reactors Lb2 and Lb3 and the output voltage of the storage battery 8 are boosted only by the energy stored in the reactor Lb2. There is a discharge current i11 flowing therethrough, and the storage battery 8 is boosted to continue discharging.

ここで、き電変電所に適用した具体例について説明する。外線を1500V系統で電圧変動範囲を1200〜1800Vとし、1650V以上でEDLC7及び蓄電池8を充電し、1200V以下でEDLC7及び蓄電池8が放電するとする。又、EDLC7及び蓄電池8の最大端子電圧を750Vとし、EDLC7の最低端子電圧を300Vと仮定する。まず、外線電圧が1200V以下となり、EDLC7及び蓄電池8が放電する場合には、EDLC7及び蓄電池8はフル充電されていたとすると、直列接続電圧は1500Vとなるので、放電当初は図4(a)に示す降圧放電を行う。この降圧放電を継続すると、EDLC7及び蓄電池8の端子電圧が低下し、直列接続電圧が1200V以下となる。この時、端子電圧は電圧変動が大きいEDLC7の方が先に低下する。しかし、EDLC7及び蓄電池8の端子電圧を監視し、EDLC7の電圧低下により直列接続電圧が1200V以下になった時に、図4(b)に示すように、半導体スイッチSW11をスイッチング制御してリアクトルLb2に蓄えられたエネルギでEDLC7の出力電圧を昇圧して外線電圧が1200Vとなるように放電を行う。さらに、放電を継続すると、EDLC7の端子電圧が低下を続け、昇圧ができない、または効率的でない状態となる。この場合、所要の電圧が確保できなくなるので、図4(c)に示すように半導体スイッチSW11をオフ制御するとともに、SW13をスイッチング制御する。このSW13のスイッチング制御により、リアクトルLb2、Lb3に蓄えられたエネルギで蓄電池8の出力電圧を昇圧して外線電圧が1200Vとなるように放電を行う。又、外線電圧が1650V以上でEDLC7及び蓄電池8に充電する場合には、図3(b)に示すように、半導体スイッチSW12をオフ制御するとともに、半導体スイッチSW11のスイッチング制御により蓄電池8を降圧充電し、半導体スイッチSW13のスイッチング制御によりEDLC7の降圧充電を行う。各々の端子電圧が750Vになるまで充電を行う。   Here, a specific example applied to the feeder substation will be described. Assume that the external line is a 1500 V system, the voltage fluctuation range is 1200 to 1800 V, the EDLC 7 and the storage battery 8 are charged at 1650 V or more, and the EDLC 7 and the storage battery 8 are discharged at 1200 V or less. Further, it is assumed that the maximum terminal voltage of the EDLC 7 and the storage battery 8 is 750V, and the minimum terminal voltage of the EDLC 7 is 300V. First, when the external line voltage is 1200 V or less and the EDLC 7 and the storage battery 8 are discharged, assuming that the EDLC 7 and the storage battery 8 are fully charged, the series connection voltage is 1500 V. The step-down discharge shown is performed. If this step-down discharge is continued, the terminal voltage of EDLC7 and the storage battery 8 will fall, and a serial connection voltage will be 1200V or less. At this time, the terminal voltage of the EDLC 7 having a large voltage fluctuation decreases first. However, the terminal voltage of the EDLC 7 and the storage battery 8 is monitored, and when the series connection voltage becomes 1200 V or less due to the voltage drop of the EDLC 7, as shown in FIG. 4B, the semiconductor switch SW11 is controlled to switch to the reactor Lb2. The output voltage of the EDLC 7 is boosted with the stored energy to discharge the external line voltage to 1200V. Furthermore, if the discharge is continued, the terminal voltage of the EDLC 7 continues to decrease, and the voltage cannot be boosted or becomes inefficient. In this case, since a required voltage cannot be secured, the semiconductor switch SW11 is turned off and the SW13 is controlled to be switched as shown in FIG. By the switching control of the SW 13, the output voltage of the storage battery 8 is boosted with the energy stored in the reactors Lb 2 and Lb 3 to discharge the external line voltage to 1200V. Further, when the EDLC 7 and the storage battery 8 are charged with an external voltage of 1650 V or higher, the semiconductor switch SW12 is turned off and the storage battery 8 is stepped down by switching control of the semiconductor switch SW11 as shown in FIG. Then, step-down charging of the EDLC 7 is performed by switching control of the semiconductor switch SW13. Charging is performed until each terminal voltage reaches 750V.

実施最良形態2においては、充電時にはEDLC7と蓄電池8を並列に接続し、外線電圧またはモータの正側端子電圧によりこの両者を充電しており、急速充放電が可能なEDLC7と大容量充放電が可能な蓄電池8の組み合わせ充電が可能となり、EDLC7の端子電圧を蓄電池8より高め設定しておけば、EDLC7はフル充電状態になり難く、回生運転の制限がされ難くなる。又、放電時にはEDLC7と蓄電池8を直列に接続しており、使用電圧範囲を広げることができる。しかも、EDLC7又は蓄電池8の端子電圧低下時にはこれらの昇圧放電を行っており、使用電圧範囲をさらに広げた放電が可能となり、EDLC7又は蓄電池8の放電終止電圧まで利用可能となる。さらに、三つの半導体スイッチSW11〜SW13を設けるだけで制御可能であり、EDLC7の充電量の管理も必要でなく、制御が容易で制御装置が小形安価となる。   In Embodiment 2, the EDLC 7 and the storage battery 8 are connected in parallel at the time of charging, and both are charged by the external line voltage or the positive terminal voltage of the motor. When possible combination charging of the storage battery 8 is possible and the terminal voltage of the EDLC 7 is set higher than that of the storage battery 8, the EDLC 7 is unlikely to be in a fully charged state and the regenerative operation is not easily restricted. Moreover, the EDLC 7 and the storage battery 8 are connected in series at the time of discharge, and the working voltage range can be expanded. In addition, when the terminal voltage of the EDLC 7 or the storage battery 8 is lowered, these boosted discharges are performed, so that the discharge can be performed with a wider operating voltage range, and the discharge end voltage of the EDLC 7 or the storage battery 8 can be used. Furthermore, the control can be performed only by providing the three semiconductor switches SW11 to SW13, the management of the charge amount of the EDLC 7 is not required, the control is easy, and the control device is small and inexpensive.

この発明の実施最良形態1による電力貯蔵装置の回路構成図、充電時の電圧特性図及び充電時の電流特性図である。FIG. 2 is a circuit configuration diagram, a voltage characteristic diagram during charging, and a current characteristic diagram during charging of the power storage device according to the first embodiment of the present invention. 実施最良形態1による電力貯蔵装置の昇降圧チョッパ部分の変形例及び電力貯蔵装置の全体変形例を示す図である。It is a figure which shows the modification of the buck-boost chopper part of the electric power storage apparatus by Embodiment 1, and the whole modification of an electric power storage apparatus. 実施最良形態2による電力貯蔵装置の回路構成図及びその充電時の動作説明図である。It is the circuit block diagram of the electric power storage apparatus by Embodiment 2 and operation | movement explanatory drawing at the time of the charge. 実施最良形態2による電力貯蔵装置の放電時の動作説明図である。It is operation | movement explanatory drawing at the time of discharge of the electric power storage apparatus by Embodiment 2. FIG.

符号の説明Explanation of symbols

2,7…電気二重層キャパシタ(EDLC)
3,5…切換スイッチ
4…ダイオード
6,8…蓄電池
SW11〜SW13…半導体スイッチ
2,7 ... Electric double layer capacitor (EDLC)
3, 5 ... changeover switch 4 ... diode 6, 8 ... storage battery SW11-SW13 ... semiconductor switch

Claims (2)

電源に対して電気二重層キャパシタと蓄電池とを二つの切換スイッチを用いて接続し、放電時には電気二重層キャパシタと蓄電池とを直列に接続するとともに、充電時には蓄電池にダイオードを充電電流方向に順方向となるように直列に接続した直列回路と電気二重層キャパシタとを並列に接続したことを特徴とする電力貯蔵装置。   Connect the electric double layer capacitor and the storage battery to the power supply using two changeover switches, connect the electric double layer capacitor and the storage battery in series at the time of discharging, and forward the diode to the charging battery in the charging current direction at the time of charging. A power storage device, wherein a series circuit and an electric double layer capacitor connected in series so as to be connected in parallel are connected in parallel. 電源に対して電気二重層キャパシタと蓄電池とを三つの半導体スイッチを用いて接続し、充電時には電気二重層キャパシタと蓄電池とを並列に接続するとともに、放電時には電気二重層キャパシタと蓄電池とを直列に接続し、かつ放電時の電気二重層キャパシタまたは蓄電池の端子電圧低下時には半導体スイッチの制御により電気二重層キャパシタまたは蓄電池の出力電圧を昇圧させ、電気二重層キャパシタまたは蓄電池の放電を行わせることを特徴とする電力貯蔵装置。   The electric double layer capacitor and the storage battery are connected to the power supply using three semiconductor switches, and the electric double layer capacitor and the storage battery are connected in parallel during charging, and the electric double layer capacitor and the storage battery are connected in series during discharging. Connecting and discharging the electric double layer capacitor or storage battery by boosting the output voltage of the electric double layer capacitor or storage battery by controlling the semiconductor switch when the terminal voltage of the electric double layer capacitor or storage battery drops during discharging Power storage device.
JP2006234749A 2006-08-31 2006-08-31 Power storage device Pending JP2008061364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234749A JP2008061364A (en) 2006-08-31 2006-08-31 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234749A JP2008061364A (en) 2006-08-31 2006-08-31 Power storage device

Publications (1)

Publication Number Publication Date
JP2008061364A true JP2008061364A (en) 2008-03-13

Family

ID=39243498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234749A Pending JP2008061364A (en) 2006-08-31 2006-08-31 Power storage device

Country Status (1)

Country Link
JP (1) JP2008061364A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119176A (en) * 2008-11-12 2010-05-27 Mitsubishi Electric Corp On-vehicle power supply apparatus
WO2011134273A1 (en) * 2010-04-27 2011-11-03 Chen Yong Solar photovoltaic energy receiving circuit
EP2490318A1 (en) * 2009-10-14 2012-08-22 UD Trucks Corporation Electric storage device
CN111736086A (en) * 2020-07-23 2020-10-02 西安交通大学 Aging test method and device for battery monomer
CN117375135A (en) * 2023-08-07 2024-01-09 中能建储能科技(武汉)有限公司 Balanced control system of marine container type power supply, method and medium thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010119176A (en) * 2008-11-12 2010-05-27 Mitsubishi Electric Corp On-vehicle power supply apparatus
EP2490318A1 (en) * 2009-10-14 2012-08-22 UD Trucks Corporation Electric storage device
EP2490318A4 (en) * 2009-10-14 2014-04-23 Ud Trucks Corp Electric storage device
US9496721B2 (en) 2009-10-14 2016-11-15 Ud Trucks Corporation Power storage apparatus
US10128694B2 (en) 2009-10-14 2018-11-13 Volvo Truck Corporation Power storage apparatus
WO2011134273A1 (en) * 2010-04-27 2011-11-03 Chen Yong Solar photovoltaic energy receiving circuit
CN102835000A (en) * 2010-04-27 2012-12-19 陈勇 Solar photovoltaic energy receiving circuit
CN111736086A (en) * 2020-07-23 2020-10-02 西安交通大学 Aging test method and device for battery monomer
CN111736086B (en) * 2020-07-23 2021-10-01 西安交通大学 Aging test method and device for battery monomer
CN117375135A (en) * 2023-08-07 2024-01-09 中能建储能科技(武汉)有限公司 Balanced control system of marine container type power supply, method and medium thereof

Similar Documents

Publication Publication Date Title
CN106476635B (en) Hybrid system with multiple energy storage devices
JP4886562B2 (en) Power converter and multi-input / output power converter
JP4886487B2 (en) Multi-input / output power converter and fuel cell vehicle
US7292462B2 (en) DC/DC converter having transistor switches with flywheel diodes and program for controlling the transistor switches
JP4893368B2 (en) Power supply
US8760111B2 (en) Secondary battery output power controller
JP3552087B2 (en) Electric vehicle power system
JP6228059B2 (en) DC / DC converter and battery system
JP4828593B2 (en) DC / DC converter and program
CN102474177A (en) Converter controller
CN110739848A (en) High-gain DC-DC converter for electric vehicle
JP2008061364A (en) Power storage device
JP2005073328A (en) Power supply for electric vehicle
JP5349001B2 (en) Electric winding device
JP5931366B2 (en) Power converter
JP6818835B1 (en) Power controller
JP2000354304A (en) Motor drive power converter
CN104908604A (en) Airborne power grid
JP6502088B2 (en) POWER SUPPLY SYSTEM, VEHICLE, AND VOLTAGE CONTROL METHOD
JP5332214B2 (en) Motor drive device
JP2008079436A (en) Power supply control unit
JP4144009B2 (en) Variable voltage power storage device and hybrid power supply device
JP3484636B2 (en) Symmetric DC / DC converter
JP2004236384A (en) Power supply system for fuel cell vehicle
JP2010233384A (en) Power supply device